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We generalize known results for heavy quarkonium in a thermal bath to the case of a finite baryonic
density, and provide a number of formulas for the energy shift and decay width that hold at weak coupling
for sufficiently large temperature and/or chemical potential. We find that a nonvanishing decay width
requires a temperature larger than the typical binding energy, no matter how large the chemical potential is.
This implies that at zero temperature the dissociation mechanism of heavy quarkonium is due entirely to
screening, unlike in the finite temperature case. We use several effective theories in order to sort out the
contributions of the relevant energy and momentum scales. In particular, we consider contributions of the
so-called quasistatic magnetic modes. The generalization to the case of a finite isospin/strangeness
chemical potential is trivial. We discuss possible applications to the SIS and NICA conditions, and compare
with available lattice results.
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I. INTRODUCTION

High energy heavy-ion collision experiments (HIC) have
shown the existence of collective behavior in the strong
interactions, namely a new state of matter that is usually
refer to as quark-gluon plasma (QGP) (see [1] for a review).
In order to study the properties of the QGP, the so called
hard probes have been extremely useful. Among them, the
suppression of heavy quarkonium states in the products of
the HIC were proposed as a signal of QGP formation long
ago [2] (see [3–5] for reviews). Nowadays the sequential
suppression of ϒð1; 2; 3Þ has been clearly observed [6,7].
However, the QCD dynamics which is actually responsible
for this suppression is not so easy to identify. The original
proposal of Matsui and Satz [2] that screening would be
the mechanism behind sequential melting of quarkonium
bound states is not entirely correct. In [8], it was shown that
for a weakly interacting QGP the same dynamics that
produces screening, also produces an imaginary part to the
potential, as a consequence of the so called Landau
damping. In [9], it was emphasized that this imaginary
part is parametrically larger than the real part and hence
Landau damping rather than screening should be regarded
as the key mechanism for heavy quarkonium dissociation.
Imaginary potentials were also obtained in strongly
coupled QGP settings [10–12] and included in models

of in-medium heavy quarkonium [13–16]. Later on, within
the weakly coupled QGP, detailed analysis were made
taking into account the interplay between temperature,
screening mass and the different scales in the quarkonium
bound state dynamics, the main lesson being that finite
temperature effects cannot always be incorporated in a
phenomenological potential [9,17–19]. The effects of a
relative velocity of the heavy quarkonium with respect to
the medium have also been analysed [20,21] (see also [22]).
Recently, part of these findings have been embedded in a
more realistic framework of an expanding QGP, no matter
whether this is weakly or strongly coupled [23–30].
High energy HIC experiments are essentially gluon

colliders, and the resulting medium has a negligible
baryonic chemical potential with respect to the temperature
scales attained. In the near future, however, there are
planned HIC experiments at lower energies that aim at
attaining large values of the chemical potential at SIS
(CBM) [31] and Nica (MPD) [32] (see [33] for a recent
overview). These colliders will have energy enough to
produce charmonium bound states [34]. It is then worth
exploring in a solid theoretical framework, namely using
QCD at weak coupling and the well-known effective field
theories for heavy quarkonium, the fate of these states at
nonzero baryon chemical potential. This is so even if the
charm quark mass may not be high enough to apply weak
coupling techniques beyond the ground state, or if the
values of chemical potential actually attained in the experi-
ments may not be large enough to justify a weak coupling
analysis. Indeed, the weak coupling analysis may unravel
qualitative new features that may then be incorporated in
more realistic models or settings. This was the case, for
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instance, when an imaginary part of the potential at finite
temperature was uncovered in [8].
We shall then restrict ourselves to the study of a heavy

quarkonium propagating in a QGP in thermodynamical
equilibrium such that the temperatures T and baryon
chemical potentials μ fulfill m ≫ T ≫ gT ≫ ΛQCD and
m ≫ μ ≫ gμ ≫ ΛQCD, where g is the QCD coupling
constant and m is the heavy quark mass. We shall also
assume that the heavy quarkonium is weakly coupled,
namely m ≫ mαs ≫ mαs

2 ≳ ΛQCD, where αs ¼ g2=4π,
and is at rest in the QGP rest frame. Recall that p∼mαs
is the typical heavy quark momentum in the bound state
(and r ∼ 1=mαs its typical radius) and E ∼mαs

2 the typical
size of the binding energy. We aim at the calculation of the
leading order effects both in μ and in T on the mass
(binding energy) and decay width. These calculations are
non-trivial because on the one hand at energy scales of the
order of or below the typical quarkonium binding energy
Coulomb resummations must be carried out, and on the
other hand at momentum scales of the order of or below the
Debye mass HTL resummations must be carried out. In that
respect, the use of suitable effective field theories [35–37] is
very convenient.
We shall distribute the paper as follows. In Sec. II we

set the basic formalism, in Sec. III and IV we address
the two most significant cases, p ≫ maxðT; μÞ ≫ E and

maxðT; μÞ ≫ p ≫ E, respectively. Each section contains
subsections where the cases T ≳ μ and μ ≫ T are sepa-
rately addressed. Section V discusses our results as well as
other cases that are not addressed in full detail. The more
technical developments are relegated to the appendixes.

II. BASIC FORMALISM

Throughout this work we will use the real-time formal-
ism for thermal field theory (for reviews see e.g., [38–40]),
including both the effects of temperature and chemical
potential, following the lines of [17,19]. We shall consider
the heavy quarks and heavy quarkonium as probe particles,
and hence absent in the medium. This means in practice
that the real-time nonrelativistic propagator reduces for
them to the 11 components only, and those take the form
of the usual nonrelativistic retarded propagators at zero
temperature and chemical potential.
In the real-time formalism, the longitudinal and trans-

verse gluon propagators are four-by-four matrices diagonal
in color space which at tree level in the Coulomb gauge
read (color indices omitted), respectively [41]

Dð0Þ
00 ðkÞ ¼

� i
k2 0

0 − i
k2

�
; ð1Þ

Dð0Þ
ij ðKÞ ¼

�
δij −

kikj

k2

��� i
K2þiϵ θð−k0Þ2πδðK2Þ

θðk0Þ2πδðK2Þ − i
K2−iϵ

�
þ 2πδðK2ÞnBðjk0jÞ

�
1 1

1 1

��
; ð2Þ

where K ¼ ðk0;kÞ and k ¼ jkj. Note that the longitudinal part of the gluon propagator in Coulomb gauge does not depend
on the temperature. We can write them in terms of advanced/retarded propagators,

½Dμν�11 ¼
DR

μνðk0; kÞ þDA
μνðk0; kÞ

2
þ
�
1

2
þ nBðk0Þ

�
ðDR

μνðk0; kÞ −DA
μνðk0; kÞÞ; ð3Þ

nB being the (temperature-dependent) bosonic occupation number. This formula holds at any order. At tree level,

DR;A
ij ðk0;kÞ ¼ iðδij − kikj=k2Þ

K2 � ik0ϵ
; DR;A

00 ðk0;kÞ ¼ i
k2

; DR;A
0i ¼ DR;A

i0 ¼ 0 ð4Þ

where “R” stands for retarded and “A” for advanced. Note that the property

DR;A
μν ð−k0;kÞ ¼ DA;R

μν ðk0;kÞ; ½Dμν�11ð−k0;kÞ ¼ ½Dμν�11ðk0;kÞ ð5Þ

is inherited by the full propagators, and will be often used in the following.
When integrating out the hard scale, namely for K ≪ maxðT; μÞ, the gauge sector reduces to that of the well-established

hard thermal loop (HTL) effective theory, whose longitudinal and transverse propagators read

DR;A
00 ðk0; kÞ ¼

i

k2 þm2
D

�
1 − k0

2k log
k0þk�iη
k0−k�iη

	 and ð6Þ
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DR;A
ij ðk0; kÞ ¼

�
δij −

kikj
k2

�
ΔR;Aðk0; kÞ; ð7Þ

respectively, where

ΔR;Aðk0; kÞ ¼
i

k20 − k2 − m2
D
2
ðk20k2 − ðk20 − k2Þ k0

2k3 logðk0þk�iη
k0−k�iηÞÞ � isgnðk0Þη

: ð8Þ

For a QCD medium at finite temperature and density
with Nf light quark flavors the expression for the Debye
mass mD reads [42]

m2
D ¼ g2

�
TFNf

�
T2

3
þ μ2

π2

�
þ Nc

T2

3

�
≡m2

DðFÞ þm2
DðBÞ;

ð9Þ

where Nc is the number of colors, TF ¼ 1=2 and we
have separated the bosonic (m2

DðBÞ ∼ Nc) and fermionic

(m2
DðFÞ ∼ Nf) contribution to it for later use.
At energy and momentum scales smaller than the Debye

mass mD, the longitudinal gluons are screened and can be
integrated out. However, a particular class of transverse
gluons, the so called quasistatic magnetic modes, survive
at those lower scales. They fulfill mD ≫ k ≫ k0. Hence, in
this case the transverse propagator can be approximated by

ΔR;Aðk0; kÞ ≃ ΔðMÞ
R;Aðk0; kÞ ¼

i

−k2 � iπmDk0
4k

: ð10Þ

Having introduced the formalism we will use throughout
the paper, we now move on to investigate the effects of a
dense medium on quarkonium states.

III. THE CASE m ≫ p ≫ maxðT; μÞ ≫ E

We start by considering, and extending to finite
chemical potential, the case discussed in [18,19,24],
namely m ≫ p ≫ maxðT; μÞ ≫ E. In this case, the T
and μ will affect the binding energy and decay width of
the quarkonium, but not its size. The heavy quarkonium
essentially remains a Coulombic bound state, and the
medium effects are perturbations to it. Since scales much
larger than maxðT; μÞ lead to exponentially suppressed
Boltzmann factors, we can start our considerations directly
from the (vacuum) pNRQCD Lagrangian [35,43], namely

LpNRQCD ¼ −
1

4
Fa
μνFaμν þ

XNf

i¼1

q̄ii=Dqi þ
Z

d3rTrfS†½i∂0 − hs�Sþ O†½iD0 − ho�Og

þ VATrfO†r · gESþ S†r · gEOg þ VB

2
TrfO†r · gEOþ O†Or · gEg þ…; ð11Þ

with Ei ¼ Fi0 chromoelectric field. The singlet/octet
Hamiltonians are

hs=o ¼
p2

m
þ P2

4m
þ Vð0Þ

s=o þ
Vð1Þ
s=o

m
þ Vð2Þ

s=o

m2
þ…; ð12Þ

where P and p are the center-of-mass and relative
momentum respectively, and the various VðnÞ are
potentials known up to a certain order. In our calculations,
P, VB and the subleading potentials (n > 0) can be

neglected and we may approximate Vð0Þ
s ≃ −CFαs=r,

Vð0Þ
o ≃ ðNc=2 − CFÞαs=r, and VA ≃ 1.
Now we may integrate out the largest scale, T or μ, and

get to another EFTwhich is valid at the lower scales E,mD.
The outcome will be a new contribution to the singlet
potential: Vs → Vs þ δV, with

δV ¼ −ig2CF
ri

D − 1
ν4−D

Z
dDk
ð2πÞD

i
E − ho − k0 þ iη

× ðk20½Diiðk0; kÞ�11 þ k2½D00ðk0; kÞ�11Þri; ð13Þ

where Dμνðk0; kÞ stands for the full gluon propagator in the
Coulomb gauge and we are using dimensional regulariza-
tion (DR) with D ¼ dþ 1 ¼ 4þ 2ϵ, ν the DR subtraction
scale, and

Z
dDk ¼

Z
∞

−∞
dk0

Z
dΩd

Z
∞

0

dkkd−1; ð14Þ

Ωd denoting the solid angle in d spatial dimensions.
As mentioned in the previous section, quarkonium

and heavy quarks are considered in this work as test
particles outside of the medium. As a consequence, in
the real-time formalism only the 11 components of the
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gluon propagators, ½Dμν�11, will couple to them. In the
following, we will omit for brevity the 11 indices and only
label explicitly the retarded and advanced components
when they appear.

