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The probabilities of various elementary laser-photon-electron/positron interactions display in selected
phase space and parameter regions typical nonperturbative dependencies such as ∝ P expf−aEcrit=Eg,
where P is a preexponential factor, Ecrit denotes the critical Sauter-Schwinger field strength, and
E characterizes the (laser) field strength. While the Schwinger process with a ¼ aS ≡ π and the nonlinear
Breit-Wheeler process in the tunneling regime with a ¼ anlBW ≡ 4m=3ω0 (with ω0 the probe photon
energy and m the electron/positron mass) are famous results, we point out here that also the nonlinear
Compton scattering exhibits a similar behavior when focusing on high harmonics. Using a suitable cutoff

c > 0, the factor a becomes a ¼ anlC ≡ 2
3
cm=ðp0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2Þ

p
. This opens the avenue toward a new

signature of the boiling point of the vacuum even for field strengths E below Ecrit by employing a high
electron beam-energy p0 to counter balance the large ratio Ecrit=E by a small factor a to achieve
E=a → Ecrit. In the weak-field regime, the cutoff facilitates a threshold leading to multiphoton signatures
showing up in the total cross section at subthreshold energies.

DOI: 10.1103/PhysRevD.102.116016

I. INTRODUCTION

The Schwinger process signals the instability of the
vacuum against particle (pair) creation in an external field.
The pair (eþe−) production rate ∝ expf−aEcrit=Eg, a ¼ π
[1–3], in a spatiotemporally homogeneous electric field
of strength E is exceedingly small due to the large value of
the (critical) Sauter-Schwinger field strength Ecrit ¼ 1.3 ×
1018 V=m and therefore escaped a direct experimental
verification until now. Much hope was therefore put on
the progressing laser technology which however delivers
even at present and near-future “ultrahigh intensities” far
too low field strengths [4,5]. Many efforts on the theory
side attempted to find field configurations which enhance
the Schwinger-type pair production. To cite a few entries of
the fairly extended literature, which documents the ongoing
enormous interest in that topic, we mention dynamical
assistance [6–18], double assistance effects [19,20], multi-
beam configurations [21], and their embedding into opti-
mization procedures [22,23]. In essence, these attempts
envisage a reduction of the factor a in the above exponent,

which is in general a complicated function of the external
parameters. Despite such a “practical goal,” these inves-
tigations aim at understanding the QED as a pillar of the
Standard Model in the nonperturbative, high-intensity
regime. Given the seminal meaning of the Schwinger
process as paradigm for related processes, e.g., particle
production in cosmology [24] and at black hole horizons as
Hawking radiation [25], up to the disputed Unruh radiation
[26–28], various authors considered analog processes, e.g.,
in condensed matter physics [29,30] and in wave guides
[31], etc., which display also the monomonial, genuinely
nonperturbative dependence on an external field parameter.
Still within QED, one can search for more easily

accessible processes which have the prototypical non-
perturbative dependence ∝ expf−aEcrit=Eg. For instance,
the LUXE Collaboration [32–34] envisages to exploit the
nonlinear Breit-Wheeler process which is known to behave
as ∝ expf−anlBWEcrit=Eg in the tunneling regime with
anlBW ¼ 4m=3ω0, where ω0 is the energy of a probe photon
traversing a strong laser pulse. LUXE is planed as next-
generation follow-up of the seminal SLAC experiment
E-144 [35], which operated in the multiphoton regime, by
“measuring the boiling point of the vacuum of quantum
electrodynamics” [32] via the nonlinear Breit-Wheeler
process since ω0 ≫ m reduces the exponential suppression,
i.e., it makes the above quantity anlBW small when using
probe photon energies ω0 much larger than the electron
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mass m, thus compensating the large value of Ecrit=E at
presently attainable facilities. Note furthermore that the
trident process shows also an exponential behavior under
certain conditions [36,37], as originally elaborated in [38,39].
Here, we point out that the nonlinear Compton process

has a similar nonperturbative exponential field strength
dependence under certain side conditions. The key is the
suppression of the low harmonics which facilitate the
Thomson limit and display a polynomial dependence.
What is then left is the otherwise exponentially suppressed
contribution. The analogy to the nonlinear Breit-Wheeler
process is not surprising since it is the crossing channel of
the nonlinear Compton process in the Furry picture. The
crucial difference is in the final-state phase spaces. This is
most clearly evident in the perturbative, weak-field limit,
where the Breit-Wheeler process is a threshold process,
while the Compton process without side conditions has no
threshold (see [40,41] for the physical regions in the
Mandelstam plane). We introduce here as side condition
a cutoff which is related to exit channel kinematics. This in
fact enforces the exponential behavior.
Our brief note is organized as follows. In Sec. II, we

outline the definition of a Lorentz invariant cutoff in the
nonlinear Compton scattering. In Sec. III, the restriction of
the physically accessible regions in the Mandelstam plane
is discussed. The cutoff facilitates a clear signature of
multiphoton effects in the total cross section in the weak-
field regime (Sec. IV). The moderately strong-field regime
is considered in Sec. V, where we compare the exact
numerical results with some approximation formula to
evidence the exponential dependence of the cross section.
The discussion in Sec. VI contains a comparison with laser
pulses and outlines of how the cutoff is realized by photon
observables in the exit channel. We summarize in Sec. VII.

