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The Migdal effect in a dark-matter-nucleus scattering extends the direct search experiments to the sub-
GeV mass region through electron ionization with sub-keV detection thresholds. In this paper, we derive a
rigorous and model-independent “Migdal-photoabsorption” relation that links the sub-keV Migdal process
to photoabsorption. This relation is free of theoretical uncertainties as it only requires the photoabsorption
cross section as the experimental input. Validity of this relation is explicitly checked in the case of xenon
with a state-of-the-art atomic calculation that is well benchmarked by experiments. The predictions based
on this relation for xenon, argon, semiconductor silicon, and germanium detectors are presented and
discussed.
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I. INTRODUCTION

Direct searches for the weakly interacting massive
particle (WIMP), one of the favorite dark matter (DM)
candidates, has been making tremendous progress in recent
years: in the mass range of mχ ∼ 10–100 GeV,1 the limits
on its spin-independent scattering cross section off nucleon
reach down to the range of σn ≲ 10−46 − 10−47 cm2; in the
mass range of 1–10 GeV, the limits are also improving,
however, not as stringent as in the heavier case (see, e.g.,
Ref. [1] for a recent review). The obvious reason is a lighter
WIMP has less kinetic energy so it is less probable to
generate observable nuclear recoil (NR) events from
WIMP-nucleus scattering. Ultimately, a detector’s NR
threshold cuts off any sensitivity to mχ below a certain
value, as seen in every WIMP exclusion plot.
To expand a direct detector’s coverage of low-mass

WIMPs, or more generically light dark matter (LDM), a
recent proposal by Ibe et al. [2] that uses the so-called
Migdal effect has attracted great interests. This effect, first
noted by A. B. Migdal [3], refers to an inelastic exit channel
in scattering off an atomic nucleus, where not only the
atomic center of mass gets recoil (typically termed as NR),

but also the intrinsic atomic electron state is excited or
ionized. Unlike the elastic exit channel, the Migdal effect
generates other electromagnetic signals in the form of
ionized electrons and photons from atomic deexcitation or
recombination, which are more energetic than NR hence is
detectable. This novel DM detection mode has been applied
to several experiments [4–10] and some of them give
the current best limits on DM-nucleus interactions in the
mass range below GeV. With detectors of larger size and
longer data taking time, e.g., xenon-based XENONnT [11],
LZ [12], and DARWIN [13]; argon-based DarkSide [14],
DEAP [15], and ArDM [16]; or of lower threshold and
better resolution, e.g., germanium-based EDELWEISS [17]
and CDMS HVeV [18]; silicon-based SENSEI [19] and
DAMIC [20], the Migdal effect will be a promising probe
of hadrophilic LDM.
While detecting the Migdal effect is an experimental

challenge, predicting its count rate is mostly a theoretical
one [2,21–23]. For a relic sub-GeV LDM candidate, its
kinetic energy is no bigger than a few keV, so the scattering
process falls in the atomic scale. Proper understanding of
such a sub-keV Migdal effect inevitably involves atomic
physics. The lower the energy, the more pronounced many-
body effects are expected. The complexity of many-body
physics adds a new layer when detector media can no
longer be treated as isolated atoms. This means at certain
low-energy levels it will be necessary to take into account
molecular or condensed-matter physics, depending on a
detector’s material phase. All these problems are highly
nontrivial but essential.
To address the theory issues related to the Migdal effect,

we first derive a relation that links the low-energy Migdal
process to photoabsorption, which is exact at the long
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wavelength limit of photon and expected to work up to a
few keV. The relation has two major advantages: it applies
to all kinds of DM detectors in general, and is free of
theoretical uncertainties because only photoabsorption
cross section (experimentally measurable) is needed for
input. To demonstrate the robustness of this relation, we
study the case of xenon by applying a state-of-the-art
atomic approach, the relativistic random phase approxima-
tion (RRPA), whose high precision has been demonstrated
in Ref. [24]. Finally we use this relation to predict the
Migdal effects in argon, silicon, and germanium detectors.

