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We investigate how to include bound states in a thermal gas in the context of quantum field theory
(QFT). To this end, we use for definiteness a scalar QFTwith a φ4 interaction, where the field φ represents a
particle with massm. A bound state of the φ-φ type is created when the coupling constant is negative and its
modulus is larger than a certain critical value. We investigate the contribution of this bound state to the
pressure of the thermal gas of the system by using the S-matrix formalism involving the derivative of the
phase-shift scattering. Our analysis, which is based on an unitarized one-loop resumed approach which
renders the theory finite and well defined for each value of the coupling constant, leads to the following
main results: (i) We generalize the phase-shift formula in order to take into account within a unique formal
approach the two-particle interaction as well as the bound state (if existent). (ii) On the one hand, the
number density of the bound state in the system at a certain temperature T is obtained by the standard
thermal integral; this is the case for any binding energy, even if it is much smaller than the temperature of
the thermal gas. (iii) On the other hand, the contribution of the bound state to the total pressure is partly—
but not completely—canceled by the two-particle interaction contribution to the pressure. (iv) The pressure
as a function of the coupling constant is continuous also at the critical coupling for the bound state
formation: the jump in pressure due to the sudden appearance of the bound state is exactly canceled by an
analogous jump (but with opposite sign) of the interaction contribution to the pressure.
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I. INTRODUCTION

Measurement of bound states, such as deuteron (d),
helium-3 (3He), tritium (3H), helium-4 (4He), hypertritium
(3ΛH) and their antiparticles, was reported in high energy
proton-proton, proton-nucleus (pA) and nucleus-nucleus
(AA) collisions [1–7]. Moreover, the QCD spectrum has
also revealed the existence of a whole new class of X, Y, and
Z resonances that are not predicted by the quarkmodel, some
of which can be mesonic molecular bound states; see e.g.,
Ref. [8] and references therein. Last but not least, also
pentaquark states [9] can be understood asmolecular objects.
The production of nuclei as well as other hadronic bound

states has attracted a lot of interest because their binding
energies are typically much smaller than the temperature
realized in high energy collisions, hence at the first sight it
is quite puzzling that such objects can form in such a hot
environment. In addition, light nuclei are also potential
candidates to search for the critical point in the quantum

chromodynamics (QCD) phase diagram [10–13]. Excess
production of some light antinuclei in cosmic rays and dark
matter experiments [14–16] has also been investigated.
There are several models, notably thermal models

[17–22], nucleon coalescence models [11,23–33], and
dynamical models [34,35] which aim to explain the
production of bound states in high energy collisions.
Yet, there are differences among them, and it is not yet
clear up to now which approach is the correct one. In other
words, are bound states produced according to their statistic
distribution at temperature T? If yes, which is their
contribution to the pressure?
In the present work, we intend to answer these questions

in the context of Quantum Field Theory (QFT). To this end,
we use the well known scalar φ4-interaction, where φ is a
field with mass m.
First, we evaluate the scattering phase shift at tree level

and at the one-loop resumed level. In the latter (and
necessary) step, we choose a proper unitarization scheme
at the resumed one-loop level for which (i) no new energy
scale appears and (ii) the results are finite and well defined
for any value of the coupling constant, denoted as λ (the
corresponding potential reads V ¼ λ4φ4=4!).
When λ > 0 the interaction is repulsive, and the phase

shift is always decreasing with the increase of the running
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energy
ffiffiffi
s

p
and smaller than zero. When λ < 0 (and its

modulus is smaller than a certain critical value denoted
as λc) the interaction is attractive and the phase shift is
positive, rising for small

ffiffiffi
s

p
and decreasing afterward. Yet,

when λ < λc < 0, a bound state is formed, whose mass is
exactly equals to 2m for λ ¼ λc and is smaller than 2m for
λ < λc. In this case, the interaction is again repulsive and
the phase shift is negative and decreasing.
We use the previous results to study the properties of this

QFT at finite temperature by using the phase-shift (or
S-matrix) approach, according to which the density of
states is proportional to the derivative of the phase shift
with respect to the

ffiffiffi
s

p
. For λ > 0, the contribution of the

interaction to the pressure (as well as to other quantities)
is negative, in agreement with the repulsive nature of the
interaction. On the other hand, for λc < λ < 0, the con-
tribution to the pressure is positive, as the attraction
suggests.
The case λ < λc requires care: on the one hand, the

repulsion causes a negative contribution of the φ-φ inter-
action to the pressure, but the presence of the bound state
implies a positive contribution to the pressure: the net result
is a positive contribution. Quite remarkably, the total
pressure as function of the coupling constant λ is continu-
ous also at λ ¼ λc: the jump in pressure generated by the
abrupt appearance of the bound state is exactly canceled by
an analogous jump (but with opposite sign) due to the
phase-shift contribution to the pressure. Within this con-
text, we shall extend the S-matrix formalism to include the
contribution of eventual bound states. This point represents
a formal achievement of our approach and corresponds to a
rather intuitive aspect of the problem: the bound state is
also an outcome of the two-particle interaction; hence its
role should be also described by a (proper) extension of the
phase-shift approach below the particle-particle threshold.
In summary, our findings show that the number density

of the bound state with mass MB can be calculated by the
“simple” thermal integral

nB ¼ θðλc − λÞ
Z
k

h
e−β

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

B

p
− 1

i
−1 ð1Þ

for any temperature T (in the previous equation,
R
k ≡R

d3k=ð2πÞ3). This result is valid also when the mass of
the bound state MB is just below the threshold 2m and for
temperatures T ≫ 2m −MB (hence, even for temperatures
much larger than the binding energy). However, the
contribution of the interacting φφ-system is not simply
given by the standard contribution to the pressure

