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Key to the exact solubility of the unitary minimal models in two-dimensional conformal field theory is
the organization of their Hilbert space into Verma modules, whereby all eigenstates of the Hamiltonian are
obtained by the repeated action of Virasoro lowering operators onto a finite set of highest-weight states. The
usual representation-theoretic approach to removing from all modules zero-norm descendant states
generated in such a way is based on the assumption that those states form a nested sequence of Verma
submodules built upon singular vectors, i.e., descendant highest-weight states. We show that this
fundamental assumption breaks down for the Ramond-sector Verma module with highest weight c=24
in the even series ofN ¼ 1 superconformal minimal models with central charge c. To resolve this impasse,
we conjecture, and prove at low orders, the existence of a nested sequence of linear-dependence relations
that enables us to compute the character of the irreducible c=24 module. Based on this character formula,
we argue that imposing modular invariance of the torus partition function requires the introduction of a
non-null odd-parity Ramond-sector ground state. This symmetrization of the ground-state manifold allows
us to uncover a set of conformally invariant boundary conditions not previously discussed and absent in the
odd series of superconformal minimal models, and to derive for the first time a complete set of fusion rules
for the even series of those models.
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I. INTRODUCTION

Two-dimensional (2D) conformal field theories (CFTs)
[1] play a central role in physics. The presence of
additional symmetries besides conformal symmetry can
lead to CFTs with a rich mathematical structure. For
instance, a minimal generalization of the conformal
Virasoro algebra consistent with supersymmetry is the
N ¼ 1 super-Virasoro algebra [2,3]. The N ¼ 1 super-
conformal minimal models (SMMs) [4–7] are an infinite,
discrete series of superconformal field theories (SCFTs)
corresponding to unitary, irreducible representations
of this algebra with central charge c ¼ 3

2
½1 − 8

mðmþ2Þ�,
m ¼ 2; 3; 4;…. As opposed to early proposals for the
experimental realization of SMMs at classical multi-
critical points [5], recent advances in condensed matter
physics suggest several SMMs may promisingly be
realized as quantum critical points or even stable quan-
tum critical phases in a diverse array of platforms,

ranging from anyonic spin chains [8,9] to boundaries
of topological superconductors [10,11] and lattice models
of interacting Majorana fermions [12–14].
Entanglement properties of critical ð1þ 1ÞD quantum

many-body systems, to which entanglement-based numeri-
cal methods such as the density-matrix renormalization
group (DMRG) [15] give direct access, can probe various
universal quantities of the underlying CFT. In Ref. [10], the
central charge c ¼ 7=10 of the tricritical Ising universality
class was extracted from a DMRG calculation of the
ground-state entanglement entropy [16]. Besides the central
charge, a fuller characterization of the CFT may be
achieved by a study of the low-lying entanglement spec-
trum, which was argued to match the set of scaling
dimensions in boundary CFT [17–19] for a particular
choice of boundary conditions (BCs) on the entangling
surface. This choice of entanglement BCs in turn singles
out one among a set of allowed conformally invariant BCs
[20], i.e., a pair of Cardy states [21]. By determining
numerically how different entanglement BCs affect degen-
eracies in the low-lying entanglement spectrum, one may
directly probe the entire set of fusion rules of the bulk CFT
[21,22]. Motivated by ongoing studies of entanglement
properties of quantum-critical systems with emergent
supersymmetry, we revisit a basic structure in the repre-
sentation theory of N ¼ 1 SMMs which is heuristically
summarized as follows.
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II. PICTORIAL SUMMARY OF THE PAPER

The highest weights (HWs) in a 2D CFT, a set of
universal numbers that determines the operator scaling
dimensions, form a rectangular Kac table (Fig. 1). For
nonsupersymmetric minimal models and the odd-m series
of SMMs, the Kac table contains an even number of entries,
half of which are redundant. By contrast, the Kac table for
even-m SMMs contains an odd number of entries (due to a
central box), all of which are intertwined in the corre-
sponding representation theory. This observation indicates
that while odd-m SMMs can be understood similarly as
unitary minimal models, the even-m series of SMMs calls
for a distinct treatment.
The left-hand side of Fig. 2 depicts schematically the