II. MIGDAL EFFECT

The transition operator and matrix element of a Migdal
process has been derived in several ways, e.g., through a
sudden approximation [25], nonrelativistic scattering with
Galilean invariance [26] (for hydrogenlike systems), and
relativistic scattering with full Lorentz covariance [2].
Because of the hierarchy between atomic, nuclear, electron
mass, mA, mN , me, and atomic binding energy EB:
mA ≈mN ≫ me ≫ EB, all derivations converge on the
resulting Migdal matrix element

MFI ¼ hFje−ime
mA

q⃗A·
P

Z
i¼1

r⃗i jIi; ð1Þ

where q⃗A is the three-momentum transfer to the atomic
system; r⃗i the coordinate of the ith electron; jIi and jFi the
atomic initial and final states in the intrinsic frame (i.e.,
with the center of mass motion being factored out),
respectively.2

First, notice that the summation over all Z electron
coordinates appears in the exponent, so the nth-order series
expansion contains n-body operators, whose matrix ele-
ments are tedious to compute. By a naïve dimensional
analysis: jq⃗Aj ∼mχvχ with DM velocity vχ ∼ 10−3; and
hr⃗ii ∼ ðZimeαÞ−1 with Zi being the effective charge seen
by the ith electron and α the fine structure constant, one
can define an atomic-shell-dependent expansion parameter
ϵi ¼ mχ

mA

vχ
α

1
Zi
. In the case of xenon, mA ∼ 120 GeV, so

ϵi ∼ 0.001
Zi

mχ

GeV guarantees good convergence for sub-GeV
DM even with a Zi ¼ 1 assumption. In reality, current
xenon detector thresholds are a few keV, most Migdal events
would be from inner-shell ionizations with Zi surely larger
than 1. Therefore, for LDM searches, the Migdal matrix
element can be well-approximated by the leading-order term

Mð1Þ
FI ¼ −i

me

mA
q⃗A ·

�
F

����
XZ
i¼1

r⃗i

����I
�
≡ −i

me

mA
q⃗A · D⃗FI; ð2Þ

where D⃗FI is the familiar dipole matrix element.

The energy deposition by DM in a Migdal process goes
into two parts: one to the atomic center-of-mass kinetic
energy (or the NR energy), ER, and the other to the atomic
discrete excitation or ionization, denoted as Er ¼ EF − EI
whit EFðIÞ the eigenenergy of the state jFðIÞi. To accom-
modate different DM detector’s approaches in measuring
the combinations of ER and Er, it is customary to cast the
cross section in a double differential form

dσ
dERdEr

¼ m2
e

μ2Nv
2
χ
σ̃NðqAÞERD2

FI; ð3Þ

where μN ¼ mNmχ=ðmN þmχÞ is the reduced mass of the
DM-nucleus system, and σ̃N the DM-nucleus cross section,
which depends on qA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mAER
p

. The averaged dipole

matrix element squared D2
FI involves a summation of all

allowed final states and an average of degenerate initial
states.3

III. PHOTOABSORPTION AND ITS RELATION
TO THE MIGDAL EFFECT

As seen from Eq. (3), the quantity D2
FI is the critical

piece of information that requires many-body calculations.
Therefore, it is desirable to ask whether it can be extracted
directly from experiments. Fortunately, photoabsorption
provides the answer.
The full transition matrix element for photoabsorption

takes the form

PFI ¼ ε̂ ·

�
F

����
XZ
i¼1

α⃗ieik⃗·r⃗i
����I
�
≡ ε̂ · O⃗FI; ð4Þ

where k⃗ and ε̂ are the photon momentum and polarization
vectors, and α⃗i the 4 × 4 spatial Dirac matrix. By energy
conservation, the photon energy ω ¼ jk⃗j ¼ Er (the atomic
recoil is negligible as ω ≪ mA). The total cross section of
photoabsorption is

σγðErÞ ¼
4π2α

Er
P2
FI; ð5Þ

where the same summation and average of states being
applied to PFI as in the case to DFI (see the Appendix and
Refs. [27,28] for details).
The standard procedure of calculating σγðErÞ starts by a

multipole expansion of PFI that yields the transverse
electric, Tel

J ðkrÞ, and transverse magnetic, Tmag
J ðkrÞ, multi-

poles with J ¼ 1; 2;… denoting the spherical multipolarity.

2In this work, atomic states are treated relativistically, so the
Migdal operator is a 4 × 4 diagonal matrix.

