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Second-order charge currents and stress tensor in a chiral system
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We study Wigner equations for massless spin-1/2 charged fermions at global equilibrium in static and
uniform vorticity and electromagnetic fields. The Wigner functions can be solved order by order from
Wigner equations through the power expansion of the vorticity and electromagnetic fields. The
nondissipative charge currents and the stress tensor up to the second order can be obtained from Wigner
functions. The charge and energy densities and the pressure have contributions from vorticity and
electromagnetic fields at the second order. The vector and axial Hall currents can be induced along the
direction orthogonal to vorticity and electromagnetic fields at the second order. We also find that the trace
anomaly emerges naturally in renormalization of the stress tensor by including quantum corrections from

electromagnetic fields.
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I. INTRODUCTION

It is well known in classical electrodynamics that the
electromagnetic field can generate electric currents, such as
Olm’s current from electric fields or Hall’s current from
magnetic fields. There are also currents from quantum
effects that attract broad interest in high energy nuclear
physics and condensed matter physics. One example is
chiral anomaly, a pure quantum effect, in which currents
along the external magnetic field can be induced; it is called
the chiral magnetic effect (CME) [1-3]. The vorticity in an
ideal fluid behaves like a magnetic field. Similar to CME,
the vorticity can induce the electric current in a charged
fluid of massless fermions, which is called the chiral
vortical effect (CVE) [4-7]. In addition to CME and
CVE, chiral currents can also be generated by vorticity
and magnetic fields, these are called the chiral separate
effect (CSE) [8,9] or the local polarization effect (LPE)
[10]. Theoretical studies of these effects have been carried
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out within a variety of approaches, such as AdS/CFT
duality [11-20], relativistic hydrodynamics [21-24], quan-
tum field theory [2,3,25-35], and chiral kinetic theories
[10,36-49].

From the point of view of hydrodynamics, these anoma-
lous currents are nondissipative without entropy production
and they all appear at the first order in space-time
derivatives. It has been shown [50-55] that the relativistic
hydrodynamical equations with only first order term are
acausal and unstable. This issue can be repaired by
including second order terms. We also need to include
higher order contributions when vorticity or electromag-
netic fields are strong enough. This is the case in high
energy heavy ion collisions, in which both strong magnetic
fields [56-58] and vorticity fields [59—65] are generated in
noncentral collisions. There have been already some earlier
attempts to study transport phenomena at the second order
in chiral systems including second order hydrodynamics
with reversal invariance [24], Kubo formula or diagram-
matic methods from the quantum field theory [66—69],
chiral kinetic theories [70-73], and equilibrium partition
functions or AdS/CFT dualities [74-77].

The Lorentz covariant and gauge invariant quantum
transport theories [78-81] based on Wigner functions
can be derived from quantum field theory and are expected
to include all quantum corrections. In previous works
[10,82] by some of us, a power expansion in space-time
derivatives and weak fields for Wigner functions of chiral
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fermions was proposed near equilibrium. It turns out that
the Wigner function formalism is successful to reproduce
first order currents in CME, CVE, CSE, and LPE. In this
paper, we will use the power expansion method to derive
second order nondissipative charge currents and energy-
momentum tensor in a noninteracting fluid. The novelty of
nondissipative currents is that they are present in global
equilibrium. This provides a unique shortcut to investigate
these effects because the calculation will be greatly
simplified in global equilibrium. However in order to arrive
at nontrivial global equilibrium, we must choose static and
uniform vorticity and electromagnetic fields. Besides, we
will neglect the fermion mass (chiral limit) and make chiral
limit, which is valid when the temperature is much greater
than the particle’s static mass.

In Sec. II, we give a brief overview of the Wigner
function formalism for a chiral fermion system. In
Sec. III, we solve the equations for the covariant
Wigner function at global equilibrium with static and
uniform vorticity and electromagnetic fields by using
the method of Refs. [10,48,82,83]. We give the simplest
solution to the Wigner function up to the second order
of the vorticity and electromagnetic field. In Secs. IV
and V, we present the induced vector and axial currents
and energy-momentum tensor up to the second order. It
can be verified that the charge (vector current) con-
servation and the anomalous conservation of axial
current hold automatically. There is no infrared and
ultraviolet divergence for the vector and axial charges.
For the energy-momentum tensor at the second order,
the contribution from the vorticity only and that from
the vorticity and electromagnetic field are both finite,
while the contribution from the electromagnetic field has
logarithmic ultraviolet divergence when the Dirac sea or
vacuum contribution is included. With a proper dimen-
sion regularization, we obtain the results that satisfy the
energy-momentum conservation. Especially, after we
renormalize the stress tensor by including the quantum
correction from the electromagnetic field, the trace
anomaly emerges naturally. In Sec. VI, we verify the
conservation of the electric charge and the energy
momentum as well as the anomalous conservation of
the axial charge. In Sec. VI, we extend the special
solution to general ones and compare with previous
results obtained in Ref [68,69]. A summary of our
results is made in Sec. VIII.

We use the convention for the metric tensor g,, =
diag(1,—1,—1,—1) and the Levi-Civita tensor €’!*3 = 1.
For notational simplicity, the electric charge of the fermion
is absorbed into the vector potential A*.

II. WIGNER FUNCTION FORMALISM

The Wigner function W(x, p) for Dirac fermions is a
4 x 4 matrix and is defined as the ensemble average of the
Wigner operator [78-80],

4

dy ..

X<—ﬁ<x+§)U(Hg,x_g)w,,(x_g»,

(2.1)

where U denotes the gauge link along the straight line
between x — y/2 and x + y/2,

x+y/2
Ulx+2.x-2 = Exp —i/ ’ dz#A,(z) |.  (2.2)
2 - x=y/2

We will restrict ourselves to a system of chiral fermions
without collisions in a constant external electromagnetic
field F* in space and time, i.e., 9*F* = 0, hence we have
removed the path ordering of the gauge link. The Wigner
equation for chiral fermions in a constant electromagnetic
field is given by [80]

n(re s wen o e

where y# are Dirac matrices, and V¥ = &y — F**0l with
0,(0P) is the derivative with respect to x(p). Since the
Wigner equation is derived from the Dirac equation, the
bilinear operator in the Wigner function should not be
normal ordered. It has been demonstrated in Ref. [84] that
this feature plays a central role to give rise to the chiral
anomaly in quantum kinetic theory. We can decompose the
Wigner function in terms of 16 independent generators of
the Clifford algebra,

| 1
W= |F+irP+rV+rr A+ 508, (24)

where we have suppressed arguments of the Wigner
function for notational simplicity.