II. NONLINEAR COMPTON SCATTERING
WITH CUTOFF

We consider here a monochromatic laser field in plane-
wave approximation for circular polarization. The non-
linear Compton (nlC) cross section with cutoff c reads

σ ¼ α2π

a20

1

k · p
Fða0; k · p; cÞ;

Fða0; k · p; cÞ ¼
X∞
n¼1

Z
yn

c
dx

1

ð1þ xÞ2 FnðznÞ; ð1Þ

where

FnðznÞ ¼ −4JnðznÞ2 þ
�
2þ x2

1þ x

�
× a20½Jnþ1ðznÞ2 þ Jn−1ðznÞ2 − 2JnðznÞ2� ð2Þ

for c ≤ yn and Fn ¼ 0 elsewhere. The Lorentz and gauge
invariant quantity a0 is the classical nonlinearity parameter
characterizing solely the laser beam, and α stands for the

fine-structure constant. The arguments of the Bessel func-

tions Jn read explicitly znðx; yn; a0Þ ¼ 2na0 1
yn

ffiffiffiffiffiffiffiffiffiffiffiffi
xðyn−xÞ
1þa2

0

q
,

where the two invariants x ¼ k · k0=k · p0 and yn ¼ 2n k·p
m2�

with 0 ≤ x ≤ yn enter. For c ¼ 0, one recovers the text
book formulas, e.g., in [40,41], where the effective mass
m2� ¼ m2ð1þ a20Þ and the (quasi-) momentum balance as
well as the relation to asymptotic four-momenta (p=p0 for
in-/out-electrons and k=k0 for in-/out-photons) are dis-
cussed in detail. The only but decisive difference is the
introduction of the cutoff c in (1) which pushes the lower
limit of the x integration to higher values, i.e., it is aimed at
suppressing the lower harmonics.

III. KINEMATICS IN THE MANDELSTAM PLANE

The meaning of the cutoff c can be visualized in a
covariant manner by inspecting the Mandelstam plane.
Defining the invariants sn ¼ ðqþ nkÞ2, tn ¼ ðk0 − nkÞ2,
un ¼ ðq0 − nkÞ2 for harmonics n ¼ 1; 2; 3 � � �, the physical
regions I–III in scaled triangular coordinates ŝ ¼ s=m2�,
t̂ ¼ t=m2�, û ¼ u=m2� with ŝþ t̂þ û ¼ 2 refer to processes
related by crossing symmetry on amplitude level: I (red
area in Fig. 1) for nlC process, e− þ nγ → e−0 þ γ0 or qþ
nk ¼ q0 þ k0 with quasimomenta q and q0, II (upper gray
area) for nonlinear Breit-Wheeler (nlBW) pair production,
γ0 þ nγ → eþ þ e− or k0 þ nk ¼ qeþ þ qe−, and III (left
gray area) as mirror of I, e.g., eþ þ nγ → eþ0 þ γ0. In I, the
harmonics ŝn ¼ const are parallel lines (in blue in Fig. 1),
limited by t̂ ¼ 0 (on-axis forward scattering, where x ¼ 0)
and by the hyperbola ŝ û ¼ 1 (on-axis backscattering), i.e.,
the physical interval of each harmonic is given by
0 ≤ t̂ ≤ 2 − ŝn − ŝ−1n , which is another way of expressing
the above quoted restriction 0 ≤ x ≤ yn. The scaled invari-
ant energy squared of the first harmonic is ŝ1 ¼ 1þ Δŝ
(measured from the bullet at the top of I in direction of the ŝ
coordinate, indicated by the arrow, as shown for the other
coordinates too) and the spacing of adjacent harmonics is
Δŝ ¼ ŝnþ1 − ŝn ¼ 2k · p=m2�. Considering an optical laser
(we use the frequency ω ¼ 1 eV as representative value)
colliding head-on with an electron beam, as available (i) in
HZDR1 (40 MeV [42]) or planned (ii) at ELI2 (600 MeV
[43]) and (iii) at LUXE (17.5 GeV [33]) for instance, one
has (i)Δŝ ≈ 6.5 × 10−3=ð1þ a20Þ, (ii) 9.6 × 10−2=ð1þ a20Þ,
and (iii) 2.8 × 10−1=ð1þ a20Þ in the red region displayed in
Fig. 1. Instead of displaying so many narrow parallel lines
representing the harmonics, we depict only a few repre-
sentative proxies of them at ŝ ¼ 3

2
; 2; 5

2
; 3, etc. as blue lines.