3Our choice of wave function normalization is hEIjEI0 i ¼ δII0
for bound states and hEFjEF0 i ¼ δðEF − EF0 Þ for continuum
states.
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At the long wavelength (LW) limit, i.e., khri ≪ 1 so that

eik⃗·r⃗ → 1, the transition matrix element is simplified to

O⃗ðE1Þ
FI ¼

�
F

����
XZ
i¼1

α⃗i

����I
�
≡ D⃗ðVÞ

FI ¼ iErD⃗FI: ð6Þ

This is the electric dipole (E1) approximation for photo-
absorption, as the resulting atomic operator is a parity-odd
dipole, either as α⃗i, usually termed as the velocity form
(denoted by the superscript “V”), or r⃗i, the length form. The
equivalence of these two operators is established by the
commutation relation −i½r⃗i; H� ¼ α⃗i. As a result, σγðErÞ
can be approximated by

σγðErÞ⟶
E1 approx

4π2αErD2
FI; ð7Þ

and the Migdal differential cross section can be cast into

dσðMPAÞ

dERdEr
¼ m2

e

μ2Nv
2
χ
σ̃NðqAÞ

ER

Er

σγðErÞ
4π2α

; ð8Þ

which we call the “Migdal-photoabsorption” (MPA) rela-
tion. This relation is powerful: it tells that as long as the
photoabsorption cross section can be measured in a
detector, the corresponding Migdal effect can be figured
accordingly, and there is no need for theory input. In
contrast, the relation proposed in Ref. [22] involves
DM-electron scattering, which is yet to be detected.
While the derivation of the E1 approximation is straight-

forward, there are two points of particular importance from
a theory viewpoint. First, at the LW limit, all the so-called

retardation effects from eik⃗·r⃗ − 1 are ignored. They are
grouped into higher-rank spherical multipoles or higher-
order corrections (in powers of k2r2) to spherical multi-
poles of a given rank.
Second, the equivalence between the dipole operators in

the velocity and length forms, manifested here by a simple
commutation relation, has a deeper connection to the gauge
invariance of electromagnetism. As first noted by Siegert
[29], the transverse electric multipole operators can be
related by current conservation to the charge multipole
operators at the LW limit. However, the equivalence at
the matrix-element level has an additional requirement
that the wave functions are energy eigenstates, i.e.,
HjFðIÞi ¼ EFðIÞjFðIÞi. For most many-body calculations
that only approximate the true eigenstates, the breaking

of gauge invariance, e.g., D⃗ðVÞ
FI ≠ D⃗FI , is quite commonly

seen. Therefore, adopting many-body approaches that
preserve gauge invariance, such as (R)RPA [30],4

is preferred. Conversely, the degree of broken gauge

invariance can serve as a robustness test of a many-body
calculation. In atomic physics, this is usually done with two
different forms of Tel

J , one in the Coulomb gauge and the
other the “length gauge” [31].

IV. CASE STUDY OF XENON

In Fig. 1, the experimental data for xenon photoabsorp-
tion, compiled from Refs. [32–36], are compared with
several theoretical calculations. The agreement between the
RRPA curve, taken from Ref. [24] using operators in the
length gauge, shows that our atomic approach can handle
many-body excited states properly. In this work, we carry
out two additional calculations: one with the E1 approxi-
mation, i.e., Eq. (7), and the other with operators in the
Coulomb gauge. As shown in the central panel, the E1
approximation works very well up to 1 keV with all higher-
order corrections still kept at a level below 1%. This
justifies the basic assumption underlying the MPA relation:

the averaged dipole matrix element squared D2
FI in the

sub-keV Migdal process can be reliably extracted from
photoabsorption measurements. In the bottom panel, the
nontrivial property of gauge invariance in many-body
calculations is clearly shown to be preserved by the
RRPA approach.
The FAC results are obtained by running a built-in

module in the “Flexible Atomic Code” package that
calculates photoionization cross sections directly [37].
As the comparison shows, the FAC code does a reasonably
good job for Er ≳ 200 eV in general, but at lower energies,
it does not perform well, and errors at some points are quite
large. By construct, the FAC package is mainly designed for
highly ionized atoms and built with focus on efficiency

FIG. 1. (Top panel) xenon photoabsorption cross section from
experiments and atomic calculations of RRPA with the length-
gauge operators and the FAC code. Also shown are the percentage
differences by using the E1 approximation (central panel) and
from using the Coulomb gauge operators (bottom panel) in the
same RRPA routine.

4In the same paper [30], the most commonly used Hartree-
Fock method is shown to violate gauge invariance.
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instead of accuracy. Therefore, its many-body approach is
solving a prescribed form of averaged one-body potential
(in this sense, not an ab inito approach) self-consistently,
and leads to a picture that all electrons act like independent
particles, which is unrealistic at low energies. Another
noteworthy point is for Er ≳ 1 keV, FAC has the tendency
to over-predict when Er gets away from edge energies. This
is because the transition operators being adopted, except
Tmag
1 , are nonrelativistic, and contributions from all sub-

leading orders in k2r2 are missing.
For prediction of Migdal count rates, we follow the same

