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We use the interpolating coordinates studied by Hornbostel to investigate a transition from equal-time
quantization to light-front quantization, in the context of two-dimensional ϕ4 theory. A consistent treatment
is found to require careful consideration of vacuum bubbles, in a nonperturbative extension of the analysis
by Collins. Numerical calculations of the spectrum at fixed box size are shown to yield results equivalent to
those of equal-time quantization, except when the interpolating coordinates are pressed toward the light-
front limit. In that regime, a fixed box size is inconsistent with an accurate representation of vacuum-bubble
contributions and causes a spurious divergence in the spectrum. The light-front limit instead requires the
continuum momentum-space limit of infinite box size. The calculation of the vacuum energy density is then
shown to be independent of the interpolation parameter, which implies that the light-front limit yields the
same spectrum as an equal-time calculation. This emphasizes the importance of zero modes and near-zero
modes in a light-front analysis of any theory with nontrivial vacuum structure.
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I. INTRODUCTION

Recently, there has been a resurgence of interest in the
spectrum of two-dimensional ϕ4 theory [1–15],1 partly
because of what appeared to be an inconsistency between
results from equal-time quantization and light-front quanti-
zation. Although the apparent inconsistency has been
resolved, as a difference in mass renormalizations [7,9,
11,16], there remain various issues related to the structure
of the vacuum. In light-front quantization [17–19], the
vacuum is famously trivial,2 but in equal-time quantization,
it is as complex as any of the other eigenstates.
More specifically, a direct quantitative check of the

difference in mass renormalizations [7] was not completely
successful and required extrapolation of the light-front
mass renormalization from weaker coupling. In [11] this
failure is attributed3 to an incomplete nonperturbative
formulation of the mass renormalization itself. The mass
renormalization relies on a computation of the expectation
value hϕ2i for the square of the field ϕ, which is done with a

spectral decomposition. The mass spectrum that was used
in [7] lacked the correct behavior near the critical coupling.
This caused the incorrect behavior for the computed value
of hϕ2i and created the need for extrapolation. The
incorrect behavior for hϕ2i found in [11] may also be a
numerical artifact that misrepresents the underlying theory.
A better understanding requires an improved treatment of
vacuum effects in light-front calculations.
In order to see more clearly what may be happening

for the light-front vacuum, we apply the interpolation
procedure championed by Hornbostel [23]4 and empha-
sized by Ji [31], in which the (two-dimensional) coordi-
nates are chosen to be5

x� ¼ 1ffiffiffi
2

p ½
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
t�

ffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ c

p
z�; ð1:1Þ

with xþ chosen as the time coordinate. The parameter c
ranges from 0 to 1, with 0 being the light-front limit [33],6

where x� ¼ ðt� zÞ= ffiffiffi
2

p
, and 1 the equal-time limit, where

xþ ¼ t and x− ¼ −z. The minus sign for the equal-time*Present address: Department of Physics, University of Idaho,
Moscow, Idaho 83844 USA.
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1For citations of older work, see [9].
2See, however, the remarks by Collins [20]; Martinovic and

Dorokhov [21]; and Mannheim, Lowdon, and Brodsky [22] on
nontrivial aspects.

3See the discussion in Sec. III B of [11].

4There are earlier applications of interpolation, to two-dimen-
sional QCD [24], the Dirac equation [25], and perturbation theory
[26], as well as of quantizations close to the light-cone [27,28]
applied to two-dimensional QED and QCD [29,30].

5This coordinate transformation is not a Lorentz transforma-
tion, which makes the c → 0 limit technically distinct from the
infinite-momentum-frame limit [32].

6Contrary to our usual convention but in keeping with an
equally common choice, x� include a factor of 1=

ffiffiffi
2

p
. This

matches Hornbostel’s construction [23] and simplifies some of
the expressions.
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spatial coordinate may seem incongruous, but it is a
permissible choice that simplifies the notation.
The conjugate energy and momentum are

p� ¼ 1ffiffiffi
2

p
h ffiffiffiffiffiffiffiffiffiffiffi

1� c
p

E ∓ ffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ c

p
pz

i
: ð1:2Þ

Dot products of the momentum and spatial two-vectors
are then given by p · x ¼ pþxþ þ p−x−. The mass-shell
condition becomes

μ2 ¼ E2 − p2
z ¼ cp2þ − cp2

− þ 2spþp−; ð1:3Þ

with s≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p
. The positive root for pþ yields

pþ ¼
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
− þ cμ2

q
− sp−

i
=c: ð1:4Þ

For the c ¼ 1 and c ¼ 0 limits, this expression becomes

pþ →

8>>>>>><
>>>>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ μ2

p
; c ¼ 1

μ2

2p−
¼ μ2

2pþ ; c ¼ 0; p− > 0

μffiffi
c

p ; c → 0; p− ¼ 0

2jp−j
c ; c → 0; p− < 0.

ð1:5Þ

Clearly, the zero modes (p− ¼ 0) and negative p− states
have infinite light-front energy and are removed from the
spectrum, as c → 0.
However, these modes can contribute to light-front

computations and, in particular, to vacuum expectation
values [23,31]. A standard illustration of this is in the
spectrum and VEV of a free scalar field that has been
shifted by a constant. The shift introduces to the
Lagrangian a term that is linear in the field; this contributes
a term to the Hamiltonian that is proportional to the spatial
average of the field, a constant that must be built from zero
modes absent in ordinary light-front calculations. The
recovery of the contribution can be seen quite clearly in
the c → 0 limit, where the Hamiltonian eigenvalue problem
in an x− box has an analytic solution for any c > 0.
A numerical solution in a truncated Fock space works just
as well. This is discussed in Sec. II.
For ϕ4 theory, the zero-mode contribution is more subtle.

We expand upon the perturbative analysis of Collins [20] to
illustrate how zero-mode contributions to the self-energy
corrections are missed by the standard light-front analysis
yet survive the c → 0 limit. In Sec. III, we will explore
what the solutions with c ≠ 0 and the c → 0 limit can tell
us. The calculations are done numerically, in a Fock basis
of discrete momentum states in an x− box. These lead to a
much better understanding of the c → 0 limit. A fixed box
size is shown to be inconsistent with this limit. Instead, one
must consider the continuum limit simultaneously with the

light-front limit. A summary of these observations and our
conclusions is given in Sec. IV.

II. SHIFTED FREE SCALAR

A free scalar field that is shifted by a constant provides
an interesting example of the impact of zero modes on a
light-front calculation. This can be seen explicitly in the
c → 0 limit, where a nonzero contribution is found for
the vacuum energy and the VEV of the field. These
analytic results [23,31] can be replicated in a numerical
calculation using a Fock basis of zero modes. We illustrate
this here.
The Lagrangian of a free scalar field of mass μ is

L0 ¼
1

2
∂μϕ∂μϕ −

1

2
μ2ϕ2: ð2:1Þ

In terms of the interpolating coordinates (1.1), with
arbitrary c and in two dimensions, this becomes [23]

