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The process of electron-positron annihilation into two photons in the presence of an intense classical
plane wave of an arbitrary shape is investigated analytically by employing light-cone quantization and by
taking into account the effects of the plane wave exactly. We introduce a general description of second-
order 2-to-2 scattering processes in a plane-wave background field, indicating the necessity of considering
the localization of the colliding particles and achieving that by means of wave packets. We define a local
cross section in the background field, which generalizes the vacuum cross section and which, though not
being directly an observable, allows for a comparison between the results in the plane wave and in vacuum
without relying on the shape of the incoming wave packets. Two possible cascade or two-step channels
have been identified in the annihilation process, and an alternative way of representing the two-step and
one-step contributions via a “virtuality” integral has been found. Finally, we compute the total local cross
section to leading order in the coupling between the electron-positron field and the quantized photon field,
excluding the interference between the two leading-order diagrams arising from the exchange of the
two final photons, and express it in a relatively compact form. In contrast to processes in a background
field initiated by a single particle, the pair annihilation into two photons, in fact, also occurs in vacuum.
Our result naturally embeds the vacuum part and reduces to the vacuum expression, known in the literature,
in the case of a vanishing laser field.

DOI: 10.1103/PhysRevD.102.116012

I. INTRODUCTION

With the development of high-power laser technology
the verification of the nonlinear-QED predictions for
various phenomena in an intense background field of a
macroscopic extent is becoming attainable in laboratory
experiments [1–5]. Among QED processes in an intense
laser field, two first-order ones, nonlinear Compton scatter-
ing (e− ⇒ e−γ) [6–18] and nonlinear Breit-Wheeler pair
production (γ ⇒ e−eþ) [8,19–26] have been extensively
investigated theoretically (see also the reviews [2–4,27]),
where by a double-line arrow we highlight the fact that a
process happens in a background field, which in general
has to be taken into account nonperturbatively. Recently,
nonlinear Compton scattering was also probed experimen-
tally and signatures of quantum effects were observed
[28,29] (see Ref. [30] for a related experiment carried out
in crystals). Moreover, these reactions are the only QED

effects included in common implementations of the
QED particle-in-cell (PIC) scheme [31–33], which is a
standard tool for the numerical investigation of the inter-
action between a laser field of extreme intensity
(≳1023 W=cm2) and matter, in particular, of the dynamics
of the electron-positron plasma, produced in this interaction
[34–43] (an electron-positron plasma interacting with a
background field can also arise in a collision of a high-
density electron beam with a target [44] and in some
astrophysical scenarios [45–49]).
Other channels of the first-order processes, i.e., electron-

positron annihilation into one photon (e−eþ ⇒ γ) and
photon absorption (e−γ ⇒ e−) are typically sizable only
in a small part of the phase space of the incoming particles
[8,50–52]. Therefore, if electron-positron annihilation and
photon absorption are to be also included into the consid-
eration of the evolution of a many-particle system in an
intense laser field, which may involve different geometries
of particle collisions, it is necessary to assess the next-order
processes, i.e., e−eþ ⇒ γγ and e−γ ⇒ e−γ, respectively.
However, a complete evaluation of a tree-level second-

order process in an external laser field is not straight-
forward. For instance, first theoretical calculations for
trident process, i.e., seeded electron-positron pair produc-
tion (e− ⇒ e−e−eþ), were performed long ago [53,54].
It was demonstrated that the total probability can be
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decomposed into a two-step contribution, which is related
to the physical situation of the intermediate electron being
real and which can be reconstructed as a combination of the
corresponding nonlinear Compton and Breit-Wheeler prob-
abilities, and a one-step contribution, for which the inter-
mediate electron is virtual and which was computed in part.
Later, first experiments on trident were also carried out
[55,56]. But only recently, via a series of works, a full
evaluation of the trident process was presented for the
constant-crossed and general plane-wave background
field cases [57–62] (for an estimation, the one-step part
of trident is sometimes taken into account with the use
of the Weizsäcker-Williams approximation [63,64]; see
also Ref. [59]). A result for double Compton scattering
(e− ⇒ e−γγ) has been obtained in a similar fashion [65–69].
As to 2 ⇒ 2 reactions, considerations existing in the
literature are limited to very specific cases, like a mono-
chromatic or an almost monochromatic laser field, the weak-
field limit, a circular laser polarization, and/or so-called
resonance processes (see, e.g., Refs. [70–74]).
Here, we consider electron-positron annihilation into

two photons, with the two leading-order Feynman dia-
grams shown in Fig. 1. We present the first analytical
results for a total cross section (in a sense explained below)
of e−eþ ⇒ γγ in a laser pulse represented as a classical
plane-wave (or null) field of a general shape. We provide an
exact expression for the contribution of the individual
diagrams in Fig. 1, without taking into account the
interference between them. Keeping possible applications
of our result to many-body-evolution numerical codes in
mind, we define the cross section in such a way that it has
the meaning of a local quantity. Furthermore, we use the
example of e−eþ ⇒ γγ for establishing general features of
the description of second-order 2-to-2 collision processes in
a plane-wave background field.
In contrast to nonlinear trident pair production and

nonlinear double Compton scattering, the reaction e−eþ ⇒
γγ does occur already in vacuum. This may pose a technical
problem, since the two parts (the vacuum and field-
dependent one) have different numbers of energy-
momentum conservation delta functions. Therefore, one
might encounter a difficulty in dealing with the different

number of volume factors and in comparing and combining
the two parts. We show that it is possible to incorporate
both into a single expression for the total (local) cross
section, which, in the limit of a vanishing external field,
reduces to the result, known in the literature for the vacuum
case. Moreover, unlike the mentioned second-order proc-
esses initiated by a single particle, for e−eþ ⇒ γγ the
intermediate fermion becomes real not in one but in two
different cases corresponding to the physical situations in
which either the electron or the positron first emits a final
photon before annihilating with the other particle into the
second final photon. Using the Schwinger proper time
representation for the electron propagator, we express the
two-step and one-step contributions in a form, which has an
advantage that it is concise and involves only integrals with
fixed limits. Another feature of 2-to-2 processes in a plane
wave is the particular importance of taking into account the
fact of the localization of the incoming particles, which we
carry out by introducing normalized wave packets. The
underlying reason is that the collision of two particles in a
plane wave is effectively a three-body collision and it is
important at which moment each participant arrives at the
collision region and if a collision region, as a microscopic
region where all participants are for a certain time and
significantly interact, does exist at all.
This paper is organized as follows. In Sec. II we

introduce the formalism. In Sec. III we consider the
annihilation into two photons of an electron and a positron,
which are described by wave packets. We find out the
approximations that one needs to make in order to
introduce a cross section and provide a general expression
for the cross section of the reaction e−eþ ⇒ γγ. In Sec. IV
the one- and two-step contributions to the cross section are
investigated. In Sec. V we elaborate on the evaluation of the
integrals for the process under consideration. The final
result is presented in Sec. VI, and the limit of a vanishing
background field is considered in Sec. VII. The discussion
of the results and the conclusions are presented in Sec. VIII
and Sec. IX, respectively. Five Appendixes contain explan-
ations of the notation and technical details.
Throughout the paper, Heaviside and natural units are

used (ϵ0 ¼ ℏ ¼ c ¼ 1), m and e < 0 denote the electron
mass and charge, respectively, α ¼ e2=ð4πÞ ≈ 1=137 is the
fine-structure constant.

II. FORMALISM

The formalism, that we employ, combines light-cone
quantization [75–78] and Furry picture [79,80] (a detailed
discussion of the formalism utilized here is provided in
Ref. [81]). With the quantization on the light cone, a plane-
wave background and particularly momentum conservation
laws are naturally included into the calculations (see
Refs. [60,69] for an application of light-cone quantization
to tridentanddoubleComptonscattering).Also, the light-cone
representation of the electromagnetic interaction via three

(a) (b)

FIG. 1. The leading-order Feynman diagrams for electron-
positron annihilation into two photons in a plane-wave field:
(a) the direct diagram, and (b) the exchange diagram. Double
lines represent dressed (Volkov) wave functions and propagators
(see the main text for details).
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types of vertices (see Appendix A), or, equivalently, the
representation of the electron propagator (and also of the
photon one) as combination of noninstantaneous and instan-
taneous terms (this can be done within the instant-form
quantization aswell [82,83]; see alsoRefs. [66,67,84]) allows
onetowrite thespinorprefactorsvia fermiondressedmomenta
(see below), and, as a consequence, the final expressions
formally have no explicit dependence on the background field
andasymptotic fermionmomenta. In this respect, theobtained
result is similar to the ones usually derived in vacuum, where
the final expressions depend on the particle four-momenta in
the form of Mandelstam variables [85].
The laser field is described classically by the field tensor

FμνðϕÞ, which is a function of the scalar product ϕ ¼ k0x,
with kμ0 being the characteristic wave four-vector of the
field or, in the quantum language, the characteristic four-
momentum of a laser photon (k20 ¼ kμ0k0μ ¼ 0) and xμ

being a position four-vector. We assume that FμνðϕÞ does
not contain a zero-frequency contribution; i.e., the integral
of FμνðϕÞ over the whole real axis vanishes. Then the most
general form of FμνðϕÞ is given by

FμνðϕÞ ¼
X
i¼1;2

fμνi ψ 0
iðϕÞ; ð1Þ

where fμνi ¼ kμ0a
ν
i − kν0a

μ
i , the four-vectors aμi define the

amplitude of the field in two polarization directions
(k0ai¼0, a1a2¼0), and the functions ψ 0

iðϕÞ¼dψ iðϕÞ=dϕ
characterize its shape [jψ 0

iðϕÞj ≲ 1]. In the following, each
of the indices i, j always take the values 1, 2.
For an arbitrary four-vector aμ, we define light-cone

coordinates as aþ ¼ aη, a− ¼ aη̄, and ai ¼ −aei
[a⊥ ¼ ða1; a2Þ], where fημ; η̄μ; eμ1; eμ2g is a light-cone basis
(see Appendix A for details). Below, we employ the
canonical light-cone basis, which is given by [86]

ημ ¼ kμ0
m

; η̄μ ¼ Pμ

Pþ −
P2ημ

2Pþ2
;

eμ1 ¼
Pλf

λμ
1

mPþ ffiffiffiffiffiffiffiffi
−a21

p ; eμ2 ¼
Pλf

λμ
2

mPþ ffiffiffiffiffiffiffiffi
−a22

p ; ð2Þ

where the four-vector Pμ is arbitrary except that Pþ ≠ 0.
The calculations are greatly simplified if one chooses

Pμ ¼ pμ
1 þ pμ

2; ð3Þ

which implies p⊥2 þ p⊥1 ¼ k⊥2 þ k⊥1 ¼ 0 [see Eq. (2) and
Appendix A; also note that fμνi is an antisymmetric tensor].
Here, pμ

1 and pμ
2 are the asymptotic four-momenta of the

incoming electron and positron outside the plane wave,
respectively, whereas kμ1 and k

μ
2 are the four-momenta of the

final photons (see Fig. 1 and note that in the following we
employ wave packets for the electron and positron, and
therefore pμ

1 and pμ
2 will be ultimately identified with the

central four-momenta).