commonly held perspective on the Hilbert-space structure
for even-m SMMs: the central entry highlighted in the Kac
table gives rise to a unique (Ramond) ground state with
even fermion parity. As explained below, a representation
theory based on this assumption conflicts with a central
requirement in CFT, modular invariance [23]. The main
result of our paper is a proposed resolution to this problem:
the addition of a second Ramond ground state with odd
fermion parity (Fig. 2), which restores consistency between
representation theory and modular invariance.
More precisely, we show that the standard assumption

of representation theory—the nested Verma-submodule

structure of null states—fails for the c=24 HW, i.e., the
central box in the Kac table of even-m SMMs, demanding
an alternate approach to the construction of an irreducible
module and the computation of its character. We propose as
resolution an infinite hierarchy of linear-dependence rela-
tions among null states in an auxiliary module whose
character is identical to, but easier to compute than, that of
the original module. Based on this newly derived character,
we argue that modular invariance of the torus partition
function [23] requires the Ramond-sector ground-state
manifold to contain states of both fermion parities. We
subsequently construct Ishibashi states [24] and solve
the Cardy equations [21], finding an extra Cardy state,
Eq. (22), beyond those found in the literature [24–26].
Inverting the Cardy equations, we correspondingly find two
extra fusion rules, Eqs. (23)–(24) and (29), absent from
previous discussions.

III. REVISITING REPRESENTATION THEORY
FOR THE c=24 MODULE

The N ¼ 1 super-Virasoro algebra is given by
½Lm;Ln� ¼ ðm− nÞLmþn þ c

12
ðm3 −mÞδmþn;0, fGr;Gsg ¼

2Lrþs þ c
3
ðr2 − 1

4
Þδrþs;0, ½Lm;Gr� ¼ ðm

2
− rÞGmþr, where

Lm (Gr) are the bosonic (fermionic) Laurent modes of
the energy-momentum tensor (supercurrent); m ∈ Z while
r ∈ Zþ 1

2
in the Neveu-Schwarz (NS) sector and r ∈ Z in

the Ramond (R) sector. We focus on the holomorphic part
of the algebra; identical results are obtained for the
antiholomorphic part. The central result in representation
theory is the Kac determinant [5], an expression for the
determinant of the Gram matrix in the degenerate subspace
at level l in a Verma module Vþ (V−) with even (odd)
fermion parity and HW h, detVþ

0 ¼ 1, detV−
0 ¼ h − c

24
,

detV�
l>0 ¼ ðh − c

24
ÞPRðlÞ

2

Q
r;s⩾1ðh − hr;sðcÞÞPRðl−rs

2
Þ, where

hr;sðcÞ is a prescribed function of c and integers r, s
which determines the finite set of allowed HWs in SMMs.
We focus on the R sector, where r − s is odd and the
maximal level degeneracy PRðlÞ is obtained from
the generating function

P∞
l¼0 q

lPRðlÞ ¼
Q∞

n¼1ð1þ qnÞ=
ð1 − qnÞ≕ 1=φRðqÞ.
Unitarity and irreducibility require that negative-norm

states should be absent from the Verma module and null
(zero-norm) states should be systematically removed. A
large class of linearly independent null states consists of
states obtained from the repeated action of lowering
operators L−m, G−r (m > 0; r⩾ 0) onto a singular vector
jχi, i.e., a descendant state satisfying the HW condition
Lnjχi ¼ 0 for n > 0 and Grjχi ¼ 0 for r > 0. Such states
form a null Verma submodule [27]. A singular vector is
itself necessarily a null state, but the converse is not
generally true. For all Virasoro and most super-Virasoro
HWs, the first null state dictated by the Kac determinant
(at level l ¼ rs=2) happens to also be a singular vector;
the same Kac determinant can thus be used again to find

FIG. 1. Examples illustrating four types of Kac tables that
characterize unitary minimal models and their N ¼ 1 super-
symmetric generalization. The first three types have an even
number of entries, half of which are redundant (white boxes),
while the Kac table for even-m SMMs has an odd number of
entries and no redundancy.

