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We study the thermodynamic curvature R around the chiral phase transition at finite temperature and
chemical potential, within the quark-meson model augmented with meson fluctuations. We study the effect
of the fluctuations, pions and σ meson, on the top of the mean field thermodynamics and how these affect R
around the crossover. We find that for small chemical potential the fluctuations enhance the magnitude of
R, while they do not affect substantially the thermodynamic geometry in proximity of the critical end point.
Moreover, in agreement with previous studies we find that R changes sign in the pseudocritical region,
suggesting a change of the nature of interactions at the mesoscopic level from statistically repulsive to
attractive. Finally, we find that in the critical region around the critical end point jRj scales with the
correlation volume, jRj ¼ Kξ3 with K ¼ Oð1Þ, as expected from hyperscaling; far from the critical end
point the correspondence between jRj and the correlation volume is not as good as the one we have found at
large μ, which is not surprising because at small μ the chiral crossover is quite smooth; nevertheless, we
have found that R develops a characteristic groove structure, suggesting that it is still capable to capture the
pseudocritical behavior of the condensate.
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I. INTRODUCTION

The thermodynamic theory of fluctuations allows one to
define a manifold spanned by intensive thermodynamic
variables, fβkg with k ¼ 1; 2;…; N, and equip this with the
notion of a distance, dl2 ¼ gijðβ1; β2;…; βNÞdβidβj,
where gij is the metric tensor, that depends in general
on the fβkg and measures the probability of a fluctuation
between two equilibrium states. The metric tensor can be
computed from the derivatives of the thermodynamic
potential; therefore, the knowledge of the latter is enough
to define the metric on the manifold. Thermodynamic
stability requires g > 0, where g is the determinant of the
metric; the condition g ¼ 0 determines a phase boundary
in the fβkg space and g < 0 corresponds to regions of
thermodynamic instability.

By means of gij it is possible to define the scalar
curvature R using the standard definitions of the
Riemann geometry; in this context, R is named the
thermodynamic curvature, and the theory that studies R
is called thermodynamic geometry [1–44]. One of the
merits of R is that it carries the physical dimensions of a
volume and because of hyperscaling, around a second-
order phase transition jRj ∝ ξd, where d denotes the spatial
dimension and ξ is the correlation length: as a consequence,
R diverges at a second-order phase transition, and by means
of R it is possible to estimate ξ by virtue of pure
thermodynamic functions. In general, the divergence of
R at a second-order phase transition occurs in correspon-
dence of the condition g ¼ 0; therefore, looking for phase
transitions in the fβkg space is equivalent to looking for the
zeros of g or for the divergences of R; there are however
other possibilities, like the divergence of one of the metric
elements or of their derivatives [see Eq. (10)].
In this study, we analyze the thermodynamic geometry,

and in particular the thermodynamic curvature, of the
quark-meson (QM) model of quantum chromodynamics
(QCD), augmented with the fluctuations of the σ meson
and pions; see [45–50], and references therein. Despite the
abundant literature about thermodynamic curvature, a
systematic study of the effect of fluctuations on R is
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missing; therefore, we aim to fill this gap addressing the
questions of how fluctuations influence the thermodynamic
geometry.
Being this a first study on fluctuations in the context of

thermodynamic curvature, we introduce the fluctuations in
the simplest way possible, namely using the Cornwall-
Jackiw-Toumbulis (CJT) effective action formalism for
composite operators [51] and limiting ourselves to the
largely used Hartree approximation [49,50] in which
momentum-dependent self-energy diagrams are neglected.
Within these approximations, the effect of the interaction of
the fluctuations with the medium is a shift in their mass that
can be computed solving self-consistently the Schwinger-
Dyson equations for the propagators and for the mean field
condensate. Moreover, it is possible to write down in a
simple form the contributions of the fluctuations to the
thermodynamic potential and, therefore, to evaluate the
effect on the thermodynamic curvature. Possible future
improvements are mentioned briefly in the conclusions.
Although this is a study about thermodynamic geometry,