Since ημ ¼ kμ0=m, the laser phase is ϕ ¼ mxþ and the
field FμνðϕÞ depends only on the light-cone time. With
the adoption of the light-cone gauge AþðxÞ ¼ 0, the four-
vector potential for FμνðϕÞ reads

AμðϕÞ ¼
X
i

aμi ψ iðϕÞ: ð4Þ

In the following, we assume Aμð−∞Þ ¼ 0, which implies
ψ ið−∞Þ ¼ 0 [together with the fact of the absence of a
zero-frequency contribution in FμνðϕÞ this implies that also
Aμð∞Þ ¼ 0, and therefore ψ ið∞Þ ¼ 0].
The solution of the Dirac equation with the classical

field (4) is the Volkov solution [87]. We write the positive-
energy one in the form [84],

ψpσðxÞ ¼ KpðϕÞ
upσffiffiffiffiffiffiffiffiffi
2pþp eiSpðxÞ; ð5Þ

with

KpðϕÞ ¼ ½γπpðϕÞ þm� γþ

2pþ ;

SpðxÞ ¼ −px − SpðϕÞ;

SpðϕÞ ¼
Z

ϕ

−∞
dβ

�
epAðβÞ
mpþ −

e2A2ðβÞ
2mpþ

�
; ð6Þ

and the negative-energy one in an analogous way (see
Appendix A). Note that the phase SpðxÞ is the classical
action of an electron in the plane wave and that the dressed
four-momentum πμpðϕÞ ¼ −∂μSpðxÞ − eAμðϕÞ is the cor-
responding solution of the Lorentz equation. It is given by

πμpðϕÞ ¼ pμ − eAμðϕÞ þ ημ
�
epAðϕÞ
pþ −

e2A2ðϕÞ
2pþ

�
; ð7Þ

such that π2pðϕÞ ¼ p2, πþp ðϕÞ ¼ pþ. The free Dirac bispi-
nor upσ is normalized such that ūpσupσ0 ¼ 2mδσσ0 ,
ūpσγμupσ0 ¼ 2pμδσσ0 ,

P
σ upσūpσ ¼ γpþm, where ūpσ ¼

u†pσγ0 and the dagger denotes the Hermitian conjugate, and
analogous expressions are valid for the negative-energy
bispinor vpσ [85].
The fermion field ψðxÞ is expanded in the basis set of

the Volkov wave functions (5) (and analogous ones for
negative-energy states) and, as a consequence, in all
diagrams free fermion lines are replaced with the corre-
sponding Volkov ones [79,80] (details on the quantization
are given in Appendix A).
Though in electrodynamics, quantized on the light cone,

there are three types of vertices, for our purposes it is
convenient to combine them in the form of propagators.
Then we have only the usual three-point QED vertex,
but each electron and photon Feynman propagator consists
of two terms [82,83] (see also Refs. [66,67,84]), in
particular, for the electron propagator Gðx2; x1Þ we have
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Gðx2; x1Þ ¼ GðniÞðx2; x1Þ þ GðinÞðx2; x1Þ, with GðniÞðx2; x1Þ
being a noninstantaneous (propagating) part,

GðniÞðx2; x1Þ ¼
Z

d4p
ð2πÞ4 e

−ipðx2−x1Þ−iSpðϕ2;ϕ1Þ

× Kpðϕ2Þ
γp̃þm

p2 −m2 þ iϵ
K̄pðϕ1Þ; ð8Þ

where K̄pðϕÞ ¼ γ0K†
pðϕÞγ0, and withGðinÞðx2; x1Þ being an

instantaneous part,

GðinÞðx2; x1Þ ¼
Z

d4p
ð2πÞ4 e

−ipðx2−x1Þ−iSpðϕ2;ϕ1Þ γþ

2pþ : ð9Þ

Here, Spðϕ2;ϕ1Þ ¼ Spðϕ2Þ − Spðϕ1Þ and

p̃μ ¼
�
pþ;

p⊥2 þm2

2pþ ; p⊥
�
; ð10Þ

such that p̃2 ¼ m2.
Below, we will employ the classical intensity parameters

[3,8],

ξi ¼
jej

ffiffiffiffiffiffiffiffi
−a2i

p
m

; ð11Þ

and we also introduce ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ21 þ ξ22

p
. Other parameters

characterizing the scattering process are the quantum
nonlinearity parameters, which are defined as χi ¼
pþ
i ξ=m for the fermions, and analogously for the photons

[3,8]. Note that by considering the interaction with the
quantized photon field to leading order, we implicitly
assume that the quantum nonlinearity parameters are much
smaller than 1=α3=2 ≈ 1600, such that this interaction can
be treated perturbatively. This assumption is reasonable
for current and near-future laser-based setups (for discus-
sions of the fully nonperturbative regime, see, e.g.,
Refs. [88–93]).
For a process with two incoming particles, the classical

intensity parameters and the quantum nonlinearity param-
eters do not exhaust the list of quantities, that are necessary
for describing the scattering (even when considering an
observable obtained by averaging/summing over the dis-
crete quantum numbers and by integrating over the final
momenta). We introduce the additional parameters tiðϕÞ,
which are given by [81]

tiðϕÞ ¼
jejπμe;p1

ðϕÞfiμνπν−e;p2
ðϕÞ

ξim3ðpþ
1 þ pþ

2 Þ
; ð12Þ

where πμe;p1
ðϕÞ ¼ πμp1

ðϕÞ and πμ−e;p2
ðϕÞ ¼ −πμ−p2

ðϕÞ are
the dressed four-momenta of the electron and the positron,
respectively. The asymptotic values of tiðϕÞ are denoted as
ti, they have been employed in the literature before [8].

The parameters tiðϕÞ have a particularly clear physical
interpretation if we use the canonical light-cone basis (2)
with Pμ from Eq. (3). With this choice, we have π⊥

e;p1
ðϕÞ þ

π⊥
−e;p2

ðϕÞ ¼ p⊥1 þ p⊥2 ¼ 0 and tiðϕÞ ¼ πip1
ðϕÞ=m, i.e.,

t1ðϕÞ and t2ðϕÞ correspond to the transverse dressed
momentum components of the incoming particles (with
respect to the laser-pulse propagation direction).

III. CROSS SECTION

As has been mentioned in the Introduction, the result of a
collision of an electron, a positron, and a finite-duration
laser pulse depends on the existence of a collision region
and the time of arrival of each participant at this region.
Thus, in the most general setup, one cannot rely on the
description of the incoming particles via monochromatic
plane waves, since they have an infinite temporal and
spatial extent.
Therefore, in order to consistently describe the reaction

e−eþ ⇒ γγ, we represent the electron and the positron as
normalized wave packets with central on-shell four-
momenta pμ

1 and pμ
2, respectively. A positive-energy wave

packet ΨpðxÞ with the central four-momentum pμ is
constructed according to

ΨpðxÞ ¼
Z

d̃3q
ð2πÞ3 f̃pðqÞψqðxÞ; ð13Þ

where f̃pðqÞ is the momentum distribution density and
ψqðxÞ is the positive-energy Volkov state (5) with four-
momentum qμ (for the definition of d̃3q see Appendix A).
Note that Volkov states are on shell such that q− ¼
ðq⊥2 þm2Þ=ð2qþÞ, i.e., f̃pðqÞ depends on q⊥ and qþ only,
but for simplicity, we write f̃pðqÞ as a function of qμ.
The fact that the function f̃pðqÞ is centered around the on-
shell four-momentum pμ has to be intended analogously.
Correspondingly, one can also define negative-energy wave
packets. We refer to Appendix B for further details about the
general properties of the wave packets ΨpðxÞ.
The polarization degrees of freedom of both incoming

(outgoing) particles are averaged (summed) in the final
expressions, with the assumption of the initial states being
unpolarized, and therefore, for notational brevity, we
suppress the subscripts for these degrees of freedom.
As already mentioned, the final photon four-momenta

are kμ1 and kμ2 (k21 ¼ k22 ¼ 0). The S-matrix element corre-
sponding to the diagrams in Fig. 1 can be written as

Sfi ¼ i
Z

d̃3q2
ð2πÞ3

d̃3q1
ð2πÞ3 f̃

�
2ðq2Þf̃1ðq1Þ

×
Z

d4x2d4x1T̃ðx2; x1; q2; q1Þ; ð14Þ

where we have introduced the shorthand notation f̃1ðqÞ ¼
f̃p1

ðqÞ and f̃�2ðqÞ ¼ f̃0�p2
ðqÞ for the electron and positron
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wave-packet momentum distributions f̃p1
ðqÞ and f̃0�p2

ðqÞ,
respectively (an asterisk indicates the complex conjugate),
and

T̃ðx2; x1; q2; q1Þ

¼
Z

d4p3

ð2πÞ4
Mdirectðϕ2;ϕ1; q2; q1Þ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ2 k

þ
1 q

þ
2 q

þ
1

p
× exp½iðk2 − p3 − q2Þx2 þ iðk1 þ p3 − q1Þx1
− iSp3

ðϕ2;ϕ1Þ − iSq1ðϕ1Þ þ iS−q2ðϕ2Þ� þ fγ1 ↔ γ2g;
ð15Þ

with

Mdirectðϕ2;ϕ1; q2; q1Þ

¼ −e2v̄q2

�
Kμ

−q2p3
ðϕ2Þ

γp̃3 þm
p2
3 −m2 þ iϵ

Kν
p3q1ðϕ1Þ

�
uq1ϵ

�
2μϵ

�
1ν

− e2v̄q2

�
Kμν

−q2q1ðϕ2;ϕ1Þ
2pþ

3

�
uq1ϵ

�
2μϵ

�
1ν: ð16Þ

Here and below, ϕi ¼ k0xi ¼ mxþi and the term fγ1 ↔ γ2g
corresponds to the exchange diagram with the photon

quantum numbers swapped [see Fig. 1(b)]. Also, the
functions Kμ

pp0 ðϕÞ and Kμν
pp0 ðϕ;ϕ0Þ are given by

Kμ
pp0 ðϕÞ ¼ K̄pðϕÞγμKp0 ðϕÞ;

Kμν
pp0 ðϕ;ϕ0Þ ¼ K̄pðϕÞγμγþγνKp0 ðϕ0Þ. ð17Þ

In the following and analogously to the vacuum case
(see, e.g., Refs. [94,95]), we assume the momentum
distributions of the electron and the positron being suffi-
ciently narrowly peaked around the central four-momenta
and the detectors not being sensitive enough to resolve the
final momenta within the widths of such distributions, such
that we can in particular replace the four-momenta qμi with
the central ones in relatively slowly varying functions, i.e.,

Mdirectðϕ2;ϕ1; q2; q1Þ=
ffiffiffiffiffiffiffiffiffiffiffi
qþ2 q

þ
1

q
≈Mdirectðϕ2;ϕ1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ
2 p

þ
1

q
;

ð18Þ
where Mdirectðϕ2;ϕ1Þ ¼ Mdirectðϕ2;ϕ1; p2; p1Þ, and we do
the same for the exchange term as well.
The total probability, obtained as the modulus squared of

Eq. (14), averaged over the initial polarization states and
summed over all final polarization and momentum states,
can be written as

W ≈
1

4

X
qn

����
Z

d4x2d4x1F�
2ðx2ÞF1ðx1ÞT̃ðx2; x1; p2; p1Þ

����2

¼ 1

4

X
qn

Z
d4x2d4x1d4x02d

4x01F
�
2ðx2ÞF2ðx02ÞF1ðx1ÞF�

1ðx01ÞT̃ðx2; x1; p2; p1ÞT̃�ðx02; x01; p2; p1Þ; ð19Þ

where the abbreviation “qn” indicates that the sum/integral
is taken over the discrete quantum numbers of the initial
and final particles and the momenta of the final photons.
Also, in Eq. (19) we have introduced the electron and
positron wave-packet amplitudes F1ðx1Þ and F�

2ðx2Þ in
configuration space, which are defined analogously to the
vacuum case [94], e.g., for an electron we have

FpðxÞ¼
Z

d̃3q
ð2πÞ3 f̃pðqÞexp½−iðq−pÞx− iSqðϕÞþ iSpðϕÞ�

ð20Þ

for a given momentum distribution f̃pðqÞ. The scalar wave
packet in configuration space is given by

fpðxÞ ¼
Z

d̃3q
ð2πÞ3 f̃pðqÞ exp½−iqx − iSqðϕÞ�

¼ FpðxÞ exp½−ipx − iSpðϕÞ� ð21Þ

(for a positron, the expressions are analogous). Note that
jfpðxÞj2 ¼ jFpðxÞj2 is the (time-dependent) particle den-
sity. The properties of the particle density jFpðxÞj2 are
discussed in Appendix B, and we only recall here that for a
narrow wave packet, under the condition that also jfpðxÞj2
is sufficiently peaked in configuration space, the center of
the distribution jfpðxÞj2 follows the classical trajectory of
an electron in a given plane wave (see Appendix B for
further details).
In principle, Eq. (19) is the expression one needs to

employ in order to evaluate the total probability of the
process under consideration. However, depending on the
widths of the wave packets and on the formation lengths of
the integrals in the space-time variables, one can achieve
further simplifications.
The first step is to assume that the wave packets are

sufficiently narrow (in momentum space), that on the for-
mation length of a single-vertex process (essentially, a process
obtained by cutting the propagator line, see Fig. 1) one can
neglect the interference among the wave packets, i.e.,
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F1ðx1ÞF�
1ðx01Þ¼F1ðX1−δ1=2ÞF�

