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We study the photon trident process, where an initial photon turns into an electron-positron pair and a
final photon under a nonlinear interaction with a strong plane-wave background field. We show that this
process is very similar to double Compton scattering, where an electron interacts with the background field
and emits two photons. We also show how the one-step terms can be obtained by resumming the small- and
large-χ expansions. We consider a couple of different resummation methods and also propose new
resummations (involving Meijer-G functions) which have the correct type of expansions at both small and
large χ. These new resummations require relatively few terms to give good precision.
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I. INTRODUCTION

The strength of a high-intensity laser is usually expressed
in terms of a0 ¼ E=ω,1 where E is the field strength and ω a
typical frequency scale. The OðαÞ processes nonlinear
Compton scattering e− → e− þ γ followed by nonlinear
Breit-Wheeler pair production γ → e− þ eþ were observed
more than two decades ago at SLAC [1]. There the lasers
had a0 < 1 and the observation could be explained in terms
of perturbative (albeit multiphoton/nonlinear) physics.
Today’s lasers [2] can have much larger a0. For sufficiently
large a0 (depending on the size of the other parameters of
the system), one can approximate Oðαn≥2Þ processes by
incoherent products of sequences ofOðαÞ processes, where
the laser can be approximated as locally constant during
each OðαÞ step. This is a key ingredient of particle-in-cell
codes [3–9], which are often the only means available to
study higher-order processes. Since higher-order processes
are expected to be important in upcoming high-intensity
laser experiments, and since they are in general too difficult
to compute exactly, it is important to do the following:
(1) Study how to approximate Oðαn≥2Þ processes.

(2) Estimate more precisely the size of the corrections
and delineate the region where these corrections can
be neglected.

Point (1) involves e.g., the question how to sum over the
spin and polarization of intermediate particles [10–13],
which we have recently treated with Stokes vectors and
“strong-field-QED Mueller matrices” in [14]. For (2), it is
natural to study in detail the Oðα2Þ processes, for which
one can with some effort calculate the entire probability.
The trident process (e− → 2e− þ eþ) has been studied
in [10,11,13,15–20] and double Compton scattering
(e− → e− þ 2γ) has been studied in [12,21–27]. Both these
processes have a single particle (apart from the laser field)
in the initial state. Processes with two particles in the initial
state have recently attracted more interest [28–31], but they
are quite different from both a conceptual and a calcula-
tional point of view.
However, there is one Oðα2Þ process that has not

received much attention, namely, the photon trident process
(γ → e− þ eþ þ γ), which is, like trident and double
Compton, also a Oðα2Þ process with only one initial
particle. To the best of our knowledge, this process has
only been studied in [32]. So, our goal in this paper is to
study this process.
We use the same methods as we previously used in

[15,27] to study the trident and double Compton. Although
those two processes had already been studied in a couple
papers, we were able to show that certain terms that had
been omitted in the previous literature on the locally
constant-field (LCF) regime are actually crucial for point
(2). In fact, for double Compton we showed in [27] that the
inclusion of the omitted terms can even change the order of
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magnitude of the correction. These terms are part of what
we call the one-step part of the probability, which gives the
correction to the two-step part, i.e., the incoherent product
of two OðαÞ processes summed over the spin/polarization
of the intermediate particle. In the LCF regime, one can
expand the probability in a power series in 1=a0 ≪ 1. The
two-step scales as P2 ∼ a20 þOða00Þ and the one-step as
P1 ∼ a0. The terms that were omitted in the previous LCF
literature are the exchange part of the probability, by which
we mean the cross-term between the two parts of the
amplitude that are related by swapping place of the two
identical particles in the final state. We call the nonex-
change part of the probability the direct part.2 In [27], we
showed that the most difficult part of the exchange term in
double Compton has the same functional form as the
corresponding term in trident, so one can obtain one from
the other by some simple replacement of the parameters.
Since these terms are the most difficult to calculate, this
close relation is of course very useful in practice, as it mean
that we can calculate them using the same methods.
In this paper, we show that photon trident has an even

closer relation to double Compton, as expected. Indeed, on
an analytical level, all contributions to photon trident can be
obtained from the corresponding terms in double Compton
by a simple replacement of the longitudinal momenta. For
χ ≪ 1, we show explicitly that it is possible to obtain the
spectrum by replacing the longitudinal momenta in the
double Compton spectrum. Here χ ¼ a0b0, where b0 ¼ kp
is the product of the wave vector of the laser (k0 ¼ ω) and
the momentum pμ of the initial particle. In the photon-
trident case, there are no identical particles in the final state,
but there are two different contributions to the amplitude
where the final photon is emitted by either the electron or
the positron, and the cross-term between those diagrams
corresponds to the exchange terms in trident and double
Compton. Our results thus show that the most complicated
terms in all these three second-order processes are closely
related.
However, since these replacements involve e.g., chang-

ing sign of some lightfront-longitudinal momenta (which
are all positive for real particles), these relations cannot
be used to simply directly translate numerical results of
e.g., the spectrum in double Compton into results for
photon trident. In particular, in [27], we showed that the
direct and exchange parts of the one-step tend to cancel, but
from these relations alone we cannot say whether this
cancellation also happens in photon trident. To answer this
question, we have to perform new calculations.
While the one-step can be computed numerically as in

[27], here we will show that another way is to use
resummation methods. One can consider expansions in
different parameters. Here we will consider the small- and

large-χ expansions. We will show that existing resumma-
tion methods based on Borel transformation, conformal
maps, and Padé approximants can be used. In some cases, it
can become time consuming to calculate many orders in
these expansions, so we want resummation methods that
maximize the precision over larger χ intervals given a finite
number of terms. New resummation methods such as the
one in [33] can be used to improve the resummation.
However, with these general resummation methods, there is
still room for improvement. So, we have found new
resummation methods which are tailor-made for strong-
field QED in LCF. These new resummations have the same
type of expansions as the exact result for both small and
large χ. This means that we need relatively few terms from
these expansions in order to find precise resummations over
large intervals of χ. In fact, this allows us to find uniform
resummations that works for any value of χ.
This paper is organized as follows. In Sec. II, we give

the necessary definitions and explain how to derive the
exact results for photon trident. The exact results are
presented and compared with double Compton in
Sec. III. In Sec. III B, we derive saddle-point approxima-
tions to further compare with double Compton. In Sec. IV,
we show how to resum the small-χ expansion. In Sec. V, we
derive the large-χ expansion and present a new resumma-
tion in terms of a sum over Meijer-G functions. In Sec. VI,
we present another new resummation, which is a sum of
terms that are quadratic in Meijer-G functions and which
we show can be used to resum the small- and large-χ
expansions simultaneously. After having used double
Compton in Secs. IV–VI as an example for these resum-
mation approaches, in Sec. VII we use them for photon
trident. We also present new resummations which involve
sums of products of Airy functions. We conclude in
Sec. VIII.