FIG. 2. Schematic Hilbert-space structure for even-m SMMs.
The commonly held viewpoint (left) leads to inconsistency with
modular invariance, which can be resolved by introducing an
additional, odd-parity Ramond ground state (right).
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another singular vector in the resulting null Verma sub-
module, and such a procedure repeats, leading to a nested
structure of null Verma submodules which comprises all
null states [28]. Based on this nested structure, Kiritsis
derived character formulas for NS and R irreducible Verma
modules with HWs not equal to c=24 [29]. The c=24 HW
only appears in the R sector of the even-m series of SMMs,
and we focus on those for the rest of the paper.
The crucial concurrence between first null state and

singular vector is however not warranted by the Kac
determinant and breaks down for the module with HW
h⋆ ≔ hm

2
;m
2
þ1ðcÞ ¼ c=24 [30–32]. As for other R modules,

the HW states come in degenerate pairs jh�⋆ i of opposite
fermion parity where jh−⋆ i ¼ G0jhþ⋆ i, but contrary to other
R modules the odd-parity state jh−⋆ i is annihilated by G0

since G2
0 ¼ L0 − c

24
(and is thus also null). As a result, the

linear system corresponding to the singular-vector con-
dition is in general overdetermined. For example, when
m ¼ 2, one has hhþ⋆ jL1L−1jhþ⋆ i ¼ 0 but G1L−1jhþ⋆ i ¼
3
2
jh−⋆i ≠ 0, i.e., the first null state L−1jhþ⋆ i built from the

even-parity HW state jhþ⋆ i is not singular. Analogously for
m ¼ 4, one can prove that no linear combinations of level-3
descendants of jhþ⋆ i are singular.

IV. CHARACTER OF THE c=24 MODULE

To resolve this issue, we first propose the study of an
auxiliary module Ṽ⋆, defined by contrast with the original
module V⋆ ≔ Vðc; h⋆Þ as

V⋆∶ G0jhþ⋆ i ¼ jnulli → Ṽ⋆∶ G0jh̃þ⋆ i ¼ 0: ð1Þ

The entire class of null states built solely on jh−⋆i is
effectively subsumed into a single representative zero
vector so that jh̃−⋆ i does not appear and the Verma module
is halved, which greatly simplifies the construction of
irreducible HW representations. The Kac determinant for
Ṽ⋆ remains formally unchanged: det Ṽþ⋆;0 ¼ 1, det Ṽ−⋆;0 ¼ 0,
det Ṽ�⋆;l>0 ¼

Q
r;s⩾1 ðh − hr;sðcÞÞPRðl−rs

2
Þ. Thus irreducible

modules constructed from V⋆ and Ṽ⋆, albeit fundamentally
different, necessarily possess the same character.
We first investigate the structure of the reducible aux-

iliary modules Ṽ�⋆ built entirely upon the HW state jh̃þ⋆ i.
According to the Friedan-Qiu-Shenker (FQS) prescription
[5], a set of linearly independent vectors spanning the
level-l degenerate subspace is given by G−m1

G−m2
� � �

L−n1L−n2 � � � jh̃þ⋆ i, where 0 < m1 < m2 < � � �, 0 < n1⩽
n2⩽ � � �, and P

i mi þ
P

i ni ¼ l. Imposing G0jh̃þ⋆ i ¼ 0

leads to two major differences in the structure of V�⋆ and
Ṽ�⋆ : (i) In contrast to V�⋆ , singular vectors jχ̃⋆i are restored
in Ṽ�⋆ and first appear at levels dictated by the Kac
determinant. However, generically jχ̃⋆i is not annihilated
by G0 although jh̃þ⋆ i is. (ii) At a given level and for a fixed
fermion parity, the set of null descendant states built upon

the two degenerate singular vectors jχ̃⋆i and G0jχ̃⋆i by the
FQS prescription is in general linearly dependent; thus null
states in Ṽ�⋆ do not form Verma submodules. As will be
argued, the linear-dependence relations among null states
evoked in (ii) are organized into an infinite hierarchy that
plays a role analogous to that of the nested embedding of
null Verma submodules for h ≠ c=24HWs and allows us to
compute the irreducible character of the original V�⋆
modules.
The zeroth echelon in this hierarchy corresponds to the

first singular vector jχ̃⋆i of a given fermion parity, which
appears at level l0 ≔ m