L0 ¼
1

2
c½ð∂þϕÞ2 − ð∂−ϕÞ2� þ s∂þϕ∂−ϕ −

1

2
μ2ϕ2: ð2:2Þ

The (free) Hamiltonian is

P0þ ¼
Z

dx−ðπ∂þϕ − L0Þ; ð2:3Þ

with π ¼ c∂þϕþ s∂−ϕ and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p
. The mode

expansion for the field is

ϕ ¼
Z

∞

−∞

dp−ffiffiffiffiffiffiffiffiffiffiffi
4πwp

p ½aðp−Þe−ip·x þ a†ðp−Þeip·x�; ð2:4Þ

with wp ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
− þ cμ2

p
. The nonzero commutation

relation is

½aðp−Þ; a†ðp0
−Þ� ¼ δðp− − p0

−Þ: ð2:5Þ

The normal-ordered free Hamiltonian can then be written as

P0þ ¼
Z

∞

−∞
dp−pþa†ðp−Þaðp−Þ

¼
Z

∞

−∞
dp−

wp − sp−

c
a†ðp−Þaðp−Þ: ð2:6Þ

Similarly, the momentum operator is

P− ¼
Z

∞

−∞
dp−p−a†ðp−Þaðp−Þ: ð2:7Þ

Discretization consistent with discrete light-cone quan-
tization (DLCQ) [34] is invoked by placing the system
in a box −L < x− < L with periodic boundary conditions.
The momentum is then discrete, p− ¼ nπ=L, as set by the
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integer n; however, unlike DLCQ, n ranges over all
integers, not just the positive ones.7 An energy cutoff is
then required for a finite basis, just as for an ordinary equal-
time calculation. We do still define a positive integer K as
the resolution [34], so that in the c → 0 light-front limit, the
total momentum is P− ¼ Kπ=L. The index n for individual
momentum then ranges from 1 to K in the light-front limit,
and momentum fractions p−=P− are just n=K.
The discrete mode expansion for arbitrary c is

ϕðxþ ¼ 0Þ ¼
X∞
n¼−∞

1ffiffiffiffiffiffiffiffiffiffiffi
4πwn

p ½ane−inπx−=L þ a†neinπx
−=L�;

ð2:8Þ

with wn ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ cL̃2

p
, ½an; a†m� ¼ δnm, and p− replaced by

nπ=L. The free Hamiltonian becomes

P0þ ¼
X∞
n¼−∞

pþa
†
nan ¼

μ

L̃

X∞
n¼−∞

wn − sn
c

a†nan; ð2:9Þ

where pþ ¼ π
L
wn−sn

c and L̃≡ μL=π.
We now shift the field: ϕ → ϕþ v. The new

Lagrangian is

L ¼ L0 − μ2vϕ −
1

2
μ2v2; ð2:10Þ

and the Hamiltonian, having dropped a constant, is

Pþ ¼ P0þ þ PIþ; ð2:11Þ
with the interaction part

PIþ ¼
Z

L

−L
dx−μ2vϕ ¼ μ

v
ffiffiffiffiffiffi
L̃π

p

c1=4
½a0 þ a†0�: ð2:12Þ

In a native light-front calculation, where zero modes are
neglected, this interaction term disappears. Without this
term, the shift in the field and the shift in the energy cannot
be recovered. However, a calculation for arbitrary c > 0
succeeds, and the light-front limit can then be taken. This
was discussed by Hornbostel [23], and we repeat the
argument here.
The vacuum eigenstate for this case is a coherent state of

zero modes

jvaci ¼ e−αða
†
0
−a0Þj0i: ð2:13Þ

This works because the coherent state is, as always, an
eigenstate of the annihilation operator

a0jvaci ¼ −αjvaci ð2:14Þ

and, therefore,

Pþjvaci ¼
�
−
μw0

L̃c
αa†0 þ μ

v
ffiffiffiffiffiffi
L̃π

p

c1=4
a†0 − μ

v
ffiffiffiffiffiffi
L̃π

p

c1=4
α

�
jvaci:

ð2:15Þ

Given w0 ¼ L̃
ffiffiffi
c

p
, we only need α ¼ v

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L̃π

ffiffiffi
c

pp
to elimi-

nate the a†0 terms and make this coherent state indeed an

eigenstate of Pþ, with an eigenenergy of −μ v
ffiffiffiffi
L̃π

p
c1=4

α ¼
− 1

2
μ2v2ð2LÞ. This restores the constant originally dropped

from the Hamiltonian. In the light-front limit c → 0, α also
becomes zero, and this state becomes the empty state j0i,
but the energy is independent of c. All massive states are
decoupled and remain in the spectrum as free states.
The VEV of the field is given by

hvacjϕð0Þjvaci ¼ hvacj 1ffiffiffiffiffiffiffiffiffiffiffi
4πw0

p ½a0 þ a†0�jvaci; ð2:16Þ

which reduces to

1ffiffiffiffiffiffiffiffiffiffiffi
4πw0

p ð−α − αÞ ¼ −
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πL̃
ffiffiffi
c

pp v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
L̃π

ffiffiffi
c

pq
¼ −v: ð2:17Þ

This, of course, reflects the original shift in the field.
Obviously, this is independent of the value of c. A nonzero
result is obtained because the vanishing coefficients of
zero mode contributions are compensated by the 1=c1=4

divergence in the zero-mode part of the field.
We need not rely on having an analytic solution to see

this result for the vacuum state. A numerical solution in a
finite basis of zero modes ða†0Þnj0i, truncated at n ¼ 10,
yields the spectrum shown in Fig. 1 as a function of c.
The lowest state’s energy is clearly independent of c, with
the energies of all higher states with zero momentum
diverging as c approaches zero, so that zero-mode excita-
tions disappear.
This nontrivial light-front limit provides a connection

with the known results for equal-time quantization. In the
equal-time approach, the linear interaction term is not lost
but makes a direct contribution to the Hamiltonian. The
solution for the vacuum state then includes the conse-
quences of the shift in the field, as can be seen here for
c ¼ 1. The light-front limit c → 0 reproduces the results
obtained from equal-time quantization.
A native light-front calculation that does include zero

modes can replicate this result [35].8 The zero-mode part of
the field is determined by a constraint equation derived
from the field equation. This provides for the correct VEV
and generates a term in Pþ that correctly adjusts the

7As shown in the last line of (1.5), negative p− is removed
from the spectrum only on the light front, at c ¼ 0.

8For additional discussion and references, see Secs. IVA
and IV B of [19].
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vacuum energy, even though the vacuum state remains
the trivial, empty Fock vacuum. As shown in [35], the
approach can be extended to include ϕ4 theory with
spontaneous symmetry breaking, where the mass term is
given the opposite sign and the potential for the constrained
zero mode has definite minima away from zero. An
application to ordinary ϕ4 theory [36], in an attempt to
compute the critical coupling, was less successful. A
formulation that solves the constraint equation as an
expansion in the inverse DLCQ resolution has also been
constructed [37]; this provides an alternate approach for
inclusion of zero modes in a DLCQ calculation.

III. ϕ4 THEORY

To explore these connections between equal-time
and light-front formulations further, we consider two-
dimensional ϕ4 theory, where it is known that equal-time
and light-front quantizations differ in the vacuum contri-
butions to mass renormalization [16]. Thus, the remainder
of the paper is an analysis of ϕ4 theory in terms of the
interpolating coordinates (1.1). The discrete form of the
theory is constructed in the next subsection, and the results

of the numerical solution are discussed for fixed box size
in Sec. III B. These results reveal a divergence, which is
shown to be spurious in Sec. III C by a careful analysis of
vacuum bubble contributions. This leads to a numerical
formulation that avoids the divergence by varying the box
size, as discussed in Sec. III D.