In contrast to the perturbative, weak-field limits of the
linear processes, n ¼ 1, a0 → 0, the physical regions I–III
of the nonlinear processes are mapped out by the discrete
harmonics n ¼ 1 � � �∞.
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The cutoff c ¼ 1 in (1) restricts the region I to the dark-
red area, limited by a section of the hyperbola ŝ û ¼ 1 and
the line x≡ k · k0=k · p0 ¼ t̂n=ð1 − ŝn − t̂nÞ ≥ c. This
excludes the low harmonics ŝn < 2 and restricts the
admissible t̂ intervals of the harmonics ŝn ≥ 2 to
1
2
ð1 − ŝnÞ ≥ t̂ ≥ 2 − ŝn − ŝ−1n . For the above quoted num-

bers, harmonics with n > ð1þ a20Þ=2p · k are in the admis-
sible region. In such a way, a nontrivial threshold is
introduced, depicted by the blue bullet at the tip of the
dark-red area at coordinates ŝ ¼ 2, t̂ ¼ − 1

2
and û ¼ 1

2
.

Imagine now that we keep the laser frequency ω ¼ jk⃗j
but lower the electron energy p0, i.e., the values of ŝn would
become gradually smaller. Then, a certain number of
harmonics drop out the admissible area as they pass the
threshold by moving to the left above: less and less
harmonics contribute to the nlC process by (i) imposing
a threshold by the cutoff c > 0 and/or (ii) diminishing ŝ1
(and all other ŝn).

IV. MULTIPHOTON REGIME, a0 < 1

To highlight this channel closing effect with invariant
variables we exhibit in Fig. 2, the nlC cross section (1) as a

function of s̃≡ 2k · p=m2 for a0 ¼ 0.01 and 0.1 for two
cutoff values, c ¼ 1 and 2. The figure unravels clearly the
multiphoton effects which look completely the same as
known from nlBW; see Fig. 3 in [44] (complementary
approaches to multiphoton effects are considered in [45]).
Thus, the channel closing effect is exactly analog to
subthreshold nlBW pair production in region II [46].
There, the threshold t̂ ¼ 4 (depicted as bullet at bottom
of the green top parabola ŝ û ¼ 1 in Fig. 1) limits the
physically admissible region: only harmonics with t̂n ≥ 4

contribute. The notion “subthreshold” means t̂n¼1 < 4.
Similar to the nlC process, we have displayed in Fig. 1
only two possible proxies (horizontal green lines) of two
harmonics of nlBW in region II. Note that, in considering
nlBW pair production per se, one changes usually the
coordinate names t̂n → ŝn, etc. according to the crossing
symmetry relations [41].

V. NONPERTURBATIVE REGIME, a0 ≳ 1

After enforcing a nontrivial threshold in nlC process by
the cutoff c > 0, one expects a further similarity to the
nlBW in the region a0 > 1 despite different phase

FIG. 1. Mandelstam plane with physical regions of nlC process (I, red area), nlBW process (II, upper gray area), and the mirrored
Compton I (III, left gray area). Arrows indicate the directions of positive variables ŝ, t̂, and û, and a few coordinate values are provided
too. Bullets depict thresholds. Harmonics of nlC are parallel to (and may coincide with) the blue lines in region I, which become
restricted to the dark-red region (labeled by “x > 1”) below the boundary x ¼ 1 (in yellow) and above the hyperbola ŝ û ¼ 1 (in green)
when imposing the cutoff c ¼ 1which facilitates the threshold at coordinates ŝ ¼ 2, t̂ ¼ − 1

2
, û ¼ 1

2
. In region II, the harmonics of nlBW

are parallel to (and may coincide with) the horizontal green lines.
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spaces. As shown originally in [47–49], in the tunne-
ling regime a0 ≲ 1=

ffiffiffi
κ

p
≫ 1, the nlBW pair creation

rate scales as ∝ κ expf−8=3κg, where κ ¼ a0k · k0=m2

(here, k and k0 are the in four-momenta of the laser and
probe photons). In head-on collisions, κ ¼ 2 ω0

m
E
Ecrit

since

a0 ¼ m
ω

E
Ecrit

. That yields the Schwinger-type dependence

∝ expf−anlBWEcrit=Eg with anlBW ¼ 4
3
m
ω0. The large ratio

Ecrit=E can be compensated by a small ratio m=ω0, thus
making the pair creation rate accessible in present day
experiments by using hard probe photons with ω0 ≫ m,
in contrast to the plain Schwinger rate, even with assistance
effects. As emphasized in [32], such a Schwinger-type
rate of nlBW is found numerically already for a0 ≳ 1
and κ ≲ 1.
Quite in contrast to nlBW, the nlC cross section

without cutoff displays a polynomial dependence on the
invariant Ritus variable3 χ≡a0k ·p=m2¼a0ðs1−m2�Þ=2m2