PB ¼ −θðλc − λÞT
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

B

p i
; ð2Þ

but caution is needed. In general, we shall find that for
λ < λc the total interacting contribution to the pressure

(including both the bound state and the φφ-interaction
above threshold) can be expressed as

ζPB with 0 < ζ < 1: ð3Þ

For small temperatures, the ratio ζ is close to 1, but for
higher temperatures it saturates to a certain finite which is
typically about 0.5. Quite interestingly, the existence of this
cancellation was discussed in the framework of Quantum
Mechanics (QM) in Ref. [21], even if in that case the
cancellation was more pronounced (ζ quite small) than the
result obtained in our QFT approach.
In conclusion, when a bound state forms in a thermal gas,

one should not simply add the corresponding thermal
integral as in Eq. (2) to the pressure, since the additional
role of the interaction that leads to the very existence of
that bound state is not negligible and contributes with an
opposite sign.
The paper is organized as follows: in Sec. II we

concentrate on the main properties of the system in the
vacuum, that include phase shifts, unitarization procedure,
and the emergence of a bound state when the attraction is
strong enough; then, in Sec. III we present the results at
nonzero temperature with special focus on the pressure and
the role of the bound state; finally, in Sec. IV we summarize
and conclude our paper.

II. VACUUM PHENOMENOLOGY
OF SCALAR φ4-THEORY

A. Scattering phase shifts

In this section we discuss the relatively simple but
nontrivial interacting QFT involving a single scalar field
φ subject to the Lagrangian

L ¼ 1

2
ð∂μφÞ2 −

1

2
m2φ2 −

λ

4!
φ4; ð4Þ

where the first two terms describe a free particle with mass
m and the last term corresponds to the quartic interaction.
The coupling constant λ is dimensionless and the theory is
renormalizable [36]. For a detailed analysis of this theory
in the context of perturbation theory1 see Ref. [39]. As we
shall comment later on, we will introduce a nonperturbative
unitarization procedure on top of Eq. (4), in such a way to
make the theory finite, unitary and well defined for each
value of the coupling constant λ (even for large ones). This
is done at the one-loop resummed level with a suitable
subtraction constant.
In the center of mass frame, the differential cross section

is given by [36]

1The φ4 QFT could also be trivial, in the sense that the
coupling constant vanishes after the renormalization procedure is
carried out; see e.g., Refs. [37,38] and refs. therein for the
discussion of this issue.
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dσ
dΩ

¼ jAðs; t; uÞj2
64π2s

; ð5Þ

where Aðs; t; uÞ is the scattering amplitude as evaluated
through Feynman diagrams, and s, t and u are Mandelstam
variables:

s ¼ ðp1 þ p2Þ2 ≥ 4m2; ð6Þ

t ¼ ðp1 − p3Þ2 ¼ −
1

2
ðs − 4m2Þð1 − cos θÞ ≤ 0; ð7Þ

u ¼ ðp2 − p3Þ2 ¼ −
1

2
ðs − 4m2Þð1þ cos θÞ ≤ 0; ð8Þ

where p1, p2, p3 and p4 are four-momenta of the particles
(p1, p2 ingoing and p3, p4 outgoing), and θ is the scattering
angle. The sum of these three variables is sþ tþ u ¼ 4m2.
The scattering amplitude can be expressed in terms of
partial waves (by keeping s and θ as independent variables)
as [40]:

Aðs; t; uÞ ¼ Aðs; θÞ ¼
X∞
l¼0

ð2lþ 1ÞAlðsÞPlðcos θÞ; ð9Þ

where PlðξÞ with ξ ¼ cos θ are the Legendre polynomials
with

Z þ1

−1
dξPlðξÞPl0 ðξÞ ¼

2

2lþ 1
δll0 : ð10Þ

In general, the l-th wave contribution to the amplitude is
given by AlðsÞ ¼ 1

2

Rþ1
−1 dξAðs; θÞPlðξÞ.

In the particular case of our Lagrangian of Eq. (4), the
tree-level scattering amplitude Aðs; t; uÞ takes the very
simple form:

iAðs; t; uÞ ¼ ið−λÞ ⇒ Aðs; t; uÞ ¼ Aðs; θÞ ¼ −λ: ð11Þ

For λ > 0, one has A < 0: the (tree-level) interaction is
repulsive. On the other hand for λ < 0 one has A > 0,
which corresponds to an attractive interaction. (This case
implies that the vacuum φ ¼ 0 is only metastable, but this
shall not affect our discussion.)
At tree level the s-wave amplitude’s contribution takes

the form:

A0ðsÞ ¼
1

2

Z þ1

−1
dξAðs; θÞ ¼ Aðs; θÞ ¼ −λ; ð12Þ

while all other waves vanish, Al¼1;2;…ðsÞ ¼ 0 (this holds
true also when unitarizing the theory within the adopted
resummation scheme). Further, the total cross section reads