the model we use has been built up for modeling the chiral
phase transition of QCD at high temperature and finite
chemical potential; therefore, it is useful to summarize
briefly a few known facts about the QCD phase diagram
and how this relates to that of the QM model, to give more
context to the subject that we discuss here. At zero baryon
chemical potential, from first principles lattice QCD
calculations we learn that QCD matter experiences a
smooth crossover from a low-temperature confined phase,
in which chiral symmetry is spontaneously broken, to a
high-temperature phase in which chiral symmetry is
approximately restored [52–56]. Since the chiral restoration
at large temperature is a smooth crossover, it is not possible
to define uniquely a critical temperature; rather, it is more
appropriate to define a pseudocritical region, namely a
range of temperature in which several physical quantities
(chiral condensate, pressure, chiral susceptibility and so on)
experience substantial changes. This crossover is reproduced
by the QM model, and the pseudocritical temperature
predicted by the model is in the same ballpark of the
pseudocritical temperature of QCD, that is, Tc ≈ 150 MeV≈
1012 K. At large finite baryon chemical potentials the sign
problem forbids reliable first principle calculations; there-
fore, effective models like the QM model have been used to
study the phase structure of QCD at finite μ and it has been
found that the smooth crossover becomes a first-order phase
transition if μ is large enough: this suggests the existence of a
critical end point (CEP) in the ðT; μÞ plane at which the
crossover becomes a second-order phase transition with
divergent susceptibilities, and this pointmarks the separation
between the crossover on the one hand and the first-order line
on the other hand. Recently, information theory has also been
applied to the QCD phase diagram [57].
We anticipate here the main results. The curvature is

found to be positive at low temperature, as for an ideal

fermion gas; then a change of sign is observed near the
chiral crossover, where R develops a local minimum which
becomes more pronounced when the chemical potential is
increased; finally, R becomes positive again at high temper-
ature and approaches zero from above. A change of sign of
R has been observed for many substances [18,20,22,23,
25,27–29,31] as well as in previous studies on the thermo-
dynamic curvature of the chiral phase transition [43,44] and
it has been interpreted in terms of the nature of the
attractive-repulsive microscopic interaction. We support
this idea here, and we interpret the change of sign of R
around the chiral crossover as a rearrangement of the
interaction at a mesoscopic level, from statistically repul-
sive far from the crossover to attractive around the cross-
over. Moreover, jRj increases along the critical line as μ is
increased from zero to the corresponding CEP value and
diverges at the CEP: this is in agreement with jRj ∝ ξ3 since
the correlation length remains finite at the crossover but
increases as the crossover becomes sharper and eventually
diverges at the critical end point. We check quantitatively
the relation between R and ξ near the CEP by identifying
ξ ¼ 1=Mσ , where Mσ is the pole mass of the σ meson that
carries the fluctuations of the σ field. Even more, we find
that fluctuations enhance jRj at the crossover at small μ, and
we interpret this as the fact that the fluctuations make the
chiral broken phase more unstable and favor chiral sym-
metry restoration at finite temperature; near the CEP we do
not find substantial effects of the fluctuations on R, and we
interpret this as the fact that even without fluctuations, the
mean field thermodynamic potential predicts a second-
order phase transition at the CEP with divergent suscep-
tibilities and a divergent curvature [43,44], and the fluc-
tuations cannot change this picture but can only alter the
values of the critical exponents.
The plan of the article is as follows. In Sec. II we briefly

review the thermodynamic geometry and in particular the
thermodynamic curvature. In Sec. III we review the QM
model. In Sec. IV we discuss R for the QM model. Finally,
in Sec. V we draw our conclusions. We use the natural units
system ℏ ¼ c ¼ kB ¼ 1 throughout this article.

II. THERMODYNAMIC GEOMETRY

Consider a thermodynamic system in the grand-canonical
ensemble whose equilibrium state is characterized by the
pair ðT; μÞ, where T is the temperature and μ is the chemical
potential conjugated to particle density. In order to define
the thermodynamic geometry it is convenient to shift to
new coordinates X ¼ ðX1; X2Þ ¼ ðβ; γÞ with β ¼ 1=T and
γ ¼ −μ=T.
It is well known that a thermodynamic system at

equilibrium can fluctuate to another equilibrium state
characterized by different values of X, and the probability
of this fluctuation can be computed within the standard
thermodynamic fluctuation theory. In order to formulate
this as well as the geometry of thermodynamics, it is
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possible to define a metric space on the two-dimensional
manifold spanned by ðβ; γÞ introducing a distance between
two points, analogously to what is done in Riemannian
geometry. In particular, we define the distance dl2 as [3,15]