[48]. However, imposing the cutoff c > 0, thus suppressing
the low harmonics in (1) by a threshold, turns the behavior
to an exponential one. In fact, evaluating (1) numerically,
one obtains the solid curves in Fig. 3 for c ¼ 1 (left panel)
and 2 (right panel). Since at 1=χ < 1 the curves display an
a0 dependence, we have employed scaling factors. Without
the latter ones, the curves at 1=χ > 1 are nearly perfectly
on top of each other, i.e., independent of a0. To quantify

the 1=χ dependence, we depict for a comparison the
dashed/dotted curves based on

F∞ðχ; cÞ ¼
ffiffiffi
2

3

r
χ

π
fðcÞerfc

 ffiffiffiffiffi
2c
3χ

s !
þOðχ2=3Þ

→
c≫χ
�
χ

π

�
3=2 fðcÞ

c
exp

�
−
2c
3χ

�
þ � � � ; ð3Þ

where fðcÞ ¼ ð5þ 7cþ 5c2Þ=ð1þ cÞ3 and “erfc” stands
for the complementary error function.
One avenue to (3) is to start with (1) in the limit a0 → ∞

with side condition ð1 − z2n=n2Þa20 ¼ const and then to
convert the sum via the Euler-Maclaurin formula into
an integral, F∞ðχ; cÞ ¼ − 4

3π χ
2=3
R
∞
c dxfðxÞx−2=3Ai0ðzðxÞÞ

with zðxÞ ¼ ðx=χÞ2=3. Under the condition c ≫ χ, the
derivative of the Airy function, Ai0, can be replaced by
its asymptotic representation and the integral can be
executed upon a shift of the variable x and a suitable
Taylor expansion.
Surprisingly, the small-χ leading-order term

∝ expf−2c=3χg in (3) numerically approximates (1) fairly
well in the nonasymptotic region, a0 ≳ 1 and χ < 1,
irrespectively, of the assumptions made in the sketched
derivation. As a consequence, the nlC cross section
also displays a Schwinger-type dependence σðc > 0Þ ∝
expf−anlCEcrit=Eg for suitable values of the cutoff c > 0,
in general with anlCðc; a0; s1Þ. That is, the paradigmatic
transmonomial behavior [52] is provided not only for pair
creation but shows up also in high-harmonics Compton
scattering on the level of “total” cross section, which

FIG. 2. Scaled cross section of nlC (1) with cutoff values c ¼ 1 (blue curves) and c ¼ 2 (yellow curves) for a0 ¼ 0.01 (left panel) and
a0 ¼ 0.1 (right panel). The dashed curves depict separately the harmonic n ¼ 2. Note the use of the variables s̃≡ 2p · k=m2 ¼
ðs1 −m2�Þ=m2 (bottom abscissa) or χ ¼ a0s̃=2 (top abscissa); accordingly, the harmonic thresholds are at s̃ ¼ cð1þ a20Þ=n. For
comparison, the Klein-Nishina cross section is depicted by a dotted curve, and the Thomson cross section is marked by a circle. Upon
increasing the value of a0, more and more harmonics are lifted, and at a0 ¼ 1 (not displayed) already a multitude of harmonics adds up
to generate smooth distributions in the sub-threshold region, i.e., below s̃ ¼ 1 (2) for c ¼ 1 (2). These distributions are discussed as
functions of 1=χ, instead of s̃ or χ, in Sec. V below.

3The Ritus variable χ is a measure of the field strength E=Ecrit
in the rest frame of the electron; χ encodes the energy of the
laser þ electron beams as well as the laser intensity. The high-
energy limit and the high-intensity limit do not commute albeit
they yield both a high-χ asymptotic [50,51].
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actually means integration over a fraction of the out-
phase space.

VI. DISCUSSION

A. Imposing the cutoff: kinematics

The cutoff c > 0 in (1) looks quite innocent, but in
practice it may become challenging. To illustrate that
feature, let us employ laboratory observables: ν≡ ω=m
ð¼ 2 × 10−6 for optical lasersÞ, p0=m ¼ cosh ζ the Lorentz
factor of the in-electron, ν0 ≡ ω0=m for the normalized
energy of the out-photon in direction Θ0 such that Θ0 ¼ 0
and Θ0 ¼ π mean on-axis forward scattering and on-axis
backscattering, respectively. Adopting the notation in [40],
we recall the relation

x ¼ ð1 − cosΘ0Þν0
eζ − ð1 − cosΘ0Þν0 : ð4Þ

The admissible intervals for a harmonic n are for head-
on collisions 0 ≤ x ≤ yn ≡ 2nνeζ=ð1þ a20Þ, nν ≤ ν0n ≤
nν=ð1þ 2κne−ζÞ for 2κn ≡ 2nν − eζ þ ð1þ a20Þe−ζ < 0

or nν=ð1þ2κne−ζÞ≤ν0n≤nν for κn > 0, and 0 ≤ Θ0 ≤ π.
One has also to recall the well-known nlC kinematic
relation ν0ðn;Θ0; a0; ν; ζÞ ¼ nν=½1þ κne−ζð1 − cosΘ0Þ�,
e.g., in relating the x and Θ0 coordinates: a point at
x ¼ ξyn corresponds to ðπ − Θ0Þ2 ≈ 4 1−ξ