σðsÞ ¼ 1

2
2π

1

64π2s

X∞
l¼0

2ð2lþ 1ÞjAlðsÞj2 ¼
1

32πs
jA0ðsÞj2:

ð13Þ

At threshold:

σðsth ¼ 4m2Þ ¼ 1

2
2π

1

64π2s
2jA0ðsthÞj2 ¼ 8πjaSL0 j2; ð14Þ

where aSL0 is the s-wave (l ¼ 0) scattering length (at tree
level) given by:

aSL0 ¼ 1

2

A0ðs ¼ 4m2Þ
8π

ffiffiffiffiffiffiffiffiffi
4m2

p ¼ 1

2

−λ
16πm

: ð15Þ

The factor 1=2 in the previous equation refers to identical
particles.
Next, we introduce the phase shifts. For identical

particles, one has the following general definition of the
l-th wave phase shift δlðsÞ:

e2iδlðsÞ − 1

2i
¼ kalðsÞ ¼

1

2
·

k
8π

ffiffiffi
s

p AlðsÞ; ð16Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4
−m2

q
is the modulus of the three-momen-

tum of one of the ingoing (or outgoing) particles. In the
present case, the only nonvanishing phase shift is given
by δ0ðsÞ

e2iδ0ðsÞ − 1

2i
¼ ka0ðsÞ ¼

1

2
·

k
8π

ffiffiffi
s

p A0ðsÞ; ð17Þ

where the “running” length a0ðsÞ is by construction such
that a0ðs ¼ 4m2Þ ¼ aSL0 . Note, for s just above the thresh-
old we have

e2iδ0ðsÞ − 1

2i
≃ δ0ðsÞ ≃ kaSL0 : ð18Þ

In general, the phase shift δ0ðsÞ can be calculated as:

δ0ðsÞ ¼
1

2
arg

"
1 −

1

16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

s
− 1

r
A0ðsÞ

#
: ð19Þ

Next, we explore the role of λ for the tree-level scatter-
ing. In Fig. 1 we show the behavior of phase shift δ0ðsÞ
using Eq. (19) for different values of λ. For positive λ
values, the function δ0ðsÞ is negative and decreases with
increasing

ffiffiffi
s

p
=m: the slope of the curve (∂δ0=∂ ffiffiffi

s
p

) is
negative for any arbitrary value of s, which indicates an
repulsive interaction. For negative λ values, the opposite
behavior is realized, signaling attraction.
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The asymptotic values δ0ðs → ∞Þ do not tend to a
multiple of π, since the theory at first order in λ is only
unitary at that order. As a consequence, we can trust the
results only when δ0ðsÞ is sufficiently small. As a related
side remark, the expression δ0ðsÞ ¼ 1

2
arcsin ½ k

8π
ffiffi
s

p A0ðsÞ�
[which in principle follows from Eq. (17)] is also valid
only when the amplitude is sufficiently small. This draw-
back is also due to the lack of unitarity.
All these aspects show that the unitarization is necessary,

as we show in detail in the next subsection.

B. Unitarization

Here, we introduce the two-particle loop of the field φ,
that we denote as ΣðsÞ. We start from the requirement
about its imaginary part above threshold (because of the
optical theorem):

IðsÞ ¼ ImΣðsÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s
4
−m2

q
8π

ffiffiffi
s

p for
ffiffiffi
s

p
> 2m: ð20Þ

We shall put here no cutof; hence the above equation is
considered valid up to arbitrary values of the variable s
[note, in each realistic QFT the quantity ImΣðsÞ should
decrease for s large enough, e.g., above the GUT or the
Planck scale; nevertheless, from a mathematical point of
view, we can get a fully consistent treatment for any value
of s]. The loop function ΣðsÞ for complex values of the
variable s reads

ΣðsÞ ¼ 1

π

Z
∞

4m2

ds0
Iðs0Þ

s0 − s − iϵ
− C; ð21Þ

where the subtraction C guarantees convergence. Here, we
make the choice Σðs → 0Þ ¼ 0; hence

C ¼ 1

π

Z
∞

4m2

ds0
Iðs0Þ
s0

: ð22Þ

This choice turns out to be very convenient for our
purposes. Explicitly, the loop reads (we keep track of
the arbitrary small ϵ since this will be important later on):

ΣðsÞ ¼ 1

2

1

16π

0
B@−

1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

sþ iϵ

s
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

sþiϵ

q
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4m2

sþiϵ

q
− 1

1
CA

þ 1

16π2
: ð23Þ

(For details on the φφ loops, see Ref. [41] and references
therein.) For s being real we get

ImΣðsÞ ¼
8<
:

1
2

ffiffiffiffiffiffiffiffi
s
4
−m2

p
8π

ffiffi
s

p for s > ð2mÞ2

ε for s < ð2mÞ2;
ð24Þ

where ε ∝ ϵ is an infinitesimal positive quantity. Note.
Eq. (20) is fulfilled, as it should. Moreover, for s real and
larger than 4m2, the real part of the loop is given by the
principal part (P) of the following integral:

ReΣðsÞ ¼ s
π
P
Z

∞

sth

Iðs0Þ
ðs0 − sÞs0 : ð25Þ

The functions ImΣðsÞ and ReΣðsÞ (for real values of s)
are presented in Fig. 2. The real part rises below threshold,
has a cusp at it, then decreases monotonically and becomes
negative for

ffiffiffi
s

p
=m large enough. The imaginary part is zero

(infinitesimally small) below threshold, then it rises above
it and saturates to the value 1=ð32πÞ for large ffiffiffi

s
p

=m. Note,
its right-hand-side derivative at threshold is infinite.
The loop function allows to calculate the unitarized

amplitudes in the k-channel as:

AU
k ðsÞ ¼ ½A−1

k ðsÞ − ΣðsÞ�−1: ð26Þ

All unitarized amplitudes (and consequently phase
shifts) with l ¼ 1; 2;… vanish also at the unitarized level.
The unitarized s-wave amplitude and phase shift are
nonzero and take the form:

AU
0 ðsÞ ¼ ½A−1

0 ðsÞ − ΣðsÞ�−1 ¼ −λ
1þ λΣðsÞ ; ð27Þ

e2iδ
U
0
ðsÞ − 1

2i
¼ 1

2
·

k
8π

ffiffiffi
s

p AU
0 ðsÞ: ð28Þ

Hence

s m/

5 10 15 20

 (
de

g)
0�

40�

20�

0

20

40

 = -200�
 = -100�
 = 100�
 = 200�

Tree level

FIG. 1. Behavior of the phase shift at the tree level for different
values of λ.
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δU0 ðsÞ ¼
1

2
arg

"
1 −

1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s
−
1

4

r
AU
0 ðsÞ

#
: ð29Þ

The scattering length is changed by the unitarization:

aU;SL
0 ¼ 1

2

AU
0 ðs ¼ 4m2Þ
8π

ffiffiffiffiffiffiffiffiffi
4m2

p ¼ 1

2

1

16πm
−λ

1þ λΣð4m2Þ : ð30Þ

Within the used unitarization

Σðs ¼ 4m2Þ ¼ 1

16π2
; ð31Þ

hence it follows that

aU;SL
0 ¼ 1

2

1

16πm
−λ

1þ λ
16π2

: ð32Þ

It is then clear that aU;SL
0 < 0 for λ > 0 (repulsion), and that

aU;SL
0 > 0 for λ ∈ ðλc ¼ −16π2; 0Þ (attraction). However,

aU;SL
0 < 0 for λ < λc, in agreement with the fact that

repulsion sets in again. This is due to the fact that for
λ < λc a bound state below threshold emerges, as we shall
show in the next subsection.
Finally one can calculate δU0 ðsÞ by using the equivalent

expressions

δU0 ðsÞ ¼
1

2
arcsin

�
k

8π
ffiffiffi
s

p Re½AU
0 ðsÞ�

�
; ð33Þ

δU0 ðsÞ ¼
1

2
arccos

�
1 −

k
8π

ffiffiffi
s

p Im½AU
0 ðsÞ�

�
: ð34Þ

Once the unitarization procedure is employed, the expres-
sions (33), (34), and (28) give rise to the same result for the
phase shift. This is also a useful check of the correctness of
our approach.

C. Bound state

If λ is negative the two scalar particles attract each other.
A natural question is under which condition a bound state
emerges. Such a bound state, denoted as B, with mass MB,
should fulfill the equation [for s ∈ ð0; 4m2Þ]

AU
0 ðsÞ−1 ¼ ½−λ−1 − Σðs ¼ M2

BÞ� ¼ 0: ð35Þ

Since ΣðsÞ is real for s < 4m2 and has a maximum at
threshold with Σðs ¼ 4m2Þ ¼ 1

16π2
[see Eq. (23)], it turns

out that a bound state is present if

λ ≤ λc ¼ −16π2: ð36Þ

The massMB as a function of λ, plotted in Fig. 3, fulfills
the conditions:

MBðλ ¼ λcÞ ¼ 2m; ð37Þ

MBðλ → −∞Þ ¼ 0: ð38Þ

This result also shows the convenience of the employed
subtraction scheme: when the attraction is infinitely strong,
the bound state becomes massless. This choice avoids

�- 

210 310 410 510

 /m
B

M

0

0.5

1

1.5

2

2� = -16 c�

FIG. 3. Mass of the bound state MB as function of −λ.

s m/

0 5 10 15 20

]�
R

e[
0.01�

0.005�

0

0.005

s m/

0 5 10 15 20

]�
Im

[

0

0.002

0.004

0.006

0.008

0.01

FIG. 2. Real and imaginary parts of loop function for real
ffiffiffi
s

p
=m.
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also the emergence of an additional energy scale into
the problem.
Of course, one could perform the study also for different

subtraction choices: if e.g., Σð0Þ > 0 the mass MB tends to
a finite value for an infinite negative coupling; if, instead,
Σð0Þ < 0 a tachyonic mode (instability) appears for a
negative coupling whose modulus is large enough.
Alternatively, one could use a finite cutoff function, but
this choice is linked to a nonlocal Lagrangian [42–44]. Yet,
all these possibilities imply that a new energy scale enters
into the problem. While this might be possible, that would
introduce an unnecessary complication and would also
spoil the fact that only the mass m entering in Eq. (4) is the
unique energy scale of the system.
In conclusion, the quartic theory of Eq. (4) is fully

defined only once its unitarization is settled. The unitarized
version of the model together with the employed subtrac-
tion constant chosen in this work assures that the model
under study is well defined for any λ (positive and negative)
and is therefore very well suited for the study that we aim to
do, namely the role of the bound state in a thermal bath.