dl2 ¼ gββdβdβ þ 2gβγdβdγ þ gγγdγdγ; ð1Þ

where for a system with grand-canonical partition function
Z we have put

gij ≡ ∂2 logZ
∂Xi∂Xj ¼ ∂2ϕ

∂Xi∂Xj ≡ ϕ;ij ð2Þ

with ϕ≡ βP, the pressure P ¼ −Ω, with Ω representing
the thermodynamic potential per unit volume; moreover
ϕ;ij denotes the second derivative of ϕ with respect to i
and j.
The distance in Eq. (1) can be connected to the theory of

thermodynamic fluctuations as follows. The probability of
the system fluctuating from X ¼ ðβ; γÞ to X þ dX ¼ ðβ þ
dβ; γ þ dγÞ is given by

dp ∝
ffiffiffi
g

p
exp

�
−
dl2

2

�
dβdγ; ð3Þ

where g is the determinant of the metric tensor defined in
Eq. (2). Large probability of a fluctuation corresponds to
small dl2, while small probability to large dl2. Therefore,
a large thermodynamic distance between two equilibrium
states, X and X þ dX, means a small probability to
fluctuate from X to X þ dX; vice versa, a small distance
implies a large probability to fluctuate. In this sense, Eq. (1)
measures the distance in the ðβ; γÞ plane between two
thermodynamic states in equilibrium.
Thermodynamic stability requires that gββ > 0 and

g > 0, while g ¼ 0 corresponds to a phase boundary and
regions with g < 0 are unstable. The stability conditions
ensure that dl2 is a positive definite quantity. The second
derivatives are related to the fluctuation moments:

ϕ;ij ¼ hðFi − hFiiÞðFj − hFjiÞi; ð4Þ

where Fi denotes the physical quantities conjugated to Xi

and h� � �i is the standard ensemble average. In our case we
have

ϕ;ββ ¼
1

V
hðU − hUiÞ2i; ð5Þ

ϕ;βγ ¼
1

V
hðU − hUiÞðN − hNiÞi; ð6Þ

ϕ;γγ ¼
1

V
hðN − hNiÞ2i; ð7Þ

where U and N denote the internal energy and the particle
number, respectively.
Equipped with a metric tensor in the ðβ; γÞmanifold, it is

possible to define the Riemann tensor

Ri
klm ¼ ∂Γi

km

∂xl −
∂Γi

kl

∂xm þ Γi
nlΓn

km − Γi
nmΓn

kl; ð8Þ

where the Christoffel symbols are given by

Γi
kl ¼

1

2
gim

�∂gmk

∂xl þ ∂gil
∂xk −

∂gkl
∂xm

�
: ð9Þ

Standard contraction procedure allows us to introduce the
Ricci tensor Rij ¼ Rk

ikj and the scalar curvature R ¼ Ri
i

that in this context is called the thermodynamic curvature.
For a two-dimensional manifold the expression for R
simplifies considerably, namely [15]

R ¼ 1

2g2

��������

ϕ;ββ ϕ;βγ ϕ;γγ

ϕ;βββ ϕ;ββγ ϕ;βγγ

ϕ;ββγ ϕ;βγγ ϕ;γγγ

��������
; ð10Þ

where j . .. j denotes the determinant of the matrix. Notice
that the curvature diverges for g ¼ 0, namely on a phase
boundary, unless the determinant in the numerator of
Eq. (10) vanishes on the same boundary.
It has been postulated that jRj ∝ ξ3 in proximity of a

second-order phase transition, where ξ is the correlation
length of the fluctuations of the order parameter [3]. This
relation is natural in the hyperscaling hypothesis because R
brings the physical dimension of a volume; being based on
scaling, this relation should be valid only in proximity of a
second-order phase transition. It is remarkable that many
independent theoretical calculations based on different
models confirm this hypothesis [3,15,37,58]; therefore,
the study of R in the ðβ; γÞ twofold not only brings
information about the phase transitions, but it allows for
an estimate of the correlation volume based only on the
thermodynamic potential rather than computing correla-
tors: this is one of the merits of the thermodynamic
geometry.
It has also been suggested that the sign of R conveys

details about the nature of the interaction, attractive or
repulsive, at a mesoscopic level in proximity of the phase
transition. Within our sign convention, R < 0 for an
attractive interaction while R > 0 corresponds to a repul-
sive one. These interactions include not only real inter-
actions [20,28,59–61], but also the statistical attraction and
repulsion that ideal quantum gases feel in phase space
[32,62–65], so an ideal fermion gas has R > 0 due to the
statistical repulsion of the Fermi-Dirac statistics while an
ideal boson gas has R < 0 due to the statistical attraction of
bosons. The thermodynamic curvature is known to be
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identically zero only for the ideal classical gas. Other fields
of application concern Lennard-Jones fluids [60,61], ferro-
magnetic systems [66], gravitational systems and black
holes [67–83], strong interacting matter [34,42–44] and
others [66–68,84,85].