1ðX1þδ1=2Þ≈ jf1ðX1Þj2;
ð22Þ

and analogously for the positron wave-packet amplitudes,
where

Xμ
i ¼ðxμi þx0i

μÞ=2; δμ1¼x01
μ−xμ1; δμ2¼xμ2−x02

μ: ð23Þ

Note that the approximation (22) is not assumed to bevalid for
all values of δμ1. It is assumed to bevalid for δμ1 only within the
formation region of the integral in this variable, i.e., within an
effective part of the whole space which mostly contributes to
the value of the integral.
We also point out that the assertion in Eq. (22) [and the

corresponding one for F2ðx02ÞF�
2ðx2Þ] is a more compli-

cated statement than in vacuum, in the sense that the typical
scale of δμ1 (and of δ

μ
2 for the positron) depends in general on

the form and on the intensity of a considered background
field, and Eq. (22) results from an interplay between the
scale introduced by the field and the scale of the wave
packets (details are given in Appendix C).
Under the approximation (22) and an analogous one for

the positron, the total probability (19) reads

W ≈
Z

d4X2d4X1jf2ðX2Þj2jf1ðX1Þj2WðX2; X1Þ; ð24Þ

with the two-point probability distribution

WðX2;X1Þ

¼1

4

X
qn

Z
d4δ2d4δ1T̃ðx2;x1;p2;p1ÞT̃�ðx02;x01;p2;p1Þ: ð25Þ

An additional simplification is attained under the
assumption, that on a typical distance between Xμ

1 and
Xμ
2 (in essence, on the typical distance between the two

single-vertex processes, see Fig. 1) the wave packets do not
change significantly, i.e.,

jf2ðX2Þj2jf1ðX1Þj2 ¼ jf2ðxþ δ=2Þj2jf1ðx − δ=2Þj2
≈ jf2ðxÞj2jf1ðxÞj2; ð26Þ

where

xμ ¼ ðXμ
2 þ Xμ

1Þ=2; δμ ¼ Xμ
2 − Xμ

1: ð27Þ

Then Eq. (24) transforms into

W ≈
Z

d4xjf2ðxÞj2jf1ðxÞj2WðxÞ; ð28Þ

where

WðxÞ ¼ WðϕÞ

¼ 1

4

X
qn

Z
d4δd4δ2d4δ1T̃ðx2; x1; p2; p1Þ

× T̃�ðx02; x01; p2; p1Þ: ð29Þ

Equation (28) is the approximation that is commonly used
for the description of scattering in vacuum and that allows
us to define a cross section, a quantity, which characterizes
the process itself without relying on the precise shape of the
wave packets [94,95]. We stress that in a background field
the assumption (26) can be restrictive as the intermediate
particle may become real, and hence δμ can have a
macroscopic scale, i.e., of the order of the extension of
the background field. For the highly nonlinear regime
(ξ ≫ 1), semiquantitative estimations imply (see
Appendix C for details) that if one excludes the contribu-
tion of the case of the intermediate particle being real, both
approximations (22) and (26) are valid as soon as the
relations jΔp⊥1 j ≪ maxðm; jπ⊥

p1
ðϕÞjÞ, Δpþ

1 ≪ pþ
1 for the

electron wave packet and analogous ones for the positron
wave packet are fulfilled (Δpþ

1 and Δp⊥1 are the corre-
sponding wave-packet widths).
Now, it is worth pointing out an additional difference

with the vacuum case. In the latter case, in fact, the quantity
WðxÞ is independent of the coordinates and therefore non-
negative [94,95]. In contrast to this, the quantityWðϕÞ here
explicitly depends on the light-cone time (via ϕ) and it can
be negative for some values of ϕ. Thus, generally speaking,
the quantity

wðxÞ ¼ jf2ðxÞj2jf1ðxÞj2WðϕÞ ð30Þ

cannot be interpreted as a probability per unit time and unit
volume. However, it can be seen as a quantity, which
generalizes this probability and which entails interference
effects among contributions from different points of the
particles trajectory in the plane wave, and therefore may
become negative. This is somewhat similar to the relation
between a classical phase-space distribution and the
Wigner distribution, with the latter generalizing the former
and, indeed, being also potentially negative [96].
Furthermore, we can define a generalized (local) cross

section, which, though not being directly an observable
quantity, since it can become negative, is a useful theo-
retical tool for investigating the influence of the external
field on the scattering process. We follow the approach
in the instant-form quantization in vacuum, where the
cross section is obtained from the probability per unit
time and unit volume by dividing it by the factor
jg2ðxÞj2jg1ðxÞj2I=ðp0

2p
0
1Þ, where I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2p1Þ2 −m4

p
and

giðxÞ are wave packets in the instant form [85,95]. Then in
our case we can analogously introduce the local cross
section as
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σðϕÞ ¼ pþ
2 p

þ
1

jf2ðxÞj2jf1ðxÞj2IðϕÞ
wðxÞ ¼ pþ

2 p
þ
1

IðϕÞ WðϕÞ; ð31Þ

where the invariant IðϕÞ reads

IðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½π−e;p2

ðϕÞπe;p1
ðϕÞ�2 −m4

q
: ð32Þ

Below, we explicitly verify (except for the interference
term, as has been pointed out in the Introduction) that in the
absence of the background field the cross section (31)
reduces to the one, known for the vacuum case in the
instant-form quantization. One should also keep in mind
that the choice of the invariant IðϕÞ implies that the cross
section is normalized to the flux coming into the point xμ

inside the laser field and in this sense is a local quantity.
This can be useful, for instance, in the analysis of the
importance of the studied process in the development of
QED cascades where the colliding particles are produced
inside the field. However, if one would like to consider a
beam-beam collision experiment in the presence of a laser
field, then the use of the vacuum counterpart I in place of
IðϕÞ could be more convenient. The total probability W is
of course independent of this choice.

We emphasize that Eqs. (24) and (28) are not ensured to
provide a positive result in a general case, i.e., without
taking into account the validity of the approximations (22)
and (26), and that one has to ultimately rely on the
probability W in Eq. (19), if these approximations break
down.
With the use of Eqs. (15) and (16), we obtain for the

cross section,

σðϕÞ ¼
Z

pþ
2
þpþ

1

0

dkþ1
2π

Z
d2k⊥1
ð2πÞ2

1

32kþ2 k
þ
1 IðϕÞ

×
Z

dδþdδþ2 dδ
þ
1

1

4

X
σi;λi

M̃ðϕ2;ϕ1; p2; p1Þ

× M̃�ðϕ0
2;ϕ

0
1; p2; p1Þ; ð33Þ

where kðþ;⊥Þ
2 ¼ ðp2 þ p1 − k1Þðþ;⊥Þ, σi and λi denote the

polarization states of the incoming and outgoing particles,
respectively, and we have divided the result by 2, in order
to compensate for the double counting of the final states of
the two identical particles. The reduced matrix element
M̃ðϕ2;ϕ1; p2; p1Þ is given by

M̃ðϕ2;ϕ1; p2; p1Þ ¼
Z

dp−
3

2π
Mdirectðϕ2;ϕ1Þ exp½iðk−2 − p−

3 − p−
2 Þxþ2 þ iðk−1 þ p−

3 − p−
1 Þxþ1

− iSp3
ðϕ2;ϕ1Þ − iSp1

ðϕ1Þ þ iS−p2
ðϕ2Þ� þ fγ1 ↔ γ2g; ð34Þ

where pðþ;⊥Þ
3 ¼ ðp1 − k1Þðþ;⊥Þ ¼ ðk2 − p2Þðþ;⊥Þ.

The quantity M̃ðϕ2;ϕ1; p2; p1Þ in Eq. (34) contains four
distinct terms because Mdirectðϕ2;ϕ1Þ alone consists of a
noninstantaneous and an instantaneous contributions, cor-
responding to the second and to the third line of Eq. (16),
respectively. Taking the modulus squared yields 16 terms.
However, only eight of them are different after we sum over
the states of the final photons, i.e.,

σðϕÞ ¼ σddðϕÞ þ σeeðϕÞ þ σdeðϕÞ þ σedðϕÞ
¼ 2σddðϕÞ þ 2σdeðϕÞ; ð35Þ

where σddðϕÞ is the contribution, arising from squaring the
amplitude for the direct diagram [see Fig. 1(a)], and can be
written as

σddðϕÞ ¼ σnnddðϕÞ þ σniddðϕÞ þ σinddðϕÞ þ σiiddðϕÞ: ð36Þ

The four contributions in Eq. (36) are obtained via squaring
corresponding parts of the amplitude [σnnddðϕÞ originates
from squaring the noninstantaneous direct term, σniddðϕÞ
from the product of the noninstantaneous and complex-
conjugate instantaneous direct terms, etc.], with subsequent

rearrangements, as described below and in Appendix D. The
other contributions in Eq. (35) can be written down
analogously. In the following, we only consider σddðϕÞ.
We note that for the differential quantities the interference
terms “de” and “ed” lead to an enhancement of the cross
section by a factor of 2 in the case of the final photons being
in the same state. On the other hand, at least in an ultra-
relativistic setup, the available phase space is typically so
large that one might expect that the integrated interference
term σdeðϕÞ should give a negligible contribution. Indeed,
e.g., in the vacuum case, the interference contribution for the
total cross section is relatively large only for mildly
relativistic collisions [85]. If we assume a similar behavior
in our case, then we should expect that the term σdeðϕÞmight
be nonnegligible only for some

ffiffiffiffiffiffiffiffiffi
sðϕÞp

∼m, where the
invariant mass squared sðϕÞ in the field is defined as

sðϕÞ ¼ ½π−e;p2
ðϕÞ þ πe;p1

ðϕÞ�2

¼ m2ðpþ
2 þ pþ

1 Þ2
pþ
2 p

þ
1

½1þ t⊥2ðϕÞ�; ð37Þ

with t⊥2ðϕÞ ¼ t21ðϕÞ þ t22ðϕÞ. It follows that if pþ
1 ∼ pþ

2 and
t⊥2ðϕÞ≲ 1, the interference term might provide a somewhat
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sizable contribution. However, for the phase average ht2i ðϕÞi
we have ht2i ðϕÞi ≈ t2i þ ξ2i hψ2

i ðϕÞi ≫ 1 if ξi ≫ 1 [we
assume that hψ iðϕÞi ≪ 1]. This implies that in the highly
nonlinear regime, i.e., in the regime of ξ ≫ 1, and for
sufficiently long laser pulses, common values of jt⊥ðϕÞj are
much larger than unity. Therefore, if one considers dynamics
over several laser periods, one might expect that on average
the term σdeðϕÞ can be neglected.
Summing over the final photon polarizations results in

the replacement

ϵμi ϵ
�ν
i → −gμν ð38Þ

(we discard the terms proportional to kμi and kνi due to the
Ward identity).
Averaging over the polarization states of the initial

particles results in the replacements [85]

up1
ūp1

→ ρp1
; vp2

v̄p2
→ ρð−Þp2

; ð39Þ

and taking the trace over the bispinor part of
M̃ðϕ2;ϕ1; p2; p1ÞM̃�ðϕ0

2;ϕ
0
1; p2; p1Þ. The quantities ρp1

and ρð−Þp2
denote the electron and positron density matrices,

respectively. In the case of the initial particles being
unpolarized, we have

ρp1
¼1

2
ðγp1þmÞ; ρð−Þp2

¼−ρ−p2
¼1

2
ðγp2−mÞ: ð40Þ

Upon squaring the noninstantaneous part of the direct
diagram, we obtain

1

4

X
σi;λi

M̃ndM̃nd� ¼ −8e4m4

Z
dp−

3

2π

dp0
3
−

2π
exp ðiΦddÞ

×
Mnndd

ðp2
3 −m2 þ iϵÞðp02

3 −m2 − iϵÞ ; ð41Þ

with p0
3
ðþ;⊥Þ ¼ pðþ;⊥Þ

3 . The phase Φdd reads

Φdd ¼ ðk−2 − p−
2 Þδþ2 − ðk−1 − p−

1 Þδþ1 − p−
3 ðxþ2 − xþ1 Þ

þ p0
3
−ðx02þ − x01

þÞ þΦdd
F ; ð42Þ

with the field-dependent part Φdd
F given by [we use the

canonical light-cone basis (2) with Pμ from Eq. (3)]