A. Integrating out the hard scale

Integrating out the hard scale (T or μ) will give us a new
EFT which we will refer to as pNRQCDHTL, following
[19]. In addition, if the hard scale is much larger than
E ∼ ho, we can expand the octet propagator,1

i
E − ho − k0 þ iη

¼ i
−k0 þ iη

− i
E − ho

ð−k0 þ iηÞ2

þ i
ðE − hoÞ2
ð−k0 þ iηÞ3 þ…: ð15Þ

From the general expression Eq. (13), we will consider
two contributions:

1. One-loop hard contribution (Fig. 1)

In this case, Dμνðk0; kÞ ¼ Dð0Þ
μν ðk0; kÞ in Eq. (1) and

Eq. (2). Since the tree level longitudinal propagator
does not depend on the distribution function, the last term

in Eq. (13) can be dropped. Moreover, since Dð0Þ
μν ðk0; kÞ ¼

Dð0Þ
μν ð−k0; kÞ, the first term in the expansion Eq. (15) leads

to a vanishing contribution. The contribution from the
second term has been computed in [17,19]. It does not
contain any fermionic occupation number—the only
medium dependence enters in the nB from the 11 gluon
propagator prescription. So there will not be any μ
dependence, and we can just take those results. One obtains

δV ¼ π

9
NcCFαs

2T2rþ 2π

3m
CFαsT2 þO

�
αsE2

m

�
: ð16Þ

Since the contribution from the first term of Eq. (15)
vanishes for symmetry reasons and Eq. (16) comes from the
second-order term in the expansion, there could be higher-
loop diagrams that give a contribution comparable to it.
We analyze them in the next section.

2. The two-loop hard contribution (Fig. 2)

At two loops, the longitudinal gluons may now contrib-
ute because the one-loop self-energy provides them with a
T and μ dependence. The transverse gluons give subleading
contributions because the would-be leading term in
Eq. (15) vanishes for the same symmetry reasons as in
the previous section. Hence, Eq. (13) reduces to,

δV ¼−ig2CF
ri

D− 1
ν4−D

Z
dDk
ð2πÞD

i
−k0þ iη

k2½D00ðk0; kÞ�ri;

ð17Þ

whereD00ðk0; kÞmust be calculated at one loop. Moreover,
we can write

i
−k0 � iη

¼ −iPð1=k0Þ � πδð−k0Þ; ð18Þ

where P denotes the principal value integral. Using again
the symmetry properties of D, Eq. (5), we see that only the
delta function piece survives. Hence, as long as we work
at the lowest order of the expansion Eq. (15), the symmetry
of the problem forces k0 → 0 and we only need to
calculate Π00ðk0 → 0; kÞ.
For the one-loop longitudinal gluon self-energyΠ00ðk0; kÞ

we have to sum the gluonic and fermionic loop contributions
shown in Fig. 3. With our definitions we can write

FIG. 2. Two-loop contribution to the quarkonium self-energy.
The solid thick lines denote the quarkonium singlet propagator
and the double line the quarkonium octet propagator. Dashed
lines denote the longitudinal gluon propagator, crossed dots are
chromoelectric dipole vertices and the blob denotes the longi-
tudinal gluon self-energy.

FIG. 3. Diagrams contributing to the longitudinal component of
the gluon polarization tensor at one-loop order (taken from [17]).
The solid line stands for the light (massless) quark propagator, the
dashed line for the longitudinal gluon propagator and the curly
line for the transverse gluon propagator. Ghosts do not contribute
to the thermal part of the gluon polarization tensor [41].

FIG. 1. One-loop contribution to the quarkonium self-energy.
The solid thick lines denote the quarkonium singlet propagator
and the double line the quarkonium octet propagator. Curly lines
denote transverse gluon propagators and crossed dots are chro-
moelectric dipole vertices.

1In principle there can be a region k0 ∼ E, k ∼maxðT; μÞ, that
should also be integrated out, for which this expansion does not
hold. In the case T ∼ μ, it leads to subleading contributions.
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Π00ðk0;kÞ ¼ Π00;Fðk0;kÞ þ Π00;Gðk0;kÞ; ð19Þ

where “F” labels the contribution coming from the loops of
Nf massless quarks (first diagram of Fig. 3) and “G” labels

the contribution from the second, third and fourth diagram
of Fig. 3.
The gluon contribution to the self-energy is unchanged

by the presence of a chemical potential and can be taken
directly from [17]. Our focus will then be on the fermionic
contribution, which at μ ¼ 0 and finite T is given by [17],

Π00;Fðk0;kÞ ¼
g2TFNf

2π2

Z þ∞

−∞
dq0jq0jnFðjq0jÞ ×

�
2 −

�
4q20 þ k20 − k2 − 4q0k0

4jq0jk
�
log

�
k20 − k2 − 2q0k0 þ 2jq0jk
k20 − k2 − 2q0k0 − 2jq0jk

�

þ
�
4q20 þ k20 − k2 þ 4q0k0

4jq0jk
�
log

�
k20 − k2 þ 2q0k0 − 2jq0jk
k20 − k2 þ 2q0k0 þ 2jq0jk

��
: ð20Þ

Note thatΠ00;Fð−k0;kÞ ¼ Π00;Fðk0;kÞ. We need to generalize this fermionic contribution to finite μ. Recall that in our real-
time Feynman rules (see eg. [44]) the occupation number enters as a sgnðq0ÞNB=Fðq0Þ, with NB=Fðq0Þ ¼ 1� 2nB=Fðq0Þ,
NB=Fð−q0Þ ¼ −NB=Fðq0Þ. For μ ¼ 0 this reduces to 1� 2nB=Fðjq0jÞ. In a dense medium the fermionic occupation number
instead is given by nFðq0 − μÞ and we face expressions like

Z
dq0δðQ2Þsgnðq0ÞNFðq0 − μÞfðq0Þ ¼ 1

2q
½NFðq − μÞfðqÞ þ NFðqþ μÞfð−qÞ�; ð21Þ

and if fð−q0Þ ¼ fðq0Þ, as in Eq. (20), we can just replace in our expressions

2nFðqÞ → nFðq − μÞ þ nFðqþ μÞ ðq > 0Þ: ð22Þ

Furthermore, from the discussion after Eq. (18), we know that we only need the small k0 limit of the longitudinal gluon
self-energy. If we expand ΠR

00ðkÞ and ΠA
00ðkÞ for k0 ≪ k and keep terms up to order k0, the result for its real and imaginary

parts is

RΠ ≡ Re½ΠR
00ðk0 → 0; kÞ� ¼ Re½ΠA

00ðk0 → 0; kÞ�

¼ g2TFNf

π2

Z þ∞

0

dqq

�
nFðq − μÞ þ nFðqþ μÞ

2

��
2þ

�
k
2q

− 2
q
k

�
log





 k − 2q
kþ 2q






�

þ g2Nc

π2

Z þ∞

0

dqqnBðqÞ
�
1 −

k2

2q2
þ
�
−
q
k
þ k
2q

−
k3

8q3

�
log





 k − 2q
kþ 2q






�
; ð23Þ

IΠ ≡ Im½ΠR
00ðk0 → 0; kÞ� ¼ −Im½ΠA

00ðk0 → 0; kÞ�

¼ 2g2TFNf

π

k0

k

Z þ∞

k=2
dqq

�
nFðq − μÞ þ nFðqþ μÞ

2

�
þ g2Nc

π

k0

k

�
k2

8
nB

�
k
2

�
þ
Z þ∞

k=2
dqqnBðqÞ

�
1 −

k4

8q4

��
: ð24Þ

Taking the additional k → 0 limit here would lead to the familiar HTL self-energy. However, we have to keep k arbitrary
here since we are calculating the hard contribution. We can then write the contribution of our self-energy correction to the
11 propagators as

½δD00� ¼
δDR

00ðk0; kÞ þ δDA
00ðk0; kÞ

2
þ
�
1

2
þ nBðk0Þ

�
ðδDR

00ðk0; kÞ − δDA
00ðk0; kÞÞ; ð25Þ

with δDR=A
00 ¼ −iΠR=A

00 ðKÞ=k4. We then end up with

δVhard ¼ −ig2CF
r2

D − 1
ν4−D

Z
dDk
ð2πÞD πδð−k0Þ

�
−i
k2

�
½RΠ þ ið1þ 2nBðk0ÞÞIΠ�: ð26Þ
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At this point we can integrate out the next larger scale.
The leading contribution is given by an expression analo-
gous to Eq. (13) in which the gluon propagators correspond
to those of the HTL effective theory

δVsoft ¼ −ig2CF
ri

D − 1
ν4−D

Z
dDk
ð2πÞD

i
E − ho − k0 þ iη

× ½k20DHTL
ii ðk0; kÞ þ k2DHTL

00 ðk0; kÞ�ri: ð27Þ

Depending on whether the next larger scale is the Debye
massmD ∼ gmaxðT; μÞ or the binding energy E ∼mαs

2 the
approximations to be carried out differ. If mD ≫ E then
E − ho can be expanded in the above expression. If instead
mD ≪ E, then one can expand the self-energies in the HTL
gluon propagators. If mD ∼ E, it is not possible to proceed
analytically beyond extracting the UV divergences that
cancel the IR ones in Eq. (33), see [9,18]. We shall not
further consider this last case.

Qualitatively we can single out two cases: if T is large
enough we can extend the formulas obtained in [17,19] for
vanishing μ to the case of nonzero chemical potential, be it
large (μ ∼ T) or small (μ ≪ T). The small T case requires
some extra care, as we will see in Sec. III C.

B. Large T

We start by computing the hard contribution. For large T
(T ≳ μ), as long as we work at the lowest order of the
expansion Eq. (15) we can use the k0 → 0 limit. Then

k0

k
½1þ 2nBðk0Þ� ¼

2T
k

þOðk20Þ: ð28Þ

The hard contribution at finite temperature and vanishing
chemical potential has been calculated in [17,19]:

δVhardjμ¼0 ¼ r2αs2T3CF

�
−
4

3
ζð3ÞNc − 2ζð3ÞNfTF þ i

2π

9

��
−
1

ϵ
þ γ þ log π − log

�
T2

ν2

�
þ 2

3
− 2 log 2 − 2

ζ0ð2Þ
ζð2Þ

�
Nc

þ
�
−
1

ϵ
þ γ þ log π − log

�
T2

ν2

�
þ 2

3
− 4 log 2 − 2

ζ0ð2Þ
ζð2Þ

�
NfTF

��

≡ δVR
G þ δVR

F þ iðδVI
G þ δVI

FÞ; ð29Þ

where ζ is the Riemann Zeta function and we can easily
isolate the real and imaginary contributions δVR

G, δVI
G

coming from the gluon loops ð∼NcÞ from the contributions
δVR

F, δV
I
F ð∼NfÞ coming from the fermionic one. The

former will be unchanged by the presence of a chemical
potential, so we will focus on the latter.
Eq. (29) is obtained by working out first the k integral

using DR in Eq. (26), which helps putting all scale-less

integrals to zero, then performing the q integral in Eq. (23)
and Eq. (24). Note that these contributions are suppressed
by a factor rT with respect to the purely real ones obtained
in (16). The real part is finite, while the imaginary one has
an IR log divergence.
Now let us compute these fermionic contributions at

finite μ. We have,

δVR
FðT; μÞ ¼ −16π2αs2CFTF

Nf

2π2
r2

D − 1
ν4−D

Z
ddk
ð2πÞd

1

k2

Z
∞

0

dqq

�
nFðq − μÞ þ nFðqþ μÞ

2

��
k
2q

−
2q
k

�
log





 k − 2q
kþ 2q






¼ 4

3
αs

2CFTFNfr2T3½Lið3;−e−μ=TÞ þ Lið3;−eμ=TÞ�; ð30Þ

where Li denotes the polylogarithm function. Note also that the real part is finite. This will not be the case for the imaginary
part, which reads