III. THE QUARK-MESON MODEL

In this section, we review the quark-meson (QM) model
in which fermions (in our context, quarks) interact with
mesons (that are the σ meson and the pions in our work)
and is based on the Lagrangian density

L ¼ Lm þ Lf; ð11Þ

with the mesonic and fermionic parts, respectively,
given by

Lm ¼ Tr½ð∂νΦÞ†ð∂νΦÞ� −m2TrðΦ†ΦÞ
− λ½TrðΦ†ΦÞ�2 þ hσ ð12Þ

and

Lf ¼ Ψ̄iγμ∂μΨ − 2gΨ̄ΦΨ: ð13Þ

Here Φ is the matrix field

Φ≡ 1

2
στ0 þ i

2
π⃗ · τ⃗; ð14Þ

with τ0 the unity matrix and τ⃗ ¼ ðτ1; τ2; τ3Þ the Pauli
matrix, π⃗ ¼ ðπ1; π2; π3Þ is an isotriplet of pion fields, σ
is the isosinglet field and Ψ is a massless isodoublet
quark field.
A common approximation, done in particular in the

context of effective field theories for the quark chiral
condensate of QCD, is that of mean field in which the
meson fields are replaced by their uniform, time-indepen-
dent saddle point values σ ¼ fπ and π⃗ ¼ 0. In this study we
want to go beyond the mean field approximation, including
the quantum fluctuations of the meson fields and studying
their effect on the thermodynamic geometry (the functional
integral over the fermion fields can be done exactly on top
of the mean field solution). Within a Gaussian approxi-
mation, the partition function of the model is given by

Z ¼ ZfZm; ð15Þ

where the subscripts f and m stand for fermions and
mesons, respectively; in this model, both quarks and meson
fluctuations propagate on the background of the condensate
of the σ field, the value of which is determined consistently
by solving the gap equations (see below). The thermody-
namic grand potential is

Ω ¼ Ωf þ Ωm: ð16Þ

Before giving the expression for Ω, we emphasize that both
Ωf and Ωm contain ultraviolet divergent contributions
arising from momentum integration of the single-particle
energies, that correspond to the usual zero point energy of
ideal gases of fermions and bosons; these contributions
cannot be simply subtracted since they contain a depend-
ence from the condensate that in principle affects the
response of the condensate itself to temperature and
chemical potential.
We now give the expression of Ω. Starting with Ωf, the

standard renormalization procedure gives

Ωf ¼ g4NcNf

8π2
σ4 ln

Qf

gσ

− 2NcNfT
Z

d3k
ð2πÞ3 ln ð1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffiffi
k2þg2σ2

p
−μÞÞ

− 2NcNfT
Z

d3k
ð2πÞ3 ln ð1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffiffi
k2þg2σ2

p
þμÞÞ: ð17Þ

In the second and third lines of the right-hand side of
Eq. (17) we recognize the standard relativistic free gas
thermodynamic potential at finite temperature and chemical
potential; on the first line of the right hand side of the same
equation we show the zero temperature, zero chemical
potential contribution that is potentially divergent and has
been renormalized at the scale Qf.
The mesonic contribution Ωm can be obtained via the

standard the CJT effective action formalism in the Hartree
approximation in which momentum-dependent self-energy
corrections are neglected. Differently from [49,50] we do
not include the vacuum term of the meson potential, so the
pressure of the pions and σ meson is zero at T ¼ μ ¼ 0: the
condensation energy takes contributions only from the
classical potential plus the fermion loop, while the mesons
appear as excitation of the ground state at finite temper-
ature. This choice is done also for the sake of simplicity
because including a further zero temperature, zero chemical
potential renormalized term of the mesons would introduce
an additional renormalization scale that would lead to
unexpected behaviors of the thermodynamic quantities
[50]. Within these approximations we have [49,50]