procedures as in Refs. [2] and [22]. In the former case, the
observable energy Edet is a sum of Er and qnrER with qnr
the NR quenching factor, and the differential count rate is

dR
dEdet

¼ nχNT

Z
dER

Z
dErδðEdet − qnrER − ErÞ

× σ̃NðqAÞERD2
FIηðvminÞ: ð9Þ

For the latter case, the observable energy is Er and the
differential count rate is simply

dR
dEr

¼ nχNT
m2

e

μ2N
D2

FI

Z
dERσ̃NðqAÞERηðvminÞ; ð10Þ

where nχ is the local DM number density, NT the number
of target atoms, and the η function results from the 1=vχ
factor averaged with the DM velocity spectrum [38], and
depends on the minimum DM velocity vmin ¼ ðmNER þ
μNErÞ=ðμN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNER

p Þ that guarantees energy deposition of
ER þ Er is possible.
In Fig. 2, we plot four sets of count rate predictions

assuming a contact, spin-independent, isoscalar DM-
nucleus interaction so that σ̃N ¼ A2μ2Nμ

−2
n σ̄n with μn being

the DM-nucleon reduced mass and σ̄n the DM-nucleon

cross section: the black line is by direct computation of
Eq. (3) using RRPA; the blue (green) line is obtained by the
MPA relation with σγðErÞ taken from data (FAC). The nice
agreement between RRPA and MPA is not only a justifi-
cation to the applicability of the MPA relation, but also
a theory-experiment double confirmation of the results.
The difference between our results from the ones of
Refs. [2,22] are most likely originated from different
atomic approaches. Generally speaking, mean field meth-
ods can give good results of ground state properties and
wave functions, but their applicability to excited states can
be problematic. Note that Ref. [2] used the FAC package
differently from what we do. The authors adopted the
picture that the atomic excited states are purely one-
particle-one-hole excitations (because the leading-order
Migdal operator is one-body) from the ground state.
This independent particle picture ignores not only the
residual two-body correlation, but also the fact that atomic
mean field varies with electronic configuration. The FAC

package takes into account the latter aspect by diagonal-
izing the atomic Hamiltonian in the model space of a given
problem. The resulting wave functions are configuration
mixed, i.e., not in form of a single Slater determinant.
This explains why the FAC results are closer to our RRPA
results than Ref. [2].

V. APPLICATIONS TO ARGON, SILICON,
AND GERMANIUM DETECTORS

Using the MPA relation, we combine in Fig. 3 the
predicted count rates for xenon, argon, semiconductor
silicon, and germanium detectors. For Er ≥ 10 eV, the
measured photoabsorption data are taken from Ref. [33]
along with semiempirical fitting; for semiconductor silicon
and germanium in 1 eV < Er < 10 eV, data are taken with
intrinsic bulk samples at room temperature and given in
Refs. [39,40].

FIG. 2. Differential count rates dR
dEdet

(left) and dR
d lnEr

(right) of the Migdal effect in xenon detectors by the spin-independent, iso-
scalar, DM-nucleon contact interaction (with cross section σ̄n) predicted by (i) RRPA, (ii) MPA relation, (iii) FAC, and (iv) Ref. [2] (left)
and Ref. [22] (right).
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Similar to the xenon case which is carefully examined in
the last section, the argon prediction should be robust, unlike
the large theoretical uncertainties assigned in Ref. [41] based
on the atomic calculation of Ref. [2]. However, it is the
applications to low-threshold semiconductors that the MPA
relation fully exhibit its predictive power.
It is well-known that the photoelectric effect dominates

the photoabsorption process of a semiconductor above its
band gap, which is on the order of eV. Take silicon as an
example, the fundamental band gap is ∼1.2 eV. However,
because this gap is indirect, the first big absorption
edge shows at a higher energy ∼3 eV. This peak is due
to a direct transition from a valence to a conduction band of
equal pseudomomentum. As an eV-scale photon has a
much smaller momentum, the validity of the E1 approxi-
mation5 and the MPA relation is justified. Our predicted
count rate for silicon exhibits all the essential characters
just mentioned, but differs from Ref. [22]. Since the latter is
done by extrapolating a crystal form factor at high
momentum to almost-zero momentum, the dipole scaling
relation deserves further confirmation. On the other hand,
photoabsorption of a semiconductor device also depends on
its design, working temperature, dopant concentration etc.
Therefore, for experiments like DAMIC [44] and SENSEI
[45] whose detectors are silicon CCDs with n-type sub-
strate and p-type channel and operated at ∼100K, their
Migdal count rates should differ from the red curve in
Fig. 3. The detailed theory calculations for these real cases
are formidable, but with the MPA relation, they can be
bypassed through photoabsorption measurements.
Also impressively, the MPA relation provides a reliable

germanium prediction in the energy range of 1–80 eV.