For chiral fermions, it is more convenient to define the
chiral component

Js =

(V¥ + s A¥), (2.5)

N[ =

with s = +1 and —1 corresponding to the right-hand and
left-hand component, respectively. Substituting Esq. (2.4)
and (2.5) into Eq. (2.3), we find that the right-hand or left-
hand component are decoupled from other components and
satisfy

V,J" =0, (2.6)
N
pyjsb - pujsu = _Ee;wprrvpjg' (28)
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We will suppress the subscript s in Sec. III for notational
simplicity and recover it in Sec. IV.

III. WIGNER FUNCTION NEAR
EQUILIBRIUM

We assume that both the space-time derivative 0, and the
field strength F** in the operator V,, are small variables of
the same order and play the role of expansion parameters.
We solve the Wigner equation by the covariant perturba-
tion method developed in Refs. [10,48,83] and present
the solution near equilibrium up to the second order in 0,
and F*. In fact, this expansion is equivalent to an
expansion in the Planck constant A (or the semiclassical
expansion) because 7 always comes with V. According
to the perturbation method, the Wigner function can be
obtained order by order,

T=TI0+g0+ 77+, (3.1)
where the superscripts (0), (1), ... denote the orders of the
power in the expansion. Substituting this expansion into
Wigner equations from (2.6) to (2.8) and requiring that the

equations hold order by order. The equations for 7 ,(,") with
n > 0 read

\AVARCE (3.2)
P JWH =0, (3.3)

n n N
p,,jf/ ) pyj/(t ) = _Eeﬂupavpj(n_l)a' (34)

If we define 7=V =0, Eq. (3.4) also works for n = 0.
When we contract both sides of Eq. (3.4) with p”, we have

n § v n—1)o
p2j§£ ) = Ee/wpap VPJ( D s (35)

where we have used Eq. (3.3). Hence the general form of
(n) +
T’ 1s

n n s v n—1)o
jl(l) = ,(4)5(])2) +Tp2€yup6p V/’j( b ’ (36)

where J") is nonsingular at p? = 0. This expression is an

iterative equation connecting the nth order solution with the
(n — 1)th order one. The constraint condition (3.3) gives

P1"8(p%) = 0. (3.7)
In general, we can decompose J, ,<,”> into two parts
17 (e p) = puf (e p) + X (k. p). (38)

where the first term satisfies Eq. (3.7) automatically due to
p*8(p?) =0 and the second term is assumed to satisfy
p”X,(,") = 0 when there is no mass-shell constraint.

It is straightforward to write down the zeroth order
solution,

0
TV (x.p) = puf (x. p)3(p?). (3.9)

without X §,0> component. We note that in the above
expression we have suppressed the superscript (0) in f
because we will set all higher order contributions £ for
n > 1 vanish before Sec. VII in which all possible solutions
for f) and f® will be discussed. Substituting the
expression (3.9) into Eq. (3.2) with n = 0 gives the kinetic
equation at the zeroth order

8(p*)p*V,f(x. p) = 0. (3.10)

Since we try to obtain the solution near equilibrium, at the
zeroth order we can choose f as the Fermi-Dirac distribu-
tion function,

R
4 e 7

1 1
fz@(m—l)’ (po<0), (3.12)

where

f (3.11)

(po > 0),

A L e

U — [y H — = — . —
P = pu 7 A= =RESEs, p=. As =
(3.13)

with u being the fluid four-velocity, T the temperature, x,
the right-hand/left-hand chemical potential, p the vector
chemical potential, and y5 the axial chemical potential. We
can always introduce the axial chemical potential in the
zeroth order solution for chiral fermions because the axial
current is always conserved when there is no electromag-
netic field at the zeroth order. Actually we can even
introduce the axial chemical potential when the electro-
magnetic field is present because we can redefine the
conserving axial current by absorbing the Chern-Simons
current. The total current is conserved and we can introduce
the chemical potential corresponding to this conserved
charge. In the solution given in Eqs. (3.11) and (3.12), we

see that 7 ,SO) (x, p) or f(x, p) depends on x only through
u(x), T(x), u(x) and us(x). The Dirac sea (or vacuum)
contribution —1 in the antiparticle distribution [85,86] is
indispensable because there is no normal ordering in the
definition of the Wigner function (2.1). With the distribu-

tion (3.11) and (3.12), the Wigner function 7. is in the
form
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©) _ Pu 1 3(po —[pl) 1 1 3(po + Ipl) 314
T 473 Lﬁ'p_ﬁf +1 2|p| * e~ Frtis 2|p| ' (3.14)
Inserting Egs. (3.11) or (3.12) into the kinetic equation (3.10) we obtain
1 _ _
5(p2)pﬂvuf = 5([72) f/ |:2 pﬂpy(auﬂu + ayﬁu) - p”a;tﬂ - pﬂF/Auﬁy - sp”ayﬂ5:| =0, (315)

where we have used the shorthand notation f' = df/
A(B - p). It is obvious that when the constraint conditions

8,8, + 0,8, =0, (3.16)
Qi+ F o =0, (3.17)
d,is = 0, (3.18)

are all satisfied, the Wigner function (3.9) with (3.11) and
(3.12) are indeed the solution to Eq. (3.10). These con-
ditions are actually global equilibrium conditions for
the system under static and uniform vorticity and electro-
magnetic fields. General solutions to these constraint
conditions are