Ωm ¼ Ω0
m þ 3Bπ þ Bσ −

3λ

4
ð2AπAσ þ 5A2

π þ A2
σÞ; ð18Þ

where

Ω0
m ¼ m2

2
σ2 þ λσ4

4
− hσ ð19Þ

is the mesonic part without fluctuations, and for l ¼ σ, π
we have put
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Al ¼ −
Z

d3k
ð2πÞ3

1

El

1

1 − eβEl
; ð20Þ

with El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

l

q
, and

Bl ¼ 2T
Z

d3k
ð2πÞ3 ln ð1 − e−βElÞ: ð21Þ

Within this model, for given temperature and chemical
potential the unknowns are the value of the condensate,
namely the expectation value of σ, as well as the in-medium
meson masses Mσ and Mπ: these are obtained by solving
the gap equations, that are

h ¼ ½m2 þ λσ2 þ 3λðAσ þ AπÞ�σ

−
g4NcNfσ

3

8π2

�
1þ 4 ln

gσ
Qf

�

−
2NcNf

β

∂ΩfT

∂Σ
����
Π¼0
Σ¼σ

; ð22Þ

M2
σ ¼ m2 þ 3λðAπ þ Aσ þ σ2Þ

−
g4NcNfσ

2

8π2

�
7þ 12 ln

gσ
Qf

�

−
2NcNf

β

∂2ΩfT

∂Σ2

����
Π¼0
Σ¼σ

; ð23Þ

M2
π ¼ m2 þ λð5Aπ þ Aσ þ σ2Þ

−
g4NcNfσ

2

8π2

�
1þ 4 ln

gσ
Qf

�

−
2NcNf

β

∂2ΩfT

∂Π2

����
Π¼0
Σ¼σ

; ð24Þ

with

ΩfT ¼
Z

d3k
ð2πÞ3 ln ð1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þg2ðΣ2þΠ2Þ

p
−μÞÞ

þ
Z

d3k
ð2πÞ3 ln ð1þ e−βð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þg2ðΣ2þΠ2Þ

p
þμÞÞ: ð25Þ

The gap equations depend on the renormalization scaleQf,
as well as on three parameters,m, λ and h. At the tree-level,
namely when no meson and quark loops are considered, the
parameters m, λ and h are fixed to reproduce the physical
values mσ and mπ as well as σ ¼ fπ at T ¼ 0 and μ ¼ 0,
where we use small letters to denote physical masses at
T ¼ μ ¼ 0; without the fermion and meson loops these
give

h≡ htree ¼ m2
πfπ; ð26Þ

m2 ≡m2
tree ¼ −

m2
σ − 3m2

π

2
−
f2πg4NcNf

4π2
; ð27Þ

λ≡ λtree ¼
m2

σ −m2
π

2f2π
; ð28Þ

where the subscript tree reminds that these are quantities
computed using the tree-level potential. In order to fix the
renormalization scale we have to adopt one renormalization
condition, that is,

λ ¼ λtree; ð29Þ

where λ results from the gap equations at T ¼ μ ¼ 0,
namely

λ ¼ m2
σ −m2

π

2f2π
þ g4NcNf

8π2

�
3þ 4 ln

gfπ
Qf

�
: ð30Þ

m2 and h from the gap equations at T ¼ μ ¼ 0 are always
equal to the tree value:

m2 ¼ m2
tree; h ¼ htree: ð31Þ

Finally, from Eqs. (29) and (30) we have

Qf ¼ e3=4fπg: ð32Þ

IV. RESULTS

In this section we report and discuss our results. Firstly,
we show briefly the effect of fluctuations on the conden-
sate; then we focus on the thermodynamic geometry. Our
purpose is to show the existence of a pseudocritical region
in which the condensate substantially decreases with
temperature and then study the elements of the thermody-
namic metric as well as the scalar curvature around this
region. For the parameters we take fπ ¼ 93 MeV,
mσ ¼ 700 MeV, mπ ¼ 138 MeV and finally g ¼ 3.6: the
latter is chosen so that the constituent quark mass at T ¼
μ ¼ 0 is M ¼ 335 MeV. The resulting value of the
renormalization scale is Qf ¼ 709 MeV.