Φdd
F ¼ m

pþ
3

X
i

ξiki1ðδþ2 I2i þ δþ1 I1iÞ

− m2

pþ
3

X
i

tiξi

�
kþ2
pþ
2

δþ2 I2i þ
kþ1
pþ
1

δþ1 I1i

�

−
m2

2pþ
3

X
i

ξ2i

�
kþ2
pþ
2

δþ2 J2i þ
kþ1
pþ
1

δþ1 J1i

�
; ð43Þ

where

Iji ¼
1

2

Z
1

−1
dλ ψ i

�
mXþ

j þ 1

2
mδþj λ

�
;

Jji ¼
1

2

Z
1

−1
dλ ψ2

i

�
mXþ

j þ 1

2
mδþj λ

�
: ð44Þ

For the products of the noninstantaneous and instantaneous
direct terms and vice versa, we obtain correspondingly

1

4

X
σi;λi

M̃ndM̃id� ¼ −2e4½2m2 þ sðϕÞ�δðδþ2 þ δþ1 − 2δþÞ

×
Z

dp−
3

2π
exp ðiΦddÞ Mnidd

p2
3 −m2 þ iϵ

ð45Þ

and

1

4

X
σi;λi

M̃idM̃nd� ¼−2e4½2m2þ sðϕÞ�δðδþ2 þ δþ1 þ 2δþÞ

×
Z

dp0
3
−

2π
expðiΦddÞ Mindd

p02
3 −m2 − iϵ

: ð46Þ

Finally, the product of the two instantaneous direct terms is
given by

1

4

X
σi;λi

M̃idM̃id� ¼e4δðδþ2 þδþ1 ÞδðδþÞexpðiΦddÞMiidd: ð47Þ

The quantities Mnndd, Mnidd, Mindd, and Miidd are the
traces of the corresponding bispinor parts. These traces are
rearranged with the use of momentum relations in the
background field and subsequently replaced with the
rearranged ones in Eqs. (41), (45), (46), and (47), which
we denote by a tilde: Mnndd → M̃nndd, Mnidd → M̃nidd,
etc. Details and explicit expressions are provided in
Appendix D. The prefactors in Eqs. (41), (45), and (46)
are chosen in such a way, that M̃nndd¼M̃indd¼M̃nidd¼1
in the limit of a vanishing laser field.

IV. ONE-STEP AND TWO-STEP CONTRIBUTIONS

As it has been pointed out in the Introduction, in contrast
to the vacuum case, the probability of a tree-level second-
order process in an external field [and hence the cross
section (33)] contains contributions with the intermediate
particle being virtual, as well as real, and it can be written
as a sum of so-called one-step and two-step or cascade
terms [53,54,58–62,67,69]. If the intermediate particle is
real, generally speaking, the propagation distance may be
arbitrarily large inside the field. This causes at least two
problems: for sufficiently large distances, the approxima-
tion (26) may break down and also radiative corrections to
the electron/photon propagator may become sizable. On the
other hand, in principle, one can recover the two-step
contribution as a combination of the two corresponding
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first-order processes, therefore, it is the one-step contribu-
tion that is the most nontrivial.
Let us single out the one-step contribution from the cross

section (33). In our approach, we employ the Schwinger
proper time representation for the denominators of the
electron propagators. This allows us to avoid the use of the
Heaviside step functions and to write the two-step and one-
step contributions as integrals with fixed limits. But let us
first highlight the main ideas of the common approach
employed in the literature.
Note that the two-step contribution is contained in the

“nndd” term [60,69]. For the “nndd” term (41), let us
consider the integrals in p−

3 and p0
3
−,

Ip3;p0
3
¼
Z

dp−
3

2π

dp0
3
−

2π

e−ip
−
3
ðxþ

2
−xþ

1
Þeip

0
3
−ðx0

2
þ−x0

1
þÞ

ðp2
3−m2þ iϵÞðp02

3 −m2− iϵÞ : ð48Þ

Evaluating each of the integrals separately and then
combining the results, one obtains

Ip3;p0
3
¼ 1

ð2pþ
3 Þ2

exp½−ip̃−
3 ðδþ2 þ δþ1 Þ�

× ½θðpþ
3 Þθðxþ2 − xþ1 Þθðx02þ − x01

þÞ
þ θð−pþ

3 Þθðxþ1 − xþ2 Þθðx01þ − x02
þÞ�: ð49Þ

The product θðxþ2 − xþ1 Þθðx02þ − x01
þÞ can be written as

[60,62]

θðxþ2 −xþ1 Þθðx02þ−x01
þÞ¼θðδþÞ

�
1−θ

�jδþ2 þδþ1 j
2

−δþ
��

:

ð50Þ

In Eq. (50), a two-step contribution is usually associated
with the first term, and the second term is referred to as a
one-step contribution. Recalling the definition of δþ [see
Eq. (27)], we conclude that the function θðδþÞ identifies the
two-step contribution corresponding to the electron emit-
ting a photon first and then annihilating with the positron
into the second photon. Using an analogous transformation
for the product θðxþ1 − xþ2 Þθðx01þ − x02

þÞ in Eq. (49), one
obtains a two-step contribution ∝ θð−δþÞ, which corre-
sponds to the positron emitting a photon first and then
annihilating with the electron into the second photon.
The total two-step contribution can be written as

Itwo−stepp3;p0
3

¼ 1

ð2pþ
3 Þ2

exp½−ip̃−
3 ðδþ2 þ δþ1 Þ�θðpþ

3 δ
þÞ; ð51Þ

and the one-step contribution, originating from the “nndd”
term, as

Ione−stepp3;p0
3

¼ −
1

ð2pþ
3 Þ2

exp½−ip̃−
3 ðδþ2 þ δþ1 Þ�

×

�
θðpþ

3 ÞθðδþÞθ
�jδþ2 þ δþ1 j

2
− δþ

�

þ θð−pþ
3 Þθð−δþÞθ

�jδþ2 þ δþ1 j
2

þ δþ
��

: ð52Þ

Now, let us show an alternative way of representing the
two-step and one-step contributions in Eqs. (51) and (52),
respectively. We employ the following proper-time repre-
sentation for the denominators:

1

p2
3 −m2 þ iϵ

¼ −i
Z

∞

0

ds eiðp2
3
−m2þiϵÞs;

1

p02
3 −m2 − iϵ

¼ i
Z

∞

0

dt e−iðp02
3
−m2−iϵÞt: ð53Þ

Below, we do not write the terms with iϵ for brevity. The
integrals in p−

3 and p0
3
− yield [see Eq. (48)]

Z
dp−

3

2π

dp0
3
−

2π
→δ½2pþ

3 s−ðxþ2 −xþ1 Þ�δ½2pþ
3 t−ðx02þ−x01

þÞ�:

ð54Þ

In place of s and t, we introduce the variables τ and v
[97,98],

τ¼ sþ t; v¼ s− t
sþ t

;
Z

∞

0

dsdt→
Z

1

−1
dv

Z
∞

0

dτ
τ

2
: ð55Þ

In terms of the new variables the delta functions in Eq. (54)
can be written as

δ½2pþ
3 s − ðxþ2 − xþ1 Þ�δ½2pþ

3 t − ðx02þ − x01
þÞ�

¼ δðδþ − pþ
3 τÞδðδþ2 þ δþ1 − 2pþ

3 vτÞ; ð56Þ

and the initial quantity Ip3;p0
3
in Eq. (48) reads

Ip3;p0
3
¼

Z
1

−1
dv

Z
∞

0

dτ
τ

2
δðδþ − pþ

3 τÞδðδþ2 þ δþ1 − 2pþ
3 vτÞ

× exp½−ip̃−
3 ðδþ2 þ δþ1 Þ�: ð57Þ

Evaluating the integrals in τ and v, one obtains that

Ip3;p0
3
¼ 1

ð2pþ
3 Þ2

exp½−ip̃−
3 ðδþ2 þ δþ1 Þ�

× θðpþ
3 δ

þÞθ
�
1−

���� δþ2 þ δþ1
2δþ

����
�
; ð58Þ

where the first θ-function comes from the integral in τ and
the second one comes from the integral in v. We notice that
Eq. (58) is the same as Eq. (51), apart from the presence of
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the second θ-function. Then, the two-step contribution can
be written as

Itwo-stepp3;p0
3

¼
Z

dv
Z

∞

0

dτ
τ

2
δðδþ − pþ

3 τÞδðδþ2 þ δþ1 − 2pþ
3 vτÞ

× exp½−ip̃−
3 ðδþ2 þ δþ1 Þ�; ð59Þ

which agrees with Eq. (51) upon the evaluation of the
integrals in τ and v [note that the limits of the integration in
v are extended to be ð−∞;∞Þ]. The difference between
Eqs. (57) and (59) is the one-step contribution,

Ione-stepp3;p0
3

¼−
Z
Γv

dv
Z

∞

0

dτ
τ

2
δðδþ−pþ

3 τÞ

×δðδþ2 þδþ1 −2pþ
3 vτÞexp½−ip̃−

3 ðδþ2 þδþ1 Þ�; ð60Þ

with Γv ¼ ð−∞;−1Þ ∪ ð1;∞Þ. In the following, we con-
sider the one-step contribution and therefore employ
Eq. (60). The final expression can be easily transformed
into the result for the two-step contribution [Eq. (59)] or for
the sum of both contributions [Eq. (57)].

V. EVALUATION OF THE INTEGRALS

For the “nidd” and “indd” terms in Eqs. (45) and (46),
respectively, we also employ the proper-time representa-
tion, e.g., we have

Z
dp−

3

2π

e−ip
−
3
ðxþ

2
−xþ

1
Þ

p2
3 −m2 þ iϵ

¼ −i
Z

∞

0

dτ
1

2
δðδþ − pþ

3 τÞ exp½−ip̃−
3 ðδþ2 þ δþ1 Þ� ð61Þ

for the “nidd” term and an analogous expression for the
“indd” term [note that for the “iidd” term no proper-time
representation is required, since there are no noninstanta-
neous parts of the propagators and integrals in the “–”
momentum components; see Eq. (47)]. After that, we
notice that each of the four terms, which we need to
compute, contains two delta functions [see Eqs. (41), (45),
(46), (47), (60), and (61)], and they allow us to evaluate
the integrals in δþ and δþ2 in Eq. (33). In place of δþ1 we
introduce

ρ ¼ m2pþ
2

kþ2 p
þ
3

δþ2 þm2pþ
1

kþ1 p
þ
3

δþ1 ; ð62Þ

and we also rescale τ as

m2τ → τ; ð63Þ

such that the rescaled variable is dimensionless. Then the
direct-direct parts of the total cross section are given by

σnnddðϕÞ ¼ 2π2r2e
IðϕÞðpþ

2 þ pþ
1 Þ

Z
pþ
2
þpþ

1

0

dkþ1
2π

Z
d2k⊥1
ð2πÞ2

Z
Γv

dv
Z

∞

0

dτ
Z

dρ τ exp ðiΦdd
v ÞM̃nndd; ð64Þ

σfnigddðϕÞ ¼ iπ2r2e½2m2 þ sðϕÞ�
2m2IðϕÞðpþ

2 þ pþ
1 Þ

Z
pþ
2
þpþ

1

0

dkþ1
2π

Z
d2k⊥1
ð2πÞ2

Z
∞

0

dτ
Z

dρ½exp ðiΦdd
1 ÞM̃nidd − exp ðiΦdd

−1ÞM̃indd�; ð65Þ

σiiddðϕÞ ¼ −
π2r2e

IðϕÞðpþ
2 þ pþ

1 Þ
Z

pþ
2
þpþ

1

0

dkþ1
2π

Z
d2k⊥1
ð2πÞ2

Z
dρ exp ðiΦiiddÞ; ð66Þ

where re ¼ α=m is the classical electron radius, and the “nidd” and “indd” terms have been combined as