4
ðm
2
þ 1Þ according to the Kac

determinant and can be written as a linear combination
of level-l0 descendants of jh̃þ⋆ i,

jχ̃⋆i ¼ L̂0½fð0Þ1 ;…; fð0Þ1
2
PRðΔl0Þ�jh̃

þ⋆ i; ð2Þ

where fð0Þ1 ;…; fð0Þ1
2
PRðΔl0Þ are the coefficients of this linear

combination, and we define the kth-echelon (k⩾0) gener-
alized lowering operator,

L̂k½fðkÞ1 ;…; fðkÞ1
2
PRðΔlkÞ; g

ðkÞ
1 ;…; gðkÞ1

2
PRðΔlkÞ�

≔ fðkÞ1 LΔlk
−1 þ � � � þ fðkÞ1

2
PRðΔlkÞG−1G1−Δlk

þ gðkÞ1 G−1L
Δlk−1
−1 G0 þ � � � þ gðkÞ1

2
PRðΔlkÞG−ΔlkG0; ð3Þ

with Δlk ≔ lk − lk−1 and lk ≔ ð1þ kÞ2l0. Equation (3)
is the most general fermion-parity-preserving operator that
raises the level of a state by Δlk, and lk for k⩾ 1 is the
level at which higher-level singular vectors appear accord-
ing to the Kac determinant. The first 1

2
PRðΔlkÞ terms in

Eq. (3) involve bosonic generators, while the remaining
terms involve fermionic generators times the zero-mode
operator G0. From Eq. (1), the latter vanish when acting on
jh̃þ⋆ i and are thus excluded from Eq. (2).
The first echelon in the hierarchy corresponds to the

linear dependence of null states built upon jχ̃⋆i andG0jχ̃⋆i,
which first appears at level l1 and can be expressed as

L̂1jχ̃⋆i ¼ 0: ð4Þ

The set of fð1Þi and gð1Þi coefficients implicit in Eq. (4) is

uniquely determined by fð0Þi up to an overall multiplicative
constant. The second echelon expresses the fact that linear-
dependence relations generated from (4) become them-
selves linearly dependent at higher levels. In general, the
kth-echelon consists of linear-dependence relations among
the linear-dependence relations of the (k − 1)th-echelon
and can be summarized compactly as

L̂kL̂k−1jlk−2i ¼ 0; k⩾ 2; ð5Þ
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where the coefficients fðkÞi , gðkÞi , again omitted for simplic-

ity, are uniquely determined from fðk−1Þi , gðk−1Þi up to an
overall multiplicative constant, and jlk−2i denotes an
arbitrary state at level lk−2. In [33], we substantiate this
hierarchy conjecture with explicit calculations for m ¼ 2; a
calculation for m ¼ 4 with a computer algebra system
yields analogous results.
The hierarchy of linear-dependence relations embodied

in Eqs. (4) and (5) can now be used to calculate the
character of the original irreducible c=24 module M�

m
2
;m
2
þ1:

the number of linearly independent null states to be
removed from Ṽ�⋆ at each level is reduced by one whenever
a linear-dependence relation occurs. Implementing this
procedure recursively, one obtains [33]

χRðM�
m
2
;m
2
þ1Þ ¼

1

2φRðqÞ
X
n∈Z

ðq1
2
mðmþ2Þn2

− q
1
2
mðmþ2Þðnþ1

2
Þ2Þ � 1

2
: ð6Þ

V. MODULAR-INVARIANT TORUS
PARTITION FUNCTION

Since the full SCFT is nonlocal, we restrict ourselves to
the Gliozzi-Scherk-Olive (GSO)-projected spin model [5]
with even fermion parity. On a torus, the required invari-
ance of the partition function under modular transforma-
tions constrains which HW representations appear in the
theory and how often [23]. A modular-invariant contribu-
tion to the partition function for even m was found to be
[34–36]

Zþ ¼
X

ðr;sÞ∈ΔNS

ðjχNSðMr;sÞj2 þ jχ eNSðMr;sÞj2Þ

þ jχc=24R ðqÞj2 þ 2
X0

ðr;sÞ∈ΔR

jχRðMþ
r;sÞj2; ð7Þ

where ΔNS (ΔR) denotes the set of independent HWs in
the NS (R) sector, χNSe corresponds to the NS character
twisted by the insertion of the fermion-parity operator,
and the primed sum over ΔR means that the c=24 HW
ðr ¼ m