A. The condensate and the meson masses

In Fig. 1 we plot the condensate σ as a function of T for
several values of the chemical potential: μ ¼ 0 MeV
(continuous line), μ ¼ 100 MeV (dashed line), μ ¼
200 MeV (dot-dashed line) and μ ¼ 300 MeV (dotted
line). The upper panel corresponds to the case in which
meson fluctuations are neglected [in this case the thermo-
dynamic potential is Ω0 ¼ Ωf þΩ0

m, with Ωf and Ω0
m in

Eqs. (17) and (19), respectively], the lower panel to the case
in which the fluctuations are included. In both cases, a
range of temperature where σ decreases exists, that signals
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the partial restoration of chiral symmetry (chiral symmetry
cannot be restored exactly due to the soft explicit breaking
in the action).
In Fig. 2 we plot the in-medium masses of the σ meson

and pions as a function of temperature, for several values of
the quark chemical potential. These have been computed
for the model with fluctuations included. We notice that for
each of the values of μ considered, a range of temperature
exists in which the σ-meson mass decreases while the pion
mass increases, and the two match at high temperature
signaling the approximate restoration of the Oð4Þ sym-
metry, as well as the decoupling of these particles from the
low-energy spectrum of the model. Moreover, the lowering
of Mσ to a minimum is a sign that the fluctuations of the
scalar field are enhanced near the chiral crossover.
In Fig. 3 we plot the pressure versus the temperature for

the models with and without fluctuations, for μ ¼ 0 (black

lines) and μ ¼ 300 MeV (red lines). At fixed μ and T the
fluctuations increase the pressure as expected; however, we
notice that at large values of μ the contribution of the
fluctuations becomes less important in comparison with the
mean field pressure.

B. The thermodynamic curvature

In Fig. 4 we plot the scalar curvature R versus temper-
ature for three values of the quark chemical potential: the
upper panel corresponds to the case without fluctuations,
the lower panel to that with fluctuations. We notice that in
both cases, R develops a groove around the chiral cross-
over, in agreement with [43,44]. This is expected thanks to
the relation between R and the correlation volume around a
phase transition: as a matter of fact, at a second-order
phase transition R diverges due to the divergence of the

FIG. 1. Condensate σ as a function of T and for different values
of the chemical potential. The upper panel corresponds to the case
in which meson fluctuations are neglected, the lower panel to the
case in which meson fluctuations are included.

FIG. 2. In-medium masses Mσ (black lines) and Mπ (orange
lines) as a function of T, for several values of the chemical
potential: μ ¼ 0 MeV (continuous line), μ ¼ 100 MeV (dashed
line), μ ¼ 200 MeV (dot-dashed line) and μ ¼ 300 MeV (dotted
line). Case with mesonic fluctuations.

FIG. 3. Pressure versus temperature for the models with (solid
lines) and without (dashed lines) meson fluctuations, for μ ¼ 0
(black lines) and μ ¼ 300 MeV (red lines).

CASTORINA, LANTERI, and RUGGIERI PHYS. REV. D 102, 116022 (2020)

116022-6



correlation volume, while at a crossover the correlation
length increases but remains finite and susceptibilities are
enhanced so jRj is expected to grow up in the pseudocritical
region. Therefore, the thermodynamic curvature brings
information about the correlation volume also near a
crossover.
In addition to this, we find that at small μ the values of

jRj are more pronounced when the fluctuations are
included. This is an interesting, new observation about
the thermodynamic geometry and is related to the fact that
fluctuations make the chiral broken phase more unstable.
This can be seen from the determinant of the thermody-
namic metric g; see Fig. 5: in the figure we define TTG as
the temperature at which R develops its local minimum,
which is in agreement with other definitions—see also
Fig. 6. At small μ in the critical region the determinant with

fluctuations is smaller than the one without fluctuations
(g ¼ 0 corresponds to thermodynamic instability and
infinite curvature), while increasing μ the determinant in
the critical region is not very affected by the presence of the
fluctuations. This is in line with the results of the pressure
in Fig. 3 in which we show that fluctuations do not give a
substantial contribution in the critical region at large μ.
When μ is large enough, R is enhanced in the critical region
both with and without fluctuations (see also Fig. 7 below).
This is most likely related to the fact that the critical
end point with the second-order phase transition and the

FIG. 4. Scalar curvature R as a function of T for μ ¼ 100 MeV
(continuous line), μ ¼ 200 MeV (dashed line) and μ ¼ 300 MeV
(dotted line). Upper and lower panels correspond to the cases
without and with mesonic fluctuations, respectively.

FIG. 5. Determinant of the thermodynamic metric versus μ
computed at the chiral crossover temperature obtained as TTGðμÞ:
the solid line corresponds to the case with fluctuations while the
dashed line to the mean field thermodynamics.