σfnigddðϕÞ ¼ σinddðϕÞ þ σniddðϕÞ: ð67Þ

The phase Φdd
v is given by

Φdd
v ¼ −

ρ

2m2
ðk⊥2

1 þ 2k⊥1 P⊥Þ þ ρð1þ t21 þ t22Þ
4

�
kþ2
2

pþ2
2

ðu − 1Þ − kþ2
1

pþ2
1

ðuþ 1Þ
�

þ ρ

2

X
i

tiξi

�
kþ2
2

pþ2
2

ðu − 1ÞI2i −
kþ2
1

pþ2
1

ðuþ 1ÞI1i
�
þ ρ

4

X
i

ξ2i

�
kþ2
2

pþ2
2

ðu − 1ÞJ2i −
kþ2
1

pþ2
1

ðuþ 1ÞJ1i
�
; ð68Þ

where
u ¼

��
kþ2
pþ
2

þ kþ1
pþ
1

�
−
4vτ
ρ

���
kþ2
pþ
2

−
kþ1
pþ
1

�
; ð69Þ
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and

Pi¼1

2
mξi

�
kþ2
pþ
2

ðu−1ÞI2i−
kþ1
pþ
1

ðuþ1ÞI1i
�
−
2mtivτ

ρ
; ð70Þ

the phases in Eq. (65) are the same as Φdd
v , but with v ¼ 1

and v ¼ −1, respectively, and the phase Φiidd is given by

Φiidd ¼ −
ρk⊥2

1

2m2
þ ρkþ2 k

þ
1

2pþ
2 p

þ
1

×

�
1þ

X
i

ðti þ ξiIiÞ2 þ
X
i

ξ2i ðJi − I2i Þ
�
; ð71Þ

where

Ii ¼
1

2

Z
1

−1
dλ ψ i

�
ϕþ kþ2 k

þ
1

2mðpþ
2 þ pþ

1 Þ
ρλ

�
;

Ji ¼
1

2

Z
1

−1
dλ ψ2

i

�
ϕþ kþ2 k

þ
1

2mðpþ
2 þ pþ

1 Þ
ρλ

�
: ð72Þ

The old variables δþ1 and δþ2 are expressed via the new
ones as

δþ1 ¼ pþ
3 k

þ
1

2m2pþ
1

ð1þ uÞρ; δþ2 ¼ pþ
3 k

þ
2

2m2pþ
2

ð1 − uÞρ: ð73Þ

The integrals in k⊥1 are Gauss-type (Fresnel) integrals
and can be evaluated analytically [note that the exponential
prefactors in Eqs. (64), (65), and (66) do not depend on k⊥1 ;
see Appendix D for details]. However, before being able to
perform an integral in k⊥1 , we need to change the order of
the integrations and, strictly speaking, we have to ensure
that upon those changes the integrals remain convergent. It
can be seen from Eqs. (68) and (71) that ρ ¼ 0 is a possible
problematic point. Then, assuming that, if necessary, the
integration contour for ρ is deformed from ð−∞;∞Þ into a
new appropriately chosen contour Γρ we obtain that

Z
d2k⊥1
ð2πÞ2

Z
Γρ

dρ exp

�
−i

ρ

2m2
ðk⊥2

1 þ 2k⊥1 P⊥Þ
�

¼ −
im2

2π

Z
Γρ

dρ
ρ
exp

�
i
ρP⊥2

2m2

�
; ð74Þ

where one should put P⊥ ¼ 0 for the “iidd” term. In order
to specify Γρ, let us consider the “iidd” term and the other
two separately. We start with the “iidd” term [Eq. (66)].
If follows from Eq. (74), that upon the exchange of the

integrations the integral in k⊥1 yields an infinite volume
factor, if P⊥ ¼ 0 and ρ ¼ 0. Therefore, we indeed need to
deform the contour, such that the new contour Γρ does not

go through the point ρ ¼ 0. One of the possibilities is to
shift the integration line by iϵ off the real axis. This results
in an iϵ prescription for ρ [99,100]. However, since the
singularity is only at ρ ¼ 0, it is enough to deform the
contour locally by introducing a semicircle of radius ϵ, as
shown in Fig. 2. Then, as ϵ → 0, the integral over the two
half lines results in the principal value integral, and the
integral over the semicircle yields iπC−1, with C−1 being
the residue at ρ ¼ 0 [101].
For the other terms [Eqs. (64) and (65)], the vectorP⊥ is

given by Eq. (70). As a result, upon setting ρ ¼ 0, the
integral in k⊥1 is evaluated not to an infinite volume factor,
but to a delta function. Therefore, we argue that the
deformation of the contour for ρ is not required for these
terms and Γρ ¼ ð−∞;∞Þ. We justify this by reproducing
the vacuum results, known from the literature, if the
external field is set to zero (see below).
We also point out that if one makes the replacement

ρ → −ρ, then

Φdd
v → −Φdd

−v; M̃nndd → M̃nnddjv→−v: ð75Þ

Therefore, the integral in v can be reduced to an integral
over the interval ð1;∞Þ [alternatively, the integral in ρ can
be reduced to an integral over ð0;∞Þ; we use the first
option below]. In addition, note that M̃indd → M̃nidd upon
the replacement ρ → −ρ.
As the last steps, we notice that after the integration in

k⊥1 , upon rescaling ρ as ρkþ2 k
þ
1 =ðpþ

2 p
þ
1 Þ → ρ for the “iidd”

term, the integral in kþ1 can be also evaluated analytically
and only a single integral in ρ remains in this term, which
can be also written as an integral over ð0;∞Þ.

VI. FINAL RESULT

After all steps described above are carried out, one
obtains the final expressions for the direct-direct contribu-
tions to the total cross section [see Eq. (36)],

FIG. 2. The employed deformation of the integration contour
for the “iidd” term. As ϵ → 0, the integrals over the two half lines
combine together into a principle value integral, and the integral
over the semicircle results in a term proportional to the residue
at ρ ¼ 0 (see the main text for details). The choice of the
deformation into the lower half-plane is dictated by the fact that
after the deformation the integral in k⊥1 has to be convergent for a
finite value of ϵ.
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σnnddðϕÞ ¼ r2em2

IðϕÞðpþ
2 þ pþ

1 Þ
Im

Z
pþ
2
þpþ

1

0

dkþ1

Z
∞

1

dv
Z

∞

0

dτ
Z

dρ
ρ
τ exp ðiΦdd

v ÞM̃nndd; ð76Þ

σfnigddðϕÞ ¼ r2e½2m2 þ sðϕÞ�
4IðϕÞðpþ

2 þ pþ
1 Þ

Re
Z

pþ
2
þpþ

1

0

dkþ1

Z
∞

0

dτ
Z

dρ
ρ
exp ðiΦdd

1 ÞM̃nidd; ð77Þ

σiiddðϕÞ ¼ −
r2em2

2IðϕÞ
�Z

∞

0

dρ
ρ
sinΦiidd þ π

2

�
; ð78Þ

where Im and Re denote an imaginary and a real part, respectively, expressions for the quantities M̃nndd and M̃nidd are
provided in Appendix D, and the phase Φdd

v is given by

Φdd
v ¼ ρ

4

�
kþ2
2

pþ2
2

ðu − 1Þ − kþ2
1

pþ2
1

ðuþ 1Þ
�
þ ρ

8
ðu2 − 1Þ

X
i

�
kþ2
pþ
2

ζ2i −
kþ1
pþ
1

ζ1i

�
2

þ ρ

4

X
i

�
kþ2
2

pþ2
2

ðu − 1Þðζð2Þ2i − ζ22iÞ −
kþ2
1

pþ2
1

ðuþ 1Þðζð2Þ1i − ζ21iÞ
�
; ð79Þ

with

ζji ¼
1

2

Z
1

−1
dλ ti

�
mXþ

j þ 1

2
mδþj λ

�
;

ζð2Þji ¼ 1

2

Z
1

−1
dλ t2i

�
mXþ

j þ 1

2
mδþj λ

�
; ð80Þ

and Xþ
2 ¼ xþ þ pþ

3 τ=ð2m2Þ, Xþ
1 ¼ xþ − pþ

3 τ=ð2m2Þ. For
the “iidd” term, the phase Φiidd is given by

Φiidd ¼ ρ

�
1þ

X
i

ζ2i þ
X
i

ðζð2Þi − ζ2i Þ
�
; ð81Þ

where

ζi ¼
1

2

Z
1

−1
dλ ti

�
ϕþ pþ

2 p
þ
1

mðpþ
2 þ pþ

1 Þ
ρλ

�
;

ζð2Þi ¼ 1

2

Z
1

−1
dλ t2i

�
ϕþ pþ

2 p
þ
1

mðpþ
2 þ pþ

1 Þ
ρλ

�
: ð82Þ

Note that, in order to rewrite the final result via the
classical intensity and the quantum nonlinearity parame-
ters, one needs to simply replace the “+” momentum
components with the corresponding quantum nonlinearity
parameters everywhere, except the arguments φ of the tiðφÞ
parameters, where for the general form φ ¼ ϕþ Δϕ of the
argument one also has to multiply Δϕ by the factor m=ξ
after the replacement, such that Δϕ ∝ 1=ξ.

VII. ZERO-FIELD LIMIT

In the case of a vanishing plane-wave field, with the use
of Eqs. (76)–(78), one should be able to recover the result

known from the literature [85]. Since this derivation is
different from and also somewhat less trivial than the one
usually presented, we show explicitly how the vacuum
expressions are obtained.
Let us start with the “iidd” term in Eq. (78), which is the

simplest out of three. If the external field is set to zero, then
Φiidd ¼ ð1þ t⊥2Þρ, where t⊥2 ¼ t21 þ t22. The integral in ρ
reduces to the Dirichlet integral, and we obtain that

σiidd ¼ −
πr2e

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμ − 1Þp ; ð83Þ

where μ is the scaled invariant mass squared: μ ¼ s=ð4m2Þ,
with s ¼ ðp2 þ p1Þ2.
The other two contributions require some more manip-

ulations. Upon setting the laser field to zero, the quantities
M̃nndd and M̃nidd are equal to unity, and the phase Φdd

v
reduces to

Φdd
v ¼ 1

ρ
þ 1

4
a2v2τ2ρ − bvτ; ð84Þ

where

a¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t⊥2ð1þ t⊥2Þkþ2 kþ1

pþ
2 p

þ
1

s
;

b¼
�
kþ2
pþ
2

þ kþ1
pþ
1

�
ð1þ t⊥2Þ; ð85Þ

and we have rescaled ρ as ρ=ð2t⊥2v2τ2Þ → ρ. After that, the
integrals are evaluated in the order shown in Eqs. (76)
and (77). Details are presented in Appendix E. The results
are given by
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σnndd ¼ −
πr2e

4μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμ − 1Þp ; ð86Þ

and

σfnigdd ¼ πr2e
4μðμ − 1Þ

�
μþ 1

2

�
ln

� ffiffiffi
μ

p þ ffiffiffiffiffiffiffiffiffiffiffi
μ − 1

p
ffiffiffi
μ

p −
ffiffiffiffiffiffiffiffiffiffiffi
μ − 1

p
�
; ð87Þ

where ln indicates the natural logarithm. Combining all
three terms together, we obtain that

σdd ¼ πr2e
4μ2ðμ − 1Þ

�
μ

�
μþ 1

2

�
ln

� ffiffiffi
μ

p þ ffiffiffiffiffiffiffiffiffiffiffi
μ − 1

p
ffiffiffi
μ

p −
ffiffiffiffiffiffiffiffiffiffiffi
μ − 1

p
�

− ðμþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμ − 1Þ

p �
; ð88Þ

which is the same as the corresponding cross section in
Ref. [85]. Note that the “nidd+indd” term [Eq. (87)] is the
largest and the only positive contribution to the total cross
section (88), and the “iidd” term is the largest among the
other two by absolute value [compare Eqs. (83) and (86)].
We point out, that initially the cross section σdd has been

defined within the light-cone quantization formalism.
However, the obtained expression (88) is the same as
the one derived within the instant-form quantization, which
supports the way of defining the cross section on the light
cone, that we have suggested.
Another important remark is the fact that the “nndd”

term in Eq. (76) does not contain the two-step contribution.
Nevertheless, the complete result has been recovered,
which means that the two-step contribution vanishes in

vacuum, as it has to be, if the two-step contribution indeed
corresponds to the physical situation of the intermediate
fermion becoming real. In fact, one can verify this directly
by setting the integration interval for the virtuality v to
ð−∞;∞Þ and confirming that the integral vanishes (one
should be aware that in this case it is necessary to recover
the iϵ prescription for τ in order to shift the pole v ¼ 0 off
the real axis).