II. DEFINITIONS AND DERIVATION

We consider in general pulsed plane-wave background
fields. The structure of this field makes it useful to use
lightfront coordinates v� ¼ 2v∓ ¼ v0 � v3, v⊥ ¼ fv1; v2g.
For momentum variables, we use P̄ ¼ fP−; P⊥g. The field
depends only on one lightlike coordinate, which is chosen
to be xþ and is referred to as lightfront time. Instead
of xþ, we usually use ϕ¼ kx¼ ωxþ as integration variable,
where ω is a characteristic frequency of the field. In
terms of these coordinates, the field can be expressed as
fμν ¼ kμa0ν − kνa0μ, where aþ ¼ a− ¼ 0 and a⊥ðϕÞ has an
arbitrary pulse shape and arbitrary polarization.
The initial state contains a photon with momentum lμ and

polarization εμ. The photon is on-shell so lþ ¼ l2⊥=ð4l−Þ. We
use lightfront gauge where kε ¼ 0, so ε− ¼ 0 and
εþ ¼ l⊥ε⊥=ð2l−Þ. Although we do not consider any non-
trivial wave-packet effects here, it is still convenient to start
with an initial state described by a wave-packet fðlÞ as

2So, “direct” ≠ “one-step.” Instead, P2 ¼ Pdir
2 and

P1 ¼ Pdir
1 þ Pex

1 .
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jini ¼
Z

dl̃fðlÞεμâ†μðlÞj0i; ð1Þ

where the momentum measure

dP̃ ¼ d2P⊥dP−θðP−Þ
ð2πÞ32P−

ð2Þ

is Lorentz invariant. The step function comes from the fact
that the longitudinal momentum P− ¼ P0 − P3 > 0 for all
physical momenta. The photon mode operator obeys

½âμðlÞ; â†νðl0Þ� ¼ −2l−δ̄ðl − l0ÞLμν; ð3Þ

where δ̄ðPÞ ¼ ð2πÞ3δðP−Þδ2ðP⊥Þ and

LμνðlÞ ¼ gμν −
kμlν þ lμkν

kl
: ð4Þ

The sum over two orthogonal polarization vectors, e.g., with
ε⊥ ¼ f1; 0g and ε⊥ ¼ f0; 1g, is given byX

pol

ϵμðlÞϵνðlÞ ¼ −LμνðlÞ: ð5Þ

We assume that the wave packet is sharply peaked, so
(hinjini ¼ 1), Z

dl̃jfðlÞj2FðlÞ ¼ FðlÞ; ð6Þ

where we also use l for the position of the peak.
We are interested in the probability that this initial state

decays into a final state with an electron, a positron, and a
photon with momentum pμ, p0

μ, and l0μ, respectively. The
amplitude for this process has two terms (M ¼ Me þMp),
where the final photon is emitted by either the electron (Me)
or the positron (Mp). These are given by, see Fig. 1,

1

kþ
δ̄ðpþ p0 þ l0 − lÞMe

¼ ð−ieÞ2
Z

d4x1d4x2ψ̄ðx2Þ=ε0eil0x2Sðx2; x1Þ=εe−ilx1ψ−ðx1Þ

ð7Þ

and

1

kþ
δ̄ðpþp0 þ l0− lÞMp

¼ ð−ieÞ2
Z

d4x1d4x2ψ̄ðx1Þ=εe−ilx1Sðx1;x2Þ=ε0eil0x2ψ−ðx2Þ;

ð8Þ

where ψðp; xÞ ¼ Kðp;ϕÞuðp; σÞφðp; xÞ is the Volkov
solution, where

φðp; xÞ ¼ exp

�
−i
�
pxþ

Z
kx
dϕ

2ap − a2

2kp

��
; ð9Þ

Kðp;ϕÞ ¼ 1þ =k=a
2kp

; ð10Þ

and uðp; σpÞ is a field-independent spinor normalized as

X
σ

ūuðp; σÞ ¼ =pþ 1: ð11Þ

The positron Volkov solution is given by ψ−ðp0; xÞ ¼
K̄ðp0;ϕÞvðp0; σ0Þφð−p0; xÞ, where K̄ðP;ϕÞ ¼ Kð−P;ϕÞ
and

X
σ0

v̄vðp0; σ0Þ ¼ =p0 − 1: ð12Þ

The propagator is given by

Sðx; yÞ ¼ i
Z

d4P
ð2πÞ4 KφðP; xÞ

1

=P − 1þ iϵ
K̄φ�ðP; yÞ: ð13Þ

We separate the propagator as [24]

1

=P − 1þ iϵ
¼ 1

4P−

�
γþ þ =Pon þ 1

Pþ − Ponþ þ iϵsignðP−Þ
�
; ð14Þ

where Ponþ ¼ ð1þ P2⊥Þ=ð4P−Þ, and then the Pþ integral
gives

i
kþ

Z
dPþ
2π

e−iðx
þ
2
−xþ

1
ÞPþ

=P − 1þ iϵ
¼ e−iðx

þ
2
−xþ

1
ÞPon

þ

2kP
fi=kδðθ21Þ

þð=Pon þ 1Þ½θðkPÞθðθ21Þ − θð−kPÞθðθ12Þ�g; ð15Þ

where θij ¼ ϕi − ϕj, ϕi ¼ kxi. The integrals over x
−;⊥
1;2 give

delta functions. For Me, we have P̄ ¼ p̄1 ≔ p̄þ l̄0

(kP > 0) and for Mp we have P̄¼−p̄1̄≔−ðp̄0 þ l̄0Þ
(kP < 0).FIG. 1. Feynman diagrams for photon trident.
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The total probability is given by