A. Analysis

The Lagrangian for ϕ4 theory is

L ¼ 1

2
ð∂μϕÞ2 −

1

2
μ2ϕ2 −

λ

4!
ϕ4: ð3:1Þ

We construct the (discrete) interaction Hamiltonian from
the ϕ4 term as

PIþ ¼
Z

L

−L
dx−

λ

4!
∶ϕ4∶: ð3:2Þ

Substitution of the discrete mode expansion (2.8), with
L ¼ L̃π=μ, and evaluation of the now-trivial integrals,
yields,

PIþ ¼ μ
gL̃
4

X
n1…n4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwn1 � � �wn4
p

�
1

12
ðan1 � � � an4 þ a†n1 � � � a†n4Þδn1þ���þn4;0 þ

1

3
ða†n1an2an3an4 þ a†n2a

†
n3a

†
n4an1Þδn1;n2þn3þn4

þ 1

2
a†n1a

†
n2an3an4δn1þn2;n3þn4

�
; ð3:3Þ

with g≡ λ=ð4πμ2Þ the dimensionless coupling.
The Hamiltonian eigenstates are constructed as Fock-

state expansions

jψi ¼
X
k

X
n1���nk

ψkðn1 � � � nkÞ
1ffiffiffiffi
k!

p
Yk
i¼1

a†ni j0i: ð3:4Þ

To take into account the symmetrization of states with k
identical bosons, we rewrite this sum as

jψi ¼
X
k

X
n1≥n2���≥nk

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nn1 ! � � �Nnk!

p ϕkðn1 � � � nkÞ
Yk
i¼1

a†ni j0i;

ð3:5Þ

FIG. 1. Spectrum for the shifted free scalar in a zero-mode basis, truncated to an occupation number of 10, as a function of the
interpolating parameter c. Equal-time quantization corresponds to c ¼ 1, and light-front quantization to the limit c → 0.
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where Nni is the number of bosons with momentum index
ni and the wave functions are related by

ϕk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k!
Nn1 ! � � �Nnk!

s
ψk: ð3:6Þ

The normalization is

1 ¼ hψ jψi ¼
X
k

X
n1���nk

jψkj2 ¼
X
k

X
n1≥n2���≥nk

jϕkj2: ð3:7Þ

The probability Pk for the Fock sector with k bosons is then
given by

Pk ¼
X
n1���nk

jψkj2 ¼
X

n1≥n2���≥nk
jϕkj2: ð3:8Þ

The eigenstates must satisfy ðP0þ þ PIþÞjψi ¼ Ejψi. For
simplicity, we look for eigenstates at rest, with total
P− ¼ 0, and either an odd or even number of constituents;
the Hamiltonian changes particle number by only even
amounts and therefore does not mix odd and even Fock
states. The sums over the number of constituents k are
then limited to even or odd values. In particular, we have
expansions of the form

jeveni ¼ ψ0j0i þ
X
n

ψ2ðnÞ
1ffiffiffi
2

p a†na
†
−nj0i þ � � � ð3:9Þ

joddi¼ψ1a
†
0j0iþ

X
n1;n2

ψ3ðn1;n2Þ
1ffiffiffi
6

p a†n1a
†
n2a

†
−n1−n2 j0iþ �� �

ð3:10Þ

In solving the eigenvalue problem for Pþ, we obtain the
spectrum as well as the associated Fock-state wave func-
tions ψn, though we do not display the wave functions here.
For the purpose of having a finite numerical matrix

calculation, the infinite Fock basis is truncated both in the
sum over constituents and in energy. First, the number of
constituents is limited to a maximum of K, so that the sum
over k in jψi is finite. Second, the total energy of each Fock
state, as specified by the free Hamiltonian (2.9), is limited
to be no more than a fixed energy, Emax.
The total energy of a Fock state is given by μ

L̃

P
n
wn−sn

c ,
where the sum extends over all bosons in the Fock state.
For small c, the individual contributions behave as
in (1.5):

pþ ¼ μ

L̃

wn − sn
c

→

8>>><
>>>:

μL̃
2n ; n > 0
μffiffi
c

p ; n ¼ 0

μ
L̃
2jnj
c ; n < 0.

ð3:11Þ

Thus, for n ≤ 0, the contributions diverge and Fock states
with such constituent momenta will be removed by the
energy cutoff as c goes to zero. For eigenstates with total
P− ¼ 0, where the integers n must sum to zero, there must
be at least one constituent with n ≤ 0. For such a state, a
sufficiently small value of c will cause the energy cutoff to
remove all the Fock states, except the trivial empty state j0i.
However, this would be inconsistent with the analysis of the
shifted free scalar, where the addition of a c-dependent
energy cutoff would have removed the (infinite set of) Fock
states needed to construct the coherent state for the vacuum
eigenstate.
So, we instead keep the Fock basis unchanged as c

changes by imposing the energy cutoff at c ¼ 1 and then
leaving the basis fixed when c is decreasing. Therefore,
for all c values, the energy limit on Fock states is given by

μ

L̃

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ L̃2

p
≤ Emax: ð3:12Þ

In the following subsection, we pursue a qualitative
understanding of the light-front limit as the parameter c
goes to zero. We do not study the dependence on the
truncations, nor on the box size, in any systematic way. In
equal-time quantization there has been considerable work
by Rychkov and collaborators [3] on the renormalization
necessary to reduce the cutoff dependence and facilitate
very accurate calculations with minimal basis sizes.
Attempting this for arbitrary c is certainly of some interest
but is beyond the scope of the present work.

B. Results for fixed box size

As a check on the calculation, the even vacuum energy
for equal-time quantization (c ¼ 1) is plotted in Fig. 2 as a
function of the coupling g. This is computed by solving
the eigenvalue problem for Pþ, with the even eigenstate
constructed as in (3.9). The results for the ground-state
(vacuum) energy E0 are equivalent to those of Rychkov and
Vitale (RV) [2], where g ¼ 6gRV=π and L̃ ¼ LRV=ð2πÞ. We
also plot the subtracted spectrum for equal-time quantiza-
tion in Fig. 3, where the energy E0 of the even vacuum state
is subtracted from the energy of all other states, to show
the energies of physical states above the vacuum. Table I
contains a subset of the En values used to create the plots in
Figs. 2 and 3. The odd eigenstates are constructed as in
(3.10). Again, the results are equivalent to RV. In particular,
the lowest odd state becomes degenerate with the even
vacuum state at and beyond the critical value of the
coupling.
With the equal-time results established, we next consider

the variation with c, approaching the light-front limit at
c ¼ 0. Figure 4 shows how the difference between the even
and odd vacuum states varies with g for various values of c.
For weak coupling the difference increases as c approaches
zero; however, the critical coupling, where the difference
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becomes zero, remains essentially the same. Thus, the
0 < c < 1 results are at least qualitatively consistent with
equal-time quantization, despite that fact that light-front
quantization (c ¼ 0) is known to give a different result for
the critical coupling [7,9,11].
To investigate the distinction between the c → 0 limit

and a c ¼ 0 computation, we plot the even vacuum state
energy as a function of 1=c for various values of the
coupling g in Fig. 5. As can be seen in the figure, the
spectrum appears to diverge as c → 0. This can be under-
stood [38] by considering the simplest contribution to the
vacuum energy, from the “basketball” graph in Fig. 6. The
zero-mode contribution of this graph to the vacuum energy
E0 is second order in perturbation theory and can be
expressed as

ΔE ∼
g
w2
0

1

E0 − 4w0=c
g
w2
0

; ð3:13Þ

where the middle fraction contains the energy denominator
for an intermediate state with four zero-mode bosons and is
sandwiched between transition matrix elements for pro-
duction and annihilation of four zero modes from and to the
vacuum. The transition potential is just the first line of PIþ
in (3.3), which determines the transitions from the vacuum
to four bosons and back to the vacuum. The dimensionless
individual zero-mode energy is w0 ¼ L̃

ffiffiffi
c

p
. The shift then

diverges as c−3=2, which is consistent with the c depend-
ence shown in Fig. 5.
Clearly, the contributions of vacuum bubbles, such as the

contribution represented by the basketball graph in Fig. 6,
require closer inspection, in order to fully understand the
calculation. Recent perturbative analyses [20,21] of such
graphs, comparing light-front and equal-time calculations,
also show that some care is required. In fact, the c → 0
transition can help elucidate the connection between the
two quantizations.