ξ ð1þ a20Þe−2ζ, in-
dependent of the harmonic number. This highlights the
preference of backscattering in the relativistic regime, since
a significant fraction of events with x → yn is seen
at Θ0 → π.
These relations evidence that one has to reject events

with too low values of ν0 or select sufficiently high
harmonics to realize the request x ≥ c, see the left panel

of Fig. 4 for on-axis backscattering. The meaning of
these curves is that the realization of x ≥ c requires in
general ν0ðn;Θ0;a0; ν; ζÞ ≥ ν0ðx;Θ0; ζÞ either as a function
of n (left panel, for Θ0 ¼ π) or as a function of Θ0 (right
panel, for selected harmonics), where (4) determines the
ν-independent function ν0ðx;Θ0; ζÞ. These relations are
exhibited also in the right panel of Fig. 4, where the
light-blue region depicts the range wherein x ≥ c ¼ 1 is
fulfilled. In the preferred backward direction Θ0 → π, the
curves ν0ðx;Θ0; ζÞ (black dashed) are nearly horizontal,
with the benefit that only an energy-resolved measurement
is necessary to select the wanted range x ≥ c by imposing a
veto for all events with e2ζð1 − cosðπ − Θ0ÞÞ > 20, for
instance. At smaller angles Θ0, i.e., going further to the
right—beyond the region displayed in the right panel of
Fig. 4—the curves ν0ðx;Θ0; ζÞ bend up, which would
require also an angular-resolved measurement. However,
the contributions of the very high harmonics are exceed-
ingly small in that phase space region and can be neglected.
Altogether, a cross section measurement in backward
direction and above the threshold value eζν0 ≥ 0.25 facil-
itates the cutoff c ¼ 1 for the LUXE kinematics.

B. Dead cone

In addition to this purely kinematic relations, one has to
account for the dynamics, in particular the dead cone effect
which is special for circularly polarized lasers according
to (1): ignoring for the moment being the cutoff, the
harmonics n > 1 are (multiply) peaked within the interval
0 < x < yn and drop smoothly toward zero at the bounda-
ries x → 0 and x → yn. Transforming to the laboratory
frame, the angular differential cross sections dσn=d cosΘ0
of selected harmonics n > 1 are peaked as exhibited in
Fig. 5 (left). Only the n ¼ 1 harmonic remains nonzero for

FIG. 3. Normalized cross section m2σðχÞa0=ðα2πÞ ¼ FðχÞ=χ of nlC from (1) as a function of 1=χ (solid curves) with cutoff values
c ¼ 1 (left panel) and c ¼ 2 (right panel). The dashed (dotted) curves exhibit the approximation (3) with erfc (exp). For a0 ¼ 1, 2, and 4
from top to bottom with scaling factors as indicated. The red bullets mark results of QED calculations with bandwidth and
ponderomotive effects for a0 ¼ 1 (see subsection VI C). Fits of these data bym2σðχÞ ∝ expf−2ccfit=3χg within the interval 1=χ ¼ ð1; 5�
deliver cc¼1

fit ¼ 1.27 and cc¼2
fit ¼ 2.59.
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Θ0 → π. The dropping of dσn=d cosΘ0jn>1 at the left side is
the dead cone effect. The dropping at the right side refers to
the suppression of forward scattering, i.e., at Θ0 → 0. The
black dashed curve connects the points of intersections of
the curves ν0ðn;Θ0; a0; ν; ζÞ and ν0ðx ¼ 1;Θ0; ζÞ, which can
be read off in Fig. 4 (right) for n ¼ 10, 20, 50, and 100.
For n < 8, there are no such intersections and, as a
consequence, the harmonic n ¼ 8—left beyond the dashed

curve—limits the admissible region x ≥ c ¼ 1 which is
highlighted in light blue, as in Fig. 4.
As advertised above, the contributions of the high

harmonics at e2ζð1 − cosðπ − Θ0ÞÞ > 20 are exceedingly
small, thus substantiating our claim that imposing a
frequency threshold is enough for a measurement of
σðc ¼ 1Þ, at least for the here employed LUXE kinematics.
This is evidenced in Fig. 5 (right), where some proxy of a