P ¼ 1

2

X
spins

Z
dp̃dp̃0dl̃0

����
Z

dl̃f
1

kþ
δ̄ðpþ p0 þ l0 − lÞM

����2

¼ 1

2

X
spins

Z
dp̃dp̃0 θðkl0Þ

klkl0
jMj2; ð16Þ

where l̄0 ¼ l̄ − p̄ − p̄0 and we have 1=2 because we average
over the polarization of the initial photon. To compare with
our results for trident and double Compton, we introduce
the following notation. We call the terms coming from
jMej2 and jMpj2 the direct part, and Pdir ¼ Pe

dir þ Pp
dir,

where

Pe;p
dir ¼ 1

2

X
spins

Z
dp̃dp̃0 θðkl0Þ

klkl0
jMe;pj2: ð17Þ

We refer to the cross-term as the exchange part

Pex ¼
1

2

X
spins

Z
dp̃dp̃0 θðkl0Þ

klkl0
2ReM�

eMp: ð18Þ

The integrals over p⊥ and p0⊥ are Gaussian and we
perform them analytically for arbitrary field shape and
polarization [34]. We are left with the longitudinal momen-
tum spectrum PðsÞ, which we define as

P≕
Z

q1

0

ds0ds2θðq2ÞPðsÞ; ð19Þ

where we use the following notation for the longitudinal
momenta, s0 ¼ kp=b0, s2 ¼ kp0=b0, q1 ¼ kl=b0, and
q2 ¼ kl0=b0 ¼ q1 − s0 − s2. When evaluating the spec-
trum, we set b0 ¼ kl, i.e., q1 ¼ 1. However, in order to
see the symmetries and relation with double Compton,
we will keep q1 explicit. For the momentum of the
intermediate fermion, we use s1 ¼ kp1=b0 ¼ q1 − s2
and s1̄ ¼ kp1̄=b0 ¼ q1 − s0.

III. EXACT RESULTS

Because of the separation of the propagator in (15), the
terms Pe

dir, Pp
dir, and Pex are each separated into three

terms with two, three, and four lightfront time integrals. To
express these terms compactly, we use the following
definitions. For the longitudinal momenta, we use rij ¼
ð1=siÞ − ð1=sjÞ, r̃ij ¼ ð1=siÞ þ ð1=sjÞ, and κij ¼ ðsi=sjÞ þ
ðsj=siÞ. The field enters the exponential part of the
integrands via the effective mass M [35],

M2
ij ¼ 1þ ha2iij − hai2ij; ð20Þ

where

hFiij ¼
1

θij

Z
ϕi

ϕj

dϕFðϕÞ: ð21Þ

We also use Θij ¼ θijM2
ij. The preexponential parts of the

integrands can be expressed in terms of

Δij ¼ aðϕiÞ − haiij: ð22Þ

There are at most four ϕ integrals. We use ϕ2 and ϕ4 for the
amplitude M and ϕ1 and ϕ3 for its complex conjugate M�.
The Gaussian integrals over p⊥ and p0⊥ need to be
regulated, which we do by replacing ϕ2;4 → ϕ2;4 þ iϵ=2
and ϕ1;3 → ϕ1;3 − iϵ=2 where ϵ > 0. We leave the factors
of ϵ implicit, as this can anyway be seen as a shift in the
integration contours for ϕi.
For the direct terms, we find

Pe
11ðsÞ ¼

α2

4π2
s0s2
q21s

2
1

Z
dϕ12

−1
θ221

e
i

2b0
r̃20Θ21 ; ð23Þ

where dϕ12 ¼ dϕ1dϕ2,

Pe
12ðsÞ ¼ Re

iα2

4π2b0q21

Z
dϕ123θðθ31Þ
s31θ21θ23

e
i

2b0
½r̃21Θ21þr01Θ23�

ðq1q2 − s0s2Δ12 · Δ32Þ ð24Þ

and

Pe
22ðsÞ ¼ −

α2

4π2b20q
2
1

Z
dϕ1234θðθ31Þθðθ42Þ

s21θ21θ43
e

i
2b0

½r̃21Θ21þr01Θ43�

×

��
κ21
2

�
2ib0
r̃21θ21

þ 1þΔ12 ·Δ21

�
þ 1

�

×

�
κ01
2

�
2ib0
r01θ43

þ 1þΔ34 ·Δ43

�
− 1

�

−
q1q2
4s21

�
ðΔ21 −Δ12Þ · ðΔ43 −Δ34Þ

þ ðs0 þ s1Þðs2 − s1Þ
s0s2

ðΔ12 ×Δ21Þ · ðΔ34 ×Δ43Þ
��

:

ð25Þ
The corresponding terms for Pp can be obtained by
replacing s0 ↔ s2 (which means e.g., s1 ↔ s1̄). As in
the trident and the double Compton cases, we split the step
functions as [15]

θðθ42Þθðθ31Þ

¼θðσ43−σ21Þ
�
1−θ

�jθ43−θ21j
2

− ½σ43−σ21�
��

; ð26Þ

where the first term gives Pe
22→2, which we call the two-step

part, and the second term gives Pe
22→1, which contributes to

the one-step terms.
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The two-step part can be obtained with the gluing
approach presented in [14]. [In fact, the entire Pe

22 can
be obtained by including θðθ42Þθðθ31Þ instead of just
θðσ43 − σ21Þ in the integrand.] For photon trident, we need
all three OðαÞ processes: nonlinear Breit-Wheeler and
Compton scattering by either an electron or a positron.
The spin and polarization structure of each of these can be
expressed compactly in terms of the Stokes vectors, ni, for
the initial and the two final-state particles,

P ¼ hPi þ n0 · P0 þ n1 · P1 þ n2 · P2

þ n0 · P01 · n1 þ n0 · P02 · n2 þ n1 · P12 · n2

þ P012;ijkn0in1jn2k; ð27Þ
where the expressions for hPi and P can be found in [14].
According to the gluing prescription, we have

Pe
glue ¼ 24hPBWPe

Ci ð28Þ

and

Pp
glue ¼ 24hPBWP

p
Ci; ð29Þ

where PBW and Pe;p
C are the probabilities for nonlinear

Breit-Wheeler and nonlinear Compton by an electron or a
positron, respectively, h1i ¼ 1, hni ¼ 0, and hnni ¼ 1 for
each particle, and there is a factor of 24 because spin sums
have been expressed in terms of averages for three final-
state particles and one intermediate particle. In contrast to
the trident case, see Eq. (44) in [14], there is no factor of
1=2 since we do not have any identical particles here. By

expressing the OðαÞ processes as P ¼ Nð1Þ
k Nð2Þ

j MkjiN
ð0Þ
i ,

where M can be seen as a strong-field-QED Mueller
matrix, these averages h…i are equivalent to Mueller-

matrix multiplication, Nð3Þ
m Nð2Þ

l Nð1Þ
j MC

mlkM
BW
kji N

ð0Þ
i .