δVI
FðT; μÞ ¼ −16π2αs2CFTF

Nf

2π

r2

D − 1
ν4−D

Z
ddk
ð2πÞd

1

k2
4T
k

Z
∞

k=2
dqq

�
nFðq − μÞ þ nFðqþ μÞ

2

�

¼ αs
6
CFr2Tm2

DðFÞ

�
−
1

ϵ
þ 2

3
þ γ þ log

�
π

4

�
− log

�
T2

ν2

��

þ 8αs
2

3π
CFTFNfr2T3½Lið1;0Þð2;−e−μ=TÞ þ Lið1;0Þð2;−eμ=TÞ�; ð31Þ
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where we reconstructed the contribution proportional to the
Debye mass, see Eq. (9), which goes together with an
additional ∼T3 factor multiplying a more involved piece
containing the derivative of the polylogarithm functions
with respect to their first argument. Note that δVI above
contributes to the decay width at leading order whereas δVR

is subleading with respect to Eq. (16). Putting together the
results above with the gluonic contributions in Eq. (29) and
including the leading contribution Eq. (16), we can work
out the corrections to the energy levels δEnl ¼ hδVRinl as
well as the decay rate Γnl ¼ −2hδVIinl for a given n, l state.
We have

δEhard
nl ¼ π

9
NcCFαs

2T2hrinl þ
2π

3m
CFαsT2 þ 4

3
αs

2CFT3hr2inlf−ζð3ÞNc þ TFNf½Lið3;−e−μ=TÞ þ Lið3;−eμ=TÞ�g; ð32Þ

Γhard
nl ¼ −

1

3
αsTCFhr2inl

�
m2

D

�
−
1

ϵ
þ 2

3
þ γ þ log

�
π

4

�
− log

�
T2

ν2

��

− 8αsT2

�
πζ0ð2ÞNc

3ζð2Þ − 2
TFNf

π
ðLið1;0Þð2;−e−μ=TÞ þ Lið1;0Þð2;−eμ=TÞÞ

��
; ð33Þ

where we have introduced hrinl ¼ a0½3n2 − lðlþ 1Þ�=2
and hr2inl¼a20n

2½5n2þ1−3lðlþ1Þ�=2, a0 ¼ 2=ðmCFαsÞ
being the Bohr radius.
The expressions above so far hold for arbitrary μ, as long

as T ≳ μ. We consider next the expansion for small μ,
μ ≪ T. Note that the μ dependence in nFðk0Þ is analytic,
and the expansion in μ does not modify its UV and IR

behavior. Hence, the scale μ will not introduce extra
singularities in our loop calculations. As a consequence,
the results in this case can be obtained by just expanding in
μ Eq. (32) and Eq. (33) above.
For the real part, since the leading term Eq. (16) does not

depend on μ so it remains the same. The μ dependence
arises from the next-to-leading term Eq. (30),

δVR
FðT ≫ μÞ ¼ αs

2CFTFNfr2T3

�
−2ζð3Þ − 4

3
logð2Þ

�
μ

T

�
2

−
1

36

�
μ

T

�
4

þ…

�
: ð34Þ

The first term in the expansion indeed corresponds to the μ ¼ 0 result [cf. Eq. (29)]. For the imaginary part, we have from
Eq. (31)

δVI
FðT ≫ μÞ ¼ −

αs
6
CFr2Tm2

DðFÞ

�
1

ϵ
−
2

3
− γ − log

�
ν2

πT2

��

−
4π

9
T3αs

2CfTFNfr2
�
ζ0ð2Þ
ζð2Þ − log

�
π

4

�
þ 7ζð3Þ

8π4

�
μ

T

�
4

−
31ζð5Þ
80π6

�
μ

T

�
6

þO
��

μ

T

�
8
��

; ð35Þ

and we recover the fermionic part (∼Nf) of Eq. (29) from the μ → 0 limit of Eq. (34) and Eq. (35). Keeping terms up to
Oðμ2=T2Þ only, we have for the energy and the decay rate contributions

δEhard
nl ¼ δEhard

nl jμ¼0 − NfTFCF
4αs

2 log 2
3

Tμ2hr2inl; ð36Þ

Γhard
nl ¼ Γhard

nl jμ¼0 −
4αs

2CFTFNfTμ2

3π
hr2inl

�
−
1

ϵ
þ γ − log π − log

�
T2

ν2

�
þ 2

3

�
: ð37Þ

The expressions Eq. (32) and Eq. (33), which reduce to
Eq. (36) and Eq. (37) above in the T ≫ μ limit, are the
outcome of integrating out the hard scale in the heavy
quarkonium sector. In the gluonic sector the outcome is
the celebrated HTL effective theory. This effective theory

has exactly the same form for μ ¼ 0 as for μ ≠ 0, the
only difference being that the Debye mass acquires a μ
dependence, as displayed in Eq. (9). In the case T ≫ μ,
mD ∼ gT and mD can also be expanded in a series
of ðμ=TÞ2.
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Beyond the contributions at the hard scale, there will be
additional contributions to the energy shifts and decay
widths from lower scales. The form of these contributions
will depend on the relative size between mD and mαs

2, but
not on the size of μ because of its analytic dependence.
Below the hard scale T we can use HTL for the light
degrees of freedom. Hence all the μ dependence will be in
mD except for the case μ ≳mD in which there will be
additional analytic dependences arising from the fermionic
distribution function in HTL fermion loops. The latter
however will be suppressed by g2 factors. Let us next
discuss the two most extreme cases.

1. mD ≫ E

In this case, we can further integrate out the scale mD to
get additional modifications to the potentials. These quan-
tities basically depend onmD (except for the T factor in the
imaginary part coming from the nB, which is unchanged),
so the inclusion of a chemical potential simply amounts

to considering the appropriate expression for the Debye
mass in a dense medium. This has been worked out in [18]
(see also [24]) for QED. We simply take the results from
there, Eqs. (10)–(11), and correct for QCD color factors.
We display directly the corrections to the energy shift and
decay width below,

δEðmDÞ
nl ¼ CF

αsm3
D

6
hr2inl þOðαs2r2m2

DTÞ; ð38Þ

ΓðmDÞ
nl ¼ CF

αsTm2
D

3
hr2inl

�
−
1

ϵ
− γ þ log π þ log

ν2

m2
D
þ 5

3

�

þOðαs2r2m2
DTÞ: ð39Þ

Putting together the results above with Eq. (32) and
Eq. (33), we get the final result for this case for the energy
and the decay rate,

δEnl ¼
αsCF

3

�
π

3
NcαsT2hrinl þ

2π

m
T2 þ 4αsT3hr2inlf−ζð3ÞNc þ TFNf½Lið3;−e−μ=TÞ þ Lið3;−eμ=TÞ�g þm3

D

2
hr2inl

�
;

ð40Þ

Γnl ¼ −
1

3
αsTCFhr2inl

�
m2

D

�
−1þ 2γ − log 4 − log

T2

m2
D

�

− 8αsT2

�
πζ0ð2ÞNc

3ζð2Þ − 2
TFNf

π
½Lið1;0Þð2;−e−μ=TÞ þ Lið1;0Þð2;−eμ=TÞ�

��
: ð41Þ

Note that the 1=ϵ pole in the imaginary part Eq. (39) cancels with the one of Eq. (33).
For T ≫ μ, we can just add the soft (∼mD) scale contributions, Eqs. (38) and (39), to the hard contribution Eq. (36) and

Eq. (37) to obtain our final result, again only up to order μ2=T2:

δEnl ¼ δEnljμ¼0 þ
αs

2

3
CFTFNfTμ2hr2inl

�
−4 log 2þ

�
3

π2
g2ðNc þ NfTFÞ

�
1=2

�
; ð42Þ

Γnl ¼ Γnljμ¼0 −
4αs

2CFTFNfTμ2

3π
hr2inl

�
2γ − log

�
T2

m2
D

�
− 1 − 2 log π

�
: ð43Þ

If we consider even lower scales, we find that the
contribution at the scale E ∼mαs

2 ≪ mD may only be
due to quasi-static magnetic photons Eq. (10) and is of
order αsr2TEðEmDÞ1=3, and hence suppressed with respect
to the contributions calculated so far. Therefore, our final
results in this case are Eq. (40) and Eq. (41), which reduce
to Eq. (42) and Eq. (43) for T ≫ μ.
In order to get a feeling on the contributions computed in

this section, we plot in Fig. 4 the results for the energy shift
and the decay rate as function of the chemical potential for
different values of αs.

2. E ≫ mD

If E ∼mαs
2 > mD we should be integrating out this

scale first rather than the Debye mass. This has been
worked out at μ ¼ 0 in [18] (Eqs. (6)–(7)) for QED, and in
[19] for QCD. In this case the denominator Eq. (15) cannot
be expanded, so that we are no longer fixed to the k0 → 0
limit, but we can still make use of the expansion Eq. (28)
for the bosonic occupation number. Furthermore, we can
employ the HTL gluon self-energies expanded in powers of
mD=E. The leading energy shift is given by the longitudinal
gluon contribution, Eq (5.18) in [19],
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δEðEÞ
nl ¼ −

παsCFTm2
D

3
hr2inl; ð44Þ

whereas both longitudinal and transverse gluons contribute to the decay width, which is given by (5.25) in [19],

ΓðEÞ
nl ¼ Cð1Þ

nl T þ Cð2Þ
nl −

αsCFTm2
D

3

�
1

ϵ
þ log

E2
1

ν2
þ γ −

11

3
− log π þ log 4

�
hr2inl þ

2αsCFTm2
D

3

C2
Fαs

2

E2
n

In;l; ð45Þ

where En ¼ −mC2
Fαs

2=ð4n2Þ, n ¼ 1; 2;…, is the energy of the state and In;l a numerical constant dependent on the n, l
state given in [19]. We introduced the shorthand notation

Cð1Þ
nl ¼ 1

3
N2

cCFαs
3 −

16

3m
CFαsEn þ

8

3
NcCFαs

2
1

mn2a0
and ð46Þ

Cð2Þ
nl ¼ 2Enαs

3

3

�
4C3

Fδl0
n

þ NcC2
F

�
8

nð2lþ 1Þ −
1

n2
−
2δl0
n

�
þ 2N2

cCF

nð2lþ 1Þ þ
N3

c

4

�
; ð47Þ

the latter being a subleading T-independent contribution which we will neglect in the following.
Again the generalization to finite μ is straightforward: we can clearly distinguish single factors of T, which come from the

expansion of the bosonic distribution function in the gluon propagator and thus are unchanged by the introduction of
density, whereas all the remaining medium dependence is expressed in terms of the Debye mass. We can just replacemD by
the appropriate μ-dependent value for the Debye mass, given by Eq. (9).
We then get out final result for this case by adding the above expressions to Eq. (32) and Eq. (33),

δEnl ¼
π

9
NcCFαs

2T2hrinl þ
2π

3m
CFαsT2 þ 4

3
αs

2CFT3hr2inlf−ζð3ÞNc þ TFNf½Lið3;−e−μ=TÞ þ Lið3;−eμ=TÞ�g

−
παsCFTm2

D

3
hr2inl; ð48Þ

Γnl ¼ −
1

3
αsTCFhr2inl

�
m2

D

�
−3þ 2γ − log

T2

E2
1

�
− 8αsT2

�
πζ0ð2ÞNc

3ζð2Þ − 2
TFNf

π
½Lið1;0Þð2;−e−μ=TÞ þ Lið1;0Þð2;−eμ=TÞ�

��

þ Cð1Þ
nl T þ 2αs

3C3
FTm

2
D

3E2
n

In;l: ð49Þ

Note that the 1=ϵ poles in the imaginary part Eq. (39) cancels with the one of Eq. (45). For T ≫ μ, we can just add Eq. (44)
and Eq. (45) to the hard contribution Eq. (36) and Eq. (37) to obtain our final result, again only keeping the leading
correction in μ=T:

FIG. 4. Quarkonium energy shift and decay rate for the ground state including mD scale corrections as function of the ratio μ=T, for
Nf ¼ 2 and different values of αs. More specifically, we plot in the left panel the result ðδE10 − δE10jμ¼0Þ=ð4αs2CFT3hr2i10=3Þ, and in
the right one ðΓ10 − Γ10jμ¼0Þ=ð−4παs2T3CFhr2i10=9Þ. Curves are for αs ¼ 0.01 (black), 0.1 (blue) and 0.3 (red).