D. Behavior of the unitarized phase shift

In order to discuss unitarized phase shift, an important
note on the adopted convention is in order. We impose that
the phase shift vanishes at threshold:

δU0 ðs ¼ 4m2Þ ¼ 0; ð39Þ

regardless of the existence of the bound state below
threshold or not. In this way, the comparison between
different curves is better visible. We recall that often a
different convention is used, according to which the phase
space at threshold equals nBSπ, where nBS is the number of
bound states below threshold [45]. Of course, the choice of
the convention has no impact on the physics. For instance,
the Levinson theorem [46,47] relates the number of poles
below threshold to the difference of the phase shift at
infinity and at threshold:

npoles-below-threshold ¼
1

π
ðδU0 ðs→∞2Þ− δU0 ðs¼ 4m2ÞÞ: ð40Þ

This quantity is clearly independent on the choice of an
overall constant. In some cases, the number of poles below
threshold equals the number of bound states, but care is
needed, since some unphysical poles may also exist;
see below.
Similarly, the finite temperature properties studied in

the next section depend on the derivative dδU0 ðsÞ=ds,
which is also independent on the convention regarding
δU0 ðs ¼ 4m2Þ. We shall also elaborate more on the behavior
of δU0 ðsÞ in Sec. III.3.
Let us now present the behavior of the unitarized phase

shift δU0 ðsÞ in Fig. 4. Only for small λ, the behavior of δ0ðsÞ

is similar to that of Fig. 1. Yet, also in the unitarized case,
for λ > 0 the phase shift and its derivative are always
negative. Moreover, the asymptotic value

δU0 ðs → ∞Þ ¼ −π for λ > 0 ð41Þ

is realized. In addition, the point at which δU0 ðs ¼ s1Þ ¼
−π=2 is obtained for

−λ−1 − ReΣðs1Þ ¼ 0; ð42Þ

where the amplitude becomes purely imaginary with

e2iδ0ðs1Þ − 1

2i
¼ i: ð43Þ

The point s1 is present for each positive value of λ since
ReΣðs1Þ is unbounded from below. According to the
Levinson theorem [46,47], Eq. (41) implies that a pole
below threshold exists. Indeed, for λ > 0 such a pole of the
amplitude is present for a negative value of s that fulfills
the very same Eq. (35), but of course this pole does not
correspond to a physical bound state.
Next, for λ negative but belonging to the range

ðλc ¼ −16π2; 0Þ, the phase shift is positive, it rises for
small values of

ffiffiffi
s

p
=m, it reaches a maximum, and than it

bends over approaching zero for large values of s:

δU0 ðs → ∞Þ ¼ 0 for λ ∈ ðλc; 0Þ: ð44Þ

This is also in agreement with the Levinson’s theorem,
since no pole below threshold appears.
Finally, for λ < λc the phase δU0 ðsÞ is negative and

approaches −π:

δU0 ðs → ∞Þ ¼ −π for λ < λc; ð45Þ

in accordance with Levinson’s theorem, since a pole for
s ¼ M2

B exists. Also in this case, there is a certain value
s ¼ s1 at which the phase is −π=2.
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FIG. 4. Behavior of the unitarized phase shift δU0 as function offfiffiffi
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=m for different values of λ.
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In Fig. 5 we compare the tree-level (T) and the
unitarized (U) phase shifts. The top panel shows the
results when λ is small (�10). The qualitative behavior of
the phase shifts for both cases is similar for all

ffiffiffi
s

p
=m

shown in the figure. When
ffiffiffi
s

p
=m is small (<4), the tree-

level and unitarized results are very close to each other,
then a discrepancy is appreciable at larger values offfiffiffi
s

p
=m. In the middle panel we show a similar comparison

for λ ¼ �100. In this case the unitarized phase shifts differ
significantly from the tree-level ones. For λ ¼ −100, the
unitarized phase shift first increases sharply for increasingffiffiffi
s

p
=m, reaches a maximum, and then starts decreasing.

The magnitude of the unitarized phase shift is larger than
that at tree level at low

ffiffiffi
s

p
=m, but becomes smaller at largeffiffiffi

s
p

=m. For λ ¼ þ100 both the tree-level and the unita-
rized phase shift decrease for increasing

ffiffiffi
s

p
=m. However,

the decrease is much steeper for the unitarized phase shift.
The bottom panel of Fig. 5 shows the choice λ ¼ �200.
For λ ¼ 200 the comparison of the tree-level and unita-
rized phase shift is similar to that of λ ¼ 100. However,
the behavior of unitarized phase shift for λ ¼ −200 is
completely different from the tree-level one. While tree-
level phase shift is positive, the unitarized phase shift is
negative because λ < λc. Correspondingly, in this case the

bound state that dominates the near-threshold phenom-
enology is built.

III. THERMODYNAMICAL PROPERTIES
OF THE THEORY

We now consider the thermodynamics (TD) of the
system at nonzero temperature. We first discuss the
pressure of the system by using the phase-shift approach
at tree level, in which no bound state is present, and then at
the unitarized one-loop level. Within the latter scheme, we
study the contribution to the TD of an emerging bound state
when the attraction is large enough to form it (λ ≤ λc).