By =—Qux", (3.19)
P 1w v
o= _EFM x,Q,,x" + ¢, (3.20)
Hs = cs, (3.21)
together with the integrability condition
F QY — FPQH = (), (3.22)

where Q** and c¢5/c are constant antisymmetric tensor and
constants, respectively. The integrability condition is ob-
tained by differentiating both sides of Eq. (3.17) with 0,
and applying the commutativity of partial derivatives

0,0, = 0,0, = F,;0,p* = F,,;0,p", (3.23)
which leads to the condition (3.22) directly with Eq. (3.19).
It should be noted that €, is nothing but the thermal
vorticity tensor of the fluid

1
Q/w = E (8;4/3v - al/ﬁﬂ)‘ (324)
Substituting the zeroth order solution (3.9) into Eq. (3.6)

with n = 1 gives rise to the first order solution
1 1 s
T = T8 + 5 s Cupor 0T

= X\V8(p?) + sF,,p"£8 (p?), (3.25)

|
where we have dropped the term proportional to p,&(p?)
and used F* = (1/2)e"’°F,, and &§'(x) = —(1/x)5(x).

The unknown X ,(,1) can be further constrained by inserting

Eq. (3.25) into Eq. (3.4)

N
(X = P XU)3(P?) = S €ip "V £5(p?).

N ~ ~
5 (pugzwlp/1 - pug;dpll)f/(s(pz)’ (326)

where Q,, = (1/2)e,,,,$2°. In order to arrive at the last

equation, we have used the specific distribution (3.11)-
(3.12) and conditions (3.16)—(3.18). Obviously, from the
equation above, we can set

X = =3 0up'f" (3.27)
which results in
j(]) _ _f ® lf/é( 2) +£ vaaf(S/( 2) (3 28)
oo 2 /Mp p Ze;wpap p-)- .

Under global equilibrium conditions (3.16)—(3.18), it is

straightforward to verify that above [ ,(,1) given above
automatically satisfies Eq. (3.2) with n = 1. This means
that Eq. (3.28) is indeed the solution of the first order under
global equilibrium conditions.

Now let us turn to the second order solution that has not
been considered before. Similar to the way how we obtain
the first order solution from the zeroth order, the second
order solution can be given by the iterative equation (3.6)
with the first order solution (3.28),

2 2 s v o
‘-7/3 ) = ‘]I(4 )5([72) + 2—p2€ﬂl/po'p V/?j(l) s
1
2
= X75(p?) + 7 (P20’ — P*Q,,)" p, f"5(p?)
2
+ o (puFpp” — p*F,,)F"p,f8(p?)

1
+ ? (quyﬂpﬁ - sz}/ﬂ)Qﬂplflé(pz)' (329)

Here X/(,z) can be constrained by inserting Eq. (3.29) into
Eq. (3.4) with n = 2. It turns out that
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2)

(X 2

~ p,XD)5(p?) =0, (3.30)

which leads to X£2> = 0, where we have used conditions
(3.16)—(3.18) once again to arrive at the final result. Now
we finally obtain the second order solution

2 1 1
T = =1 Q2 Pt "8(0%) = 3 pQyp" ¥ puf "5 (p?)

4
1
+ F,,Q"p,f'8 (p*) + Ep,,Fyﬁp/’Q”mf’é”(pz)
1
- FyMFMpﬂféﬂ(pz) —gpﬂF},ﬂpﬂFﬂpjfém(pz)’
(3.31)

where we have used the identity

po8" (p?) = —3p*8"(p?) = 6p28 (p2) = —65(p?).
(3.32)

IV. VECTOR AND AXIAL CURRENTS

Once we have the Wigner function in phase space, the
right-handed or left-handed current can be obtained directly
by integrating corresponding components of the Wigner
function over the four momentum

e /d4pj{:, (@.1)
where we have recovered the chirality index s. The vector
and axial currents are given by

Ss=in-7t (42)

Note that the vector current can also be called the fermion
number or charge current, while the axial current can also
be called the chiral charge or chiral current. The results for
the zeroth and first order current are well known

J :ji] —Q—j’ih

jEO)l‘ = n,u,

(4.3)

(1

.](Y )ﬂ = gsa)ﬂ + ‘SBsBﬂ’ (44)
where 7 is the fermion number density, and &£, and &, are
transport coefficients associated with CVE and CME,
respectively, in the right-handed and left-handed current
J&. They are given by

Hy
N =3 (7 T* 4 u3). (4.5)
S
&= 22 (m*T* 4 3u?), (4.6)
S
é:Bs = 4—71_2/"5 (47)

In the zeroth order result n,, we have dropped the infinite
vacuum contribution. In Eq. (4.3) the vorticity vector o*
and the magnetic field vector B* are defined from the
decomposition

F,, = E,u, — Eu, + €,,,,;u’B°, (4.8)
TQ,, = e, — €,Uy, + €,,,, U’ @°, (4.9)
with
~ 1
B = Ftu, B =P, = e P, Fy (4.10)

~ 1
et = TQ"u,, o = TQ"u, = Ee"”“ﬂuvaﬁuﬂ. (4.11)

Similar to the electric or magnetic component of F,, it is
convenient to name ¢, and @, as the electric vorticity and
the magnetic vorticity, respectively. It follows that the
vector and axial current are given by

JOr = (4.12)
JOB = gt + E5BH, (4.13)
JO = nsun, (4.14)
JO = Eal + EgsBY, (4.15)
with
n:L(ﬂ2T2+ 243u2), n :'“_5(7[2T2+3 24 42)
pp H 1
zszﬂ—;, 5322—;2, & =[P T>+302 +43)]
U
S 4.16
535 2”2 ( )

where n and n5 are the fermion number (charge) and chiral
charge density, respectively, and &, £, &5, and &5 are well-
known anomalous transport coefficients associated with
CVE, CME, LPE, and CSE, respectively.