FIG. 3. Subtracted equal-time spectrum En − E0 computed with c ¼ 1, Emax ¼ 20μ, L̃ ¼ 1, and up to 20 constituents. Here En is the
energy of the nth level, with n even (odd) for the even (odd) sector.

FIG. 2. Even vacuum energy in equal-time quantization as a function of coupling g for a Fock-state energy cutoff of Emax ¼ 20μ. The
box size is set by L̃ ¼ 1. The maximum number of constituents K is varied up to 20.
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C. Vacuum bubbles

Following Collins [20], we first consider the one-loop
self-energy in ϕ3 theory; the graph is given in Fig. 7. The
invariant function Πðp2Þ is given by

Πðp2Þ ¼ −
1

8π2

Z
d2k

½k2 − μ2 þ iϵ�½ðp − kÞ2 − μ2 þ iϵ� :

ð3:14Þ

The one-loop bubble is obtained in the p2 → 0 limit, with a
value of Πð0Þ ¼ −i=8πμ2.
The covariant graph is, of course, equivalent to two time-

ordered graphs, shown in Fig. 8. We then have Π ¼ Πa þ
Πb with

Πaðp2Þ ¼ i
16π

Z
dp1−dp2−

wp1
wp2

δðp− − p1− − p2−Þ
pþ −

P
2
i ðwpi

− spiÞ=c
;

ð3:15Þ

Πbðp2Þ ¼ i
16π

Z
dp1−dp2−

wp1
wp2

δðp− þp1− þp2−Þ
pþ − 2pþ −

P
2
i ðwpi

− spiÞ=c
:

ð3:16Þ

These are perturbative quantities, but a nonperturbative
calculation in ϕ3 theory, with the Fock space limited
to no more than four constituents, will yield an
eigenvalue condition for the light-front energy Pþ that
takes the form

Pþ ¼ wP − sP−

c
þ λ2

32π

Z
dp1−dp2−

wp1
wp2

wP

δðP− − p1− − p2−Þ
Pþ −

P
2
i
wpi

−spi−
c

þ λ2

32π

Z
dp1−dp2−

wp1
wp2

wP

δðP− þ p1− þ p2−Þ
Pþ − 2 wP−sP−

c −
P

2
i
wpi

−spi−
c

;

ð3:17Þ

TABLE I. Eigenenergies En for selected values of the coupling
g, as computed in equal-time quantization (c ¼ 1) with K ¼ 20
maximum constituents, an energy cutoff of Emax ¼ 20μ, and a
box size fixed by L̃ ¼ 1.

g E0=μ E2=μ E4=μ E1=μ E3=μ E5=μ

0.4 −0.0100 2.0265 2.8831 0.9792 3.1345 4.0507
0.8 −0.0372 1.9835 2.8921 0.9361 3.1282 4.1271
1.2 −0.0797 1.9115 2.8812 0.8821 3.0687 4.1440
1.6 −0.1368 1.8247 2.8606 0.8216 2.9826 4.1298
2.0 −0.2086 1.7301 2.8358 0.7570 2.8830 4.0987
2.4 −0.2950 1.6323 2.8104 0.6899 2.7774 4.0587
2.8 −0.3964 1.5346 2.7870 0.6215 2.6709 4.0151
3.2 −0.5131 1.4396 2.7676 0.5527 2.5673 3.9716
3.6 −0.6455 1.3499 2.7536 0.4846 2.4694 3.9311
4.0 −0.7940 1.2676 2.7464 0.4181 2.3796 3.8956
4.4 −0.9591 1.1951 2.7467 0.3543 2.2997 3.8671
4.8 −1.1413 1.1343 2.7554 0.2942 2.2315 3.8470
5.2 −1.3409 1.0873 2.7726 0.2387 2.1762 3.8366
5.6 −1.5580 1.0553 2.7984 0.1886 2.1345 3.8366
6.0 −1.7924 1.0392 2.8325 0.1445 2.1067 3.8475
6.4 −2.0436 1.0389 2.8744 0.1066 2.0927 3.8692
6.8 −2.3105 1.0538 2.9229 0.0745 2.0917 3.9012
7.2 −2.5920 1.0822 2.9774 0.0479 2.1027 3.9427
7.6 −2.8866 1.1226 3.0367 0.0261 2.1243 3.9926
8.0 −3.1928 1.1729 3.1000 0.0082 2.1553 4.0499
10.0 −4.8540 1.5175 3.4587 −0.0445 2.4075 4.4129
12.0 −6.6535 1.9285 3.8606 −0.0704 2.7493 4.8466
14.0 −8.5319 2.3550 4.2869 −0.0886 3.1297 5.3131
16.0 −10.460 2.7827 4.7274 −0.1040 3.5279 5.7967

FIG. 4. Difference between even and odd vacuum states for decreasing values of c and fixed box size L̃ ¼ 1. The difference is larger
for smaller c; at g ¼ 0, the difference is just μ=

ffiffiffi
c

p
.
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with an (infinite) two-loop bubble removed. Details are
given in the Appendix. The two self-energy terms in (3.17)
correspond to the two time-ordered perturbative graphs.
In the light-front limit c → 0, Πb makes no contribution,

because vacuum vertices do not exist in the light-front limit,
and Πa becomes, with p2− ¼ p− − p1−, wpi

¼ pi−, and
x≡ p1−=p−,

Πaðp2Þc¼0 ¼
i

16π

Z
1

0

dx
xð1 − xÞ

1

p2 − μ2

2x −
μ2

2ð1−xÞ
: ð3:18Þ

For p2 ¼ 0, this immediately yields

Πað0Þc¼0 ¼ −
i
8π

Z
1

0

dx
μ2ð1 − xÞ þ μ2x

¼ −
i

8πμ2
: ð3:19Þ

If instead we take p2 ¼ 0 first, we have, with z≡
p1−=

ffiffiffi
c

p
μ, equal contributions from each time-ordered

graph

Πað0Þ ¼ Πbð0Þ ¼ −
i

16π

Z
∞

−∞

cdp1−

ðp2
1− þ cμ2Þ3=2

¼ −
i

16πμ2

Z
∞

−∞

dz

ð1þ z2Þ3=2 ¼ −
i

16πμ2
; ð3:20Þ

a result independent of c. The sum of the two then
replicates the full value of −i=8πμ2.
It is the latter result that is most important for our

calculations, because we calculate with finite c and take the
zero limit last. Although the analytic integral is independent
of c, the numerical approximation associated with taking
periodic boundary conditions in a fixed box size is not
independent. A small box forces the momentum-space
quadrature points to be widely spaced. As c approaches
zero, the integrand becomes more sharply peaked in p1−,
and the important range of integration is not sampled

FIG. 5. Energy of the even vacuum state as a function of 1=c for different couplings g and fixed box size L̃ ¼ 1. For fixed c, the energy
is more negative for larger g.