2
; s ¼ m

2
þ 1Þ is excluded. The asymmetry in Eq. (7)

between the latter and other R HWs comes from the
fact that the c=24 HW occupies the self-symmetric point
of the Kac table [34–36]. The function χc=24R ðqÞ ≔
φRðqÞ−1

P
n∈Zðq1

2
mðmþ2Þn2 − q

1
2
mðmþ2Þðnþ1

2
Þ2Þ, whose form

is highly constrained by modular invariance, should be
the character of the c=24 module but disagrees with the
result (6) of an explicit evaluation in representation theory.
To resolve this paradox, we introduce an additional pair of
R HW ground states jw�⋆ i, obeying

L0jw�⋆ i ¼
c
24

jw�⋆ i; hw−⋆ jw−⋆i ¼ 1;

jwþ⋆ i ¼ G0jw−⋆i ¼ jnulli; ð8Þ

and giving rise to a second irreducible c=24 module built
on the non-null HW state jw−⋆ i. The level degeneracies of
the modules built on jhþ⋆ i and jw−⋆i only differ at level zero,
since the parity of the non-null HW state is opposite for
both, and the sum of their characters inferred from Eq. (6)
yields precisely χc=24R ðqÞ. We thus interpret Eq. (7) as an off-
diagonal modular invariant involving the product of hol-
omorphic and antiholomorphic characters for two distinct
c=24 modules, in sharp contrast to the diagonal form for m
odd. The introduction of an additional R ground state also
resolves the arbitrariness in the original definition jh−⋆i ¼
G0jhþ⋆ i [5], which could have equally been chosen
as jhþ⋆ i ¼ G0jh−⋆ i.

VI. BOUNDARY SCFT AND A
NEW CARDY STATE

We now explore the consequences of this symmetriza-
tion of the R ground-state manifold on boundary SCFT.
Superconformally invariant boundary states, the Cardy
states, can be expanded on a basis of Ishibashi states
jhγ⟫, γ ¼ �1, which are constructed for each irreducible
module and obey the gluing conditions ðLn − L̄−nÞjhγ⟫ ¼
0 and ðGr þ iγḠ−rÞjhγ⟫ ¼ 0 [24]. For the c=24 HW, we
now have two sets of Ishibashi states,

jhR⋆;γ⟫ ¼
X
q

jh⋆; qi ⊗ Uγjh⋆; qi; ð9Þ

jwR⋆;γ⟫ ¼
X
q0

jw⋆; q0i ⊗ Uγjw⋆;q0i; ð10Þ

where Uγ is an antiunitary operator that commutes with the
holomorphic fermion-parity operator ð−1ÞF and obeys
UγLnU−1

γ ¼ Ln, UγGrU−1
γ ¼ −iγGrð−1ÞF. The sums run

over a complete set of states in each module, with q, q0 a set
of quantum numbers sufficient to label each state (hol-
omorphic fermion parity, level, and other quantum num-
bers). An equally valid basis, which facilitates the
construction of the Cardy states, is given by the bonding
and antibonding combinations of (9) and (10),

j c
24
R
�⟫ ≔ jhR⋆;�⟫� jwR⋆;�⟫: ð11Þ

Cardy states [21] kαγ⟫, kβγ0⟫ are defined by the property
that the partition function Zαγβγ0 of the (GSO-projected)

SCFT on a cylinder of length L and circumference R can
be evaluated in either the open-string or closed-string
pictures. In the open-string picture, one has periodic time
evolution along the R direction according to a Hamiltonian
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Hopen
αγβγ0

¼ π
L ðL0 − c

24
Þαγβγ0 with BCs αγ, βγ0 along the L

direction,

Zopen
αγβγ0

ðqÞ ¼ 1

2
Tr
fNSg

½e−RH
open
αγβγ0 � þ 1

2
Tr
fNSe g

½ð−1ÞFe−RH
open
αγβγ0 �

þ 1

2
Tr
fRg

½e−RH
open
αγβγ0 � þ 1

2
Tr
fR̃g

½ð−1ÞFe−RH
open
αγβγ0 �;

ð12Þ

where traces are over holomorphic states only and all four
spin structures on the cylinder are considered separately. In
the closed-string picture, one has a transition amplitude
between Cardy states with finite time evolution along the L
direction,