For the exchange terms, we find P11
ex ¼ 0,

P12
exðsÞ ¼ Re

−iα2

4π2b0q21

Z
dϕ123θðθ31Þ
s1̄θ21θ23

e
i

2b0
½r̃21Θ21þr01Θ23�

× Δ12 · Δ32; ð30Þ

P21
exðsÞ ¼ P12

exðsÞjs0↔s2 , and finally the most difficult term

P22
exðsÞ ¼ Re

−α2

8π2b20q
2
1

Z
dϕ1234θðθ31Þθðθ42Þ

s0s1s1̄s2d0

× exp

�
iq1q2

2b0s0s1s1̄s2d0

�
θ21θ43

�
Θ21

q2
−
Θ43

q1

�

þ θ23θ41

�
Θ41

s2
þ Θ23

s0

�
þ θ31θ42

�
Θ42

s1̄
−
Θ31

s1

���

×

�
F0 þ f0 þ

2ib0
d0

ðf1 þ z1Þ þ
�
2b0
d0

�
2

z2

�
;

ð31Þ

where

d0 ¼
θ42θ31
s1s1̄

þ θ23θ41
s0s2

; ð32Þ

F0 ¼ ðκ02 þ κ11̄Þðd1 · d2Þðd4 · d3Þ
þ ðκ02 − κ11̄Þðd1 × d2Þ · ðd4 × d3Þ; ð33Þ

f0 ¼
1

s0s1s1̄s2
½ðs1q2d1 − s1̄q1d4Þ · ðs1̄q2d2 − s1q1d3Þ

þ ðs2q1d4 þ s0q2d2Þ · ðs2q2d1 þ s0q1d3Þ�; ð34Þ

f1 ¼ κ02

�
θ41
s2

d1 · d4 þ
θ23
s0

d3 · d2

�

þ κ11̄

�
−
θ31
s1

d1 · d3 þ
θ42
s1̄

d2 · d4

�

þ ðκ02 þ κ11̄Þ
�
−
θ21
q2

d1 · d2 þ
θ43
q1

d4 · d3

�
; ð35Þ

z1 ¼
q21

s2s1q2

�
3 −

s1̄s0
s1s2

�
ϕ1 −

q22
s2s1̄q1

�
3 −

s1s0
s1̄s2

�
ϕ4

þ q22
s1s0q1

�
3 −

s1̄s2
s1s0

�
ϕ3 −

q21
s1̄s0q2

�
3 −

s1s2
s1̄s0

�
ϕ2;

ð36Þ

z2 ¼ −κ02
θ23θ41
s0s2

þ κ11̄
θ31θ42
s1s1̄

þ ðκ02 þ κ11̄Þ
θ43θ21
q1q2

; ð37Þ

and

d1¼
q2

s0s1̄d0

�
θ21θ43
q2

Δ12−
θ31θ42
s1

Δ13þ
θ23θ41
s2

Δ14

�
; ð38Þ

d2¼
q2

s1s2d0

�
θ21θ43
q2

Δ21þ
θ23θ41
s0

Δ23−
θ31θ42
s1̄

Δ24

�
; ð39Þ

d3¼
q1

s2s1̄d0

�
θ42θ31
s1

Δ31þ
θ23θ41
s0

Δ32−
θ43θ21
q1

Δ34

�
; ð40Þ

d4¼
q1

s0s1d0

�
θ23θ41
s2

Δ41þ
θ42θ31
s1̄

Δ42−
θ43θ21
q1

Δ43

�
: ð41Þ

A. Comparison with double Compton

These expressions look very similar to the ones we
derived in [27] for double Compton. In fact, we can obtain
each of these terms by the following replacements.
Let us start with Pe. To obtain Pe

11, P
e
12, and Pe

22 in (23),
(24), and (25) from the expression in [27] for the direct part
of the probability of double Compton, note first that those
expressions are expressed as sums of two asymmetric terms
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PDC
dir ðqÞ ¼ PDC

dir;asymðq1; q2Þ þ PDC
dir;asymðq2; q1Þ. To go from

PDC
dir;asymðq1; q2Þ to Pe, replace q1 → −q1 (we change an

outgoing photon to an incoming one), s0 → −s2 (the initial
electron becomes an outgoing positron),3 and s2 → s0 (just
different notation for the outgoing electron). These changes
take care of all the nontrivial parts of the expressions. To
obtain the correct overall factor, we have to multiply by an
overall factor of−2=q21. The reason for this sign is that when
changing an electron to a positron by replacingp → −p0, the
spin sum in (11) givesminus (12). The factor of 2 is due to the
fact that in double Compton one has to divide by 2 to prevent
double counting of identical particles, while here there are no
identical particles in the final state. The factor of q21 is just
normalization, and we anyway put q1 ¼ 1 when evaluating
these expressions. The expressions forPp can of course also
be obtained in this way, sincePp can be obtained fromPe by
replacing s0 ↔ s2.
To obtain Pex from the exchange terms, we first note that

P12DC
ex ðqÞ ¼ P12DC

ex;asymðq1; q2Þ þ P12DC
ex;asymðq2; q1Þ. P12

exðsÞ is
obtained from P12DC

ex;asymðq1; q2Þ by replacing q1 → −q1,
s0 → −s2, and s2 → s0, as for the direct terms, plus s1̄ →
−s1̄ (the intermediate electron is changed to a positron). We
also have to multiply by a factor of −2=q21 for the same
reasons as for Pe.
For P22

ex, we note that in the expressions above and in [27]
we have named the ϕ variables such that the ϕ2 step
happens before the ϕ4 step, which is why we have θðθ42Þ.
However, looking at the second line in (15), we see that to
compare with the double Compton expressions in [27], it is
more natural to rename the integration variables as ϕ2 ↔
ϕ4 in the above expressions for P22

ex. Then ϕ1 and ϕ4 are the
vertices connected to the q1-photon line and ϕ2 and ϕ3 are
the vertices connected to the q2-photon line, which is also
how the photon lines are connected for the choice of
variable names we made in the double Compton case [27].
With this renaming, the ϕ4 vertex happens before the ϕ2

vertex, and P22
ex is obtained from P22DC

ex with the same
replacements for the momentum variables and overall
prefactor as for the other terms, plus changing one of
the step function θðθ42Þ → −θðθ24Þ. This replacement of
the step function and the extra sign change is due to the
relative sign between the two terms in the second line in
(15), which in turn comes from the fact that the Pþ
integration contour should be closed in the upper and
lower complex plane for P− > 0 and P− < 0, respectively.
So, θðθ42Þ → −θðθ24Þ is a consequence of the replacements
of the momentum variables. We could trivially make the
same ϕ2;ϕ4 replacement for the entire exchange part,
because this does not have any effect on P12

ex , which can
be seen as a four-dimensional integral with δðθ42Þ instead
of θðθ42Þ or θðθ24Þ.
These relations can be better understood by comparing

the probability diagrams in Fig. 2 with the corresponding
ones in [27] for double Compton. By comparing also with
the diagrams in [15] for trident, we see that the diagrams for
P22
ex are similar for all three processes. However, the other

diagrams for trident look different from what we have here,
so one should not expect it to be possible to obtain relations
between these terms and the corresponding terms in photon
trident or double Compton.