FIG. 5. Left panel: angular differential cross sections m2dσn=d cosΘ0 ¼ α2π
a2
0

m2

k·p
eζ

nνð1−cosΘ0Þ2
x2

ð1þxÞ2 FnðznÞ with x and zn to be viewed as

functions of Θ0 (cf. [40]) for the harmonics n ¼ 1…20 (in steps of 1) and 20 � � � 100 (in steps of 10). The harmonics n ¼ 10 (blue
dotted), 20 (read solid), and 50 (green dashed) are depicted in color code and line style as in Fig. 4 (right); the other harmonics (black
solid) are partially labeled. The black dashed curve—to be continued by the harmonic n ¼ 8—limits the admissible range (in light blue)
where x ≥ c ¼ 1 is fulfilled. Right panel: angular differential cross sectionsm2dσn=d cosΘ0 (see color code on rhs) over the scaled ν0-Θ0
plane. Low-order harmonics are clearly separated for monochromatic lasers (but are smeared out for pulses; see below). The gray lines
connect points of equal values (given by the numbers in the boxes) of m2dσn=d cosΘ0 on adjacent harmonics. Contributions smaller
than 10−15 are not displayed. Both panels are for the LUXE kinematics with ν ¼ 2 × 10−6, eζ ¼ 7 × 104, and a0 ¼ 1.

FIG. 4. Left panel: the scaled out-photon energy ν0 as a function of the harmonic number n for three kinematic situations referring to
the entrance channels at LUXE (left, in blue), ELI (middle, in green), and HZDR (right, in red). For a0 ¼ 0.01 (dashed), 1 (solid), and 2
(dotted) and on-axis backscattering. The curves connect smoothly the values of ν0 at the discrete harmonic numbers n. Selecting the out-
channel with x ≥ cmeans accepting only events in the light-blue region if c ¼ 1 is chosen. Right panel: the scaled out-photon energy as
a function of the angle Θ0 for the harmonics n ¼ 7, (black thin), 10 (blue dotted), 20 (red solid), 50 (green dashed), and 100 (black thin)
(LUXE parameters). Note the relation 1 − cosðπ − Θ0Þ ≈ 1

2
ϑ02 for backscattering, where ϑ0 ¼ π − Θ0 measures the angle of the out-

photon relative to the in-electron direction. The seemingly horizontal dashed lines e−ζν0 ¼ x
1þx

1
1−cosΘ0 are depicted for three values of the

invariant quantity x ¼ 0.1, 1, and ∞, and the light-blue region is again for admissible events if c ¼ 1 is chosen. The harmonic n ¼ 7
does never enter the light-blue region.
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contour plot (gray lines) of the angular differential cross
sections m2dσn=d cosΘ0 is exhibited over the scaled ν0-Θ0
plane. [The harmonics n have only support on the curves
ν0ðn;Θ0; a0; ν; ζÞ (see Fig. 4, right for several values
of n), and the colored pixels encode the values of
m2dσn=d cosΘ0. The gray lines connect points of equal
strengths on adjacent harmonics, thus serving as contour
lines despite the discrete occupancy in ν0 direction.] The
experimental challenge is therefore the precise setting of a
frequency threshold to select x ≥ c events out of a large
background.

C. Bandwidth effects and ponderomotive broadening

While (1) is for monochromatic laser beams with the
four-potential A⃗ðϕÞ ¼ gðϕÞ½a⃗1 cosϕþ a⃗2 sinϕ� of the e.m.
field with invariant phase ϕ and obeying gðϕÞ ¼ 1,
a⃗1a⃗2 ¼ 0, a⃗12 ¼ a⃗22, one has to check whether laser
pulses4 are well approximated when focusing on total
cross sections. In Fig. 6, the cross section as a function
of s̃ is exhibited, for a0 ¼ 0.01 and 0.1 as in Fig. 2,
however, for short and ultrashort pulses. The QED calcu-
lations are based on Eqs. (40) and (42) in [45] (version v1)
with u ≥ c to impose the cutoff. The pulse shape envelope
is here especially gðϕÞ ¼ 1= coshðϕ=NπÞ, where N char-
acterizes the number of oscillations of the field. This
envelope gðϕÞ does have neither an extended flat-top
section nor narrow ramping sections. The former property
makes it quite different to a near-monochromatic beam
with broad flat-top envelope and may be considered as
representing a “worst case”in that respect. The related