FIG. 6. Crossover temperature versus μ obtained with four
definitions: from the maximum ofMσ;β (orange dotted line), from
the maximum of σ;β (orange dot-dashed line), from the minimum
of Mσ (orange dashed line) and from the local minimum of R
(black line). Case with mesonic fluctuations.

FLUCTUATIONS AND THERMODYNAMIC GEOMETRY OF THE … PHYS. REV. D 102, 116022 (2020)

116022-7



divergent correlation length already appears within the
mean field approximation, so the main role of the fluctua-
tions is to change the critical exponents but not to change
the phase structure.
The scalar curvature changes sign around the crossover,

both with and without fluctuations: this is in agreement
with [43,44] and can be interpreted as a rearrangement of
the collective interactions in the hot medium around the
chiral crossover, from statistically repulsive (due to the
fermionic nature of the bulk) to attractive. This piece of
information was not accessible to previous model calcu-
lations on the QCD phase diagram and represents a merit of
the thermodynamic geometry.

C. The critical temperature and the end point

The crossover nature of the transition to the chiral
symmetric phase at high temperature leaves an ambiguity
on the definition of a critical temperature: in fact, it is
possible to adopt several definitions to identify the critical
region, in which the order parameter decreases substan-
tially. We compare the predictions of the model using four
different definitions. Firstly, we define the pseudocritical
temperature TcðμÞ as the temperature corresponding to the
maximum of ∂σ=∂β (which coincides with the maximum
of ∂σ=∂γ). A second definition is the temperature at which
∂Mσ=∂β is maximum (the same of ∂Mσ=∂γ). Thirdly, we
can define Tc as the one at whichMσ is minimum (since at
this temperature the correlation length of the fluctuations of
the order parameter is the largest). Finally, the peculiar
structure of R ¼ RðTÞ at a given μ allows for the fourth
definition, namely the temperature at which R presents its
local minimum: we denote this by TTG.
In Fig. 6 we show Tc versus μ obtained with the four

definitions. We notice that the different definitions give

consistent results with each other. This supports the idea
that we can use the local minima of R to identify the chiral
crossover, which in turn suggests that R is sensitive to the
crossover from the broken to the unbroken phase even
though this is not a real second-order phase transition.
In the phase diagram shown in Fig. 6 the crossover

line terminates at a critical end point, CEP, located at
ðμCEP; TCEPÞ ¼ ð350 MeV; 30 MeVÞ. Approaching this
point along the critical line, the crossover turns into a
second-order phase transition with divergent susceptibil-
ities, and then the transition becomes first order with jumps
of the condensate across the transition line.
In Fig. 7 we plot R versus temperature for values of μ

close to the critical end point (the case without fluctuations
is not shown because it is very similar). As expected,
approaching the critical end point the magnitude of jRj
becomes larger, as it should be since the crossover becomes
a second-order phase transition there and R should diverge
at the CEP.

D. Thermodynamic curvature and correlation volume

It is interesting to compare the thermodynamic curvature
around the critical line, with the correlation volume ξ3,
where ξ is the correlation length. This comparison is
interesting since according to hyperscaling arguments,
around a second-order phase transition jRj ¼ Kξ3 with
K of the order of unity; restoration of chiral symmetry is a
crossover rather than a real phase transition, at least far
from the critical end point—therefore, we can check how
the hyperscaling relation works around such a smooth
crossover and how it changes approaching the CEP.
In Fig. 8 we compare the thermodynamic curvature,

computed along the critical line, with the correlation

FIG. 7. Thermodynamic curvature versus temperature for
several values of μ close to the critical end point. Case with
mesonic fluctuations.

FIG. 8. Thermodynamic curvature versus μ at the critical line,
compared with the inverse of the correlation volume 1=M3

σ . Case
with mesonic fluctuations.
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volume, the latter being estimated by taking ξ ¼ 1=Mσ as a
measure of the correlation length of the fluctuations of the
order parameter. We find that both the correlation volume
and the thermodynamic curvature behave qualitatively in
the sameway near the CEP; moreover, the numerical values
of the two quantities is comparable in the critical region.
We conclude that our study supports the idea that jRj ¼
Kξ3 in proximity of the second-order phase transition.
In the small μ regime the relation between the curvature

and the correlation volume does not need to be satisfied
since in this regime the critical line is a smooth crossover. In
fact, we find that for small values of μ the agreement
between jRj and ξ3 is not as striking as the one in proximity
of the CEP; nevertheless, we still find that the two
quantities behave qualitatively in the same way; namely
they stay approximately constant for a broad range of μ and
then grow up as the CEP is reached.