HEAVY QUARKONIUM AT FINITE TEMPERATURE AND … PHYS. REV. D 102, 116021 (2020)

116021-9



δEnl ¼ δEnljμ¼0 −
4

3
CFTFNfαs

2Tμ2hr2inl½log 2þ 1�;
ð50Þ

Γnl ¼ Γnljμ¼0 −
4αs

2CFTFNfTμ2

3π

×

�
hr2inl

�
2γ þ log 4 − log

T2

E2
1

− 3 − 2 log π

�

− 2
C2
Fαs

2

E2
n

In;l

�
: ð51Þ

If we consider lower scales, in this case the scale mD, we
find that it gives contributions of the order αsr2Tm3

D=E
which are suppressed with respect to the ones calculated
so far. Hence, our final results in this case are given by
Eq. (48) and Eq. (49), which reduce to Eq. (50) and Eq. (51)
for T ≫ μ. We plot the resulting expressions as function of
the ratio μ=T in Fig. 5.

C. Small T

Let us next consider the case μ ≫ T. This case is
technically more involved as it cannot be obtained by just
taking the small T limit of the general results in Sec. III A
(recall that the distribution functions are not analytic in T).
Below the scale μ, HTL must be used but the approxima-
tion NBðk0Þ ∼ 2T=k0 for the Bose distribution function
does not hold in general. This is because the constraint
k0 ≪ μ still allows k0 ≳ T. Let us study the two extreme
cases, T ≫ E and T ≪ E below.

1 T ≫E

Our starting point here is still formulas (26) and (27) for
the hard and soft contributions respectively. The contribu-
tions at the hard (μ) scale are now restricted to the quark
loop in Fig. 2, see Sec. III A 2. The leading contribution can

be worked out by just replacing in Eq. (30) and Eq. (31)
nFðq−μÞþnFðqþμÞ→θðμ−qÞ. The leading T depend-
ence requires more effort, one can nevertheless work it out.
The real part becomes

δVR
FðT ≪ μÞ ¼ −

2

9
αs

2CFTFNfr2ðμ3 þ π2T2μÞ; ð52Þ

up to exponentially suppressed terms, and the imaginary
part reads

δVI
FðT ≪ μÞ ¼ −

2αs
2CFTFNfr2T

3π

×

��
μ2 þ π2T2

3

��
1

ϵ
þ log

μ2

ν2
þ γ

− log
π

4
−
11

3

�
− π2T2 þOðT4=μ2Þ

�
:

ð53Þ

We see that the overall factor of T coming from the bosonic
occupation number makes this imaginary contribution
parametrically smaller than its real counterpart. At scales
below μ the HTL effective theory must be used for gluons
and light quarks. If T ≫ mD ∼ gμ, E, we can next integrate
T out. The self-energies can then be expanded in powers of
mD in the HTL propagators, which at leading order reduce
to the bare ones. Hence, we obtain an extra contribution,
which coincides with Eq. (16). Since the last result is finite,
we still need to integrate out the next larger scale in order to
cancel the 1=ϵ pole in Eq. (53). This is done in Sec. III C 1 a
and III C 1 b below. We address the case mD ≫ T ≫ E in
Sec. III C 1 c. Note that for μ ≫ T the gluon distribution
functions are exponentially suppressed at the hard scale,
and hence they do not contribute to the HTL self-energies.
Therefore, in the following subsections, all the Debye
masses will only have the fermionic contributions.

FIG. 5. Quarkonium energy shift and decay rate for the ground state as function of the ratio μ=T including E scale corrections,
for Nf ¼ 2. We plot in the left panel the result ðδE10 − δE10jμ¼0Þ=ð4αs2CFT3hr2i10=3Þ, and in the right one ðΓ10 − Γ10jμ¼0Þ=
ð−4παs2T3CFhr2i10=9Þ. This time our ratio for the energy shift turns out to be αs-independent, while for the decay rate we need to
specify the value of the ratio T=mαs

2: here we chose for illustration 2 (black), 5 (blue) and 10 (red).
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The case T ≫ mD ∼ gμ ≫ E.—We can take the result of integrating outmD from Eq. (38) and Eq. (39). Putting everything
together we finally obtain

δEnl ¼
π

9
NcCFαs

2T2hrinl þ
2π

3m
CFαsT2 −

2

9
αs

2CFTFNfhr2inlðμ3 þ π2T2μÞ þ CF

αsm3
DðFÞ
6

hr2inl; ð54Þ

Γnl ¼
1

3
αsTCFhr2inl

�
m2

DðFÞ

�
log 4 − 2þ log

μ2

m2
DðFÞ

�
− 4παsTFNfT2

�
: ð55Þ

Note that, parametrically, in the energy shift, the two first terms and the third term in the first line compete to be the leading
contribution, whereas the remaining ones are suppressed. The last term in the decay width is also suppressed.

The case T ≫ E ≫ mD ∼ gμ.—We can take the result of integrating out E from Eq. (44) and Eq. (45). Putting everything
together we finally obtain

δEnl ¼
π

9
NcCFαs

2T2hrinl þ
2π

3m
CFαsT2 −

2

9
αs

2CFTFNfhr2inlðμ3 þ π2T2μÞ −
παsCFTm2

DðFÞ
3

hr2inl; ð56Þ

Γnl ¼
αsCFT

3
hr2inl

�
m2

DðFÞ log
μ2

E2
1

− 4παsTFNfT2

�
þ Cð1Þ

nl T þ
2αsCFTm2

DðFÞ
3

C2
Fαs

2

E2
n

In;l: ð57Þ

Parametrically, in the energy shift, all terms may compete for the leading order, except for term linear in μ, which is

always smaller than the term cubic in μ. In the decay width, the terms proportional to Cð1Þ
nl and m2

DðFÞ are the leading and

next-to-leading ones respectively, while the one proportional to T3 is suppressed.

The case μ ≫ mD ∼ gμ ≫ T ≫ E.—In this case, the next scale to be integrated out is mD. This produces the same
contribution as in the general case, namely Eq. (38) and Eq. (39) with mDðFÞ instead of the full mD, as in the previous
subsection. Putting everything together we obtain

δEnl ¼ −
2

9
αs

2CFTFNfhr2inlðμ3 þ π2T2μÞ þ CF

αsm3
DðFÞ
6

hr2inl; ð58Þ

Γnl ¼
1

3
αsCFhr2inl

�
Tm2

DðFÞ

�
log 4 − 2þ log

�
μ2

m2
DðFÞ

��
− 4παsTFNfT3

�
: ð59Þ

Parametrically, the first term both in the energy shift and in the decay width above is the leading one. Concerning the
T-dependent terms, since we have not considered contributions at the scale T so far, we may wonder whether the terms
above are the most important ones, or contributions at lower scales may provide larger T-dependent terms. In order to
resolve this question, let us next consider the contributions at lower scales. Only quasistatic magnetic modes survive below
mD. These are obtained by approximating the transverse HTL self-energy to the case k0 ≪ k ≪ mD, see Eq. (10). When
mD ≫ T, these modes contribute at lower scales from the diagram in Fig. 6. At the scale T, their contribution is of the order
αsr2T2ðTm2

DÞ1=3, and hence it becomes the most important T-dependent contribution to the real part of the potential.2

It reads

δV ¼ −g2CF
2

3
ð−3Þ

�
1

m
þ 1

6
Ncαsr

�
T
6π2

�πm2
DðFÞT

4

�
1=3 Γð4=3Þζð4=3Þ

cosðπ=6Þ ; ð60Þ

which produces a further energy shift to be added to Eq. (58),

δEnl ¼
4CFαs
3π

�
1

m
þ 1

6
Ncαshrinl

�
T

�πm2
DðFÞT

4

�
1=3 Γð4=3Þζð4=3Þ

cosðπ=6Þ : ð61Þ

2There might be competing logarithmic T-dependent contributions of order αs2r2Eμ2 from the region k0 ∼ T, k ∼ μ, similar to those
displayed in the Appendix B.
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There are also contributions at the scale E from the
quasistatic magnetic modes, which are of order
αsr2TEðEm2

DÞ1=3, and hence suppressed with respect to
the ones considered so far.

2 E ≫ T

The case T ≪ E ∼mαs
2 deserves a special treatment.

Let us focus first on the longitudinal contribution of
Eq. (13), which becomes

δV ¼ −ig2CF
ri

D − 1
ν4−D

Z
dDk
ð2πÞD

i
a − k0 þ iη

k2

2
½DR

00ðk0; kÞ þDA
00ðk0; kÞ þ NBðk0ÞðDR

00ðk0; kÞ −DA
00ðk0; kÞÞ�ri; ð62Þ

where we introduced for brevity a≡ E − h0 and we are not assuming any specific form for the longitudinal gluon
propagator yet. In order to single out real and imaginary parts we consider the combinations δVR ¼ ðδV þ δV�Þ=2 and
δVI ¼ −iðδV − δV�Þ=2.
After writing the denominator as i

a−k0þiη ¼ −iP 1
k0−a

þ πδða − k0Þ, we thus get to

δVR ¼−ig2CF
ri

D− 1
ν4−D

Z
ddk
ð2πÞd k

2

�
1

2
½DR

00ða;kÞþDA
00ða;kÞ�þ iP

Z
dk0

2π

�
1

a− k0

�
NBðk0Þ½DR

00ðk0; kÞ−DA
00ðk0; kÞ�

�
ri;

ð63Þ

δVI ¼ −ig2CF
ri

D− 1
ν4−D

Z
ddk
ð2πÞd k

2

�
iP

Z
dk0

2π

�
1

a− k0

�
½DR

00ðk0; kÞ þDA
00ðk0; kÞ� þ

1

2
NBðaÞ½DR

00ða;kÞ−DA
00ða;kÞ�

�
ri:

ð64Þ

The k0 integral of δVI can be carried out if we assume that all the singularities (poles or branch points) in D00ðk0; kÞ
are on the real axis [45] (this can be explicitly verified for the approximations we use, namely for the one loop self-energy
and for the HTL propagator). The integral is done by writing the principal value as P=ða − k0Þ ¼
ð1=ða − k0 þ iηÞ þ 1=ða − k0 − iηÞÞ=2. Then we get four terms. Two of them have all the singularities in the same
complex half plane and hence vanish. In the remaining two terms the singularity of the 1=ða − k0 � iηÞ is in the opposite
half plane as the ones of the accompanying propagator. Hence, by closing the path so that only the singularities in
1=ða − k0 � iηÞ are enclosed we obtain

δVI ¼ −ig2CF
ri

D − 1
ν4−D

Z
ddk
ð2πÞd

k2

4
½DR

00ða; kÞ −DA
00ða; kÞ þ NBðaÞðDR

00ða; kÞ −DA
00ða; kÞÞ�ri: ð65Þ

The expressions used in the previous sections can also be
obtained from Eq. (63) and Eq. (65). For instance, Eq. (26)
corresponds to substituting the gluon propagators by the
contribution of the one-loop self-energy to them. In the
hard contribution, a is small and can be set to zero at LO,
which is reminiscent of the Dirac delta in Eq. (26) (recall
that NBðaÞ ∼ 2T=a, so there is also a contribution from the
imaginary part). The longitudinal part of Eq. (27) is
obtained by replacing the propagators above by their
HTL expressions.
Coming back to the E ≫ T case, recall that a ¼ E − ho∼

E ≫ T. We can then approximate NBðaÞ ∼ sgnðaÞ ¼ −1,
for any a < 0, as it is the case for a bound state, since E < 0
and ho is positive definite. Hence the imaginary part is zero

(δVI ¼ 0), irrespectively of the form of the longitudinal
gluon propagator.
A similar reasoning can be done with the transverse

contribution, which also leads to a vanishing contribution
for the imaginary part. The real part can be obtained
from Eq. (63) by replacing k2 → k20 and DR;A