bandwidth effects and longitudinal ponderomotive broad-
ening are fully included in the QED calculation of one-
photon emission in [45]. For short pulses, these effects
smoothen the steplike shape of the total cross sections, as
known from nlBW [44]. In particular, for the ultrashort
pulse with N ¼ 1 (red curves), the combined strong
bandwidth effect and ponderomotive broadening overwrite
completely the multiphoton effects; the cross section is
stark enhanced in the subthreshold region. However, for
sufficiently long pulses with N ≥ 10, i.e., a pulse duration
of > 30 fs for optical laser pulses, even without pro-
nounced temporal flat-top profile, the essential dependen-
cies of the cross section model with cutoff (1) are
recovered; see green curves marked by dots in Fig. 6 for
a0 ¼ 0.01 and 0.1 and red curves marked by bullets in
Fig. 3 for a0 ¼ 1. Since the normalization of cross sections
in pulses is special (cf. [45,56]), let us focus on slopes at
a0 ¼ 1. As noted in the caption of Fig. 3, the slope
parameters ccfit of the pulse model with N ¼ 10 are about
25% larger than the ones of the monochromatic model (1).
Despite these differences, the ratio is still 1∶2. Such a cutoff
dependence can be experimentally tested in the analysis of
a given data set after data taking, e.g., at a suitable value of
χ. (A comprehensive theoretical study of the a0 > 1
dependence must be postponed because our present
numerical implementation restricts us to a0 ≤ 1.)
Turning to details of differential observables, the

model (1) is in general a less useful guide. In fact, keeping
the above pulse shape parametrization by gðϕÞ ¼
1= coshðϕ=NπÞ, the differential cross section dσ=dω0jΘ0 ,
e.g., for e2ζð1 − cosðπ − Θ0ÞÞ ¼ 3 (i.e., for Θ0 at about the
maximum of the angular differential cross section in Fig. 5,
left) does hardly recover the harmonic structures which can
be deduced from the right panels of Figs. 4 and 5; even for
longer pulses, see the left panel in Fig. 7. Instead of clearly
recognizable peaks at ω0 ¼ mν0ðn;Θ0; a0; ν; ζÞ, the spec-
trum in Fig. 7 (left) displays some complexity which is
further obscured by increasing gradually the parameter N.

FIG. 6. Same as in Fig. 2 but for laser pulses with envelope shape gðϕÞ ¼ 1= coshðϕ=NπÞ. N ¼ 1 (red curves) represents ultrashort
pulses and N ¼ 10 (green curves marked by dots) is among currently available short pulses. Blue curves are as in Fig. 2 for the
monochromatic case. For the cutoff value, c ¼ 1 and a0 ¼ 0.01 (left panel) and 0.1 (right panel).

4The Fourier-zero mode of the nonlinear phase can not be
longer absorbed in a redefinition of the electron momentum as
quasimomentum [53], which is a key quantity in the mono-
chromatic laser beam model (1), but an expansion into harmonics
is still possible for smooth, long pulses [53,54] (cf. [55] for a
discussion of these issues and a compendium of one- and two-
photon emission off electrons in laser pulses).
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This feature is known since some time, cf. [53,56,57] for instance. Bandwidth effects and ponderomotive broadening have
been identified as responsible, together with interferences.
To highlight the impact of the former ones, it is instructive to cast the above nlC kinematic relation ν0ðn;Θ0; a0; ν; ζÞ in

the form

2e−ζν0 ¼ 1

1þ e−ζ
2nνμ ð1þ a20ðϕÞÞ þ e2ζð1 − cosðπ − Θ0ÞÞ e−ζ

4nνμ ½1 − 2nνμ
eζ

− e−2ζð1þ a20ðϕÞÞ�
; ð5Þ

where a0ðϕÞ puts emphasis on the longitudinal ponder-
omotive broadening by the variation of the intensity in the
course of a pulse, 0 < a0ðϕÞ ≤ a0, and μ ≠ 1 accounts
for the bandwidth effects, i.e., there is a distribution of
laser frequencies around the central frequency ν. These
effects are seen best in very backward kinematics, where
e2ζð1 − cosðπ − Θ0ÞÞ → 0: the support of harmonic n is in
the interval ð1þ e−ζ

2nνμ ð1þ a20ÞÞ−1 ≤ 2e−ζν0 ≤ ð1þ e−ζ
2nνμÞ−1

and depends additionally on the frequency spread para-
metrized by μ. The net effect is blowing up the curves
ν0ðn;Θ0Þ in the right panels of Figs. 4 and 5 to overlapping
bands (not displayed), already either for a0 ≥ 1 or 0.5 <
μ < 2 separately. Both effects, a0ðϕÞ and μ ≠ 1, can be
separated only in certain asymptotic regions [56]. Be-
sides rich substructures within the broadened and over-
lapping harmonic support regions, QED calculations for
laser pulses exhibit complicated interference patterns
over the ω0-Θ0 plane depending on the actual pulse
envelope shape gðϕÞ and its parameters; see Fig. 1 in
[58] for an example.
Nevertheless, the model (1) can provide a useful guide

for the gross shape of the locally averaged spectrum.
Averaging the differential cross section, exhibited in
Fig. 7 (left) by the blue curve, over the intervals