A. Pressure without the bound state: Tree-level results

The noninteracting part of the pressure for a gas of
particles with mass m reads:

Pφ;free ¼ −T
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffiffi
k2þm2

p i
: ð46Þ

In the S-matrix formalism [48–56], the interacting part of
the pressure is related to the derivative of the phase shift
with respect to the energy by the following relation:

Pφφ-int ¼ −T
Z

∞

2m
dx

2lþ 1

π

X∞
l¼0

dδlðs ¼ x2Þ
dx

×
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffi
k2þx2

p i
; ð47Þ

where x ¼ ffiffiffi
s

p
. In our specific case, only the s-wave

contribution is nonzero:

Pφφ-int ¼ −T
Z

∞

2m
dx

1

π

dδ0ðs ¼ x2Þ
dx

Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffi
k2þx2

p i
:

ð48Þ

Then, the total tree-level pressure (obviously in the absence
of a bound state, since at tree level it cannot be generated)
is given by

Ptot ¼ Pφ;free þ Pφφ-int ðat tree levelÞ: ð49Þ

The previous equations show that we can evaluate the
pressure at T > 0 by using solely the phase shift evaluated
in the vacuum. Of course, all other relevant thermodynamic
quantities of the thermal system (such as energy and
entropy densities, etc.) can be determined once the pressure
is known.
The temperature dependence of the corresponding pres-

sure ðPφ;free þ Pφφ-intÞ=T4 is shown in Fig. 6. The λ ¼ 0

line corresponds to the pressure of a free gas Pφ;free=T4

that for large T=m saturates towards the massless limit
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FIG. 5. Comparison of tree-level (T) and unitarized (U) phase
shifts as function of

ffiffiffi
s

p
=m for different values of λ. As we discuss

in the text, the phase shift is chosen to vanish at threshold
[δU0 ðs ¼ 4m2Þ ¼ 0], independently of the value of λ. In this way it
is easy to compare the behavior of the phase shift for different
values of λ, even when a bound state emerges. This choice does
not affect the physics.
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(Pφ;free=T4
m¼0 ¼ π2=90). For positive (negative) λ, the

tree-level repulsive (attractive) interaction implies that
the pressure is smaller (larger) than the noninteracting
case, but never exceeds 0.5. As we shall see, the unitariza-
tion enhances the contribution of the interaction.
Next, in Fig. 7 we study Pφφ-int=T4 and Pφφ-int=Pφ;free as

function of λ for four different m=T ratios 2, 1, 0.5 and 0.2.
One can see that near λ ¼ 0, Pφφ-int=T4 changes rapidly
with λ, but then saturates at large values of λ. In the right
panel, one can see that all the curves of the function
Pφφ-int=Pφ;free cross the origin at λ ¼ 0, which is expected
since there is no interaction at λ ¼ 0. Further, it can be seen
that the effect of the interaction is larger both for large λ
and/or low m=T.

B. Pressure without the bound state:
Unitarized results

When including the unitarization procedure explained
in Sec. II B, the interaction contribution to the pressure
is obtained by using the unitarized phase shift into the
S-matrix formalism:

PU
φφ-int ¼ −T

Z
∞

2m
dx

1

π

dδU0 ðs ¼ x2Þ
dx

Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffi
k2þx2

p i
:

ð50Þ

Then, the total pressure (in the absence of a bound state) is
given by

PU
tot ¼ Pφ;free þ PU

φφ-int ðunitarized; for λ > λcÞ: ð51Þ

Figure 8 shows the temperature dependence of pressure
in the unitarized case. [Note, no bound state contribution is
present here since all the considered values of the coupling
λ are larger than λc.] For small λ (�10), the normalized
pressure saturates at large T=m.
Yet, for λ ¼ �100 the normalized pressure as a function

of the temperature is quite different from the noninteracting
case, since it reaches a maximum for a finite value of the
temperature. In general, this figure shows that for large
values of λ and for large temperatures, the unitarized result
is sizably different from the tree-level result reported
in Fig. 6.
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FIG. 6. Tree-level plots of the normalized pressure as function
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C. The general case: Inclusion of the bound state,
formal aspects, and numerical results

The crucial question of the present work is how to
include the effect of the emergent bound state B in the
thermodynamics. The easiest way is to add to the pressure
of the system the pressure of mass MB as:

PB ¼ −θðλc − λÞT
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

B

p i
; ð52Þ

where the theta function takes into account that for λ > λc
there is no bound state B. Of course, MB is itself also a
function of λ, see Eq. (35) and Fig. 3.
Within this context, the full (unitarized) pressure looks

like

PU
tot¼PBþPφ;freeþPU

φφ-int ðunitarized;for any λÞ: ð53Þ

Quite remarkably, PU
tot turns out to be a continuous function

of λ, even if PB is not continuous at λ ¼ λc since it jumps
abruptly from 0 to a certain finite value. Yet, the quantity
PU
φφ-int is also not continuous in such a way to compensate

the previous jump; see below.
The issue is if the inclusion of PB as in Eq. (52) is

correct. To study this point, we discuss how the contribu-
tion of the bound state can be formally included into the
phase-shift analysis, showing that the simple prescription
of adding one additional state to the thermodynamics is
correct and the result is independent on the residuum of the
pole of the bound state.
In order to show these features, let us first modify