VIII. DISCUSSION OF THE RESULTS

The final result (76)–(78) for the total cross section
contains integrals which, generally speaking, have to be
evaluated numerically. Although a numerical analysis of
the local cross section is not given here, let us provide some
basic estimates.
We consider the case ξ ≫ 1 and, for the simplicity of the

estimation, we assume all quantum nonlinearity parameters
to be of the order of unity, which is a regime relevant from
the experimental point of view. For this regime, a general
idea is that QED processes in a background field can be
described locally as ones happening in a constant-crossed
field (CCF) [8]. Let us follow this idea and consider the
CCF limit as an approximation to the electron-positron
annihilation in the regime of interest.
In particular, we put ψ1ðϕÞ ¼ ϕ, ψ2ðϕÞ ¼ 0. Then the

phase in Eq. (79) can be written as

Φdd
v ¼ c−1

ρ
þ c0 þ c1ρþ c2ρ2 þ c3ρ3; ð89Þ

with the coefficients given by

c−1 ¼ 2t⊥2
F v2τ2;

c0 ¼ −
vτðκ2χ1 þ κ1χ2Þ

χ2χ1
ð1þ t⊥2

F Þ − v3τ3ðκ2χ1 þ κ1χ2Þðκ22χ21 þ κ21χ
2
2Þ

3χ2χ1ðχ2 þ χ1Þ2
;

c1 ¼
κ2κ1
2χ2χ1

ð1þ t⊥2
F Þ þ v2τ2κ2κ1ðκ22χ21 þ κ2κ1χ2χ1 þ κ21χ

2
2Þ

2χ2χ1ðχ2 þ χ1Þ2
;

c2 ¼ −
vτκ22κ

2
1ðκ2χ1 þ κ1χ2Þ

4χ2χ1ðχ2 þ χ1Þ2
;

c3 ¼
κ32κ

3
1

24χ2χ1ðχ2 þ χ1Þ2
; ð90Þ

where

t⊥2
F ¼

�
t1ðϕÞ þ

τðκ2χ1 þ κ1χ2Þ
2ðχ2 þ χ1Þ

�
2

þ t22; ð91Þ

t1ðϕÞ ¼ ti þ ξϕ, ti are initial values of the parameters
tiðϕÞ, χ1 and χ2 are the electron and positron quantum

nonlinearity parameters, respectively, and κi denote the
photon nonlinearity parameters: κi ¼ kþi ξ=m.
The phase in Eq. (81) is given by

Φiidd ¼ ½1þ t⊥2ðϕÞ�ρþ χ22χ
2
1

3ðχ2 þ χ1Þ2
ρ3; ð92Þ
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where t⊥2ðϕÞ ¼ t21ðϕÞ þ t22 in the case of CCF, since
t2ðϕÞ ¼ t2.
If jt⊥ðϕÞj≲ 1, the influence of an external field on the

annihilation process is expected to be important due to the
drastically different structure of the integrated expressions
[compare, e.g., the phases (84) and (89)]; however, the total
cross section should be of the same order as the one in
vacuum, since all parameters are less or of the order of unity.
Note that in this regime one might need to take into account
the term corresponding to the interference of the direct and
the exchange diagrams, which has not been discussed here.
Moreover, for the regime jt⊥ðϕÞj≲ 1 one should also

keep in mind that electron-positron annihilation into one
photon becomes dominant for sufficiently small values
of jt⊥ðϕÞj. In fact, the annihilation into one photon is a
resonant process, the local cross section reaches its
highest value (which might be of the order of r2e=α) as
jt⊥ðϕÞj → 0 and becomes exponentially suppressed as
jt⊥ðϕÞj grows [8].
On the other hand, typical values of jt⊥ðϕÞj are much

larger than unity for sufficiently long laser pulses [see the
discussion below Eq. (37)]. Therefore, let us consider the
regime jt⊥ðϕÞj ≫ 1, where the obtained cross section is
expected to be dominant.
Let us estimate the formation regions of the integrals in ρ

and τ for Eqs. (76), (77) and in ρ for Eq. (78). We start with
Eqs. (76) and (77), i.e., with the phase (89). We assume
that at least for the major part of the parameter space
under consideration the equations ∂Φdd

v =∂ρ ¼ 0 and
∂Φdd

v =∂τ ¼ 0 are not satisfied simultaneously for ρ ∈ R,
τ > 0, and v ≥ 1. Then the integral in ρ is formed around
stationary points (we expect the equation ∂Φdd

v =∂ρ ¼ 0 to
have at least two real roots), and the integral in τ is formed
around zero. From Eq. (90) it follows that jc0j ∼ 1 when
vτt⊥2ðϕÞ ∼ 1. Then we estimate that the integral in τ forms
at the interval corresponding to vτ ≲ 1=t⊥2ðϕÞ. Comparing
terms with different powers of ρ in ∂Φdd

v =∂ρ, one concludes
that for ρ the formation region can be estimated as
jρj≲ 1=t⊥2ðϕÞ. Note that due to a possible cancellation
of terms in the phase, the actual scaling might change, e.g.,
for specific values of κ1, however, we assume that the
formation regions still decrease with the growth of jt⊥ðϕÞj
fast enough, such that the following considerations for the
total cross section are valid.
From Eq. (92) one concludes that the formation region

for ρ is the same as for Eq. (89).
If vτ; jρj≲ 1=t⊥2ðϕÞ ≪ 1, one can neglect terms ≪ 1 in

Eq. (89) in such a way that Eq. (89) is reduced to the
phase in vacuum, i.e., to Eq. (84) (after rescaling
ρ=½2t⊥2ðϕÞv2τ2� → ρ), with the change t⊥ → t⊥ðϕÞ.
Equation (92) can be transformed analogously. Then one
finds that Eq. (77) produces the leading contribution
and the total cross section can be estimated as
σddðϕÞ ∼ r2eμ−1ðϕÞ ln μðϕÞ, where μðϕÞ ¼ sðϕÞ=4m2 and
sðϕÞ is given by Eq. (37). This result is the same as for

the analogous regime μ ≫ 1 in vacuum, with the change
μ → μðϕÞ [see Eq. (88)].
Transferring the estimates, obtained for CCF, to the

annihilation process in a general field of extreme intensity,
we conclude that, under the aforementioned assumptions,
high-intensity background fields are not expected to
increase or suppress the cross section by orders of magni-
tude in comparison to the one in vacuum, if the local
parameters of the collision are similar in both cases.
However, if the external field significantly alters the initial
value t⊥ of the parameter t⊥ðϕÞ, the overall result might
differ considerably from the vacuum one for particular field
configurations and collision geometries.
For a quantitative estimate of the importance of the

reaction e−eþ ⇒ γγ, let us assume a quasineutral electron-
positron plasma with the density ϱ. The relative change of
the density due to the annihilation can be estimated as
Δϱ=ϱ ∼ σϱl, where σ and l are the typical cross section
and the length scale of interaction, respectively. Let us
take σ ∼ r2e=hμðϕÞi, with hμðϕÞi ∼ ξ2 ∼ 102 (where we put
ξ ∼ 10), solid-state density ϱ ∼ 1023 cm−3, and l ∼ 100 μm.
We obtain that Δϱ=ϱ ∼ 10−6. If instead we take σ ∼ r2e
(an estimate for the regime jt⊥ðϕÞj≲ 1), the result is
Δϱ=ϱ ∼ 10−4, which is still a small relative change. This
implies that electron-positron annihilation into two
photons is not significant for current-technology laser-
based experiments.

IX. CONCLUSIONS

We have investigated analytically the process of anni-
hilation of an electron-positron pair into two photons in the
presence of an intense plane-wave field, as a characteristic
example of 2 ⇒ 2 reactions. The external field has been
taken into account exactly in the calculations by working in
the Furry picture, and light-cone quantization has been
employed, in order to have a formalism particularly suitable
for studying processes in a plane-wave background field.
Though the presented description of the scattering based

on the use of wave packets is tailored to the reaction
e−eþ ⇒ γγ in a laser pulse, it applies to a general second-
order 2-to-2 reaction in an intense background field. We
have seen that it is convenient to introduce the concept of a
local cross section, which although not being a measurable
quantity, is a useful tool especially for comparison of the
results in a laser field and the corresponding ones in
vacuum. Indeed, the local cross section in a plane-wave
field is a qualitatively different entity with respect to its
vacuum limit, since it bears the dependence on the light-
cone moment of the collision and may also become
negative in some regions of the parameter space.
Therefore, the cross section in the external field cannot
be seen as an observable, but instead could be interpreted as
a quantity, which extends the concept of the classical cross
section, similar to the relation between the Wigner dis-
tribution and the classical phase-space distribution.
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In contrast to processes in a plane wave initiated by a
single particle, the pair annihilation into two photons does
also occur in vacuum. The vacuum part has an additional
momentum-conserving delta function at each vertex, which
is hidden, if one works in the Furry picture (see Ref. [102]
for a discussion of splitting the amplitude of a second-order
tree-level process in a laser field into different parts). Our
definition of the cross section and also the analytical
evaluation of Gauss-type integrals in the transverse
momentum components of the final particles effectively
remove those delta functions and allow one to write the
total local cross section without a formal split into a
vacuum and a field-dependent part. We have also ensured
that by setting the external field to zero, the vacuum cross
section is recovered.
A distinct feature of second-order tree-level processes in

an intense background is a nonvanishing contribution from
the cascade or two-step channels, which correspond to the
intermediate particle becoming real. In contrast to 1-to-3
reactions, 2-to-2 reactions have not one, but two cascade
channels, which in the case of e−eþ ⇒ γγ correspond to
either the electron or the positron emitting first a photon
and then annihilating with the other particle into the second
photon. Though the different contributions can be treated in
a standard fashion, which involves the use of Heaviside
step functions, we have demonstrated a concise way of
representing them via virtuality integrals with fixed inte-
gration limits.
We have explicitly evaluated the total cross section,

without taking into account the interference term between
the direct and the exchange amplitudes. In addition to the
common classical nonlinearity and quantum nonlinearity
parameters ξ and χi, respectively, the final result depends
nontrivially on the parameters ti (similar to the annihilation
into one photon [8,52]), which can be related to transverse
momentum components of the incoming particles with
respect to the laser pulse propagation direction. One
can distinguish two regimes jt⊥ðϕÞj ≲ 1 and jt⊥ðϕÞj ≫ 1
depending on the magnitude of the local quantity
jt⊥ðϕÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21ðϕÞ þ t22ðϕÞ

p
, where ϕ is the laser phase at

the collision point xμ.
In the highly nonlinear case (ξ ≫ 1), if dynamics over

several laser periods is considered, typical values of jt⊥ðϕÞj
are much larger than unity. For jt⊥ðϕÞj ≫ 1 the cross
section σddðϕÞ presented here should account for the most
significant contribution to electron-positron annihilation.
The considerations for the constant-crossed field limit
imply that for ξ ≫ 1, χi ∼ 1, jt⊥ðϕÞj ≫ 1 the cross section
in a background field behaves analogously to the cross
section in vacuum (to leading order), with the replacement
of the asymptotic invariant mass

ffiffiffi
s

p
with its local valueffiffiffiffiffiffiffiffiffi

sðϕÞp
. This suggests that the cross section in an intense

field is similar in magnitude to the one in vacuum, if the
local parameters of the collision are the same. However,
due to the change of jt⊥ðϕÞj with the laser phase ϕ, the

average effect of the presence of the field might be
considerable.
Finally, simple numerical estimates indicate that elec-

tron-positron annihilation into two photons is not sizable
in current laser-based experiments. However, it might play
an important role in other setups, e.g., in an astrophysical
environment, where the length scales of interaction are
very large.
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APPENDIX A: LIGHT-CONE QUANTIZATION