According to our previous study of atomic germanium
[46,47], the MCRRPA method (the RRPA with multi-
configuration required for open-shell atoms), though
sophisticated enough, does not work satisfactorily in this
energy range because of the crystal effects. Now, it is no
longer an obstacle, and the experimental analyses, such as
being done by EDELWEISS [7] and CDEX [8], can include
these shells, which have dominant contributions for
Er < 100 eV. Another significant feature is that the ger-
manium detector can be very sensitive to the Migdal effect
at extremely low energy, because of its specially large
photoabsorption coefficient in Er ¼ 1–3 eV. Both CDMS
HVeV [18] and EDELWEISS [17] recently demonstrate
their extremely-low-threshold capability at 1 eV. According
to the plot, the Migdal count rate can be three-order-of-
magnitude bigger than in a silicon detector, assuming equal
exposure mass time.
It should also be pointed out that different detectors

complement one another, thanks to the rich atomic struc-
ture. At each photoabsorption peak, the cross section and
the resulting Migdal rate can receive an substantial boost.
This not only enhances the sensitivity but also provides
smoking gun signatures.
The high energy limit to which the MPA relation works

depends on the validity of the E1 approximation in
photoabsorption. For the four considered cases with varied
atomic number and mass, we explicitly check the correc-
tions are all below 1% up to photon energy of a few keV.
Therefore, the MPA relation should be safely applicable to
the Migdal effects generated by sub-GeV DM particles in
galactic halo, whose kinetic energies are less than 1 keV.

VI. CONCLUSION

The Migdal effect has been a powerful search mode for
hadrophilic, sub-GeV light dark matter. With modern tech-
nologies pushing detector thresholds lower and lower, our
range of light dark matter searches will expand further. The
“Migdal-photoabsorption” relation we derived in this work is
based on general principles and only requires photoabsorp-
tion measurements as input. It thus provides predictions that
have no uncertainties from many-body calculations. Though
we only consider xenon, argon, semiconductor silicon, and
germanium detectors as examples, it certainly can be applied
to other novel low-threshold detectors.
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APPENDIX: PHOTOABSORPTION
CROSS SECTION

Starting from the Hamiltonian of a free, relativistic
electron

H0 ¼ α⃗ · p⃗þ βme;

where α⃗ and β are the conventional Dirac matrices, its
interaction with a radiation field A⃗ (in radiation gauge, the
scalar potential is fixed to zero) can be easily obtained by
the minimal coupling

V ¼ eα⃗ · A⃗;

with the coupling constant e ¼ ffiffiffiffiffiffiffiffi
4πα

p
. In photoabsorption,

a massless photon of momentum k⃗ (energy ω ¼ jk⃗j) and
polarization vector ε̂, whose wave function

hr⃗jk⃗; ε̂i ¼ 1ffiffiffiffiffiffi
2ω

p eik⃗·r⃗;

is annihilated and the target state changes from jIi to jFi.
The first-order transition matrix element

VFI ¼ hFjVjI; k⃗; ε̂i ¼ effiffiffiffiffiffi
2ω

p hFjα⃗eik⃗·r⃗jIi · ε̂:

According to the Fermi golden rule, the differential cross
section

dσγ ¼ 2πjVFIj2δðEF − EI − ωÞdΩF:

To obtain the total cross section, the summation over the
final-state phase space ΩF includes the one of EF, which
leads to the energy conservation EF ¼ EI þ ω, and all the
other quantum numbers, collectively labeled by γF. For an
unpolarized target, there is another sum over the degenerate
quantum numbers, collectively labeled by δI, divided by the
number of degeneracy dI. As a result,

σγ ¼
4π2α

EF − EI

X
γF

X
δI

1

dI
jhFjα⃗eik⃗·r⃗jIi · ε̂j2;

and this is Eq. (5) in the main text.

The electric dipole approximation, eik⃗·r⃗ → 1, gives rise
to a simple dipole operator α⃗ in the velocity form. The
transformation of α⃗ to a length-form dipole r⃗ is based on the
commutation relation

α⃗ ¼ −i½r⃗; α⃗ · p⃗þ βme þ Vee þ VeN�:

This is valid when electron-electron and electron-nucleus
interactions have no momentum-dependent components
(for example, purely Coulomb), which indeed is a starting
point for most many-body studies of atoms, molecules, and
condensed matter.
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