00 ðk0; kÞ →
DR;A

ii ðk0; kÞ. Therefore no imaginary part to the potential is
generated when T is smaller than the binding energy scale.
Note that the same argument is valid both for the two-loop
hard contribution as well as for the HTL one, as it does not
depend on the details of the gluon propagator.
Let us first consider the hard contribution k ∼ μ to

the real part. The first term in Eq. (63) gives Eq. (52),

FIG. 6. The thick curly line denotes the low energy magnetic
gluon propagator in Eq. (10). The solid and double lines are the
suitable color singlet and color octet quarkonium propagators,
and the crossed dots chromoelectric dipole vertices.
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as expected, since a ≪ μ. The second term is subleading.
Indeed, for k0 ∼ k ∼ μ, the denominator can be expanded
in a, the would-be-leading order vanishes (odd in k0), and
hence the leading contribution is a=μ suppressed. For
k0 ≪ k ∼ μ, the difference between retarded and advanced
propagators is proportional to k0=k, and hence also sup-
pressed. Nevertheless, the region k0 ∼ T provides the
leading T-dependent contribution,

δVR
hardjT−dependent

¼
παsCFm2

DðFÞT
2

9

�
1

ϵ
− log π − ψ

�
3

2

�
−
7

6
þ 2 log

μ

ν

�

× ri
1

E − ho
ri; ð66Þ

where ψðzÞ is the Digamma function. Note that
δVR

hardjT−dependent is not really a potential, as it depends on
the external energy E. The soft regions, k0, k ≪ μ, give
subleading contributions, but they do contribute to the
leading T-dependence. Let us display the two extreme cases,

The case μ ≫ mD;E ≫ T.—Let us next consider the
contributions at the scale k ∼mD. The first term in
Eq. (63) gives Eq. (38), which together with Eq. (53) leads
to Eq. (58). However, the leading T-dependence is not
given by this expression but by the region k ∼mD, k0 ∼ T
in the second term of Eq. (63),

δVR
softjT−dependent

¼
παsCFm2

DðFÞT
2

9

�
−
1

ϵ
þ log π þ ψ

�
3

2

�
−
1

3

− 2 log
mDðFÞ
ν

�
ri

1

E − ho
ri; ð67Þ

which together with Eq. (66) leads to the following
T-dependent energy shift,

δEnljT−dependent ¼ −
παsCFm2

DðFÞT
2

9

�
3

2
þ 2 log

mDðFÞ
μ

�

×

�
ri

1

E − ho
ri
�

nl
: ð68Þ

The matrix element above has been calculated in [46,47]
(see also [48]). The contribution of the transverse photons
is T2=m2

D suppressed with respect the one of the longi-
tudinal gluons that we have just displayed.

The case μ ≫ E ≫ T ≫ mD.—In this case the region
k ∼ k0 ∼ T gives the leading T-dependence. In fact, it is
due to the transverse gluons because their propagator at tree
level already contributes. It gives the same result as for the
μ ¼ 0 case, namely,

δVR
softjT−dependent ¼

g2CFπ
2T4

45
ri

1

E − ho
ri: ð69Þ

The abelian limit of the expression above agrees with the
one of [9]. The size of this term is parametrically larger
than the hard contribution in Eq. (66). Nevertheless, it is
important to carry out the calculation at the soft scale that
cancels the 1=ϵ pole in Eq. (66). This is realized by the
longitudinal gluons at the scale k0 ∼ k ∼ T, which give

δVR
softjT−dependent; subleading

¼
παsCFm2

DðFÞT
2

9

�
−
1

ϵ
þ log π þ ψ

�
3

2

�
−
4

3

þ 2γ − 2
ζ0ð2Þ
ζð2Þ − 2 log

T
2ν

�
ri

1

E − ho
ri: ð70Þ

Putting together Eq. (69), Eq. (66) and Eq. (70), we obtain
for the T-dependent energy shift in this case,

δEnljT−dependent ¼
�
g2CFπ

2T4

45
þ
παsCFm2

DðFÞT
2

9

×

�
−
5

2
þ 2γ − 2

ζ0ð2Þ
ζð2Þ − 2 log

T
2μ

��

×

�
ri

1

E − ho
ri
�

nl
: ð71Þ

IV. THE CASE m ≫ maxðT; μÞ ≫ p ∼mD ≫ E

So far the energy scales associated with the thermal
medium were assumed to be smaller than the typical
momentum exchanges p between the constituents of the
bound state. This implies that thermal effects can be treated
as perturbations to the bound state dynamics. The melting
of the bound state may still occur, because it can develop a
medium decay width comparable to the binding energy.
One may wonder however, in which conditions the medium
effects will be so strong that they will affect the leading-
order bound state dynamics, namely the leading order
potential. When p ∼ maxðT; μÞ, this is not the case yet.
This is because the longitudinal gluon propagator is not
sensitive to the medium at tree level, and hence the
Coulomb-like potential remains as the LO potential. The
one loop correction is suppressed by a g2 factor, and hence
medium effects are still a perturbation.
For μ ¼ 0, this case is analyzed in Sec. IV of [9] and in

Sec. IIb/Appendix D of [18] for QED. We shall not develop
it further, since it does not bring in any qualitative differ-
ence with respect to the previous section. In contrast, the
case maxðT; μÞ ≫ p ∼mD introduces modifications in the
LO potential, and hence in the full bound state dynamics.
For μ ¼ 0, in the static limit of QCD (m → ∞, p≡ 1=r),
this case was addressed in [8,17], and in the full dynamical
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case of QED in [9,18]. In the following we extend these
results to finite chemical potential.
The suitable starting point now is nonrelativistic QCD

(NRQCD) [36,49], since the heavy quark mass is still larger
than the remaining scales in the problem, and hence it can
be integrated out. We will only need the leading order
Lagrangian,

LpNRQCD ¼ −
1

4
Fa
μνFaμν þ

XNf

i¼1

q̄ii=Dqi

þ
�
ψ†

�
iD0 þ

D2

2m
þ � � �

�
ψ þ c:c:

�
; ð72Þ

where ψ is a nonrelativistic field that annihilates heavy
quarks, and c.c. stands for the charge conjugated term,
namely the analogous terms for the heavy antiquarks,
see [50,51].

A. Integrating out the hard scale

In the gluon and light quark sector, the integration of the
largest scale maxðT; μÞ produces the HTL effective theory.
In the heavy quark sector, it produces a shift of the heavy
quark mass δm. In the static limit, the leading contribution
corresponds to the two-loop diagram in Fig. 7, which is
Oðαs2maxðT; μÞÞ and turns out to be suppressed by a factor
of g with respect to lower energy contributions. However,
when 1=m corrections are considered, there is a leading
order contribution from the diagram of Fig. 8 provided that
T is the largest scale, δm ∼ αsT2=m ∼mαs

2 ∼ E [9],

δm ¼ πCFαsT2

3m
: ð73Þ

We now proceed to integrating out the lower scales. As
before, it is useful to treat separately the cases in which T is
large and small, respectively.

B. Large T (T ≳ μ)

This corresponds to calculating the mass shift and
potentials (OðαsmD ∼mαs

2 ∼ E)) using HTL. The result
can then be just read from [8,17]. For the mass shift we get,

δm ¼ −
CFαs
2

ðmD þ iTÞ; ð74Þ

while for the potential shift,

VsðrÞ ¼ −CF
αs
r
e−mDr þ iCFαsT

2

rmD

Z
∞

0

dx
sinðmDrxÞ
ðx2 þ 1Þ2 ;

ð75Þ

where nowmD may depend on both μ and T. Recall that the
potential develops an imaginary part, first uncovered in [8].
If T ∼ μ, our final result for the potential plus mass shift is
just the addition of twice the (complex) mass shifts in
Eq. (73) and in Eq. (74), and the potential in Eq. (75). This
is also the case if T ≫ μ. Then the leading μ dependence is
obtained by expanding mD in μ2=T2. Note that in these
cases the imaginary part of the potential is parametrically
larger than the real part if mD ∼ 1=r ∼ p, hence bound
states can only exist if 1=r ≫ mD, and cease to exist when
this imaginary part takes over the real part, that is before the
screening mechanism r ∼mD is sizable [9]. Even if heavy
quarkonium cannot be considered a bound state anymore,
its spectral function can be calculated from the evolution by
its non-Hermitian Hamiltonian [52].

C. Small T (T ≪ μ)

The case μ ≫ T, however, deserves a separate discus-
sion. First of all, the hard contribution from Fig. 8 should
be dropped since T is not hard anymore. When T → 0
the imaginary part of the potential Eq. (75) and mass shift
Eq. (74) vanish, and one may naively think that the bound
state is stable. But this need not be so. On the one hand,
there could be subleading contributions that do not vanish
in this limit, and on the other hand, before T reaches zero,
there are additional scales that play a role, in particular the
binding energy E. Let us analyze the following two cases
separately, p ∼mD ≫ T ≫ E and p ∼mD ≫ E ≫ T. The
case T ≫ p ∼mD ≫ E reduces to expanding the results for
the T ∼ μ case in T=μ.

1. T ≫ E

At the scalemD we still get the same result as in Eq. (75).
The T factor in the imaginary part comes from the Bose
enhancement in the gluon distribution function nBðk0Þ ∼
T=k0 for k0 ≪ T, which still holds since k0 ∼ E, the typical

FIG. 7. Leading contribution to the heavy quark self-energy at
the hard scale in the static limit. The solid and dashed lines denote
the heavy quark and the longitudinal gluon propagators respec-
tively, and the blob the longitudinal gluon self-energy.

FIG. 8. Tadpole contribution to the heavy quark self-energy
from theD2=2m term in Eq. (72). The solid and curly lines denote
the heavy quark and transverse gluon propagators respectively.
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energy transfer, and E ≪ T. However, now the imaginary
part of the potential is parametrically smaller than the real
part, and one may wonder whether T-independent con-
tributions to the imaginary part exist that compete in size
with Eq. (75). The leading T-independent contributions to
the imaginary part of the mass shift come from Fig. 7 (hard
scale) and Fig. 9 (mD scale), when the internal heavy quark
line is on-shell. They are Oðg2m2

D=mÞ. Since one-loop
contributions to the potential are at most Oðg4mDÞ, then
these contributions are parametrically smaller than the
imaginary part of Eq. (74) and Eq. (75).
The T dependence from the hard scale is encoded inmD.

The leading T dependence in the real part of Eq. (75) is
∼ET2=μ2. Since μ is the largest scale in the problem, one
may wonder whether other contributions from lower scales
are larger. In order to address this question we must take
into account that below the mD scale the only low energy
degrees of freedom in the light sector are the quasistatic
magnetic gluons Eq. (10). Furthermore, below the scale
p ∼ 1=r we can use pNRQCD with the mass shifts and
singlet potential given in Eq. (74) and Eq. (75) respectively,
and similar modifications to the octet potential,

Vo ¼
ðCA
2
− CFÞαs
r

e−mDr − CFαsmD: ð76Þ

At the scale T, there is a contribution from Fig. 6, in which
singlet and octet propagators must be understood with the
potentials described above,

δV ¼ −
Γð4

3
Þζð4

3
Þ

9π2 cos π
6

g2CFriðho − EÞriT
�
πm2

DT
4

�1
3

: ð77Þ

This contribution is Oðαsr2ETðTm2
DÞ1=3Þ and hence

parametrically larger than ∼ET2=μ2 (recall that mD ∼ p ∼
1=r ∼mαs implies that μ ∼ gm). Then the leading T-
dependence to the energy shift is given by the expectation
value of the expression above and the decay width by
minus twice the expectation value of the imaginary part of
Eq. (75),

δEnl ¼ −
Γð4

3
Þζð4

3
Þ

9π2 cos π
6

g2CF

�
Ncαs
2

hre−mDrinl þ
3

m

�

× T

�
πm2

DT
4

�1
3

; ð78Þ

Γnl ¼ 2CFαsT
�
1 −

�
2

rmD

Z
∞

0

dx
sinðmDrxÞ
ðx2 þ 1Þ2

�
nl

�
: ð79Þ

The expectation values above are calculated with the real
part of Eq. (75) in the Hamiltonian. We have used that
riðho−EÞri¼Ncαs

2
re−mDrþ 3

m on physical states in Eq. (77).
Let us finally mention that there are parametrically larger

T-dependent contributions to the mass shift, Oðg2m2
D=mÞ

from the one-loop self-energy diagram in the region
k ∼mD and k0 ∼ T. However these contributions are
logarithmic in T and hence very smooth. In addition, they
are difficult to calculate. We have displayed in Appendix B
the logarithmically enhanced contributions. There are
similar subleading contributions (∼g4E) from the region
k0 ∼ T, k ∼ μ that in some particular cases may compete
with Eq. (77) as well.