Eq. (28) by extending its validity also below the threshold.
To this end we consider

e2iδ
U
0
ðsÞ − 1

2i
¼ ImΣðsÞ · AU

0 ðsÞ; ð54Þ

where ImΣðsÞ is given by Eq. (24). Clearly, above threshold
nothing changes. On the other hand, below threshold we
get the following expression:

e2iδ
U
0
ðsÞ − 1

2i
¼ εAU

0 ðsÞ ¼
ε

A−1
0 ðsÞ − ΣðsÞ : ð55Þ

Note, if ε is set strictly to zero, we get obviously zero. If
there is no pole below threshold, δU0 is an infinitesimally
small number, that can be set to zero and has no effect in the
description of the system.
Next, let us assume that a bound state below threshold

appears: A−1
0 ðsÞ − ΣðsÞ ¼ 0 for s ¼ M2

B ∈ ð0; 4m2Þ. In this
case, we have (below threshold):

e2iδ
U
0
ðsÞ − 1

2i
¼ ε

−Z−1ðs −M2
BÞ þ iε

ðfor 0 < s < 4m2Þ;

ð56Þ

where

Z ¼ 1

Σ0ðs ¼ M2
BÞ

: ð57Þ

Using the expression for the phase shift of Eq. (34) we find:

δU0 ðsÞ ¼
1

2
arccos

�
1 −

2ε2

½Z−1ðs −M2
BÞ�2 þ ε2

�
ðfor 0 < s < 4m2Þ: ð58Þ

For 0 < s < M2
B the argument of the arccos is 1 (for an

arbitrary small ε), then unitarized phase shift δU0 ¼ nπ,
where n is an integer. We recall that it in this work we
require that δU0 ðsÞ vanishes at threshold:

δU0 ðs ¼ 4m2Þ ¼ 0: ð59Þ

By assuming that there is a single pole below threshold, for
s < M2

B it is useful to impose that n ¼ −1:

δU0 ð0 < s < MBÞ ¼ −π for 0 < s < M2
B: ð60Þ

Next, we notice that for s ¼ M2
B, the argument equals to

1 − 2ε2

ε2
¼ −1, therefore δU0 ¼ n

2
π for this particular choice

of s.
The function δU0 ðs ¼ x2Þ must be (for a finite ε, even if

arbitrarily small) a continuous and differentiable function.
Hence, it follows that

δU0 ðs ¼ M2
BÞ ¼ −

π

2
: ð61Þ

Moreover, for any value of M2
B < s < 4m2 we have

δU0 ðM2
B < s < 4m2Þ ¼ 0: ð62Þ

We may then conclude that for s ∈ ð0; 4m2Þ, alias for
x ∈ ð0; 2mÞ, the phase shift takes the form:

δU0 ðx ¼ ffiffiffi
s

p Þ ¼ −π þ πθðx −MBÞ: ð63Þ

In this way we obtain the desired result:

1

π

dδU0 ðxÞ
dx

¼ δðx −MBÞ: ð64Þ

Quite interestingly, this result is independent on the
residue of the pole Z. The bound state counts always as 1,
showing that the corresponding density of states is given by
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nB ¼ θðλc − λÞ
Z
k

h
e−β

ffiffiffiffiffiffiffiffiffiffiffi
k2þM2

B

p
− 1

i
−1
; ð65Þ

in agreement with thermal models.
In order to understand better the behavior of the phase

shift, we show in the left panel of Fig. 9 the behavior of the
unitarized phase shift below threshold for two different λ
values, one below and another above the critical value.
For λ ¼ 200 > λc, the phase shift is simply zero below the
threshold and decreases with the increase of

ffiffiffi
s

p
=m,

whereas, for λ ¼ −200 < λc, the phase shift is −π (accord-
ing to our convention) below the mass of the bound
state (MB=m ∼ 1.98). The phase shift jumps to zero forffiffiffi
s

p ¼ MB and remains zero up to the threshold. This jump
of phase shift is due to the formation of the bound state.
Above threshold the phase shift decreases with the increase
of

ffiffiffi
s

p
=m.

The right panel of Fig. 9 shows the energy dependence of
the derivative of the phase shift. For λ ¼ 200, the derivative
of the phase shift is zero below threshold. Above threshold
this quantity is negative and its magnitude increases with
the increase of

ffiffiffi
s

p
=m. For λ ¼ −200, there is a delta

function at
ffiffiffi
s

p ¼ MB, which is responsible for the inclu-
sion of the bound state in the phase-shift formalism. Indeed,
as shown in Eq. (50), the pressure depends on the derivative
of the phase shift, hence the functions depicted in the right
panel of Fig. 9 represent the two-particle energy weight.
One can also understand from the plots in Fig. 9 that, using

the more common convention according to which the phase
shift equals π at threshold when a bound state is present,
would amount to consider δU0 ðsÞ þ π for λ ¼ −200 in the left
panel, while the right panel would remain unchanged. This
result shows that the choice of the phase-shift value at
threshold does not affect the thermodynamics (as well as
any other physical property), as it should.
Finally, we turn to the thermodynamics of the system.