The second order current can be obtained by integrating
Eq. (3.31) over the four momentum,
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1Y = =30 [l A1) — gy @ [ @l p) A ()
- é (A, + Al + AP u)Q,,Q / d*p(u- p)p*fid' (p?)
F P [ dplue pfio () + 3 wntuF, [ Epl pP s )
b (A4 &l 4 ALWF 0 [l p)5 1 07)
- FI"F / d*p(u-p)fd'(p®) —%u”u”uszﬁF” / d*p(u-p)f8"(p?)
- é (A¥Puy + A uP + A Put)F s Fr / d*p(u- p)p>f6" (p?). (4.17)
In the above equation we have used following moment identities

/d“pp’lY: u‘/d“p(u-p)Y, (4.18)

1
/d4pp"pﬂp’1Y = u”uﬂu’l/d‘*p(u . p)3Y—|—§(A"ﬂu'1 + Ay A’wu")/d“p(u - p)pY, (4.19)

where Y can be any scalar functions of u - p and p?, A¥ = ¢** — u*u*, and p* = A" p,. Using the decomposition (4.8) and

4.9), ]§2,2 can be put into the form

2 1 _
1P = (e 0y [ e A ()
1_ 1
~ ey, [ dplu prt|g o) + 1307

—u'(e-E4+o- B)%/ d*p(u- p)p*fi8"(p?)

I_
+ 67”/’”E,,u(,a)y/d4p(u . p)f/‘ |:§p25”(p2) _|_5/(p2)
2
PB4 B [ dplu )i ()
2
— GY”p”upBaE},/d“p(u . P)fs [51_725"'(])2) +5"(p2) . (4'20)

After completing integrals in Eq. (4.20), we obtain second order currents

1 C
jgz)ﬂ _ Hs (82+a)2)u’,{ _F(E,E_i_w.B)u# __“(E2 +B2)M”
T

4r* 2477
1 vpoc CS vpo
— @6}4 Pu,E,0, — = e’ u,E,B,, (4.21)
where
1 [edp, ePo/T=H ePo/ T+
S=T) oy ; - ; : 4.22
’ T[) Po [(ePo/T-ﬂ»- F12 T (en TR 4 1) (4.22)

It is obvious that Cy is an odd function of zi,. When |fi;| < 1 or at high temperature limit, we can expand the integrand in
Eq. (4.22) in serials and work out the integral analytically
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C, =

140" (=2)p,  0.4263u,
— T2 ~ .

= (4.23)

When |ii,| > 1 or at low temperature limit, we can approximate the Fermi-Dirac distribution function by a step function

O(+u, — po) and obtain the analytic result

C,=—. 4.24
T Hs ( )
From Eq. (4.21) the vector and axial current are given by
jOr = = F (& 4 P — 1 (e-E4+w-B)u - < (E? + B*)u"
272 472 1272
L gwno E € gwro E,B 4.25
_4—”26 u, pa)a—@e' u, pDPo> ( . )
.2u __ Hs Cs Cs Vo
jS “ = —ﬁ(ﬁ‘z + a)z)u" - W(E‘2 + Bz)u” - @eﬂ p ul/EpBo" (426)
with
1 1
C=3 (Ci+Coy), G =3 (Cri—Cy). (4.27)
When |u | < T, we have
148 (-2 0.4263 14 (-2 0.4263
o C(2 M 63u. - C(z)ﬂs% o3 (4.28)
T T T T
|
When |u,| > T, we have or ¢" and B, which is also different from the vector current.
Like the charge current, there is no axial Hall current from
H Hs “ and @
C=———5, Cs=———5—">5. (429) & andw.
(u* = p3) )

Now we look closely at the vector current (4.25). The
first line of (4.25) indicates that the charge density is
modified by quadratic terms €2, w?, E2, B>, ¢ - E,and @ - B.
The second line of (4.25) are the Hall currents induced
along the direction orthogonal to both £# and w* or that
orthogonal to both E* and B* in the comoving frame of the
fluid cell. It is interesting to observe that there is no Hall
current induced by & and @"”. It should be clarified here that
the mixed Hall current ¢"”?u, E,w, is actually identical to
e""?u,e,B, in this paper due to the integrability condition
(3.22), which is equivalent to

Cups(EP0° —#B°) =0 and  ¢,,,,(E’e” + @/B°) = 0.
(4.30)

For the axial current, the first and second terms in (4.26)
indicate that the axial charge density gets modified by
quadratic terms 2, @?, E2, and B? but not from mixed terms
e+ Eand w - B due to the symmetry which is different from
the charge density. The last term in (4.26) is the axial Hall
current generated by E¥ and B only, but not by E# and @”

V. ENERGY-MOMENTUM TENSOR

In the Wigner function formalism, the stress or energy-
momentum tensor can be from the vector component as

™ = / d*pVip’ = / d*p(T + TP (5.1)

Note that this is the canonical definition and is not
necessarily symmetric. The results for the stress tensor
of the right-handed or left-handed part at the zeroth and first
order are

1
TEO)”D _ /d4pj§0)ﬂpv = ulup, — gAm//)s’ (5.2)

T _ /d4p\7£1)ﬂpu’
= sn,(Ww’ + v’ o)

+ % (u#B* + u Bt — e, Ep)

sng

— 7( “a — u ! + e Puges), (5.3)
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where n, and &, in T\"" are given by Egs. (4.5), (4.6), and

the energy density p, in T\ is

™ (7 , 1 ,, 1,
—— (= 222 + = 4
Ay (60” TR A ) (5.4)

where we have dropped the infinite vacuum energy density.
After taking a sum of the right-handed and left-handed
contributions, we obtain the total energy-momentum tensor

T(O)ﬂ” + T(O)ﬂ‘/

1
TOpy — +l = putu — gpA””, (5.5)

7w = 7O 4 7O,

= ns(uw@* + wo*) + g (u"BY + u*B* — e”””ﬁu(lE/,)

where n and £ in T are given by Eq. (4.16), and the
energy density in 7O is

T [7 ooy s 9y -
=7t 207 (i + i3) + B+ O RS + s |

P= 42 |15

(5.7)