FIG. 6. Lowest order contribution to the vacuum energy.

FIG. 7. One-loop covariant self-energy graph in ϕ3 theory.
When p becomes zero, this is essentially a one-loop vacuum
bubble.

(a) (b)

FIG. 8. Time-ordered graphs corresponding to the covariant
graph in Fig. 7.
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enough, unless the box is kept sufficiently large. Thus, as c
is decreased, the box size must be increased such that cL̃2 is
at least of order 1, and the c → 0 limit does not recover
DLCQ, which requires a fixed light-front box size. Instead,
the c → 0 limit must be associated with the continuum
limit, where the box is removed.
To illustrate the convergence that can be obtained by

taking the continuum limit of L̃ → ∞, we consider the
numerical estimate of the rescaled quantity9

Π̃að0Þ≡ 16πiμ2Πað0Þ ¼
Z

∞

−∞

cμ2dp1−

ðw2
p1−

Þ3=2

≃
1

2
cL̃2

XN
n¼−N

1

ðn2 þ cL̃2Þ3=2 ; ð3:21Þ

which has the nominal value of 1. However, for the
numerical calculation we work at an energy cutoff that
determines the range N of the finite sum over the p− index
n. For the intermediate Fock state of the one-loop bubble
where two constituents have the most energy, the momen-
tum indices are N and −N. The energy limit is then
expressed as

Emax ≥
μ

L̃

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ cL̃2

p
c

→ 2
μ

L̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ cL̃2

p
c

: ð3:22Þ

This leaves

N ≤
ffiffiffi
c

p
L̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffi
c

p
Emax

2μ

�
2

− 1

s
: ð3:23Þ

Table II shows results for selected values of c and ranges of
box size L̃, with Emax varied as needed to keep the same
number of quadrature points for different values of c. The
cutoff in energy does shift the value away from the nominal
value of 1.
The analogous calculation for the three-loop graph in

Fig. 6 can also be done numerically. The energy cutoff
now limits the range of indices for the four intermediate
constituents. Again there are two time orderings, with
contributions

Π̃að0Þ ¼ Π̃bð0Þ ¼ cμ2
Z Q

4
i dpi−δð

P
4
i pi−Þ

ðQ4
i wpi−

ÞðP4
i wpi−

Þ : ð3:24Þ

The numerical approximation suffers from the same limi-
tations as in the one-loop case, which is why the calculation
of the spectrum at fixed box size in Sec. III B yields the
divergent behavior in Fig. 5. The approximation is

Π̃að0Þ ¼ Π̃bð0Þ

≃ cL̃2
Xcutoff

n1;n2;n3

1

ðQ4
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2i þ cL̃2

q
ÞðP4

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2i þ cL̃2

q
Þ
;

ð3:25Þ

with n4 ¼ −ðn1 þ n2 þ n3Þ and the cutoff specified by

μ

L̃

X4
i

wni − sni
c

≤ Emax: ð3:26Þ

One index is at its maximum N when the other three are all
equal to −N=3. This gives N as

N ≤
ffiffiffi
c

p
L̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffi
c

p
Emax

2μ

�
2

þ 4

�
2μffiffiffi
c

p
Emax

�
2

− 5

s
: ð3:27Þ

TABLE II. One-loop and three-loop vacuum bubbles as functions of the dimensionless box size L̃≡ μL=π. The energy cutoff Emax
and particular values of L̃ are chosen to make the calculation equivalent for each value of the coordinate parameter c. The values of N
indicate the range of discrete steps in momentum, as determined by the energy cutoff. In both cases, the value of Π̃að0Þ is independent of
c and converges in the continuum limit of L̃ → ∞.

c 1.0000 0.5000 0.2500 0.1250 0.0625 One-loop Three-loop
Emax=μ 20.0000 28.2843 40.0000 56.5685 80.0000 N Π̃að0Þ N Π̃að0Þ
L̃ 1.0000 1.4142 2.0000 2.8284 4.0000 9 1.00696 9 7.03843
· 2.0000 2.8284 4.0000 5.6569 8.0000 19 0.99482 19 7.02181
· 3.0000 4.2426 6.0000 8.4853 12.0000 29 0.99487 29 7.01538
· 4.0000 5.6569 8.0000 11.3137 16.0000 39 0.99491 38 7.01133
· 5.0000 7.0711 10.0000 14.1421 20.0000 49 0.99494 48 7.01264
· 6.0000 8.4853 12.0000 16.9706 24.0000 59 0.99495 58 7.01426
· 7.0000 9.8995 14.0000 19.7990 28.0000 69 0.99497 68 7.01386
· 8.0000 11.3137 16.0000 22.6274 32.0000 79 0.99498 77 7.01365
· 9.0000 12.7279 18.0000 25.4558 36.0000 89 0.99498 87 7.01381
L̃ 10.0000 14.1421 20.0000 28.2843 40.0000 99 0.99499 97 7.01346

9We see explicitly that c enters only in the combination cL̃2.
The zero-mode (n ¼ 0) term diverges for c → 0 in general, but if
cL̃2 is held fixed, this term is finite as c → 0 and L̃ → ∞.
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Values for this numerical approximation are tabulated in
Table II. The convergence with respect to box size is
quite rapid.

D. Varied box size

The three-loop vacuum bubble is embedded within the
full eigenvalue problem for the ϕ4 vacuum state. Here we
consider the vacuum, in both the even and odd sectors,
extrapolated in box size. Because the box size is varied,

we must consider the vacuum energy density E=2L, rather
than the (infinite) vacuum energy. To do this, we study the
lowest eigenvalue of 1

2LPþ, with Pþ ¼ P0þ þ PIþ specified
by (2.9) and (3.3).
The precise forms of the Hamiltonian terms are

1

2L
P0þ ¼ μ2

2π

X∞
n¼−∞

wn − sn

cL̃2
a†nan; ð3:28Þ

1

2L
PIþ ¼ gμ2

8π

X
n1…n4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwn1 � � �wn4
p

�
1

12
ðan1 � � � an4 þ a†n1 � � � a†n4Þδn1þ���þn4;0 þ

1

3
ða†n1an2an3an4 þ a†n2a

†
n3a

†
n4an1Þδn1;n2þn3þn4

þ 1

2
a†n1a

†
n2an3an4δn1þn2;n3þn4

�
; ð3:29Þ

with wn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ cL̃2

p
. In these we see that c and L̃ appear only in the combination cL̃2. Thus, for any positive value of c, a

rescaling of the box size makes the calculation equivalent to an equal-time calculation at c ¼ 1, with a smaller box. In the
limit of infinite box size, the calculation becomes completely independent of c, making the vacuum energy density
independent of c, even as c approaches the light-front limit of zero.
For a numerical calculation, there is, of course, an energy cutoff Emax. For calculations with different values of c, this

cutoff must be adjusted to make the basis sizes equivalent. In a Fock sector with n constituents, the momentum indices lie
between �N with

N ¼ ffiffiffi
c

p
L̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffi
c

p
Emax

2μ

�
2

þ
�ðn − 1Þ2 − 1

4

�
2
�

2μffiffiffi
c

p
Emax

�
2

−
ðn − 1Þ2 þ 1

2

s
: ð3:30Þ

This is determined by giving one constituent N units of momentum and each of the others −N=ðn − 1Þ units, to minimize
the total Fock-state energy

μ

L̃

X
n

wn − sn
c

¼ μ

L̃

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ cL̃2

p
c

þ ðn − 1Þ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

ðn − 1Þ2 þ cL̃2

s #
: ð3:31Þ

From (3.30) we see that, for fixed N, the energy cutoff
must scale as μ=

ffiffiffi
c

p
, which is not surprising, given that

zero-mode energies diverge as μ=
ffiffiffi
c

p
.