We define the light-cone coordinates in a covariant
way using the light-cone basis fημ; η̄μ; eμ1; eμ2g, with the
four-vectors of this basis satisfying the following
properties [98]:

η2¼ η̄2¼0; ηη̄¼1; ηei¼ η̄ei¼0; eiej¼−δij: ðA1Þ

Then an arbitrary four-vector aμ can be written as

aμ ¼ aþη̄μ þ a−ημ þ a1eμ1 þ a2eμ2; ðA2Þ

where

aþ ¼ aη; a− ¼ aη̄; a1 ¼ −ae1; a2 ¼ −ae2:

ðA3Þ

The metric tensor is given by

gμν ¼ ημη̄ν þ η̄μην − eμ1e
ν
1 − eμ2e

ν
2; ðA4Þ

which can be written in the matrix form as

gμν ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

1
CCCA ðA5Þ

(note that the order of the components is +, −, 1, 2). The
scalar product of two four-vectors aμ and bμ is

ab¼aþb−þa−bþþaibi¼aþb−þa−bþ−a⊥b⊥; ðA6Þ
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where a⊥ ¼ ða1; a2Þ and b⊥ ¼ ðb1; b2Þ. For the quantiza-
tion in the presence of a plane-wave field AμðxÞ ¼ Aμðk0xÞ,
we choose ημ ¼ kμ0=m. We also need to fix the signs of
scalar products. In order to do that, we assume the signature
ðþ;−;−;−Þ for the metric tensor in the instant form. Then,
we have pþ > 0, p2 ¼ m2 for an on-shell fermion with
four-momentum pμ.
The derivation of the light-front Hamiltonian is analo-

gous to the one in the vacuum case (see Refs. [76–78]);
however, the background field Aμðk0xÞ is included in
the zeroth-order Hamiltonian H0 [79,80]. The result is
[76–78,81]

H ¼ H0 þ V1 þ V2 þ V3; ðA7Þ

with

H0 ¼
Z

d2x⊥dx−
�
ψ̄γ−i∂−ψ þ eψ̄γþψA−

þ 1

2
ð∂−A−Þ2 þ 1

2
ð∂1A2 − ∂2A1Þ2

�
;

V1 ¼ e
Z

d2x⊥dx−ψ̄γμψAμ;

V2 ¼
e2

2

Z
d2x⊥dx−Aμψ̄γ

μ γþ

i∂−
γνψAν;

V3 ¼
e2

2

Z
d2x⊥dx−ψ̄γþψ 1

ði∂−Þ2
ψ̄γþψ ; ðA8Þ

where ψ and Aμ are the electron and photon fields,
respectively, to be quantized (in fact, only the projection
ψþ ¼ Λþψ is an independent degree of freedom, where
Λþ ¼ γ−γþ=2, and Aμ has only two independent
components [76,77]).
The Dirac equation for the electron field ψ is

½γði∂ − eAÞ −m�ψ ¼ 0, as a result, in the interaction
picture we obtain the following expansion of ψðxÞ via
the Volkov wave functions (see Refs. [81,103] for dis-
cussions of the completeness of the Volkov solutions on the
light cone),

ψðxÞ ¼
X
σ

Z
d̃3p
ð2πÞ3 ½apσψpσðxÞ þ b†pσψ

ð−Þ
pσ ðxÞ�; ðA9Þ

where

d̃3p
ð2πÞ3 ¼

d2p⊥
ð2πÞ2

dpþ

2π
θðpþÞ; ðA10Þ

apσ, bpσ (a
†
pσ, b

†
pσ) are the annihilation (creation) operators,

with the anticommutation relations

fapσ;a†p0σ0g¼fbpσ;b†p0σ0 g¼ð2πÞ3δðþ;⊥Þðp−p0Þδσσ0 ; ðA11Þ

ψpσðxÞ are the positive-energy Volkov wave functions (5),
and ψ ð−Þ

pσ ðxÞ are the negative-energy ones,

ψ ð−Þ
pσ ðxÞ ¼ K−pðϕÞvpσffiffiffiffiffiffiffiffiffi

2pþp eiS−pðxÞ; ðA12Þ

with the free Dirac bispinor vpσ defined such that
v̄pσvpσ0 ¼ −2mδσσ0 , v̄pσγμvpσ0 ¼ 2pμδσσ0 ,

P
σ vpσ v̄pσ ¼

γp −m [85].
The quantized part AμðxÞ of the photon field is repre-

sented in the same way, as in the vacuum case [75–77],

AμðxÞ ¼
X
λ

Z
d̃3k
ð2πÞ3 ½ckλϕ

μ
kλðxÞ þ c†kλϕ

�μ
kλðxÞ�; ðA13Þ

where the creation and annihilation operators obey the
relation

½ckλ; c†k0λ0 � ¼ ð2πÞ3δðþ;⊥Þðk − k0Þδλλ0 ; ðA14Þ
and ϕμ

kλðxÞ is given by

ϕμ
kλðxÞ ¼

ϵμkλffiffiffiffiffiffiffiffi
2kþ

p e−ikx; ðA15Þ

with the polarization four-vectors ϵμkλ satisfying the con-
ditions

ϵμkλϵ
�
kλ0μ ¼ −δλλ0 ; kμϵ

μ
kλ ¼ 0;X

λ

ϵμkλϵ
�ν
kλ ¼ −gμν þ ημkν þ ηνkμ

kþ
: ðA16Þ

APPENDIX B: WAVE PACKETS

A positive-energy wave packet ΨpðxÞ with the central
four-momentum pμ (the polarization degree of freedom is
suppressed) is constructed according to Eq. (13). The
density f̃pðqÞ is defined such that ΨpðxÞ is normalized
to one particle,Z

d2x⊥dx−Jþe ðxÞ ¼
Z

d̃3q
ð2πÞ3 jf̃pðqÞj

2 ¼ 1: ðB1Þ

The four-current density is defined as JμeðxÞ ¼
Ψ̄pðxÞγμΨpðxÞ [85]. By assuming that f̃pðqÞ is peaked
around the four-momentum pμ and by taking into account
that the bispinor part of the wave packet is slowly varying
with qμ, we obtain that

JμeðxÞ ≈ jfpðxÞj2
πμe;pðϕÞ
pþ ; ðB2Þ

where fpðxÞ is given by Eq. (21), the subscript e denotes
the electron current density, and πμe;pðϕÞ ¼ πμpðϕÞ
[see Eq. (7)].
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For a positron with the wave-packet density f̃0�pðqÞ (an
asterisk denotes the complex conjugate), one obtains that

Jμ−eðxÞ ≈ jf0pðxÞj2
πμ−e;pðϕÞ

pþ ; ðB3Þ

where

πμ−e;pðϕÞ ¼ −πμ−pðϕÞ: ðB4Þ

Physically, the quantity jfpðxÞj2 (and jf0pðxÞj2 for
positrons) has a particularly transparent form in the
considered case of a narrow wave packet in momentum
space. We indicate as (we focus on electrons, for positrons
all considerations are analogous)

hpðxÞ ¼
Z

d̃3q
ð2πÞ3 f̃pðqÞ expð−iqxÞ; ðB5Þ

the asymptotic form of Eq. (21) for ϕ → −∞, where the
field-dependent part of the phase vanishes. By expanding
the phase qx up to leading order in q⊥ − p⊥ and qþ − pþ,
one neglects the spreading of the wave packet, and it is easy
to see that if the function hpðxÞ is peaked at xþ ¼ 0 around
the point x⊥ ¼ 0 and x− ¼ 0, then for a generic xþ it will be
peaked at x⊥ ¼ p⊥xþ=pþ and x− ¼ ðm2 þ p⊥2Þxþ=2pþ2,
i.e., it will follow the free classical trajectory. By carrying
out the same calculation with the full wave packet fpðxÞ
[see Eq. (21)], one obtains

jfpðxÞj2 ¼ jFpðxÞj2

≈
����
Z

d̃3q
ð2πÞ3 f̃pðqÞ exp½−iðq − pÞx − i∇p⊥SpðϕÞðq⊥ − p⊥Þ

− i∂pþSpðϕÞðqþ − pþÞ�
����2: ðB6Þ

Now, by recalling that the phase of a positive-energy
Volkov state corresponds to the classical action of an
electron in the corresponding plane wave, one obtains that
jfpðxÞj2 ≈ jhpðxpÞj2, where xμp ¼ ½0; x−pðxþÞ; x⊥p ðxþÞ�, with

x−pðxþÞ ¼ x− −
m2 þ p⊥2

2pþ2
xþ

þ
Z

ϕ

−∞
dβ

�
ep⊥A⊥ðβÞ
mpþ2

−
e2A⊥2ðβÞ
2mpþ2

�
; ðB7Þ

x⊥p ðxþÞ ¼ x⊥ −
p⊥
pþ xþ þ e

mpþ

Z
ϕ

−∞
dβA⊥ðβÞ; ðB8Þ

which indicates that the function jfpðxÞj2 is centered
around the classical trajectory of the electron in the plane
wave under consideration.

APPENDIX C: CONDITIONS FOR THE
APPROXIMATIONS FOR THE WAVE PACKETS

Here we provide a discussion about the approximations
given in Eqs. (22) and (26).
For the case of a plane-wave field Aμðk0xÞ, since the

dependence of the field on xμ is only via the light-cone time
xþ, the conditions for the approximations for the compo-
nents x−, x⊥, that one needs to make in order to obtain the
final expression (28), are ultimately the same as in vacuum,
i.e., related only to the resolution of the detector and the
widths of the wave packets.
In order to understand the conditions for the light-cone

time in Eq. (22), i.e., for the variable δþ1 , let us consider the
approximation F1ðX1 − δ1=2Þ ≈ F1ðX1Þ (for the positron
wave packet the considerations below proceed analo-
gously). Let us assume to work in the highly nonlinear
regime, i.e., ξ ≫ 1. Requiring the correction to the phase in
Eq. (20) due to δþ1 to be small, and keeping only linear
terms in δþ1 and in the widths Δpþ

1 and Δp⊥1 of the wave
packet, one arrives at the following condition:

����π⊥
p1
ðΦ1ÞΔp⊥1
2pþ

1

δþ1 −
m2 þ π⊥2

p1
ðΦ1Þ

4pþ2
1

Δpþ
1 δ

þ
1

���� ≪ 1; ðC1Þ

where Φ1 ¼ mXþ
1 . Considering each term separately, we

obtain that the conditions on the widths of the wave packet
are

jΔp⊥1 j≪
pþ
1

jπ⊥
p1
ðΦ1Þjjδþ1 j

; Δpþ
1 ≪

pþ2
1

½m2þπ⊥2
p1
ðΦ1Þ�jδþ1 j

:

ðC2Þ

The approximation in Eq. (26) is qualitatively different
than that in Eq. (22), since it is an approximation for the
particle densities (which are classical concepts), rather than
for the wave packets themselves. However, it can be related
to the approximation (22), since the conditions for the
approximation jf1ðx − δ=2Þj2 ≈ jf1ðxÞj2 can be written as
in Eq. (C2), with the replacements Φ1 → ϕ, δþ1 → δþ [due
to jf1ðx − δ=2Þj2 ¼ jF1ðx − δ=2Þj2]. Then, if jδþj≲ jδþ1 j
and jπ⊥

p1
ðϕÞj ≲ jπ⊥

p1
ðΦ1Þj the approximations (22) and (26)

are valid simultaneously, when Eq. (C2) is fulfilled.
In order to assess the magnitude of δþ1 , δ

þ
2 , and δ

þ, let us
employ the ideas, presented in Sec. VIII. For simplicity, let
us also use the canonical light-cone basis (2) with Eq. (3),
then π⊥

p1
ðϕÞ ¼ mt⊥ðϕÞ, π⊥

p1
ðΦ1Þ ¼ mt⊥ðΦ1Þ. We consider

the one-step contribution; therefore v ≥ 1.
If jt⊥ðϕÞj ≲ 1, the integrals are expected to form at jρj,

vτ ≲ 1 (note that here and below, like in Sec. VIII, we
assume the quantum nonlinearity parameters to be of the
order of unity). Therefore, jδþ1 j, jδþ2 j, jδþj≲ 1=ðmξÞ [see
Eq. (73) and also note that δþ ¼ pþ

3 τ=m
2], analogously to

first-order processes [8]. For jt⊥ðΦ1Þj, let us take the upper
bound jt⊥ðΦ1Þj ∼ 1. Then from Eq. (C2) we obtain
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jΔp⊥1 j ≪ m; Δpþ
1 ≪ pþ

1 : ðC3Þ

If jt⊥ðϕÞj ≫ 1, the formation regions are defined by jρj,
vτ ≲ 1=t⊥2ðϕÞ, then jδþ1 j, jδþ2 j, jδþj≲ 1=½mξt⊥2ðϕÞ�. From
Eq. (C2) it follows that

jΔp⊥1 j ≪ mjt⊥ðϕÞj; Δpþ
1 ≪ pþ

1 ; ðC4Þ

where we have employed the fact that jt⊥ðΦ1Þj ≈ jt⊥ðϕÞj
for τ ≲ 1=t⊥2ðϕÞ (recall that v ≥ 1).
Combining both cases together, we write the relations

(C2) as

jΔp⊥1 j ≪ maxðm; jπ⊥
p1
ðϕÞjÞ; Δpþ

1 ≪ pþ
1 : ðC5Þ

Under the conditions (C5) (and analogous ones for the
positron wave packet), both approximations (22) and (26)
can be employed for the one-step contribution.