ω0ðl − 0.5;Θ0Þ � � �ω0ðlþ 0.5;Θ0Þ for l ¼ 1; 2; 3 � � �5 leads
to the spectral shape displayed by blue bullets in the right
panel of Fig. 7. Within a factor of 2, both spectral shapes—
the one based on the monochromatic model (1) and the one
with 1= cosh pulse envelope—agree over 6 orders of
magnitude. The displacement of pair-wise related red
crosses and blue bullets in the right panel of Fig. 7 can
be attributed to the frequency difference in (5) for ν0ða0Þ
and ν0ða0 ¼ 0Þ at the same value of n when ignoring the
bandwidth effect.
If one wishes to recover the clear harmonic structures

exhibited in Fig. 5, right, one has to employ suitable laser
pulse shapes, e.g., with extended flat-top profiles (see Fig. 6
in [57]) or frequency chirping [59], etc. Nevertheless, we
argue that these details, which shape the differential
spectra, have a subleading impact on the phase space
integrated cross section, and the prediction in Fig. 3 is
essentially robust within the range uncovered by our pulsed
QED calculations (red curves marked by bullets) and the
model (1) (red solid curves).
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FIG. 7. Left panel: the differential spectrum dσ=dω0jΘ0 as a function of ω0 at polar angle Θ0 determined by e2ζð1 − cosðπ − Θ0ÞÞ ¼ 3
for the 1= coshðϕ=NπÞ pulse envelope with N ¼ 10 (blue curve). The corresponding QED calculation is as in Fig. 5 of [56] but for the
LUXE kinematic parameters used in Fig. 5. Red pluses mark the peak positions in the monochromatic model (1). Right panel: the same
as in the left panel but with locally averaged cross section (blue bullets) over the intervals ω0ðl − 0.5Þ � � �ω0ðlþ 0.5Þ for the internal
auxiliary variable l ¼ 1; 2; 3 � � � (cf. q. (16) in [56]). The legends adopt the nomenclature in [56]: IPA stands for the monochromatic
laser beam and FPA denotes the laser pulse model.

5The continuous variable l is an internal auxiliary quantity
which replaces the harmonic number n in the case of a pulse with
smoothly varying envelope (cf. qs. (16) and (17) in [56]).

HERNANDEZ ACOSTA, OTTO, KÄMPFER, and TITOV PHYS. REV. D 102, 116016 (2020)

116016-8



In addition to such effects, there is transverse broadening
with respect to multiple photon emission: the incoming
electron may suffer a (or many) transverse kick(s) due to
soft-photon emission prior to hard-photon emission, thus
not being longer subject of a head-on collision. Since for
the above LUXE kinematics our focus is on the hard-
photon tail, e.g., with ω0 > 1

2
p0 for c ¼ 1, we do not expect

a significant impact of the leakage of low harmonics into
this region and multiple photon emission and radiation
reaction as well. For a proper quantitative account, the
simulation tools developed in view of the recent experi-
ments [60,61] should be employed in dedicated analyses
and compared with analog QED calculations.

VII. SUMMARY

In summary, we point out that the nonlinear
Compton process obeys a field strength dependence
∝ P expf−anlCEcrit=Eg, similar to the Schwinger process
of “vacuum break down,”when imposing a suitable cutoff c
which suppresses the low harmonics. We focus on the slope
coefficient anlC ¼ 2

3
cm=ðp0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2Þp

by a compari-
son with some approximation formula which displays a
dependence ∝ expf−2c=3χg already in the nonasymptotic
region. Albeit the Compton process does not have such an
obvious tunneling regime as the pair production processes,
its formal similarity with the nonlinear Breit-Wheeler
process provides evidence [48,62] for selected differential
contributions with an exponential field dependence. The
here introduced cutoff acts as a threshold and enforces a
large gap between in- and out-Zel’dovich levels (which
suffer some broadening in laser pulses) or, equivalently, a
large light-cone momentum transfer from the in-electron to
the out-photon; it makes the otherwise hidden exponential
contributions visible in the total cross section, which
actually refers to a fraction of the out-phase space. This
opens another avenue toward a measurement of the

boiling point of the vacuum, complementary to plans of
the LUXE Collaboration by utilizing the nonlinear Breit-
Wheeler pair production [32]. While for the latter one a
high-energy photon beam is vital, our approach requires
either a moderately high-energy (p0) electron beam and
the selection of very high harmonics or a high-energy
electron beam and the selection of moderately high
harmonics. The experimental challenge is anyway the
isolation of the high harmonics region characterized by
the out-photon kinematics.
The present considerations apply primarily to a plane-

wave, monochromatic laser beam, i.e., a long flat-top pulse
duration, with circular polarization. Selected examples of
one-photon emission in laser pulses, based on Furry picture
QED calculations of the cross section, support such a clear-
cut approach. Nevertheless, necessary obvious extensions
should take into account general laser polarizations as well
as further bandwidth effects, ponderomotive broadening
and multiple photon emissions in finite-duration pulses and
their detailed temporal structures together with a larger
range of the laser intensity parameter a0. Planned follow-up
work is devoted to energy and angular differential spectra
and suitable realizations of the crucial cutoff implementa-
tion in nonperfect head-on collisions.
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