For fixed
ffiffiffi
c

p
Emax, the size of the calculation saturates,

withN forced to be zero in the highest Fock sectors. Setting
N ¼ 0 and n ¼ K in (3.30), we find that this occurs at a
maximum number K of constituents, given by

K ¼ 1 ∓ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − 2ð1 − 2

ffiffiffi
c

p
Emax=μÞ

q
: ð3:32Þ

For Emax ¼ 20μ and c ¼ 1, this limits K to 8 (9) in the even
(odd) sector. Beyond these values of K, only zero modes
contribute.
With calculations at arbitrary c now shown to be

completely equivalent to equal-time calculations, the
light-front limit must then reproduce the results found
for equal-time quantization [2,3]. Some of our results are

listed in Table I. In particular, these results must agree on
the value of the critical coupling.

IV. SUMMARY

By considering the coordinate interpolation (1.1), we
have been able to study the approach to light-front quan-
tization (c ¼ 0) from equal-time quantization (c ¼ 1) in
two-dimensional ϕ4 theory. A numerical calculation of the
spectrum, for arbitrary c > 0 and fixed box size, provides
results consistent with those of equal-time quantization [2,3],
as shown in Fig. 4. However, the spectrum is found to
diverge as c approaches the light-front limit of zero, if the
box size is held fixed; see Fig. 5. Although this might be
taken as an indication that the light-front limit is not smooth,
we have shown that the divergence is instead spurious and
caused by a poor numerical representation of vacuum-bubble
contributions. The spurious divergence is due to the fixed
box size, which prevents the momentum-space grid from
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being fine enough to sample the vacuum-bubble integrals
accurately.
Our nonperturbative analysis of vacuum-bubble contri-

butions replicates the perturbative analysis of Collins [20].
The contributions of the two time-ordered graphs of Fig. 8
are shown to be different, depending on the order of the
limits c → 0 and p2 → 0; the sum, however, is invariant.
The numerical approximation to these contributions is then
shown to be very sensitive to box size. In particular, the
c → 0 limit requires that the continuum limit in momentum
space (infinite box size) must be taken as c → 0. The
DLCQ [34] formulation of light-front quantization, with its
finite box, will require a different approach for the inclusion
of vacuum-bubble contributions.
The vacuum energy density is shown in Sec. III D to be

independent of c in the continuum limit of infinite box size.
This makes a calculation for any c > 0 explicitly equivalent
to an equal-time calculation at c ¼ 1. Assuming that the
c → 0 limit is smooth, the light-front spectrum must be
nonperturbatively equivalent to the equal-time spectrum,
provided vacuum-bubble contributions are taken into
account properly. Thus, the apparent disagreement over
the value of the critical coupling, resolved by noting
differences in mass renormalization [7], is actually a sign
that vacuum effects are not included properly. How to

include vacuum bubbles in a native, nonperturbative light-
front calculation remains an open question.
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APPENDIX: NONPERTURBATIVE ONE-LOOP
BUBBLE FROM ϕ3 THEORY

Contributions to the energy that correspond to the
time-ordered loops in Fig. 8 arise naturally in a truncated
nonperturbative calculation, which we show here. The
interaction Hamiltonian for ϕ3 theory is

PIþ ¼
Z

∞

−∞
dx−

λ

3!
∶ϕ3∶: ðA1Þ

Substitution of the mode expansion (2.4) and integration
over x− yields

PIþ ¼ λ

4
ffiffiffiffiffiffi
4π

p
Z

dp1−dp2−dp3−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1
wp2

wp3

p
�
a†ðp1−Þaðp2−Þaðp3−Þδðp1− −p2− −p3−Þ þ a†ðp1−Þa†ðp2−Þaðp3−Þδðp1− þp2− −p3−Þ

þ 1

3
½aðp1−Þaðp2−Þaðp3−Þ þ a†ðp1−Þa†ðp2−Þa†ðp3−Þ�δðp1− þp2− þp3−Þ

�
: ðA2Þ

The eigenstate is expanded in a Fock basis as

jψðP−Þi ¼ ψ1a†ðP−Þj0i þ
Z

dp1−dp2−δðP− − p1− − p2−Þψ2ðp1−; p2−Þ
1ffiffiffi
2

p a†ðp1−Þa†ðp2−Þj0i

þ
Z

dp1−dp2−dp3−δðP− − p1− − p2− − p3−Þψ3ðp1−; p2−; p3−Þ
1ffiffiffi
6

p a†ðp1−Þa†ðp2−Þa†ðp3−Þj0i

þ
Z

dp1−dp2−dp3−dp4−δðP− − p1− − p2− − p3− − p4−Þψ4ðp1−; p2−; p3−; p4−Þ

×
1ffiffiffiffiffi
24

p a†ðp1−Þa†ðp2−Þa†ðp3−Þa†ðp4−Þj0i; ðA3Þ

with truncation at four constituents. The action of the free part of the Hamiltonian is
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P0þjψðP−Þi ¼
wP − sP−

c
ψ1a†ðP−Þj0i þ

Z
dp1−dp2−δðP− − p1− − p2−Þ

X2
i

�
wpi

− spi−

c

�
ψ2ðp1−; p2−Þ

×
1ffiffiffi
2

p a†ðp1−Þa†ðp2−Þj0i þ
Z

dp1−dp2−dp3−δðP− − p1− − p2− − p3−Þ

×
X3
i

�
wpi

− spi−

c

�
ψ3ðp1−; p2−; p3−Þ

1ffiffiffi
6

p a†ðp1−Þa†ðp2−Þa†ðp3−Þj0i

þ
Z

dp1−dp2−dp3−dp4−δðP− − p1− − p2− − p3− − p4−Þ

×
X4
i

�
wpi

− spi−

c

�
ψ4ðp1−; p2−; p3−; p4−Þ

1ffiffiffiffiffi
24

p a†ðp1−Þa†ðp2−Þa†ðp3−Þa†ðp4−Þj0i ðA4Þ

and that of the interaction part, truncated at four constituents, is

PIþjψðP−Þi ¼
λ

4
ffiffiffiffiffiffi
4π

p
�Z

dp1−dp2−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1
wp2

wP
p δðp1− þ p2− − P−Þψ1a†ðp1−Þa†ðp2−Þj0i

þ 1

3

Z
dp1−dp2−dp3−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp2
wp3

p δðp1− þ p2− þ p3−Þψ1a†ðp1−Þa†ðp2−Þa†ðp3−Þa†ðP−Þj0i

þ
ffiffiffi
2

p Z
dp1−dp2−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp2
wP

p δðp1− þ p2− − P−Þψ2ðp1−; p2−Þa†ðP−Þj0i

þ
ffiffiffi
2

p Z
dp1−dp2−dp3−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp2
wp1þp2

p δðp1− þ p2− þ p3− − P−Þψ2ðp1− þ p2−; p3−Þa†ðp1−Þa†ðp2−Þa†ðp3−Þj0i

þ
ffiffiffi
6

p Z
dp1−dp2−dp3−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp2
wp1−p2

p δðp1− þ p3− − P−Þψ3ðp1− − p2−; p2−; p3−Þa†ðp1−Þa†ðp3−Þj0i

þ
ffiffiffi
3

2

r Z
dp1−dp2−dp3−dp4−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp2
wp1þp2