B. Saddle-point approximations

In this section,wewill derive saddle-point approximations
for the emission of a hard photon and χ ≪ 1. We consider
linearly polarized fields, aðϕÞ ¼ a0fðϕÞ. In the LCF regime,
we have a0 ≫ 1 andwe can expand the probability in a series
in 1=a0. We perform the ϕ integrals with the saddle-point
method. The calculations are almost identical to the ones in
[27], so we simply state the results. We find

Pe
11 ¼

α2

8π
3
2q21

s0s2
s21

ffiffiffiffiffiffi
r̃20

p
Z

dϕ
b0

χ
3
2e−

2r̃20
3χ ; ð42Þ

where χðϕÞ ¼ a0b0f0ðϕÞ,

Pe
12 ¼

α2

24π
3
2q21

4q1q2 þ s0s2
s31

ffiffiffiffiffiffi
r̃20

p
�
1

r̃21
−

1

r01

� Z
dϕ
b0

χ
3
2e−

2r̃20
3χ ;

ð43Þ

FIG. 2. Probability diagrams [15,27] for photon trident.

3Since the longitudinal momenta are positive for physical
particles, we see that values of the longitudinal momenta that are
physical for photon trident are unphysical for double Compton,
and vice versa. This also explains why one of them can be a
threshold process, while the other is not.
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P12
ex ¼ α2

24π
3
2q21

1

s1̄
ffiffiffiffiffiffi
r̃20

p
�
1

r̃21
−

1

r01

� Z
dϕ
b0

χ
3
2e−

2r̃20
3χ ; ð44Þ

Pe
22→1 ¼

−α2

4π
3
2q21

ffiffiffiffiffiffi
r̃20

p �
q1
q2

þ q2
q1

−
s1s1̄
q1q2

� Z
dϕ
b0

ffiffiffi
χ

p
e−

2r̃20
3χ ;

ð45Þ

Pe
22→2 ¼

α2

4πq21

ffiffiffiffiffiffiffiffiffiffi
q1q2
s0s2

r
1

s1

�
q1
q2

þ q2
q1

−
s1s1̄
q1q2

� Z
dσ1
b0

×
Z
σ1

dσ2
b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðσ1Þχðσ2Þ

p
e−

2r̃21
3χðσ1Þ−

2r01
3χðσ2Þ; ð46Þ

and

P22
ex ¼ −P22→1; ð47Þ

whereP22→1 ≔ Pe
22→1 þ Pp

22→1 [note that (45) is symmetric
in s0 ↔ s2, so Pe

22→1 ¼ Pp
22→1 to leading order]. In fact,

these expressions can be obtained from the corresponding
results in [27] by simply making the replacements as
explained in the previous section. Thus, the exchange term
cancels thedirect part of theone-step to leadingorder, not just
in the double Compton case, but also for photon trident. This
tells us that the two-step part is a better approximation of the
total probability than what the scaling Ptwo ∼Oða20Þ, Pone ∼
Oða0Þ alone suggests.
The above results hold for arbitrary field shapes with

a0 ≫ 1. There are certain field shapes which also allow us
to obtain simple expressions for a0 ∼ 1. One such example
is a Sauter pulse, aðϕÞ ¼ a0 tanhϕ. The results for photon
trident agree with what one obtains by making the replace-
ments of the longitudinal momenta in the corresponding
results in [27]. Thus, for these single-maximum fields, all
three second-order processes with one initial particle
(trident, double Compton, and photon trident) have the
same a0 dependence in the leading, exponential part of the
probability, only the dependencies on the longitudinal
momenta are different.
If we use q2 and s0 as independent integration variables,

then we can perform the s0 integral with the saddle-point
method. The saddle point is given by s0 ¼ s2 ¼ ðq1 −
q2Þ=2 and, for a0 ≫ 1, we find that the probability scales as

P ∼ exp

�
−

8

3ðq1 − q2Þχ
�
; ð48Þ

so emitting a hard photon (q2 ∼ q1) leads to an increased
exponential suppression compared to the Breit-Wheeler
case, as expected.

IV. RESUMMATION OF SMALL-χ EXPANSION

In the previous section, we used the leading order in the
saddle-point expansion to see how important various terms

are. We saw in particular that the exchange term cancels
the direct part of the one-step to leading order. This means
that one has to go beyond the leading order for these
terms. However, the small-χ expansion is asymptotic and,
as we showed in [27] for double Compton, for these
processes the region where the precision is improved by
adding the first couple of next-to-leading order terms is
limited to so small χ that the exponential suppression
makes results very small. Fortunately, as demonstrated in
[20] for trident, one can use resummation methods to
resum these asymptotic series.
See also [36–40] for resummations of expansions in the

field strength or derivative (χγ in [39]) and [41–43] for
resummations of the α series.
The resummations methods that we will describe in the

following sections are quite general. We focus initially on
double Compton scattering as an example and return to
photon trident in Sec. VII. In [27], we plotted the
probability as a function of χ for several different values
of q1 and q2. We have checked that the resummations
presented below agree with the numerical results from [27].
However, we will present several different resummations of
both the small- and the large-χ expansions, which means
that we do not need exact numerical results in order to
check the precision of the resummations. Instead, to check,
e.g., the precision of the small-χ resummations at large χ we
can use the large-χ expansion, and vice versa for large-χ
resummations. There is also a large interval around χ ∼ 1
where the small- and large-χ expansions agree to a high
precision. So, in the plots below, the exact numerical result
is not included, but if it were it would in all cases be
indistinguishable from at least one of the curves.
From [27], we see that in some cases there is a large

degree of cancellation between the direct and exchange
parts of the one-step, not just for small χ, but also as χ
becomes large. One typical example where this happens is
q1 ¼ q2 ¼ 1=3, which we use as a first example. Here the
one-step terms can be expanded as