Zclosed
αγβγ0

ðq̃Þ ¼ ⟪Θαγke−LHclosedkβγ0⟫; ð13Þ

with Hamiltonian Hclosed ¼ 2π
R ðL0 þ L̄0 − c

12
Þ, and Θ is the

antiunitary CPT operator. The parameters q ¼ e−πR=L ¼
e2πiτ and q̃ ¼ e−4πL=R ¼ e2πiτ̃ are related by a modular
S transformation τ̃ ¼ −1=τ. The open-string partition
function is evaluated as

Zopen
αγβγ0

ðqÞ ¼ 1

2

X
i∈ΔNS

ðniαγβγ0 χiNSðqÞ þ ñiαγβγ0 χ
i
NSe ðqÞÞ

þ 1

2
ðmhþ⋆

αγβγ0
þmw−⋆

αγβγ0
Þχc=24R ðqÞ

þ
X0

i∈ΔR

mi
αγβγ0

χiRðqÞ þ
1

2
ðm̃hþ⋆

αγβγ0
− m̃w−⋆

αγβγ0
Þ

¼ 1

2

X
i∈ΔNS

ðniαγβγ0 χiNSðqÞ þ ñiαγβγ0 χ
i
NSe ðqÞÞ

þ
X
i∈ΔR

mi
αγβγ0

χiRðqÞ þ
1

2
m̃c=24

αγβγ0
; ð14Þ

where the multiplicities niαγβγ0 ; ñ
i
αγβγ0

; mi
αγβγ0

; m̃i
αγβγ0

∈ Z

denote how many times the irreducible HW module i
appears in the spectrum of the SCFT with BCs αγ , βγ0 for
a given choice of spin structure. In the last equality, we

definemhþ⋆
αγβγ0

þmw−⋆
αγβγ0

≕2mc=24
αγβγ0

and m̃hþ⋆
αγβγ0

− m̃w−⋆
αγβγ0

≕ m̃c=24
αγβγ0

,

establishing later that mc=24
αγβγ0

is integer. Note that the two

independent c=24 modules in general contribute a non-
trivial constant from the twisted sum in the R sector,
which is at the origin of the new Cardy state to be dis-
cussed shortly. Conversely, expanding Cardy states on the

basis of Ishibashi states as kαγ⟫ ¼ P
j∈ΔNS

B
jNSγ
αγ jjNSγ ⟫þP

j∈ΔR
B
jRγ
αγ jjRγ ⟫, and similarly for kβγ0⟫, where B

jNS;Rγ
αγ ≔

⟪jNS;Rγ kαγ⟫ are the expansion coefficients, the closed-string

partition function (13) can be calculated and expressed in
terms of these coefficients and the characters χjNSðq̃Þ,
χj
NSe ðq̃Þ, χjRðq̃Þ [33]. The aforementioned constant term in

(14) is matched by a corresponding term in (13), which
arises from ⟪Θ c

24
R
�je−LH

closed j c
24
R∓⟫ ¼ 2. Equating Eqs. (14)

and (13), and using the transformation properties of the
characters under a modular S transformation [34–36], we
find a set of four Cardy equations [33],

X
i∈ΔNS

niαγβγ0S
½NS;NS�
ij ¼ 2ðδγþδγ0þ þ δγ−δγ0−ÞBjNSγ

αγ B
jNS
γ0
βγ0

; ð15Þ

X
i∈ΔR

mi
αγβγ0

1

λi
S½R;NSe �
ij ¼ ðδγþδγ0− þ δγ−δγ0þÞBjNSγ

αγ B
jNS
γ0
βγ0

; ð16Þ

X
i∈ΔNS

ñiαγβγ0S
½NSe ;R�
ij λj ¼ 4ðδγþδγ0þ þ δγ−δγ0−ÞBjRγ

αγB
jR
γ0
βγ0
; ð17Þ

m̃c=24
αγβγ0

¼ 4ðδγþδγ0− þ δγ−δγ0þÞB
c
24
R
γ

αγ B
c
24
R
γ0

βγ0
; ð18Þ

where S is the modular S-matrix [22], j runs over HWs in
the appropriate sector, and λc=24 ¼ 1, λj≠c=24 ¼

ffiffiffi
2

p
.