p δðp1− þ p2− þ p3− þ p4− − P−Þ

× ψ3ðp1− þ p2−; p3−; p4−Þa†ðp1−Þa†ðp2−Þa†ðp3−Þa†ðp4−Þj0i

þ
ffiffiffi
8

3

r Z
dp1−dp2−dp3−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp2
wp3

p δðp1− þ p2− þ p3−Þψ4ðp1−; p2−; p3−; P−Þa†ðP−Þj0i

þ
ffiffiffi
6

p Z
dp1−dp2−dp3−dp0

1−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1
wp0

1
wp1−p0

1

p δðp1− þ p2− þ p3− − P−Þ

× ψ4ðp0
1−; p1− − p0

1−; p2−; p3−Þa†ðp1−Þa†ðp2−Þa†ðp3−Þj0i
�
: ðA5Þ

From these contributions, we can construct the eigenvalue problem PþjψðP−Þi ¼ Pþjψðp−Þi as projections onto
different Fock sectors. These projections are

wP − sP−

c
ψ1 þ

ffiffiffi
2

p λ

4
ffiffiffiffiffiffi
4π

p
Z

dp1−dp2−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwPwp1
wp2

p δðP− − p1− − p2−Þψ2ðp1−; p2−Þ

þ
ffiffiffi
8

3

r
λ

4
ffiffiffiffiffiffi
4π

p
Z

dp1−dp2−dp3−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1
wp2

wp3

p δðp1− þ p2− þ p3−Þψ4ðp1−; p2−; p3−; P−Þ ¼ Pþψ1; ðA6Þ
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X2
i

wpi
− spi−

c
ψ2ðp1−; p2−Þ þ

λ

4
ffiffiffiffiffiffi
4π

p
ffiffiffi
2

p
ψ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1
wp2

wP
p þ

ffiffiffiffiffi
12

p λ

4
ffiffiffiffiffiffi
4π

p
Z

dp0
2−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp0
2
wp1−p0

2

p ψ3ðp1− − p0
2−; p

0
2−; p2−Þ ¼ Pþψ2;

ðA7Þ

X3
i

wpi
− spi−

c
ψ3ðp1−; p2−; p3−Þ þ

λ

4
ffiffiffiffiffiffi
4π

p
ffiffiffiffiffi
12

p
ψ2ðp1− þ p2−; p3−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp2
wp1þp2

p

þ 6
λ

4
ffiffiffiffiffiffi
4π

p
Z

dp0
1−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp0
1
wp1−p0

1

p ψ4ðp0
1−; p1− − p0

1−; p2−; p3−Þ ¼ Pþψ3; ðA8Þ

X4
i

wpi
− spi−

c
ψ4ðp1−; p2−; p3−; p4−Þ þ

λ

4
ffiffiffiffiffiffi
4π

p 6ψ3ðp1− þ p2−; p3−; p4−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1
wp2

wp1þp2

p

þ λ

4
ffiffiffiffiffiffi
4π

p ψ1ffiffiffi
6

p
�
δðp1− þ p2− þ p3−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1

wp2
wp3

p þ δðp1− þ p3− þ p4−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1
wp3

wp4

p þ δðp1− þ p2− þ p4−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp1
wp2

wp4

p þ δðp2− þ p3− þ p4−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiwp2
wp3

wp4

p
�
¼ Pþψ4:

ðA9Þ

We next invert the Eqs. (A7) and (A9) for ψ2 and ψ4, neglecting the higher-order corrections that come from the ψ3-
contributions determined by (A8), and substitute into the equation (A6) for ψ1. This leaves a single implicit equation for Pþ,
with ψ1 as a common factor, which we remove. After some simplifications that combine algebraic factors and that integrate
over all but one delta function, we obtain

Pþ ¼ wP − sP−

c
þ λ2

32π

Z
dp1−dp2−

wp1
wp2

wP

δðP− − p1− − p2−Þ
Pþ −

P
2
i
wpi

−2pi−

c

þ λ2

32π

Z
dp1−dp2−

wp1
wp2

wP

δðP− þ p1− þ p2−Þ
Pþ − 2 wP−sP−

c −
P

2
i
wpi

−2pi−

c

þ 1

3
δð0Þ λ2

32π

Z
dp1−dp2−dp3−

wp1
wp2

wp3

δðp1− þ p2− þ p3−Þ
Pþ −

P
3
i
wpi

−2pi−

c − wP−sP−
c

: ðA10Þ

The second and third terms on the right correspond to the time-ordered graphs in Fig. 8. The last term is a disconnected two-
loop bubble, which injects an infinite constant to be subtracted; it corresponds to the graph in Fig. 9. The result quoted in
(3.17) is just this equation after subtraction of the two-loop bubble.

[1] M. Hogervorst, S. Rychkov, and B. C. van Rees, Phys. Rev.
D 91, 025005 (2015).

[2] S. Rychkov and L. G. Vitale, Phys. Rev. D 91, 085011
(2015); 93, 065014 (2016).

[3] J. Elias-Miro, M. Montull, and M. Riembau, J. High Energy
Phys. 04 (2016) 144; J. Elias-Miro, S. Rychkov, and L. G.

Vitale, Phys. Rev. D 96, 065024 (2017); J. High Energy
Phys. 10 (2017) 213.

[4] A. Pelissetto and E. Vicari, Phys. Lett. B 751, 532
(2015).

[5] P. Bosetti, B. De Palma, and M. Guagnelli, Phys. Rev. D 92,
034509 (2015); B. De Palma and M. Guagnelli, Proc. Sci.

FIG. 9. Disconnected two-loop bubble in ϕ3 theory.

TRANSITIONING FROM EQUAL-TIME TO LIGHT-FRONT … PHYS. REV. D 102, 116010 (2020)

116010-13

https://doi.org/10.1103/PhysRevD.91.025005
https://doi.org/10.1103/PhysRevD.91.025005
https://doi.org/10.1103/PhysRevD.91.085011
https://doi.org/10.1103/PhysRevD.91.085011
https://doi.org/10.1103/PhysRevD.93.065014
https://doi.org/10.1103/PhysRevD.96.065024
https://doi.org/10.1007/JHEP10(2017)213
https://doi.org/10.1007/JHEP10(2017)213
https://doi.org/10.1016/j.physletb.2015.11.015
https://doi.org/10.1016/j.physletb.2015.11.015
https://doi.org/10.1103/PhysRevD.92.034509
https://doi.org/10.1103/PhysRevD.92.034509
https://doi.org/10.22323/1.256.0277


LATTICE2016 (2016) 277; S. Bronzin, B. De Palma, and
M. Guagnelli, Phys. Rev. D 99, 034508 (2019).

[6] Z. Bajnok and M. Lajer, J. High Energy Phys. 10 (2016)
050.

[7] M. Burkardt, S. S. Chabysheva, and J. R. Hiller, Phys. Rev.
D 94, 065006 (2016); S. S. Chabysheva and J. R. Hiller,
Phys. Rev. D 95, 096016 (2017).

[8] N. Christensen, Comput. Phys. Commun. 222, 167 (2018).
[9] N. Anand, V. X. Genest, E. Katz, Z. U. Khandker, and M. T.

Walters, J. High Energy Phys. 08 (2017) 056.
[10] A. L. Fitzpatrick, J. Kaplan, E. Katz, L. G. Vitale, and M. T.