Now let us compute the stress tensor at the second order.
We decompose the stress tensor into three parts,
T = T8 + T + TR, (5.8)

which “v” means the vorticity and “e” means the electro-

magnetic field, so these three terms are coupling terms of
the vorticity-vorticity, vorticity-electromagnetic-field, and

s (Wa¥ — uoh + by o ) (5.6) electromagnetic-field-electromagnetic-field, respectively.
2 achr ' These terms are given by
|
2)uv 1 v 1 v
T — ~ 295, / dpp' p PP 118 (0) = 7R, | dppt pfE(p?). (5.9)
2)uv 1 v v
T =5 FQy | dpp'p o p'f'8 (p?) + F'Q, | d'pp*p'f'5(p?), (5.10)
v 1
T — ~3FpF / d*pp*p*p’p'f8" (p*) — F"F,, / d*pp*p' 8" (p?). (5.11)
Using moment identities
1
/d4pp"p1Y: u”ui/d“p(u-p)zY—i—gA’“’/d“pj)zY, (5.12)
1
/d‘*pp"p”p/’piY = u”u”uﬁu’l/d“p(u . p)4Y—|—E(A””A/” + AMPAVE + AHAAPY) / d*pp*Y
1
+ 3 (' u? AP* + uPu APV + uuP AV + utut APV
+ WUt AP+ P uf AP / d*p(u- p)*p?Y, (5.13)
and the decomposition (4.8) and (4.9), we can write the first two equations as
T(2>ﬂl/* ﬁZ yTp7p) 44 418 (p2 ﬂ2 AP (2 — 4 Deted 4 2t oot 'S (p?
sw == u'ute plu-p)*f'8(p7) = S [A(e° = 4o7) + 2ete” + 20 w’] | d'pp*f"5(p7)
ﬁ2
13 [ u? (62 = 20%) + A e? + 2(u' e + u et u, 650, ] / d*p(u- p)*p>f"s (p?)
ﬁ2
L e tueg,) [ Eplu p e
ﬁZ
-5 (e'e" + 0w’ — A w* + u' Pl ueqm,) / d*pp*f"s(p?), (5.14)
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R = pue- [ ot o)

+ 3% [A%(¢ - E — 4w - B) + 2E*€" + 20/ BY] / d*pp*f''(p?)

+§ [utu?(e - E—2w - B) + Ae - E + 2(ute? ™" + u”e”“/’y)uaEﬁa)y] / d*p(u- p)*p>f'8"(p?)

+ p(uwue - E + u”e”“ﬁyuaEﬂwy) / d*p(u-p)*f'8(p?)

W™ ™

+ = (E*e + 0*B* — A" w - B + u'e"*"1u,Ezw,) / d*pp*f'8'(p?). (5.15)

Completing integration and collecting similar terms, we obtain

TEW = —%és Butu’(w* + €*) — A (0? + &%) = 2(uHe* P! + e P \u 50,

= 2(ute* P — u e P )uepm,), (5.16)

Tﬁ,zv)éw = —%5Bs[u”uy(w B+ ¢€-E)— (0"B” + EFe")
— (uﬂemlﬂ}’ + uveﬂa/ir)uaEﬁwy _ 2(14”6'““/}7/ _ Myeﬂaﬂy)uaEﬁa)y], (517)

However, when we deal with Tﬁze)é’ ¥ we find that it has logarithmic ultraviolet divergence which has to be regularized and

renormalized. The regularization with a naive momentum cutoff will break Lorentz invariance and destroy the energy
momentum conservation. To avoid such a problem, we apply dimensional regularization. Now let us make a tensor
decomposition in d = 4 — ¢ dimension with a small positive number e.

1 -
[ @opimy = [ alptuppy s g [ dlppy. (5.18)

/ dppup.psp,Y = w,u,ugu, / d'p(u- p)*Y
1 —_
+ 2-1 (A g+ A, +AAg) / d'pp*Y

1
+ ﬁ (M”MHA/M -+ uﬂuﬁAW -+ uﬂuﬁAuﬂ + uﬂuﬂAﬁy
1A, + t,05,) / dp(u- pYpY, (5.19)

With such tensor decomposition in d = 4 — ¢ dimension, we can write Eq. (5.11) as
(2>uv__l o2 d—g DoV £S (2
Tsee' = —quww’E> [ d™p(u-p)*fo (p?)

— 93, (uﬂul/FyﬂFﬂAm + AWE? 4 2M”AME}/FM + ZMUAME}'FM)
< [ @ ptu p2p 5 ()
" 1 o
- u'F™E, / d*p(u-p)fs(p?) - T, EA’MFWFM / d*=¢pp*fs (p?) (5.20)
We give details of the integration in the first term as an example in Appendix A. After integrating over momentum, we

obtain the pure electromagnetic part of the energy-momentum tensor
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1 (1
TR = —5n <Z GV, FTP — FWF/) +

1
4877:2 u”u E2 - @A” (E2 + 232)

1
+-—— (E'E" + B"B*) +

(ute ™ + u et " \u, EsB,

127 167°
1
+ g e — we N yuaEyB,, (5.21)
where «§ is given by
43-€)/2—€ © 1 1
K=" - / 1], (5.22)
D((3=¢)/2)(2x)*= Jo y'*€ [eb) 41 0Fh) 41
We can expand «§ around € = 0 as
11 1 1 /3
C=——|—-4+In2+4+=1 —yl= ) —InT+& 2
K ) LJrn +2nﬂ+2y/<2> n +K“:|, (5 3)
where w(x) is the digamma function and &, is given by
N L d 1 1
Ks = /0 dylny L(y—m 1 o £ 1]' (5.24)

Obviously, we can see in (5.24) that the integral in (5.22) contains logarithmic ultraviolet divergence at the limit ¢ — 0. The
coefficient «§ or K, is an even function of ji,. It is also easy to verify

L dG) T d(a)