Pone
dir ¼ −

3α2a0Δϕffiffiffi
2

p
π3=2

ffiffiffi
χ

p exp

�
−

4

3χ

�
Tdir; ð49Þ

Pone
ex ¼ 3α2a0Δϕffiffiffi

2
p

π3=2
ffiffiffi
χ

p exp

�
−

4

3χ

�
Tex; ð50Þ

where

T ¼
X∞
n¼0

Tnχ
n ð51Þ

Tdir ¼ 1þ 1907

864
χ −

18761023

1492992
χ2 þ 51512914979

429981696
χ3 − � � �

ð52Þ
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Tex ¼ 1þ 50021

30240
χ −

48618935483

7472424960
χ2

þ 231504152856583

4860943073280
χ3 − � � � : ð53Þ

A direct sum of the series in T does not work, because this
is an asymptotic series with factorially growing coeffi-
cients. The standard approach for such series is to use Borel
transformation,

BTðtÞ ¼
X∞
n¼0

Bntn ¼
X∞
n¼0

Tn

n!
tn: ð54Þ

By calculating a finite number of terms, we obtain a
truncated Borel transform BTN ¼PN

n¼0 Bntn, which needs
to be resummed before we transform back to χ. This can be
done with Borel-Padé-conformal methods [40,44–51].
One way is to calculate a Padé approximant [47–50] for

the truncated series

PBT½m=n�ðtÞ ¼
P

m
i¼0 Aiti

1þPn
j¼1 Bjtj

¼ BTNðtÞ þOðtNþ1Þ;

ð55Þ

where m and n are integers with mþ nþ 1 ≤ N. The Padé
approximant provides an analytic continuation of the
truncated series beyond its (finite) radius of convergence.
The final step is to take the inverse of the Borel transform,
i.e., the Laplace transform,

PBT½m=n�ðχÞ ¼
Z

∞

0

dt
χ
e−t=χPBT½m=n�ðtÞ; ð56Þ

which gives a resummation of the original T series.
In practice, it can for some contributions be challenging

to calculate a large number of terms. For these sort of
asymptotic series obtained with the saddle-point method,
the challenge is that the number of different terms in the
integrand can become very large if there are several
integration variables. So, one needs to make the most of
the terms one has. One common way to improve the
convergence is to make a conformal transformation before
making the Padé approximant [44–46,49–51]. For this, one
uses additional information about the series, in particular,
the position of the singularity closest to the origin. By
calculating the first ∼20 terms (for the direct part, ∼10 for
the exchange part) and by matching the ratios of neighbor-
ing coefficients of the Borel transform onto Bnþ1=Bn ¼
c0 þ c1=nþ c2=n2 þ � � �, we find (for this example) c0 ¼
−3 and hence the Borel transform has a finite radius of
convergence limited by a singularity at t ¼ t0 ¼ −1=3. We
make a change of variable in BTNðtÞ from t to the
conformal variable z [52],

z ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ t

t0

q
− 1ffiffiffiffiffiffiffiffiffiffiffi

1þ t
t0

q
þ 1

t ¼ 4t0z
ð1 − zÞ2 ; ð57Þ

which maps t < t0 onto the unit circle in the complex z
plane. The resulting function is then reexpanded in powers
of z to the same order as BTNðtÞ. Next, one makes a Padé
approximant ½m=n�ðzÞ of this series in z. Expressing z in
terms of t gives a Padé-conformally resummed Borel
transform PCBTðtÞ, and then the last step is to perform
the Laplace transform,

PCBT½m=n�ðχÞ ¼
Z

∞

0

dt
χ
e−t=χPCBT½m=n�ðtÞ: ð58Þ

Another resummation method was proposed in [33],
which we found to be very useful for resumming saddle-
point series for the two-step part of trident and nonlinear
Breit-Wheeler in [20]. It is even more useful here, because
we have access to fewer terms in the small-χ expansion. In
this method, one makes use of the additional information
about the scaling at large χ. The transform is given by a
linear superposition of a certain function ϕðxÞwith rescaled
argument,

ASTnðχÞ ¼
Xn
i¼1

ci
−χi

ϕ

�
−
χ

χi

�
: ð59Þ

The constants ci and χi are obtained by demanding that the
first 2n terms in the series in χ match the terms in the series
to be resummed. Although one can choose different
functions, we will choose the confluent hypergeometric
function suggested in [33],

ϕðxÞ ¼ x−aU

�
a; 1þ a − b;

1

x

�
; ð60Þ

where a and b are two constants. We will show below that
Pone
dir scales as 1=χ1=3 for large χ, which means that we want

the resummed T to scale as χ1=6. To match this large-χ
scaling, we choose a ¼ −1=6. The second constant, b, is
not determined by this scaling. In some cases, one can
obtain a significant improvement at large χ by choosing a
suitable value of b, which one can find by testing a couple
of different values and see which leads to the best agree-
ment with the large-χ expansion at large χ (which we will
derive in the next section).4 The fact that the large-χ scaling

4One could of course imagine a more precise, numerical
determination of b by comparing with the large-χ result. How-
ever, for the examples we have considered, it is usually enough to
try only a couple of different values of b in order to obtain a
resummation that is indistinguishable from the exact result on the
scale of the plot (assuming, of course, that enough terms have
been calculated and that such a value of b exists). Moreover,
below we will anyway present new resummation methods that
allow us to resum the small-χ expansion using several (in
principle arbitrarily many) terms from the large-χ expansion.
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is built into the resummation allows us to obtain a good
precision (even at large χ) with fewer terms than what is
needed for the conformal-Padé method.
In Fig. 3, we compare these resummation methods.