Walters, J. High Energy Phys. 08 (2018) 120.
[11] A. L. Fitzpatrick, E. Katz, and M. T. Walters, J. High Energy

Phys. 10 (2020) 092.
[12] N. Anand, A. L. Fitzpatrick, E. Katz, Z. U. Khandker, M. T.

Walters, and Y. Xin, arXiv:2005.13544.
[13] M. Serone, G. Spada, and G. Villadoro, J. High Energy

Phys. 08 (2018) 148; 05 (2019) 047; G. Sberveglieri, M.
Serone, and G. Spada, Phys. Rev. D 100, 045008 (2019).

[14] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda,
and Y. Yoshimura, J. High Energy Phys. 05 (2019) 184.

[15] P. Romatschke, J. High Energy Phys. 03 (2019) 149; Mod.
Phys. Lett. A 35, 2050054 (2020).

[16] M. Burkardt, Phys. Rev. D 47, 4628 (1993).
[17] S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rep. 301,

299 (1998).
[18] M. Burkardt, Adv. Nucl. Phys. 23, 1 (2002).
[19] J. R. Hiller, Prog. Part. Nucl. Phys. 90, 75 (2016).
[20] J. Collins, arXiv:1801.03960.
[21] L. Martinovic and A. Dorokhov, Phys. Lett. B 811, 135925

(2020).
[22] P. D. Mannheim, P. Lowdon, and S. J. Brodsky, Phys. Lett.

B 797, 134916 (2019); P. D. Mannheim, Phys. Rev. D 102,

025020 (2020); P. D. Mannheim, P. Lowdon, and S. J.
Brodsky, arXiv:2005.00109.

[23] K. Hornbostel, Phys. Rev. D 45, 3781 (1992).
[24] Y. Frishman, C. T. Sachrajda, H. Abarbanel, and R.

Blankenbecler, Phys. Rev. D 15, 2275 (1977).
[25] D. V. Ahluwalia and D. J. Ernst, in Proceedings of the 5th

Annual HUGS at CEBAF, edited by W.W. Buck (1990),
pp. 179–195.

[26] M. S. Sawicki, Phys. Rev. D 44, 433 (1991); Phys. Lett. B
268, 327 (1991).

[27] T. W. Chen, Phys. Rev. D 3, 1989 (1971).
[28] E. Elizalde and J. Gomis, Nuovo Cimento Soc. Ital. Fis.

35A, 367 (1976).
[29] E. V. Prokhvatilov and V. A. Franke, Sov. J. Nucl. Phys. 49,

688 (1989).
[30] R. Lenz, M. Thies, S. Levit, and K. Yazaki, Ann. Phys.

(N.Y.) 208, 1 (1991).
[31] C.-R. Ji and C. Mitchell, Phys. Rev. D 64, 085013 (2001);

C.-R. Ji and A. T. Suzuki, Phys. Rev. D 87, 065015 (2013).
[32] S. Weinberg, Phys. Rev. 150, 1313 (1966); S. J. Chang,

R. G. Root, and T. M. Yan, Phys. Rev. D 7, 1133 (1973);
S. J. Chang and T. M. Yan, Phys. Rev. D 7, 1147 (1973);
T. M. Yan, Phys. Rev. D 7, 1760 (1973); 7, 1780 (1973).

[33] P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).
[34] H.-C. Pauli and S. J. Brodsky, Phys. Rev. D 32, 1993

(1985); 32, 2001 (1985).
[35] D. G. Robertson, Phys. Rev. D 47, 2549 (1993).
[36] S. S. Pinsky, B. van de Sande, and J. R. Hiller, Phys. Rev. D

51, 726 (1995).
[37] S. S. Chabysheva and J. R. Hiller, Phys. Rev. D 79, 096012

(2009).
[38] S. Hellerman and J. Polchinski, Phys. Rev. D 59, 125002

(1999).

SOPHIA S. CHABYSHEVA and JOHN R. HILLER PHYS. REV. D 102, 116010 (2020)

116010-14

https://doi.org/10.22323/1.256.0277
https://doi.org/10.1103/PhysRevD.99.034508
https://doi.org/10.1007/JHEP10(2016)050
https://doi.org/10.1007/JHEP10(2016)050
https://doi.org/10.1103/PhysRevD.94.065006
https://doi.org/10.1103/PhysRevD.94.065006
https://doi.org/10.1103/PhysRevD.95.096016
https://doi.org/10.1016/j.cpc.2017.10.002
https://doi.org/10.1007/JHEP08(2017)056
https://doi.org/10.1007/JHEP08(2018)120
https://doi.org/10.1007/JHEP10(2020)092
https://doi.org/10.1007/JHEP10(2020)092
https://arXiv.org/abs/2005.13544
https://doi.org/10.1007/JHEP08(2018)148
https://doi.org/10.1007/JHEP08(2018)148
https://doi.org/10.1007/JHEP05(2019)047
https://doi.org/10.1103/PhysRevD.100.045008
https://doi.org/10.1007/JHEP05(2019)184
https://doi.org/10.1007/JHEP03(2019)149
https://doi.org/10.1142/S0217732320500546
https://doi.org/10.1142/S0217732320500546
https://doi.org/10.1103/PhysRevD.47.4628
https://doi.org/10.1016/S0370-1573(97)00089-6
https://doi.org/10.1016/S0370-1573(97)00089-6
https://doi.org/10.1007/b115018
https://doi.org/10.1016/j.ppnp.2016.06.002
https://arXiv.org/abs/1801.03960
https://doi.org/10.1016/j.physletb.2020.135925
https://doi.org/10.1016/j.physletb.2020.135925
https://doi.org/10.1016/j.physletb.2019.134916
https://doi.org/10.1016/j.physletb.2019.134916
https://doi.org/10.1103/PhysRevD.102.025020
https://doi.org/10.1103/PhysRevD.102.025020
https://arXiv.org/abs/2005.00109
https://doi.org/10.1103/PhysRevD.45.3781
https://doi.org/10.1103/PhysRevD.15.2275
https://doi.org/10.1103/PhysRevD.44.433
https://doi.org/10.1016/0370-2693(91)91585-J
https://doi.org/10.1016/0370-2693(91)91585-J
https://doi.org/10.1103/PhysRevD.3.1989
https://doi.org/10.1007/BF02730290
https://doi.org/10.1007/BF02730290
https://doi.org/10.1016/0003-4916(91)90342-6
https://doi.org/10.1016/0003-4916(91)90342-6
https://doi.org/10.1103/PhysRevD.64.085013
https://doi.org/10.1103/PhysRevD.87.065015
https://doi.org/10.1103/PhysRev.150.1313
https://doi.org/10.1103/PhysRevD.7.1133
https://doi.org/10.1103/PhysRevD.7.1147
https://doi.org/10.1103/PhysRevD.7.1760
https://doi.org/10.1103/PhysRevD.7.1780
https://doi.org/10.1103/RevModPhys.21.392
https://doi.org/10.1103/PhysRevD.32.1993
https://doi.org/10.1103/PhysRevD.32.1993
https://doi.org/10.1103/PhysRevD.32.2001
https://doi.org/10.1103/PhysRevD.47.2549
https://doi.org/10.1103/PhysRevD.51.726
https://doi.org/10.1103/PhysRevD.51.726
https://doi.org/10.1103/PhysRevD.79.096012
https://doi.org/10.1103/PhysRevD.79.096012
https://doi.org/10.1103/PhysRevD.59.125002
https://doi.org/10.1103/PhysRevD.59.125002