2. E ≫ T

In this case, the imaginary part of the tree-level potential
turns out to be zero. This is because all relevant scales
are bigger than T and hence NBðk0Þ ∼ sgnðk0Þ. Then the
imaginary part of the tree-level potential becomes propor-
tional to the absolute value of the transfer energy, which is
zero for on-shell heavy quarks in the center of mass frame.
Regarding the contribution from the heavy quark self-
energy, one can then work along the same lines as in
Sec. III C 2 in order to prove that the imaginary part
vanishes at one loop, as mass-shift contributions would
be of the same form as Eq. (65), now with a ¼ E − k2=2m
(and similarly for the transverse contribution). The leading
corrections to the imaginary part may arise from the vertex
correction (Fig. 10), the two gluon exchange diagrams
(Fig. 11) and the two-loop heavy quark self-energy
(Fig. 12). We prove in Appendix A that they also vanish.
Therefore the imaginary part of the potential and of the
mass shift vanish at leading order and including OðαsÞ
corrections.
Let us next focus on the temperature dependence of the

energy shift. The potential depends on temperature through
the Debye mass, which gives a T-dependent contribution to
the energy shift of Oðg2mDT2=μ2Þ. Since μ is the largest

FIG. 10. Vertex correction at the mD scale. The solid lines are
heavy-quark propagators and the dashed line with a dot the HTL
longitudinal gluon propagator.

FIG. 9. Heavy-quark self-energy contribution at the mD scale.
The solid lines are heavy-quark propagators and the dashed line
with a dot the HTL longitudinal gluon propagator.
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scale in the problem after the heavy quark mass, we may
expect more important contributions from lower scales.
We find that the leading T-dependent contribution comes
from the one-loop self-energy diagram in which the
longitudinal gluon propagator has k ∼mD and k0 ∼ T,
which is Oðg2T2=EÞ. This contribution is difficult to
calculate. On the one hand the energy scale k0 ∼ T ≪ E,
and hence bound state effects cannot be ignored. On the
other hand, pNRQCD cannot be straightforwardly used
since k ∼mD ∼ p ∼ 1=r, and hence the multipole expan-
sion does not hold. In order to avoid the last problem we

shall restrict ourselves to the particular casem ≫ μ ≫ p ≫
mD ≫ E ≫ T. The T-dependent part of the energy shift
can be obtained from the second term in Eq. (63), where
now a ¼ E − ho − k2=4m. Notice that we have included
the quarkonium center of mass recoil energy, which was
negligible in Sec. III. For k ∼mD and k0 ∼ T the HTL
propagator must be used. We obtain,

δEnljk∼mD
¼ g2CFT2m2

D

36

�
ri

1

E − ho
ri
�

nl

×

�
−
1

ϵ
−
1

3
− 2 log

2mD

ν
þ log π þ ψ

�
3

2

��
:

ð80Þ

The 1=ϵ arises from an UV divergence in k. It should be
compensated by an IR divergence of a contribution at a
higher k scale. In Eq. (63), the scale k ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4mðE − hoÞ

p
∼

p ≫ mD is also relevant. It allows us to make an expansion
in mD in the HTL propagators, which induces the IR
divergence we are looking for. We obtain,

δEnljk∼p ¼ g2CFT2m2
D

36

�
ri

1

E − ho

�
1

ϵ
−
2

3
þ 2 log

ho − E
ν

− log 4π − ψ

�
3

2

��
ri
�

nl
: ð81Þ

There is a problem with the result above: for k ∼ p the
multipole expansion, on which pNRQCD is based, does not
hold. Nevertheless, if we are only interested in the IR
behavior k → 0, namely k ≪ p, then it can be used. That
means that our calculation above gets the correct IR
behavior, and hence the correct log, but the finite pieces
are not reliable. Putting together Eq. (80) and Eq. (81), we
then obtain,

δEnl ¼ −
g2CFT2m2

D

18

×

�
ri

1

E − ho

�
log

mD

ho − E
þOð1Þ

�
ri
�

nl
;

ð82Þ

where the Oð1Þ means there is an unknown number that
adds to the logarithmically enhanced contribution.

V. DISCUSSION

We have worked out the modifications in the binding
energy and decay width that a QGP at high temperature
and/or chemical potential induces in a heavy quarkonium
state, generalizing earlier work done in the limit of a
vanishing chemical potential. This was done from QCD at
weak coupling in the real-time formalism with approx-
imations that are well under control, relying on the
hierarchy of scales in the problem. This is in contrast with
earlier work on heavy quarkonium at finite chemical
potential, in which some modeling is introduced [53]. In
particular, we have shown that the rather usual assumption
that the medium effects can be encoded in a modified
potential, as made in the early days [54,55], is not
always true. Note that this is independent on whether
the models fit well lattice results on the potential, like,
for instance, Refs. [11,13], since lattice potentials do not

FIG. 12. Two-loop contributions to the heavy-quark self-energy. The solid lines are heavy-quark propagators and the dashed lines with
a dot HTL longitudinal gluon propagators.

FIG. 11. Two-gluon exchange diagrams. The solid lines are
heavy-quark propagators and the dashed lines with a dot HTL
longitudinal gluon propagators.
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encode nonpotential effects either. Nonpotential effects
require the full quarkonium dynamics and not just static
quarks [46,47].
We have restricted ourselves to heavy quarkonia at rest.

The effects of a relative velocity with respect to the thermal
bath may eventually be addressed along the lines of
Refs. [20,21]. In fact, when the effects of the medium
can entirely be encoded in a potential, they have already
been addressed in [56]. We have focused on a number of
cases in which analytic results can be produced. However,
it should be clear from our general formulas that numerical
results can be also obtained for the remaining cases.
When the temperature and chemical potential are smaller

than the typical momentum exchange between the heavy
quarks, the medium effects are a perturbation that, in general,
cannot be encoded in a potential. This has been already
emphasized for zero chemical potential in [9,17–19]. In this
case, Coulomb resummationsmust be always carried out, and
the medium effects enter through gluons emitted by chromo-
electric dipole transitions which turn a color-singlet quarko-
nium into a color-octet one or viceversa. In that respect it is
very helpful to use pNRQCD. Depending on the energy and
momentum of the emitted gluon, HTL resummations may
also be necessary. If the chemical potential and the temper-
ature have the same size, the results we obtain are similar to
the ones of the zero chemical potential case, but include
nontrivial functions of μ=T. If T ≫ μ, we can just expand our
results in μ=T, as the distribution functions are analytic in
μ=T. However, if μ ≫ T, the distribution functions are not
analytic in T=μ, and this requires extra care. In this limit, the
Debye mass mD ∼ gμ may be comparable to T and hence
accounting properly for the leading temperature effects
requires HTL resummations. We find that if the temperature
is larger than the binding energy, the decay width is propor-
tional to T, but it vanishes otherwise.
When the temperature or the chemical potential are

larger than the typical momentum exchange between the
heavy quarks, the medium effects modify the leading order
potential. This is the case addressed in the pioneering
works [2], in which the screening was proposed as the
mechanism leading to J=ψ suppression. Later on, an
important imaginary part due to Landau damping was
uncovered for this potential which changed the picture [8].
When T ≃ μ the imaginary part of the potential is propor-
tional to g2T and parametrically larger than the real part
(∼g2mD). Due to this imaginary part, the heavy quarko-
nium melts before noticing the screening effects, as in the
case of zero chemical potential [9]. When T ≃mD ∼ gμ,
screening and Landau damping compete for being the
leading effect. The imaginary part of the potential exists as
long as the temperature is larger than the binding energy,
but it vanishes otherwise. We have been able to prove it at
next-to-leading order in αs.
Our analysis turned out to be technically challenging, as

Coulomb and/or HTL resummations have been necessary

in several instances. The use of effective field theories has
been invaluable to keep track of the important terms in a
systematic manner. Dimensional regularization has been
used to regulate both the IR and UV divergencies that arise
in the intermediate steps of the calculations when we
factorize the contributions of the different scales. We have
obtained contributions from energy and momentum regions
that had been ignored so far. In that respect the method of
integration by regions developed in [57] (see [58] for a
review) has also been very useful. For instance, in order to
get the leading temperature effects in the binding energy
when μ ≫ p ∼mD ≫ E ≫ T we needed gluons of energy
∼T and momentum∼mD. These gluons are on the one hand
sensitive to the binding energy, and hence Coulomb
resummations are required, and on the other hand have a
momentum large enough so that the multipole expansion
cannot be applied, and hence the calculation cannot be
carried out entirely in pNRQCD. We circumvented
these difficulties by introducing the extra hypothesis
p ≫ mD. Another nontrivial example is the contribution
of quasistatic magnetic modes [59,60] when μ ≫ p∼
mD ≫ T ≫ E that give an important T-dependent piece
of the binding energy.3 Finally, let us mention the loga-
rithmic T-dependence in the same case, which is log
enhanced and requires the introduction of an extra regu-
larization to factorize the energy scale from the momentum
scale. We have chosen an analytic regularization similar to
ref. [61], see Appendix B.
Our results are obtained entirely in the weak coupling

regime of QCD and thus may not be straightforwardly
applied to realistic experimental situations, especially for
charmonium, as some of the scales in the problem may
not be large enough. Nevertheless, we believe they provide
important constraints to models, as they fix quite a number of
asymptotic behaviors for large μ of more realistic models. In
the absence of a definitive approach to address real-time
phenomena in general and large chemical potentials in
particular in lattice QCD, complementary approaches based
on weak coupling QCD should be helpful.
Let us then consider J=ψ, which will be observed in most

of the planned experiments [33]. If we takemc ∼ 1.6 GeV,4

then the experimental value of the J=ψ mass delivers
E ∼ 0.1 GeV. If we associate this value with a Coulombic
state, we obtain αsðpÞ ∼ 0.4 and p ∼ 1=r ∼ 0.4 GeV.
We see that the value of p is very low even if αs is

3Quasistatic magnetic modes are the responsible for perturba-
tion theory at finite temperature to break down at energy scales
smaller than the Debye mass k0 ≪ mD ∼ gT. This is due to Bose
enhancement that introduces large factors T=k0 in the thermal
propagators, which compensate for the gs in the vertices. Note
that here the situation is different. SincemD ∼ gμ ≫ T ∼ k0, there
is no Bose enhancement and perturbation theory is well under
control.