Consider first the direct part, for which it is easier to
obtain more terms. We see that the Padé resummation with
½9=9� gives a good precision up to χ ∼ 20, while for larger χ
there is a small difference from the exact result. With the
Padé-conformal method with ½9=9�, we find good precision
for the entire range plotted. An even better precision can be
obtained with only ∼ half the number of terms using the
confluent resummation AST5.
For the exchange part, P22

ex , it can be challenging/time
consuming to obtain a large number of terms. Here we have
calculated the first 11 terms, i.e., up to χ10. For the Padé and
Padé-conformal methods, this allows us to use ½5=5�. As we
see in Fig. 3, this means that the Padé resummation breaks
down sooner, at χ ≳ 10, and the relative error is larger in the
large-χ part of the plotted interval. The Padé-conformal
resummation is still rather good even for larger χ, with a
relative error of ∼4% at χ ∼ 100. We can still use the same

order for the confluent resummation, i.e., AST5, which still
gives a very precise result even at very large χ.
It is natural from a calculational point of view to consider

the direct and exchange parts separately. For example, here
we can calculate many more terms for the direct part, which
is good for both precision and in order to determine the
singularities of the Borel transform. However, the direct
and exchange parts are in general on the same order of
magnitude and (for double Compton scattering, but not for
trident) only their sum is gauge invariant. For some values
of q1 and q2, the direct and exchange parts only cancel each
other (to leading order) for small χ, but not for large χ. For
such cases, we could simply resum the direct and exchange
parts separately before adding them together, which would
give a relative error for their sum on the same order of
magnitude as the relative error for the direct and exchange
parts separately. However, here we have chosen a more

FIG. 3. Comparison of different resummation methods for the
direct and exchange parts of the one-step, Rdir ¼ Pone

dir =ða0ΔϕÞ
and Rex ¼ Pone

ex =ða0ΔϕÞ. For the confluent resummation, we
have chosen b ¼ 19=20 (b ¼ 2=5) for the direct (exchange) part.
However, in this case, this resummation is not very sensitive to
the value of b, and the difference from e.g., b ¼ 1 is on the order
of the width of these lines at χ ¼ 1000.

FIG. 4. Comparison of the different large-χ resummations for
the total one-step R ¼ Rdir þ Rex. On this scale and in this
interval, the exact result is well approximated by the confluent
hypergeometric resummation in (59) with n ¼ 5, a ¼ 5=6, and
b ¼ 156=100, where a follows from the leading large-χ scaling
(1=χ2=3) and the value of b is the result of a very rough
optimization at large χ, where the result is very well approximated
by the large-χ expansion. The “large-χ½10�” line is the result of a
direct summation of the first 11 terms in (62); the “large-χ½1=9�”
line is a ½1=9� Padé approximant of that sum; and “Meijer-G” is
the new resummation in (78) with cn, n ¼ 0;…; 4, determined by
matching its large-χ expansion with the first five terms in (62).
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challenging example, where jPone
dir þ Pone

ex j is much smaller
than jPone

dir j and jPone
ex j, which means that even a small error

in the resummation of the terms separately can be a large
error for their sum. In such cases, it is better to first add
together the two χ series before resumming. The resum-
mation of Pone

dir þ Pone
ex with the confluent hypergeometric

method is shown in Fig. 4, where we find a very good
agreement over essentially the entire χ range by a suitable
choice of a and b in (60). However, to make this choice, we
first have to derive the large-χ expansion.

V. RESUMMATION OF LARGE-χ EXPANSION

In this section, we will consider the large-χ expansion.
To obtain this expansion, we first need to know how the
integration variables scale. In the simplest term, P11, the
exponential part of the integrand is given by

exp

�
irθ
2χ

�
1þ θ2

12

��
; ð61Þ

which has been obtained from the integrand for the exact
result by rescaling θ → θ=a0 and expanding to leading
order in 1=a0 with χ kept constant. From this we see that,
for large χ in LCF, we should rescale θ → χ1=3θ and then
expand the integrand in powers of 1=χ. For the other one-
step terms, we first recall that the LCF approximation is
obtained from our expressions in [27] for the exact result by
changing variables from ϕ1;…;ϕ4 to ϕ ¼ ðσ43 þ σ21Þ=2,
φ ¼ σ43 − σ21, θ ¼ ðθ43 þ θ21Þ=2, and η ¼ θ43 − θ21,
where σij ¼ ðϕi þ ϕjÞ=2 and θij ¼ ϕi − ϕj, and then the
one-step terms are obtained by rescaling fφ; θ; ηg →
fφ; θ; ηg=a0 and expanding to leading order in 1=a0, which
is Oða0Þ (so this is a Laurent series) for the one-step terms
(compared to Oða20Þ for the two-step). The integrands now
only depend on ϕ via the locally constant value of χðϕÞ. So,
if we either consider a constant field or the “rate” given by
the ϕ integrand, then we have integrals over fφ; θ; ηg for
P22→1 (the φ integral is trivial for P22→1) and P22

ex , for P12
dir

and P12
ex we have integrals over fθ; ηg, and for P11 there is

only one integral over θ. For P22→1, P12
dir, and P

12
ex , one can,

by looking at the exponential part of the integrand as for
P11, see that one should rescale fφ; θ; ηg → χ1=3fφ; θ; ηg
to obtain the large-χ expansion. The exponential part of the
integrand for P22

ex is more complicated, even in the LCF
case. However, it is straightforward to check that the same
rescaling of the integration variables also works for P22

ex. It
turns out that each term has the same form as the total one-
step, which we find to be given by

PoneðsÞ ¼ α2a0Δϕ
1

χ1=3
L L ¼

X∞
n¼0

Ln

ðχ2=3Þn ; ð62Þ

where the coefficients Ln are obtained by performing the
fφ; θ; ηg integrals. We have performed some of these

integrals numerically, but this is straightforward and can
be done quickly with e.g., Mathematica, even for the
exchange term. So, we have without much numerical effort
calculated the first 11 terms, i.e., up to n ¼ 10. At least
from these terms, it seems that the large-χ expansion is
convergent. In any case, just a direct summation of these
terms, without any resummation, gives a good precision
down to χ ∼ 1, as can be seen in Fig. 4. As χ decreases
below χ ¼ 1, the direct sum of this series starts to deviate
more and more from the exact result. A quick way to
improve this is to make a Padé approximant for L in the
variable y ¼ 1=χ2=3. Although the (near) diagonal approx-
imants (½N=N�, ½ðN − 1Þ=N�, or ½N=ðN − 1Þ�) usually give
good improvement, in this case we know that the result
should vanish exponentially fast as χ → 0, which means
that we find a much better result by using off-diagonal
approximants ½M=N� with N ≫ M. In Fig. 4, we show that
½1=9� gives in this case a significant improvement, where,
on the scale of this plot, one could argue that we have a
decent precision for arbitrary χ. However, if one zooms in
on the region where the probability starts to become
exponentially suppressed, then one notices that even the
Padé-resummed result starts to deviate more and more from
the exact result; see Fig. 5. However, in Figs. 4 and 5, we
see that we obtain a significant improvement with the
following, new resummation method, which gives a much
higher precision down to much smaller χ.