¢ =——, =——, =TC,(uy)- 5.25
€K |e—>0 7[2 dﬂ 0 77,'2 dﬂs 0 s (ﬂ?) ( )
Taking a sum over contributions from left-handed and right-handed fermions, the total stress tensor is given by
1
TE,ZV»“' = —555 [Butu? (w? + €*) — A (w? + &%) — 2(u!e" P + u”e"“m)uaeﬂw},
= 2(u' e — u e P e s, ], (5.26)
1
T\(,.zg)”” = —Est[u”u”(w ‘B+e¢e-E)— (0B + E*e") — (ue"™Pr + u”e"“w)uaEﬁa)y
= 2(ute" P — u et P u,Epw,)., (5.27)
(2)uv 1 € 1 nz vp YUV 1 JTR78 n uv (2 2
Tee :—gK Zg F},ﬁF - F Fy +24”2[MME — A (E +2B)
+ 4(EFEY + B*BY) + 3(u'ev?Pr + u”e”“ﬁV)uaE/,»By
+ 3(we* Pt — ue'Pr)u,E4B, ), (5.28)
where k¢ = (%, +«<,)/2. 9T =0, (5.29)
We see that energy density and pressure are modified in @
v

free of trace anomaly. Note that in taking the trace of T'e.
we used g, ¢ = 4 — €. The trace anomaly does not arise
here because the electromagnetic field in our work is only
a classical background field and keeps scale invariance.

vorticity and electromagnetic fields at the second order,
which are not the case at the first order. Similar to the first
order result in Eq. (5.6), there are also antisymmetric
contributions to the energy-momentum tensor at the second

order. It is straightforward to verify with Egs. (5.5), (5.6),  We note that the divergent part in T‘gﬁ)" “ is proportional to

(5.26)—(5.28) that the trace of the total energy-momentum
tensor up to the second order vanishes

the stress tensor of the free electromagnetic field. It is
remarkable that this divergent term ~1/¢ is exactly the
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contribution from the quantum correction of the electro-
magnetic field [87] but with a wrong sign. Hence we can
add this contribution to our result, cancel the divergent term
and arrive at the renormalized finite result

w1 [ AY[1 )
Tge?ge:@ Rz ) (1o F,,F"" — FI'F,

+— [ufuE? — AW(E2 + 2B?)

2472
+ 4(E*EY + B*BY) + 3(w'e ™" + u”e"“/”)uaE/,By
+ 3(uterPr — u”e”“ﬁy)uaEﬁBy], (5.30)

where k = k,; +&_; and A is a renormalization scale in
quantum electromagnetic field. Note that we have also
absorbed all possible remaining constant terms in
Eq. (5.23) into A. After removing the divergence in

T™ we can safely calculate the trace of the energy-

momentum tensor in four dimensions and obtain the trace
anomaly

@uw _ 1
9T ecre = a2 Fw ™

(5.31)
which originates from the quantum correction of the
electromagnetic fields.

In hydrodynamics, we usually express the stress tensor in
the Landau frame. In Appendix B, the symmetric part of the
stress tensor is written in the Landau frame.

VI. CONSERVATION LAWS

With j# in (4.12), (4.13), and (4.25); j5 in (4.14), (4.15),
and (4.26); and T* in (5.5), (5.6), (5.26), (5.27), and (5.30),
we can check conservation laws for these quantities.
In doing so, we must restrict ourselves to a specific system
in constant and homogeneous electromagnetic fields with
conditions (3.16), (3.17), (3.18), and (3.22) or (4.30). Here
we will not present a detailed derivation, but give the
necessary identities in performing the calculation. These
identities hold only under specific conditions that are
imposed in this paper:

aﬂu—;:o, u-a%zo, ,ut =0, aﬂ%:—u-a”—;:%, (6.1)
0,0, = € - wg,, —2e,0,, (6.2)
0,6, = 0,0, — €,€, + ezuﬂuy - a)ZAW + (Uy€0ip6 + u,,eﬂp(,)u’lef’w”, (6.3)
9,B, = —E,w, + € Buyu, + @ - EA,, — (1,6, + 1,€,,5)u* e’ E°, (6.4)
0,E, = B,w, + ¢ Euu, — @ BA,, + (1,€,,5 + Uy€,1p0) U EP . (6.5)
With the help of these identities, we can verify following conservation laws,
’j, =0, )= —%ﬂzE B, O'T,, =F,j" (6.6)

We note that the second order correction to the axial current does not contribute to the chiral anomaly as it should be. We
find that the term proportional to In A/T in Eq. (5.30) is essential to conserve the energy-momentum when the vorticity is
present. We can separate the energy-momentum tensor into a symmetric and an antisymmetric part,

™ =Ty + T,

where the symmetric and antisymmetric part are given by

(6.7)

¢

1
TS = puru’ — gpA"” + ns(W o’ + wor) + 5 (u"B + u*B*)

1
- 555 [Butu? (w? + &%) — A (w? + &%) — 2(u!e* ™" + u”e’“’ﬂy)uaeﬂa)y]

1
— 5535 [Wu*(w-B+¢€-E)— (0*B” + EFe¥) — (uevPr + u”e‘“’ﬂV)uaE/ja)y]

+ kEuw E? + kBuru’ B2 + kEAE? + kBAMB? + k3 (EMEY + BYBY)

+ Ky (ut e P 4+ u’e*P")u,E4B,,

(6.8)
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n
T = - ?5 (u'w” — u o + e Pu,ep) — geﬂ”"/’uaEﬂ + Es (e P! — u e P )uepm,

1
+ Eps (uﬂeyaﬂy _ M”e‘”aﬂy)uaEﬂ(l)y + 2 (uﬂevaﬂy — uveﬂaﬂ}’)uaEﬂBy ,

(6.9)

where we have expressed the energy-momentum tensor in terms of £, and B, and used the renormalized result in Eq. (5.30).