4This value corresponds to the so called RS’ mass at low scale
in Ref. [62].
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relatively small.5 For the maximum expected values of the
baryon chemical potential μB quoted in Ref. [33], we have
μ ¼ μB=3≲ 0.3 GeV.6 It means that most of the times
we would be in the case of Sec. III, and only when
μ ∼ 0.3 GeV, the case of Sec. IV may be relevant. This is of
course provided that T ≲ μ.
Although analyzing bottomonium does not seem to be in

the future experimental plans, some of the colliders feeding
the relevant experiments (e.g., NICA, RHIC, SPS) are
energetic enough to produce it. If we take mb ∼ 4.9 GeV,7

then the experimental value of the ϒð1SÞ mass delivers
E ∼ 0.34 GeV. If we associate this value with a Coulombic
state, we obtain αsðpÞ ∼ 0.4 and p ∼ 1=r ∼ 1.2 GeV. Then,
for the expected values of the chemical potential, ϒð1SÞ
would always be in the case of Sec. III.
If we stick to qualitative features of our results, the most

relevant one is that a temperature larger than the size of the
binding energy T > E appears to be necessary for heavy
quarkonium to develop a decay width. No decay width is
developed if T < E, no matter how large is the chemical
potential (provided it is smaller than the heavy quark mass).
This may be understood in terms of the Fermi sea: In order
to dissociate quarkonium, a light quark of the Fermi sea
must provide an energy larger than the binding energy to
the bound state. But then it becomes less energetic in the
final state, and since all the states with less energy are
occupied in the Fermi sea, the process cannot take place.
Hence at large chemical potential and small temperature,
we only expect modifications in the heavy quarkonium
mass (through the binding energy). The dissociation
mechanism would be screening, namely the one originally
proposed in [2].
For sufficiently heavy quark mass, chemical potential

and/or temperature, our results are reliable. In the case of
small (zero) temperature and large chemical potential, one
should observe in the quarkonium spectral function a shift
in the location of each bound state peak with no mod-
ifications in the width when we increase μ. This is in
contrast with what happens at large temperature and small
(zero) chemical potential, in which case, apart from the
shift in the location of the bound state peaks, a widening of
the peaks is observed when the temperature is increased. In
fact, the melting of the bound states occurs because the
peaks corresponding to different bound states overlap and
lose their identity. This can be understood at weak coupling
in terms of the Landau damping [8]. In the case of large
chemical potential one would just observe bound states

peaks disappearing when we increase the chemical poten-
tial. It would be interesting to cross-check our results in
lattice QCD simulations, but this would require having
overcome the difficulties of dealing with a large chemical
potential (see [3,63–67] for reviews).
However, we can compare with the results of ref. [68],

a NRQCD lattice simulation for Nc ¼ 2 and Nf ¼ 2 and
heavy quark mass ma ¼ 5, 4, 3, where a is the lattice
spacing. They consider 0≤μa≤1.1 and 1=24≤Ta≤1=12,
hence we can probe the μ ≫ T regime. If we assume that
the binding energies are Coulombic, from the values for
different masses of ΔEa at μ ¼ 0 in their Fig. 1, we obtain
that αs ∼ 0.65–0.7 at the scale of the typical relative
momentum p. This implies E∼0.3a and p ∼ 1=r ∼ 1.2a.
Hence, most of the data displayed in their Fig. 1 is in the
region m ≫ p ≫ μ ≫ E ≫ T, and we should compare it
with the results in our Eq. (58) and Eq. (68). The left panel
of their Fig. 1 shows the binding energy as a function of μa
for three values of the heavy quark mass. For these plots
to be compatible with Eq. (58), we need the total (i.e.,
including the one hidden in the Debye mass) coefficient
of the μ3 term to be positive (the temperature can be
neglected). This is achieved if αsðmDÞ≳ 0.86. If so, our
expression qualitatively describes the rising observed from
μa ∼ 0.6 to μa ∼ 1. We can also understand the bending
downwards around μa ∼ 1: in this region μ ∼ p and with
our values of αsðmDÞ, μ ∼mD, hence Eq. (74) and Eq. (75)
should better be used for the energy shift. If we expand
Eq. (75) for mDr ≪ 1, the first correction to the Coulomb
potential is negative, which may explain the above men-
tioned downward trend. However, we cannot explain the
mild decreasing from μa ∼ 0.3 to μa ∼ 0.6. We would
probably need expressions for μ ∼ E that we have not
worked out, or it may simply happen that αs becomes too
large at those low scales so that our weak coupling
description is not appropriate even qualitatively. In any
case, the behavior of the curves with the mass is easy to
understand as the dependence on the chemical potential
goes as μ3=m2. Hence the smaller the mass is, the more
noticeable the effects are, as clearly shown in the left panel.
The temperature effects are displayed in the right panel of
their Fig. 1. Those should be encoded in Eq. (68), and we
indeed see in the plot that rising the temperature increases
the binding energy, although we do not observe the
quadratic increase of Eq. (68).
Finally, our results can also be applied to the case of a

nonvanishing isospin chemical potential μI rather than a
baryon chemical potential. We only have to replace Nfμ by
2jμIj in our equations. This is because our expressions are
symmetric under μ ↔ −μ and each light quark contributes
the same amount of μ at finite baryon chemical potential.
At finite isospin chemical potential, the u-quark contributes
by μI, the d-quark by −μI. We could then try to compare
with the two-flavor lattice results of ref. [69]. However,
the results displayed in that reference correspond to

5This in fact means that assuming a Coulombic bound state at
leading order is not really consistent. One needs to include higher
orders in αs in the potential to get J=ψ under reasonable control,
see for instance [62] and references therein.

6We understand that the units for μB in Table I of [33] are MeV
rather than the quoted GeV.

7This value corresponds to the so called RS’ mass at low scale
in Ref. [62].

STEFANO CARIGNANO and JOAN SOTO PHYS. REV. D 102, 116021 (2020)

116021-18



μI ≲ 0.3 GeV, a too low scale to apply our weak coupling
calculation.8
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APPENDIX A: LEADING CORRECTIONS TO
THE IMAGINARY PART OF THE POTENTIAL
AND HEAVY QUARK SELF-ENERGY IN THE

μ ≫ p ∼mD ≫ E ≫ T CASE

We prove in this Appendix that the leading corrections to
the imaginary part of the potential and the heavy quark
selfenergy in Sec. IV C 2 also vanish.

1. HTL correction to the vertex

Beyond leading order, a possible source of imaginary
contributions to the potential is the vertex correction
of Fig. 10. Writing the full vertex function as Wa ¼
Tað1þ δWÞ, δW reads

iδW ¼ −
ðig3Þ
2Nc

ν4−D
Z

dDk
ð2πÞD

1

Ẽ − k0 þ iη

1

Ẽ0 − k0 þ iη

×D00ðk0; kÞ; ðA1Þ
where Ẽ¼E−ðkþpÞ2=ð2mÞ and Ẽ0¼E0−ðkþp0Þ2=ð2mÞ,
ðE;pÞ and ðE0;p0Þ being the incoming and outgoing
heavy-quark energy and three-momentum respectively.
Eventually, we will use that Ẽ, Ẽ0 are much smaller than
k, p and p0, and that in a bound state E, E0 < 0. However
this limit must be taken once the k0 integral has been
carried out, otherwise we are left with ill-defined expres-
sions. Since in the small-temperature limit (here and in
the following we will use the shorthand notation
DR=A

00 ðk0;kÞ≡ R=Aðk0; kÞ and _Rðk0;kÞ ¼ dRðk0; kÞ=dk0)

D00ðk0; kÞ ¼
1

2
½Rðk0; kÞ þ Aðk0; kÞ

þ sgnðk0ÞðRðk0; kÞ − Aðk0; kÞÞ�; ðA2Þ
wewrite δW ¼ δW1 þ δW2, with δW2 containing the terms
proportional to sgnðk0Þ and δW1 all the rest. δW1 can be

evaluated by contour integration, and the small Ẽ, Ẽ0
limit gives,

δW1 ¼ −
ðig3Þ
4Nc

ν4−D
Z

ddk
ð2πÞd

_Rð0; kÞ; ðA3Þ

which is purely imaginary. The imaginary part of δW2 can
also be evaluated using the formula,

1

Ẽ − k0 þ iη

1

Ẽ0 − k0 þ iη

¼ P

Ẽ − k0
P

Ẽ0 − k0
− iπδðẼ − k0Þ

×
P

Ẽ0 − k0
− iπ

P
Ẽ − k0

δðẼ0 − k0Þ: ðA4Þ

It leads to

ImδW2 ¼
ðig3Þ
4Nc

ν4−D
Z

ddk
ð2πÞd

_Rð0; kÞ; ðA5Þ

which cancels exactly (A3). Hence no imaginary part arises
from the vertex correction at one loop.

2. HTL two-gluon exchange contributions
to the potential

The two gluon exchange contributions of Fig. 11 may
also provide imaginary parts. Consider first the diagram on
the left projected on color singlet states. This diagram
contains the iteration of the leading order potential, which
must be subtracted,

δV ¼ −iC2
F

Z
dDk
ð2πÞD

i
E
2
þ k0 þ iη

i
E
2
þ k0 þ iη

× ½D00ðk0;kÞD00ðk0;kþ qÞ
−D00ð0;kÞD00ð0;kþ qÞ�; ðA6Þ

where we recall thatD00 stands for the 11 component of the
real-time temporal gluon propagator. Upon writing it in
terms of the retarded and advanced propagators we obtain

δV ¼ δV1 þ δV2; with

δV1 ¼ −iC2
F

Z
dDk
ð2πÞD

i
E
2
þ k0 þ iη

i
E
2
þ k0 þ iη

×
1

2
½Rðk0;kÞRðk0;kþ qÞ − Rð0;kÞRð0;kþ qÞ

ðA7Þ

þ Aðk0;kÞAðk0;kþ qÞ − Að0;kÞAð0;kþ qÞ�;
ðA8Þ

8In addition, they sit in the region μI ≲ E for which we do not
have explicit formulas.
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δV2 ¼ −iC2
F

Z
dDk
ð2πÞD

i
E
2
þ k0 þ iη

i
E
2
þ k0 þ iη

1

2
sgnðk0Þ½Rðk0;kÞRðk0;kþ qÞ − Aðk0;kÞAðk0;kþ qÞ�: ðA9Þ

For δV1 the integral over k0 can be carried out, which turns the two heavy quark propagators into a i=ðEþ iηÞ quarkonium
propagator and replaces the k0 in the retarded and advanced propagators by E=2 and −E=2 respectively. Using E ≪ k, q,
we finally get

ImðδV1Þ ¼ −
iC2

F

2

Z
ddk
ð2πÞd ðRð0;kÞ

_Rð0;kþ qÞ þ _Rð0;kÞRð0;kþ qÞÞ; ðA10Þ

where we have also used Rð0;kÞ ¼ Að0;kÞ and _Rð0;kÞ ¼ − _Að0;kÞ. For δV2, it is tempting to take E → 0 in the integrand,
and then formally show that ImðδV2Þ ¼ 0. However, it turns out that the integral is ill defined in that limit, and this naive
result is wrong. Instead, one can show that, for E < 0,

ImðδV2Þ ¼ −
iC2

F

4E

Z
ddk
ð2πÞd

�
R

�
−
E
2
;k

�
R

�
−
E
2
;kþ q

�
− A

�
−
E
2
;k

�
A

�
−
E
2
;kþ q

�

− R

�
E
2
;k

�
R

�
E
2
;kþ q

�
þ A

�
E
2
;k

�
A

�
E
2
;kþ q

��

¼ iC2
F

2

Z
ddk
ð2πÞd ðRð0;kÞ

_Rð0;kþ qÞ þ _Rð0;kÞRð0;kþ qÞÞ; ðA11Þ

where we have used E ≪ k, q in the last equality. Note that (A11) cancels exactly (A10), so that finally
ImðδVÞ ¼ ImðδV1Þ þ ImðδV2Þ ¼ 0.
For the diagram on the right of Fig. 11 we get, in a similar way, cancellations between the imaginary part of the terms

proportional to sgnðk0Þ and the rest of the contribution. Then the one-loop contribution to the imaginary part of the potential
also cancels out.