The pressure contributions from the bound state and
from the interaction can be described by the following
expression:

Pφφ-int-tot ¼ PU
φφ-int þ PB

¼ −T
Z

∞

0

dx
1

π

dδU0 ðs ¼ x2Þ
dx

×
Z
k
ln
h
1 − e−β

ffiffiffiffiffiffiffiffiffi
k2þx2

p i
; ð66Þ

where the lower bound of the integral is now set to zero. If
the bound state is present, it is automatically taken into
account (independently on the binding energy).
Next, we discuss the numerical result in presence of a

bound state. As we have already mentioned, the formation
of bound state is possible when λ is less than the critical
value λc ¼ −16π2.
Figure 10 shows the temperature dependence of the

normalized total pressure for λ ¼ �200. For the value
λ ¼ −200 (which is less than λc) the bound state is present
and, as expected, the total normalized pressure is larger
than that of noninteracting particle. For the value λ ¼ 200
the total pressure is strongly reduced. Yet, in general, the
qualitative behavior of the curves for λ ¼ �200 is quite
similar to those for λ ¼ �100 depicted in Fig. 8.
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FIG. 9. Left panel shows the energy dependence of the unitarized phase shift for λ ¼ �200. Right panel shows the derivative of the
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The left panel of Fig. 11 shows the variation of the
interacting part of normalized pressure with λ (excluding
the contribution of the bound state) using the unitarized
phase shift. Unlike the tree-level result (left panel of
Fig. 7), the interacting pressure in the present case is
discontinuous at λ ¼ λc. In fact, for λ < λc, the interacting

part of the pressure becomes negative as a consequence
of the bound state. The right panel of Fig. 11 shows
the λ-dependence of interacting part of the pressure
relative to that of a free gas. It shows that for λ of the
order (or larger) of 200, the interacting part of the
pressure is definitely sizable.
Figure 12 shows the behavior of the normalized total

pressure as function of λ. Here, both the contribution of the
bound state and of the φφ interaction above threshold are
included. Quite remarkably, the total pressure is a con-
tinuous function also at λ ¼ λc: the discontinuity of the
interacting part of the pressure shown in the left panel of
Fig. 12 is compensated by an analogous (but with opposite
sign) jump of the bound state pressure.
Finally, in Fig. 13 we show the variation of ζ

ζðT; λÞ ¼ PU
φφ-int þ PB

PB
ð67Þ

as function of T=m for two different values of λ for which
the bound states form: one just below the critical value,
λc, and a value sizably below it, λ ¼ −200. This ratio
approaches unity when PU

φφ-int is zero. When λ is just
below λc, this ratio is close to unity only at low T=m; it
then decreases with the increase of T=m and eventually
saturates around 0.6 at higher T=m, so even at high
temperature T=m this fraction is not negligible. Although
the magnitude of ζ is smaller, the trend is similar in case
of λ ¼ −200 as well.
The results suggest that for a bound state created close to

threshold (thus λ smaller but close to λc), the bound state is
indeed important, and the negative contribution to the
pressure generated by the particle-particle interaction does
not overcome the positive contribution of the bound state.
In that case, one should better include the contribution of
the bound state to the pressure, but eventually one should
take into account that its quantitative role is diminished by
the interaction above threshold.
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IV. SUMMARY

In this work we have investigated bound states in a
thermal gas in the context of QFT. To do this, a QFT
involving a single scalar particle with mass m subject to a
φ4-interaction has been used. Besides the tree-level results,
we have employed a unitarized one-loop resummed
approach for which the theory is finite and well defined
for each value of the coupling constant λ and for which
no new energy scale appears in the theory. Moreover, for
λ < λc a bound state forms.
The phase shift of the s-wave scattering has been

calculated using the partial wave decomposition of two
body scattering and has been used to calculate the proper-
ties of the system at finite temperature through the phase-
shift (or S-matrix) approach, according to which the density
of states is proportional to the derivative of the phase shift
with respect to the running energy

ffiffiffi
s

p
.

For λ > 0, the contribution of the interaction to the
pressure is always negative, in agreement with the repulsive
nature of the interaction. On the other hand, for λc < λ < 0,
the contribution to the pressure is positive indicating an
attractive interaction. Below λc the interacting part of the
pressure due to two-body scattering switches sign: it
becomes negative due to the bound state below threshold.
Yet, the additional contribution of a gas of bound states
makes the total pressure continuous with respect to the
coupling λ.
In summary, the contribution of the bound state to the

pressure as usually calculated in thermal models is actually
diminished by the contribution of the interaction among
the fields, but it is not fully canceled. Especially in the
case in which the mass of the bound state is close to 2m

(the nonrelativistic case, realized for λ smaller but close
to λc), the bound state has a sizable contribution to the
pressure (and thus to the thermodynamics). This contribu-
tion needs to be eventually corrected by an appropriate
multiplicative parameter ζ due to the role of the particle-
particle interaction above threshold. Yet, it turns out to be
larger than 0.6. We conclude that bound states (such as
nuclei or other molecular states in QCD) should not be
neglected in thermal models, even if their concrete pressure
contribution can be somewhat smaller than the value of the
corresponding thermal integrals. Moreover, the multiplicity
of such bounds states can be calculated by the usual
expression for the thermal number density, regardless of
the temperature at which the gas is considered, even if it is
much larger than the binding energy of the bound state.
In the future, one can repeat the present analysis by using

other types of QFT, eventually by including fermionic
fields. We expect that the general picture should be quite
stable and independent on the precise adopted model, but it
would be important to directly verify this statement.
Moreover, one could also calculate the parameter ζ in
some concrete examples, such as for the deuteron or for the
predominantly molecularlike state Xð3872Þ.
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