The coefficients are defined as

We can verify following conservation equations,

8T = Fj,,  9,TW =0, (6.11)

VII. GENERAL SOLUTION

We have presented a specific solution in the previous
sections by setting f(1) = f(?) = 0in Eq. (3.8). The general
solution under global equilibrium conditions (3.16)—(3.18)
should be a summation of this specific solution and all
possible contributions associated with nonvanishing f(!)
and £ In this section, we determine these contributions.
We note that these terms are proportional to p#&(p?) and
automatically satisfy Eq. (3.3). They can not be further
constrained by using Eq. (3.4) because they do not appear
on the left-hand side of the equation due to cancellation.
Hence the remaining constraint can be only from Eq. (3.2).
From Lorentz invariance together with charge and parity
invariance, the general f(!) and f®) must take following
forms,

O =(0-p)pPXY + (B-p)PXY,  (1.1)
f<2) = Xqq + Xor + Xpr, (7.2)
where
Xoq = ? X0+ EFXE + (0 p)p X,
+ (e p) XD + eru p e XS, (1.3)

Xor=w- Bﬁ3xf1;1 +3'Eﬂ3X£2E>1 +(w-p)(B- P)ﬂsxfuzgz
+ (- p)(E- PP X s+ eH7u, pio, B X,
(7.4)

1/, A 3
K4—62< +1nT—4—1) (6.10)
|
Xpp = BQﬂ4X§321;1 + E2ﬂ4X1(521%1 +(B- P)zﬂﬁxggz
2 Vs 2
+ (E ! p)2ﬁ6‘)(1(‘213“2 +e & “vPﬁBpEaﬁSX%IZ"’ (75)
where all X functions depends on variables
Z:ﬁ'p_ﬂw Z:ﬂp+ﬁs (76)

From Eq. (3.2) at the first order, we have

0 = Ve[p, fD8(p?)].
=68(pH)B(B-p)(e-p)—(E-p)(@-p)+ (¢-B)(u-p)?
+ (@ E)p? = 2(u- p)eyspop w'e E7JFP XY
+6(p)(w E)u- p)pXy)
+ Cupott PP’ BBRXY) 4 (E- B)(u- p)B XY
—8(p?) (- p)B0:X,) + (B p)po. Xy 2(E - p).
(7.7)

Obviously, this equation holds only if

xy =xl) =o, (7.8)
which means that there is no solution at the first order with
nonvanishing f(!). However, it is interesting to note that
when we turn off the electromagnetic field at the beginning,
Eq. (7.7) holds automatically, so we have

fO = (0- )Py, (7.9)
Hence the first order solution in Eq. (3.28) is a unique

solution at global equilibrium. Similarly, Eq. (3.2) at the
second order is
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0= V¥[p,fPs(p*)],

=68(p*)p, V¥ Xaq + Xor + Xppl.  (7.10)

We find that this equation holds only if following relations
are fulfilled,

Xip = X = Xgg = Xy = Xgp =0, (7.11)
X(E;zif)zl = ((02;2 = XizE)z = szg =0, (7.12)
X = Xi = 0. (7.13)
X2 = %Xﬁfg), (7.14)
together with
X = (A0 D). (119)
x5 =20.x2), (7.16)
0.x2 = 9.2 —0. (7.17)

It is easy to verify that the general solution must take the
form of

2

Xu)(ul = a(z), (718)
X2 = b(z). (7.19)
X2 =B p)b(z) - al2), (7.20)

where a(z) and b(z) are arbitrary real functions of z. Hence
the general form of £ is

[ =w’Pa(z) + (B p)b(z) - a(2)]

+ 47U, pro,e P b(z) + % (e- E)Fb(z). (7:21)

We see that there is no contribution from electromagnetic
fields except a € - E term. Integrating over momenta, we
obtain contributions to the current and stress tensor

A = / d*pfPp,s(p?),

= [A;0* + B;e* + Cj(¢ - E)|u, + Dje

v ) -0
i€ upott €%,

(7.22)

AT = / d*pfPp,p,5(p?).

1
= [A;@® + Bye* + Cr(e - E)] (uﬂuy - EA””>
+ Dy (Uy€,1p5 + Uy€ppe ) W €7, (7.23)

where we have used A to denote these are additional
contribution from nonvanishing f(>). After integration over
Do, these coefficients are

A =38 [ Eplaz)=alz)) (124)

By =58 [ @plpplb(z,) + b)) - la(z,) - a(z])
(7.25)

Ci= }Lﬁ3/d3p[b(u) —b(z). (726

D= b [ @pplbc) b)) (127)
Ar =38 [ @pplatz) +a)). (728)

Br=3#" [ & pp(Bolblz,) = blz) - la(z,) + alz- )
(7.29)

Cr=3F / Ppplbley) + b)), (7.30)

Dy =g [ Epplble) -b)l. (731

where z. = f#- p F fi,. Although unknown functions a(z)
and b(z) are arbitrary, only two of these coefficients are
independent. It is convenient to choose Ay and Dy as
independent variables from which other coefficients can be
derived through following relations

_ LopAr)
_ 1 0(Dy)
=i o (7.33)
 10(8D;)
of =5 8;75] , (7.35)
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3
BT - 3DT - AT' (737)

In Refs. [68,69], the authors calculate the second order
transport coefficients in global equilibrium without electro-
magnetic fields. We find that their results are different from
our results in Egs. (4.25), (4.26), and (5.26) from our
special solution (3.31) with vanishing f(!) and f(. The
difference between our result and the result in Refs. [68,69]
are given by

.U Hs H

Ay = Sﬂzﬂ (g2 + a)z)ul‘ + 12ﬂ2ﬂ€”aﬂy”a€ﬂwyv (7.38)
p 1, 5
AT ==&, | Buru — A™) | za? + =€
2s§‘ (Bu'u ) 5@ —I—6e
b ey 4 g ehabr 7.39
+§(ue + u’ et uwpe, | (7.39)

with &, being given in Eq. (4.6). From these expressions,
we can read off

1 _
D :L[nzuﬁz] (7.41)
T 18222 sh '

Substituting it into the relations (7.32)—(7.37), we can
obtain all other coefficients which are exactly consistent
with the result of Refs. [68,69] as well as C; =
1/24x*, Cy = pu,/87° for e - E terms when electromagnetic
fields are involved. This implies that both results, ours and
that of Refs. [68,69], are possible solutions which should
correspond to two different density matrices.