3. Two-loop HTL contributions to the heavy quark self-energy

At the same order, namely suppressed by αs, there are also the two loop contributions to the heavy quark self-energy. We
have three diagrams contributing to the heavy quark self-energy at two loops. One of the diagrams corresponds to a
longitudinal HTL gluon self-energy insertion to the one loop diagram. The imaginary part of this diagram has been shown to
vanish on general grounds in Sec. IV C 2. We show in the following sections that the remaining two diagrams, which are
shown in Fig. 12, also have a vanishing imaginary part.

a. Heavy quark self-energy insertion

The diagram on the left of Fig. 12 corresponds to a heavy quark self-energy insertion to the one-loop diagram. The
(complex) mass shift produced by this diagram reads

δm ¼ ig2CFν
4−D

Z
dDk
ð2πÞD

i
ðE − k0 − ΣðE − k0Þ þ iηÞD

HTL
00 ðk0; kÞ; with ðA12Þ

ΣðE − k0; kÞ ¼ ig2CFν
4−D

Z
dDk0

ð2πÞD
i

ðE − k0 − k00 þ iηÞD
HTL
00 ðk00; k0Þ: ðA13Þ

The imaginary part of the one-loop heavy quark self-energy reads,

ImΣðE − k0Þ ¼
g2CF

2
ν4−DθðE − k0Þ

Z
ddk
ð2πÞd ðRðE − k0; kÞ − AðE − k0; kÞÞ: ðA14Þ

Note that in (A12) Σ is a perturbation, and hence it can only slightly move the location of the pole. Near this location we can
then use that Im ½Σð0Þ� ¼ 0 (since Rð0; kÞ ¼ Að0; kÞÞ, thus the heavy quark propagator pole will still be in the upper
complex half-plane. This observation allows to calculate,
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ImðδmÞ ¼ ig2CF

2
ν4−D

Z
dDk
ð2πÞD

�
P

1

ðE − k0 − ΣðE − k0ÞÞ
ðRðk0; kÞ þ Aðk0; kÞÞ

− πiδðE − k0 − ΣðE − k0ÞÞsgnðk0ÞðRðk0; kÞ − Aðk0; kÞÞ
�

¼ g2CFπ

4
ν4−D

Z
ddk
ð2πÞd ½ðRðE − Σð0Þ; kÞ þ AðE − Σð0Þ; kÞÞ

þ sgnðE − Σð0ÞÞðRðE − Σð0Þ; kÞ − AðE − Σð0Þ; kÞÞ� ¼ 0; ðA15Þ

where in the last equality we have used that sgnðE − Σð0ÞÞ ¼ −1, since Σð0Þ is a perturbation and E < 0 for a bound state.

b. The irreducible diagram

We focus here on the diagram on the right of Fig. 12. We have,

δm ¼ iCFg4

16Nc
ν8−2D

Z
dDk
ð2πÞD

dDk0

ð2πÞD
i

ðE − k00 þ iηÞ
i

ðE − k0 − k00 þ iηÞ
i

ðE − k0 þ iηÞ
× fðRðk0; kÞ þ Aðk0; kÞÞðRðk00; k0Þ þ Aðk00; k0ÞÞ þ sgnðk0ÞðRðk0; kÞ − Aðk0; kÞÞsgnðk00ÞðRðk00; k0Þ − Aðk00; k0ÞÞ
þ ðRðk0; kÞ þ Aðk0; kÞÞsgnðk00ÞðRðk00; k0Þ − Aðk00; k0ÞÞ þ sgnðk0ÞðRðk0; kÞ − Aðk0; kÞÞðRðk00; k0Þ þ Aðk00; k0ÞÞg

≡ δm1 þ δm2 þ 2δm3; ðA16Þ

where in the definitions abovewe have used that the two terms in the third row are equivalent. For δm1, the k00 integral can be
done by contour integration, and the limit E ≪ k, k0 is well defined. We obtain

δm1 ¼ −
iCFg4

16Nc
ν8−2D

Z
ddk
ð2πÞd

ddk0

ð2πÞd
�Z

∞

−∞

dk0
ð2πÞ

Rðk0; kÞAðk0; k0Þ
ðk0 − iηÞ2 − i _Rð0; kÞRð0; k0Þ

�
; ðA17Þ

where we have dropped terms with two advanced propagators as all singularities are in the upper half plane. For δm2, the
limit E ≪ k, k0 is also well defined due to the fact that Rð0; kÞ ¼ Að0; kÞ. We obtain,

δm2 ¼−
iCFg4

16Nc
ν8−2D

Z
ddk
ð2πÞd

ddk0

ð2πÞd
Z

∞

0

dk0
ð2πÞ

Z
∞

0

dk00
ðRðk0; kÞ−Aðk0;kÞÞðRðk00; k0Þ−Aðk00;k0ÞÞ

k0k00
ðδðk0þ k00Þþ δðk0 − k00ÞÞ

¼−
iCFg4

32Nc
ν8−2D

Z
ddk
ð2πÞd

ddk0

ð2πÞd
Z

∞

−∞

dk0
ð2πÞk20

½ðRðk0; kÞ−Aðk0;kÞÞðRðk0;k0Þ−Aðk0; k0ÞÞ�: ðA18Þ

The k20 in the denominator can be substituted by ðk0 − iηÞ2. Then the term with two advanced propagators can be dropped,
and the two terms with one advanced and one retarded propagator are equivalent (upon k ↔ k0) When we add up δm1 and
δm2, we have,

δm1 þ δm2 ¼ −
iCFg4

32Nc
ν8−2D

Z
ddk
ð2πÞd

ddk0

ð2πÞd
�Z

∞

−∞

dk0
ð2πÞ

Rðk0; kÞRðk0; k0Þ
ðk0 − iηÞ2 − i2 _Rð0; kÞRð0; k0Þ

�
¼ 0; ðA19Þ

where in the last equality we have evaluated the k0 integral by contour integration and used the symmetry k ↔ k0, which
exactly cancels the last term.
Consider finally δm3. The integral over k00 (or k0) can be done by contour integration, then we are left with an expression

with a well-defined E ≪ k, k0 limit,

δm3 ¼
iCF

8Nc
ν8−2D

Z
ddk
ð2πÞd

ddk0

ð2πÞd
Z

∞

0

dk0
ð2πÞ

Rðk0; k0Þ − Aðk0; k0Þ
k02

½Rð0; kÞ þ Að0; kÞ − Rðk0; kÞ − Aðk0; kÞ�: ðA20Þ

From this expression, it is easy to see that Im ðδm3Þ ¼ 0 (recall that R�ðk0; kÞ ¼ −Aðk0; kÞ). Hence, ImðδmÞ ¼ Imðδm1 þ
δm2 þ 2δm3Þ ¼ 0 at two loop level as well.
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APPENDIX B: logT-DEPENDENT LOG-ENHANCED MASS SHIFT CONTRIBUTIONS

We mentioned at the end of Sec. IV C 1, this is in the case m ≫ μ ≫ mD ∼ p ≫ T ≫ E, that there are parametrically
larger T-dependent contributions than those stemming from the magnetic gluons. They correspond to the region k0 ∼ T,
k ∼mD in the self-energy diagram of Fig. 9. The T-dependent contribution to the (real part of the) mass shift can be
obtained from

δm ¼ g2CFν
4−D

Z
ddk
ð2πÞd P

Z
∞

0

dk0

2π

�
1

a − k0
þ 1

aþ k0

�
NBðk0Þ

2
½DR

00ðk0; kÞ −DA
00ðk0; kÞ�; ðB1Þ

where a ¼ E − k2=2m. For k ∼mD ∼ p and k0 ∼ T, then k2=2m ∼ E ≪ T ∼ k0, a can be expanded in the denominators,
and k0 in the HTL longitudinal gluon propagators. We have,

δmjk0∼Tk∼mD
≃ −g2CFν

4−D
Z

ddk
ð2πÞd

Z
∞

0

dk0

2π

a
k0

NBðk0Þ
πm2

D

kðk2 þm2
DÞ2

: ðB2Þ

The expression above not only contains a UV log divergence in k, which is already regulated in DR, but also an IR power
divergence and a UV log divergence in k0, which need regularization. We choose the analytic regularization
dk0 → dk0ðk0=ν0Þλ, λ → 0. This regularization drops the power-like divergences as DR does, and hence we are left
with the UV log divergence that will be represented by a pole in 1=λ. We obtain,

δmjk0∼Tk∼mD
¼ −g2CFν

4−D
Z

ddk
ð2πÞD

aπm2
D

kðk2 þm2
DÞ2

�
−1=λþ γ − log

2πT
ν0

�
: ðB3Þ

The 1=λ pole above must be compensated by the IR behavior of k0 at a higher scale, while keeping k at the same size. A
natural choice is taking k0 ∼ k ∼mD. Then the same approximations as before can be done in the heavy quark propagator,
but the distribution function Nðk0Þ reduces to 1 and the longitudinal gluon HTL propagators must be kept exact. We have,

δmjk0∼kk∼mD
≃ −g2CFν

4−D
Z

ddk
ð2πÞd

Z
∞

0

dk0

2π

�
a
k0

��
πm2

D

k
θðk − k0ÞjDR

00ðk0; kÞj2
�
: ðB4Þ

This expression is independent of T. We only need it to make sure that the 1=λ of Eq. (B3) cancels against the IR behavior of
a higher energy contribution. Then we can safely take the k0 → 0 limit in DR

00ðk0; kÞ above. Upon implementing the
analytical regularization discussed above we obtain

δmjk0∼kk∼mD
≃ −g2CFν

4−D
Z

ddk
ð2πÞD

aπm2
D

kðk2 þm2
DÞ2

�
1=λþ log

k
ν0

�
: ðB5Þ

Putting Eq. (B3) and Eq. (B5) together, we have the following T-dependent contribution,

δmjk∼mD
≃ −g2CFν

4−D
Z

ddk
ð2πÞD

aπm2
D

kðk2 þm2
DÞ2

log
k
T
: ðB6Þ

This expression is still UV divergent in k. This is due to the kinetic term −k2=2m in a. We expect this divergence to be
cancelled by the IR contribution at the scale k ∼ μ of Eq. (B1). In this case we must take the full one-loop longitudinal gluon
propagator, but we may treat the self-energy Π as a perturbation. We get,

δmjk∼μ ≃ −g2CFν
4−D

Z
ddk
ð2πÞd

Z
∞

0

dk0

2π

�
a
k20

�
NBðk0Þ

�
−i

ΠRðk0; kÞ − ΠAðk0; kÞ
k4

�
; ðB7Þ

where a ≃ −k2=2m since for k ∼ μ, μ2=m ≫ E. In the region k0 ∼ k ∼ μ, k0 ≫ a and the expression above follows from
expanding the denominators in Eq. (B1) in a. In the region k0 ∼ T ≪ mD ∼ μ2=m the expression above is not correct in
general. However, it has the same UV behavior in k0 as Eq. (B1), and this is enough to extract the right logT behavior. In the
region k0 ∼ T, we may use k0 ≪ k to simplify Π. The region k0 ∼ k is independent of T since we can approximate
Nðk0Þ ∼ 1 and we only need it to cancel the 1=λ pole from the UV divergence of the k0 ∼ T region. Then we only need the
k0 → 0 behavior of the k0 ∼ k region and hence we can also use k0 ≪ k to simplify Π. We then have,
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ΠRðk0; kÞ − ΠAðk0; kÞ ≃
iπm2

D

4μ2k

��
2k0μ2 þ k2μ −

k3

3
−
k2k0
2

�
θð2μ − k − k0Þ

þ
�
2k0μ2 − k2μþ k3

3
−
k2k0
2

�
θð2μ − kþ k0Þ þOðk20k; k20μÞ

�
: ðB8Þ

In the k0 ∼ T contribution we may simply drop k0 from the θ functions, and recover,

ΠRðk0; kÞ − ΠAðk0; kÞ ≃
iπm2

Dk0
k

��
1 −

k2

4μ2

�
θð2μ − kÞ þOðk0k; k0μÞ

�
: ðB9Þ

In the k0 ∼ k contribution, however, we need to keep k0 in the θ functions in order to avoid scaleless integrals in k0. Putting
together the k0 ∼ T and the k0 ∼ k regions, we obtain,

δmjk∼μ ≃
g2CFπm2

D

2m
ν4−DΩd

ð2πÞD
Z

2μ

0

dkkd−4
�
1 −

k2

4μ2

��
γ þ log

2μ − k
2πT

�
: ðB10Þ

Finally, putting together Eq. (B6) and Eq. (B10) we get for the T-dependent log-enhanced contributions to the mass shift,

δm ¼ αsCFm2
D

2πm
log

mD

T

�
log

μ

mD
þOð1Þ

�
: ðB11Þ

The scale mD in the logmD=T above is arbitrary. It can be replaced by any other scale since we have not calculated the
T-independent pieces at this order because they are subleading.
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