As to the two-step contribution, the integration limits for
v are (0,1) instead of ð1;∞Þ in Eq. (76). Then the product
vτ can be made arbitrarily small even for τ ≫ 1. This hints
thatmδþ might in principle be of the order of the total laser
phase. Hence, if we are to employ the cross section (33), in
general, we need to restrict ourselves to the evaluation of
the one-step contribution alone, unless we consider incom-
ing wave packets, which are broader in configuration space
than the laser pulse.
We emphasize the semiquantitative nature of the above

considerations and point out the importance of performing
the (numerical) evaluation with the wave packets in order to
ascertain precisely the conditions under which the approach
based on the local cross section in Eq. (33) is applicable.

APPENDIX D: TRACES

The initial traces for the four terms, constituting the
direct-direct part of the cross section, are given by

Mnndd ¼ 1

8m4
Trfρ−p2

Kϰ
−p2p3

ðϕ2Þðγp̃3 þmÞKλ
p3p1

ðϕ1Þρp1
Kμ

p1p3
ðϕ0

1Þðγp̃3 þmÞKν
p3;−p2

ðϕ0
2Þggϰνgλμ; ðD1Þ

Mnidd ¼ 1

2m2 þ sðϕÞTr
	
ρ−p2

Kϰ
−p2p3

ðϕ2Þðγp̃3 þmÞKλ
p3p1

ðϕ1Þρp1

Kμν
p1;−p2

ðϕ0
1;ϕ

0
2Þ

2pþ
3



gϰνgλμ; ðD2Þ

Mindd ¼ 1

2m2 þ sðϕÞTr
	
ρ−p2

Kϰλ
−p2p1

ðϕ2;ϕ1Þ
2pþ

3

ρp1
Kμ

p1p3
ðϕ0

1Þðγp̃3 þmÞKν
p3;−p2

ðϕ0
2Þ


gϰνgλμ; ðD3Þ

Miidd ¼ −Tr
	
ρ−p2

Kϰλ
−p2p1

ðϕ2;ϕ1Þ
2pþ

3

ρp1

Kμν
p1;−p2

ðϕ0
1;ϕ

0
2Þ

2pþ
3



gϰνgλμ ðD4Þ

[note that ϕ0
1 ¼ ϕ0

2 and ϕ1 ¼ ϕ2 for the “nidd” and “indd” terms, respectively, see Eqs. (45) and (46), and both relations are
valid for the “iidd” term, see Eq. (47)]. In principle, the traces can be evaluated with the use of the standard techniques [85].
Alternative approaches have also been suggested [81,84]. The results can be written in a manifestly Lorentz-invariant
form (note that the “+” component of a four-momentum pμ is given by pþ ¼ k0p=m) [81],

Mnndd ¼ −1
4pþ

2 p
þ
1 p

þ2
3 m4

�
1

2
ðpþ2

1 þ pþ2
3 ÞΔ2

1 þ 2kþ1 p
þ
1 k1Z1 − 2pþ

1 p
þ
3 m

2

��
1

2
ðpþ2

2 þ pþ2
3 ÞΔ2

2 − 2kþ2 p
þ
2 k2Z2 þ 2pþ

2 p
þ
3 m

2

�

−
kþ2 k

þ
1

4pþ2
3 m2

Δ1Δ2 −
ðpþ

1 þ pþ
3 Þðpþ

3 − pþ
2 Þ

4pþ
2 p

þ
1 p

þ2
3 m4

½Δ1Δ2ðkþ2 kþ1 Z1Z2 − kþ2 p
þ
1 k1Z2 þ kþ1 p

þ
2 k2Z1 − pþ

2 p
þ
1 k2k1Þ

þ kþ2 p
þ
1 k1Δ2Δ1Z2 − kþ1 p

þ
2 k2Δ1Z1Δ2 − kþ2 k

þ
1 Δ1Z2Z1Δ2 þ pþ

2 p
þ
1 k1Δ2k2Δ1�; ðD5Þ

Mnidd ¼ 2

pþ2
3 ½2m2 þ sðϕÞ�

�
m2ðpþ

3 − kþ1 Þðpþ
3 þ kþ2 Þ þ

1

4
ðpþ

1 þ pþ
3 Þðpþ

3 − pþ
2 ÞΔ1Δ2

−
1

2
kþ2 ðpþ

1 þ pþ
3 ÞΔ1Z2 −

1

2
kþ1 ðpþ

3 − pþ
2 ÞZ1Δ2

−
1

2
pþ
2 ðpþ

1 þ pþ
3 Þk2Δ1 þ

1

2
pþ
1 ðpþ

3 − pþ
2 Þk1Δ2

þ kþ2 k
þ
1 Z1Z2 − kþ2 p

þ
1 k1Z2 þ kþ1 p

þ
2 k2Z1 − pþ

2 p
þ
1 k2k1

�
; ðD6Þ
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Mindd¼MniddjΔμ
1
→−Δμ

1
;Δμ

2
→−Δμ

2
; Miidd¼2pþ

2 p
þ
1

pþ2
3

; ðD7Þ

where

Δμ
1 ¼ Δμ

p1
ðϕ0

1;ϕ1Þ; Zμ
1 ¼ Zμ

p1
ðϕ0

1;ϕ1Þ;
Δμ

2 ¼ Δμ
−p2

ðϕ2;ϕ0
2Þ; Zμ

2 ¼ Zμ
−p2

ðϕ2;ϕ0
2Þ; ðD8Þ

with

Δμ
pðϕ;ϕ0Þ ¼ πμpðϕÞ − πμpðϕ0Þ;

Zμ
pðϕ;ϕ0Þ ¼ ½πμpðϕÞ þ πμpðϕ0Þ�=2: ðD9Þ

In Eq. (D5) a combination of four four-vectors stands
for the product of two scalar products, e.g., k1Δ2k2Δ1 ¼
ðk1 · Δ2Þðk2 · Δ1Þ and analogously for the other
combinations.
The results in Eqs. (D5), (D6), and (D7) can be cast into

a more convenient form with the use of momentum
relations for the dressed momenta. First, we notice that,
since “þ” and “⊥” momentum components are conserved
in the plane wave, the relations

½πp0 ðϕÞ þ k − πpðϕÞ�ðþ;⊥Þ ¼ 0 ðD10Þ

hold, where πμpðϕÞ is the fermion four-momentum which
comes into the point xμ, and kμ and πμp0 ðϕÞ are the photon
and fermion outgoing four-momenta, respectively. For an
analogous combination of the “–” components, for each
vertex we have the relationZ

dxþ½π−p0 ðϕÞþk−−π−pðϕÞ�eiΦðxþÞ ¼−i
Z

dxþ∂þ½eiΦðxþÞ�;

ðD11Þ

where ΦðxþÞ ¼ ðp0− þ k− − p−Þxþ þ Sp0 ðϕÞ − SpðϕÞ.
Assuming that the boundary terms must not affect observ-
ables, we obtain the full four-momentum conservation law
(see Refs. [14,27,58,66,84] for similar considerations),

πμp0 ðϕÞ þ kμ − πμpðϕÞ ¼ 0; ðD12Þ

which, strictly speaking, holds only inside the integral in
xþ. With the use of Eq. (D12), one can derive the following
momentum relations [81]:

kπp0 ðϕÞ ¼ 1

2
ðp2 − p02 − k2Þ;

kπpðϕÞ ¼ −
1

2
ðp02 − k2 − p2Þ;

πp0 ðϕÞπpðϕÞ ¼ −
1

2
ðk2 − p02 − p2Þ: ðD13Þ

The relations (D13) allow one to extract instantaneous
parts, i.e., terms ∝ ðp2

3 −m2Þ and ðp02
3 −m2Þ from the

“nndd” contribution (D5) and include them into the “indd”
and “nidd” contributions, respectively. Subsequently, the
instantaneous parts can be extracted from the “nidd” and
“indd” contributions and combined with the “iidd” con-
tribution. These rearrangements are significantly simplified
if one employs the coordinate system, defined by Eqs. (2)
and (3). The result is (see Ref. [81] for details)

M̃nndd ¼ −
1

4pþ
2 p

þ
1 p

þ2
3 m4

�
1

2
ðpþ2

1 þ pþ2
3 ÞΔ⊥2

1 þ 2pþ
1 p

þ
3 m

2

��
1

2
ðpþ2

2 þ pþ2
3 ÞΔ⊥2

2 − 2pþ
2 p

þ
3 m

2

�
þ kþ2 k

þ
1

4pþ2
3 m2

Δ⊥
1 Δ⊥
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M̃indd¼M̃niddjΔ⊥
1
→−Δ⊥

1
;Δ⊥

2
→−Δ⊥

2
; M̃iidd¼−2; ðD16Þ

where

Z⊥ ¼ kþ2
pþ
2

Z⊥
2 −

kþ1
pþ
1

Z⊥
1 : ðD17Þ

Note that the final expressions do not depend on the
vector k⊥1 . This facilitates the analytical evaluation of the
integral in this variable, as we have mentioned in the main
text.

APPENDIX E: INTEGRALS FOR THE
ZERO-FIELD LIMIT

Here, we present the evaluation of the integrals, given in
Eqs. (76) and (77), for the case of a vanishing laser field.
The phase Φdd

v is given in Eq. (84) [see Eq. (85) for the
definitions of the quantities a and b used below].
The integral in ρ evaluates to a Bessel function of first

kind, in particular [104],

Z
dρ
ρ
exp

�
i
ρ
þ i
4
a2v2τ2ρ

�
¼ 2iπJ0ðavτÞ: ðE1Þ

For the integrals in τ, formally, one needs to recover the iϵ
prescription, in order to make them convergent at infinity.
On the other hand, we can rotate the integration contour
clockwise by π=2 and then make the replacement τ → −iτ,

after that the iϵ prescription is not necessary (note that
b > a). One obtains [104]

Z
∞

0

dτ τJ0ðavτÞe−ibvτ ¼ −
b

ðb2 − a2Þ3=2v2 ;Z
∞

0

dτ J0ðaτÞe−ibτ ¼ −
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 − a2
p : ðE2Þ

The integral in v is elementary in the case of a vanishing
external field. The evaluation of the integrals in kþ1 is also
straightforward. Afterward, one needs to express the result
in terms of μ, which can be written as

μ ¼ ðpþ
2 þ pþ

1 Þ2
4pþ

2 p
þ
1

ð1þ t⊥2Þ: ðE3Þ

We obtain
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b

ðb2 − a2Þ3=2 ¼
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1

4μ
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b2 − a2
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1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðμ − 1Þp ln
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μ
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μ − 1

p
ffiffiffi
μ

p −
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p
�
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Combining everything together, one recovers the final
expressions, presented in Sec. VII.
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