VIII. SUMMARY AND DISCUSSION

We have derived in the covariant Wigner function
formalism the charge and chiral currents as well as the
stress tensor for chiral fermions in uniform vorticity and
electromagnetic fields up to the second order of spatial
derivatives. We present all possible second order contri-
butions in quadratic forms of the vorticity and electromag-
netic field. These contributions include coupling terms of
electromagnetic-field-electromagnetic-field (ee), vorticity-
vorticity (vv), and vorticity-electromagnetic-field (ve). All
the terms can modify the charge density, while only the
“ee” and “vv” terms can modify the chiral charge density
and “ve” term cannot contribute to it. We find that the
electromagnetic field can induce Hall currents in the form
e"’?u,E,B, in the charge and axial charge current. There is
also a Hall term ¢"*?u, E ,@, in the charge current. For the

energy-momentum tensor at the second order, we find that
the vorticity and electromagnetic field contribute to the
energy density and pressure. The conservation laws as well
as chiral and trace anomaly can be verified with our second
order solution. All coefficients we obtain in this work can
be directly applied to the anomalous hydrodynamics as
inputs. We also demonstrate that the solution in global
equilibrium is fully constrained at the first order while
solutions at the second order can only be constrained up to
some unknown functions. These unknown functions appear
in the “vv” part and €- E term in the “ve” part. Other
contributions can be fully constrained.

In this work, we restrict ourselves to a noninteracting
chiral system without collision terms under the constant
electromagnetic and vorticity field. If we go beyond to
include collision terms but still in global equilibrium, col-
lision terms will not change present results since collision
terms always vanish in global equilibrium. Instead, if we
consider nonequilibrium and varying fields, our present
results still provide a baseline for studying these effects. We
can expand the solution around the results in global
equilibrium given here and investigate contributions from
collisions or variation of fields. We reserve the topics along
this line in a future study.
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APPENDIX A: INTEGRATION IN Tfe)é‘”

In this Appendix, we give detailed derivations of some

integrals in T@é’ Y. All other coefficients in j§2>, Tg,z\}f,“’, and

T§2V)é' “ can be derived in a similar way. We take the integral

in the first term of Eq. (5.20) as an example,

1= [ &= plu- p) o). (A1)

First, we need to integrate out the 6 function by using the
identity

1 B, ,
8" (p?) = Topopp 0 o= [P1) + " (po + [PI)]

+———=716"(po —|B]) =" (po + |P)]
16py|p|
3 - -
+——==[(po—|P|) + 5 (po +1p)]. (A2)
16p,|p|

and obtain
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(3-¢)/2 d|p| [ 1 & 3 & 3 d }
_ r 14 S13( £+ -
I—— =e (1= >3 1> - + - - p (f +f )
ST(G =072 ) T5F F1dpF  PapE | prap) 7 ]
7392 dﬁ|[ , & d? d 1
= [P B 4 6]p| g+ 3 q—sf] FHH1)s A3
(e Y o LA R PT  TT T] AREA (43)

where the prefactor is from the integration over the solid angle in 4 — e dimension and ™/ f~ denotes the contribution from
po > 0/py <0 in Egs. (3.11)/(3.12). After integration by parts, we have

373-¢)/2 / ~ [1—36 d 1 }
1= i L e,
(G =oy2).) PR ap VT

37(3-¢)/2 € 1 i
T8I((3-)/2) (3+ 1) /dlplww +1),
_(B+e) .
R (A4)
where
o 22007 [ d|p] ]
KS_F((S—e)/z) |13|1+e(f++f )s

4 (3—6)/2T—€ © d 1 1
-G 3 / el o 1. (AS)
T((3-¢€)/2)2n)* < Jo y'*e @ +1 & +1

It should be noted that if we did not include the vacuum contribution —1 in the square brackets of the last line, the integral

would have infrared divergence. Once we include it as above, the infrared divergence is canceled with only the ultraviolet
divergence left. We can single out the divergence by another integration by parts

47TT 1 [ B o
(= [yl _ i _ A6
T O A (e e e "o

The 1/e pole term corresponds to a logarithmic divergence in the momentum integral.

APPENDIX B: RESULTS IN THE LANDAU FRAME

In relativistic hydrodynamics, one has a freedom to choose any frame characterized by a different fluid velocity. The
Landau frame is the one in which the fluid velocity satisfies u, 7" = pu". Since the energy momentum tensor in Sec. V has
an antisymmetric part in the first and second order, in this section, we will rewrite the symmetric part of the stress tensor up
to the second order in the Landau frame. Let us introduce the fluid velocity U* in the Landau frame given by

2 2
Uh =Ty € B”—[ LT S S SR a)-B]u”
p+P = 2p+P) 2p+P> " 8(p+P)P 20+ P)
5 4 K
+ +5 € uepo, + ﬁeﬂ“ﬁma@wy S P BB, (B1)

It is easy to verify that U? = 1 up to the second order. From this relation, we can also express #* in terms of U¥,

ut = U* — s o — ¢ B”—{ n% w? +LB2 +L§w .B:|UM
p+P Y 200+P) Y 200+P2 Y T 8(p+ PR Y 200+ Y
$s n3 uafy $ps ns¢
- U - webr y E
P (o PR U T oG ) T (e pp) € e
K4 52 ”aﬂ}/U E B B2
Trp A ey et (B2
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where o}, = T™U,, ey, =TY"U,, By, = F*U,, and E}, = F* U, are counterparts of @, ¢, B*, and E* in the Landau
frame, respectively. Up to the second order, the corresponding relations between two groups of quantities are given by

n ¢
ot = o ) 2 - By |U*
U+<p—|—PwU+2(p—|—P)wU U>

L uvap U 5 /u/aﬁB U B3
+p—|—P€ Dy,YUa€up +2<p—|—P>€ uvVa€up, ( )

s ¢ ¢
e = ey + ey oy +=——¢y- By |U' ——— "By, U0y, B4
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Et = E' + LE - wp +
U p+PU U

LEU.BLOUM_ s
2(p + P) p+P

Hence the difference between frames arises only at the second order. With these equations, we can obtain the symmetric
stress tensor in the Landau frame
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_—a)ﬂ - BtBY 22 ﬂBlz Z/Bﬂ , B7
o+ P uv®Pu 4(p+ P) uvbu 2<p+P>(wU y +wyBy) (B7)

where A}/ = ¢ — U*U". The vector current in the Landau frame is given by
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The axial current in the Landau frame is given by
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