V. CONCLUSIONS

We have studied the thermodynamic geometry around
the chiral phase transition at finite temperature and chemi-
cal potential. The phase transition has been studied within
the QM model augmented with meson fluctuations; within
this model the phase transition at large temperature and
small chemical potential is actually a smooth crossover,
which turns to a second-order phase transition at the critical
end point and then becomes a first-order phase transition at
large values of the chemical potential.
The main goals have been to analyze the relation

between the thermodynamic curvature R and the correla-
tion volume for smooth crossovers and how this changes
approaching a second-order phase transition at the critical
end point. Moreover, we have studied the effect of the
fluctuations, pions and σ meson, on the top of the mean
field thermodynamics and how these affect the thermody-
namic curvature around the crossover. Of particular interest
is the σ meson since it corresponds to the amplitude
fluctuation mode and its mass can be related directly to
the correlation length of the fluctuations of the order
parameter. Fluctuations have been introduced within the
Cornwall-Jackiw-Toumbulis effective potential formalism
[51] in the Hartree approximation; we have neglected the
zero point energy contributions of the meson fields, both
for the sake of simplicity and to avoid the unexpected
behavior of thermodynamic quantities when these are
included and two renormalization scales are needed [50].
Within this approach, the Schwinger-Dyson equations for
the meson propagators become simple equations for the
meson masses that can be solved, consistently with the gap
equations, to get the condensate and the masses as a
function of temperature and chemical potential. This study
is a natural continuation of previous works [43,44] in which

the same problem has been analyzed within the mean field
approximation.
We have found that in the region of small values of μ, the

fluctuations enhance the magnitude of the curvature. We
understand this in terms of the stability of the phase with
broken chiral symmetry, that can be analyzed by the
determinant of the metric g: in fact, the condition of
stability reads g > 0 while g ¼ 0 corresponds to a phase
boundary where a phase transition happens and R diverges,
so the smaller the g, the closer the system is at a phase
transition and the larger is R. We have found that the
determinant with fluctuations and around the crossover is
smaller than g without fluctuations in the same range of T
and μ, meaning that fluctuations make the chiral broken
phase less stable. This result is expected, since fluctuations
of the order parameter represented by the σ meson tend to
wash out the σ condensate.
On the other hand, at larger values of μ and in proximity of

the critical end point, the fluctuations do not bring significant
changes to themean field solution around the critical line and
R is less sensitive to the fluctuations. This is also easy to
understand, because the mean field thermodynamics already
predicts the existence of the critical end pointwith a divergent
curvature [43,44], so the role of the fluctuations is just that to
change the mean field critical exponents.
We have found that R changes sign in the pseudocritical

region: this suggests that around the chiral crossover, the
interaction changes at mesoscopic level from being sta-
tistically repulsive to attractive. This change in the nature of
the interaction is not accessible to methods based on
standard thermodynamics, and this prediction represents
one of the merits of the thermodynamic geometry.
We have verified that in the critical region around the

critical end point jRj scales with the correlation volume,
jRj ¼ Kξ3 with K ¼ Oð1Þ, in agreement with hyperscaling
arguments: thus jRj brings information on the correlation
volume. In proximity of the crossover at small μ the
correspondence between jRj and the correlation volume
is not as good as the one we have found at large μ, which is
not surprising because at small μ the chiral crossover is
quite smooth; nevertheless, we have found that R develops
a characteristic groove structure with a pronounced local
minimum, suggesting that it is capable to capture the
pseudocritical behavior of the condensate.
This study presents the natural continuation of the work

started in [43,44] and offers possibilities for further inves-
tigations. From the field theory point of view, two natural
questions are whether it is worth to relax the Hartree
approximation to get a more realistic description of the
quantum fluctuations, and whether the renormalization of
the zero point energy of mesons has to be done on the same
footing of that of quarks. Investigating these topics might
bring to a more confident application of the theory of
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quantum fluctuations to the thermodynamic geometry.
Moreover, fluctuations can be treated also with the func-
tional renormalization group (FRG) approach [86,87]
under suitable assumptions on the full effective potential:
it is of a certain interest to study the effects of the
fluctuations on the thermodynamic geometry using FRG.
We plan to report on these topics in the near future.
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