Adopting the method in Ref. [21], the Cardy states can
be obtained as solutions to the above equations. For HWs
k; l ∈ ΔNS, we obtain

kkNSþ ⟫ ¼ 1ffiffiffi
2

p
X
j∈ΔNS

S½NS;NS�kjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S½NS;NS�0j

q jjNSþ ⟫; ð19Þ

klNSeþ ⟫ ¼
X
j∈ΔR

ffiffiffiffi
λj

p
2

S½NSe ;R�
ljffiffiffiffiffiffiffiffiffiffiffiffi
S½NSe ;R�
0j

q jjRþ⟫; ð20Þ

while for HWs d ∈ ΔR, we obtain

kdR−⟫ ¼
X
j∈ΔNS

ffiffiffi
2

p

λd

S½R;NSe �
djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S½NS;NS�0j

q jjNS− ⟫: ð21Þ

Finally, for even m, the existence of the self-symmetric
c=24 HW yields an additional Cardy state,

k c
24
R̃
−⟫ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S½NSe ;R�
0;c=24

q j c
24

R
−⟫: ð22Þ

VII. FUSION RULES

Identifying the multiplicities appearing in the open-
string partition function (14) with the fusion coefficients
of the SCFT [21], one obtains the complete set of fusion
rules for the even-m series of SMMs,
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½ c
24
R̃� × ½ c

24
R̃� ¼

X
i∈ΔNS

ñic
24
R̃; c

24
R̃ ½iNSe �; ð23Þ

½lNSe � × ½ c
24
R̃� ¼ m̃

c
24

leNS ; c
24
R̃
½ c
24

R̃�; ð24Þ

½lNSe � × ½l0NSe � ¼ X
i∈ΔNS

ñi
leNS ; l0eNS ½i

eNS �; ð25Þ

½dR� × ½d0R� ¼
X
i∈ΔNS

nidR;d0R ½iNS�; ð26Þ

½kNS� × ½dR� ¼
X
i∈ΔR

mi
kNS;dR

½iR�; ð27Þ

½kNS� × ½k0NS� ¼
X
i∈ΔNS

ni
kNS;k0NS ½iNS�; ð28Þ

and the corresponding Verlinde formula,

ñic
24

R̃; c
24
R̃ ¼

ðS½NSe ;R�Þ−1c
24
;i

S½NSe ;R�
0; c

24

; m̃
c
24

leNS ; c
24
R̃
¼

S½NSe ;R�
l; c
24

S½NSe ;R�
0; c

24

; ð29Þ

ñi
leNS ;l0eNS ¼

X
j∈ΔR

S½NSe ;R�
lj S½NSe ;R�

l0j ðS½NSe ;R�Þ−1ji
S½NSe ;R�
0j

; ð30Þ

nidR;d0R ¼
X
j∈ΔNS

4S½R;NSe �
dj S½R;NSe �

d0j ðS½NS;NS�Þ−1ji
λdλd0S

½NS;NS�
0j

; ð31Þ

mi
kNS;dR

¼
X
j∈ΔNS

λiS
½NS;NS�
kj S½R;NSe �

dj ðS½R;NSe �Þ−1ji
λdS

½NS;NS�
0j

; ð32Þ

ni
kNS;k0NS ¼

X
j∈ΔNS

S½NS;NS�kj S½NS;NS�k0j ðS½NS;NS�Þ−1ji
S½NS;NS�0j

: ð33Þ

We check explicitly that all fusion coefficients are integers.

VIII. SUMMARY

We show that the standard representation-theoretic
approach to the determination of irreducible characters
in CFT fails for the R-sector c=24 HW in the even-m series
of N ¼ 1 SMMs and conjecture an infinite hierarchy of
linear-dependence relations to compute the character of this
module. Modular invariance on the torus is restored with
this character provided that the R ground-state manifold is
augmented by a non-null parity-odd state, which in turn
yields additional bulk fusion channels and superconfor-
mally invariant boundary states. One implication of this
symmetrization of the ground-state manifold is the pos-
sibility of spontaneously broken supersymmetry and the
associated Goldstino in even-m SMMs, for which numeri-
cal evidence has been presented in [37].
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