A. New resummation method

In this section, we will propose a new resummation
method, which works very well for these terms. We know
that PoneðsÞ has a large-χ expansion in the form of (62) and

FIG. 5. Relative error of large-χ resummations. Same notation
as in Fig. 4. At χ ¼ 1, the probability is exponentially small
Pone ∼ 10−12 compared to Fig. 4. To estimate the relative error,
the exact result has been approximated by the confluent hyper-
geometric resummation in Fig. 4, which is possible because its
relative error is much smaller in this χ interval (it is after all a
resummation of the small-χ expansion and hence becomes more
precise as χ decreases).
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a small-χ expansion in the form of (note that this starts atffiffiffi
χ

p
because the leading order terms proportional to 1=

ffiffiffi
χ

p
in the direct and exchange parts cancel)

PoneðsÞ ¼ α2a0Δϕ
ffiffiffi
χ

p
exp

�
−
2r
3χ

�
T; ð63Þ

where r ¼ ð1=½1 − q1 − q2� − 1Þ and

T ¼
X∞
n¼0

Tnχ
n: ð64Þ

The idea now is to look for some special function that has
the same type of expansions at both large and small χ. We
are inspired by [53] to look for such a function starting with
a general Meijer-G function [54–56]

Gmn
pq

�
a1;…; ap
b1;…; bq

����z
�
: ð65Þ

Many special functions can be expressed in terms of Gmn
pq

and having a large number of free parameters (ai and bi)
makes this a very general class of functions and hence a
good place to start looking for resummation functions. In
[53], it was shown how asymptotic series (especially those
with branch cuts) can be resummed into a single Meijer-G
function on the form Gpþ1;1

p;pþ1 and where the precision of the
resummation is improved by increasing the number of
parameters, i.e., increasing p. To resum our series in χ, we
will end up with a different class of Meijer-G functions.
For large χ, we want an expansion in powers of 1=χ2=3,

but, since we know that for general photon momenta q1 and
q2 the small-χ expansion has an exponential part as in (63),
we use ξ ≔ ðr=χÞ2=3 as a rescaled parameter. Apart from
the overall factor of 1=χ1=3 ∝

ffiffiffi
ξ

p
, the large-χ expansion

should only involve integer powers of ξ as seen in (62). So,
we start with Gmn

pq ðcξkÞ, where k is some positive integer
and c a constant. At small χ, i.e., large argument of
Gmn

pq ðcξkÞ, we want an exponential scaling as in (63).
The relevant expansions in this limit can be found in
[54–57], and for a generalGmn

pq this involves first expressing

Gmn
pq as a linear combination of Gq1

pq and G
q0
pq. The latter has

the exponential scaling that we want

Gq0
pqðzÞ ∼ exp ð−νz1=νÞzγ

X∞
n¼0

cnz−n=ν; ð66Þ

where ν ¼ q − p and

γ ¼ 1

ν

�
1 − ν

2
þ
Xq
i¼1

bi −
Xp
i¼1

ai

�
: ð67Þ

By matching the exponents in (63) and (66), we find that
we need ν ¼ 2k=3. Since ν and k are integers, this implies

k ¼ 3j ν ¼ 2j; ð68Þ

where j ¼ 1; 2; 3…. This matching also gives

c ¼ 9−jj−2j ð69Þ

and for a function which starts its small-χ expansion withffiffiffi
χ

p
rather than

ffiffiffi
χ

p
χn we also have

γ ¼ −
1

4j

Xp
i¼1

ai ¼ 1 − jþ
Xq
i¼1

bi: ð70Þ

As we will demonstrate, we can obtain a good resum-
mation already with only j ¼ 1, which gives Gpþ2;0

p;pþ2ðξ3=9Þ.
The series expansion at ξ ≪ 1 is given by

Gmn
pq ðzÞ ¼

Xm
k¼1

…zbkpFq−1ðð−Þp−m−nzÞ; ð71Þ

where all the parameters have been suppressed and F is
the generalized hypergeometric function, which can be
expanded in integer powers of z. Since the function we
are looking for should start with an overall factor of
1=χ1=3 ∝

ffiffiffi
ξ

p
, the b parameters can only be

bk ¼
1

6
þ n

3
n ¼ 0; 1; 2…: ð72Þ

If two b parameters are equal or differ by an integer, then
the expansion ofG would involve log χ terms, which we do
not have here. This implies that we can only have three b
parameters, i.e., q ≤ 3, which, since q ¼ pþ 2, means
q ¼ 2 or q ¼ 3. However, q ¼ 2 does not work for the
following reason: For j ¼ 1, we have γ ¼ −1=4 in (67).
But with b1 ¼ 1=6þ ðn1=3Þ and b2 ¼ ð1=6Þ þ ðn2=3Þ, we
find γ þ 1=4 ¼ ð1þ n1 þ n2Þ=6 ≠ 0, so there are no b1
and b2 for which γ ¼ −1=4. So, for this choice of j ¼ 1, we
have p ¼ 1 and q ¼ 3. Since G is symmetric with respect
to the b parameters, we can without loss of generality set

b1 ¼
1

6
þ n1 b2 ¼

1

6
þ 1

3
þ n2 b3 ¼

1

6
þ 2

3
þ n3

ð73Þ

and then γ ¼ −1=4 implies

a1 ¼
3

2
þ n1 þ n2 þ n3 þ n; ð74Þ

where n ¼ 0; 1; 2…. Note that n > 0 corresponds to
functions with expansions starting at a higher order, i.e.,ffiffiffi
χ

p
χn rather than

ffiffiffi
χ

p
, but these are relevant because our

resummation involves a sum of different G functions.
However, the different choices of n and ni do not all give
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independent functions: It is easy to show using the Mellin-
Barnes integral definition of G and Γðzþ 1Þ ¼ zΓðzÞ that
these functions obey the following contiguous relations:

Gðn; n3Þ ¼ Gðn; n3 − 1Þ þ ðb3 − a1ÞGðnþ 1; n3 − 1Þ
ð75Þ

and similarly for n1 and n2. This means that any function
with nonzero ni can be reduced to a linear combination of
functions with different n and ni ¼ 0, so we can without
loss of generality set n1 ¼ n2 ¼ n3 ¼ 0. Thus, we have
finally found a set of resummation functions,

fnðχÞ ≔
ffiffiffi
3

p
Γ½4

3
þ n�

2π

ffiffiffi
ξ

p
G30

13

� 4
3
þ n

0; 1
3
; 2
3

���� ξ39
�
; ð76Þ

where the overall normalization constant is chosen such
that the large-χ expansion starts with fn=

ffiffiffi
ξ

p ¼ 1þOðξÞ.
The factor of

ffiffiffi
ξ

p
in the prefactor comes from using

G

�
ai þ c

bj þ c

����z
�

¼ zcG

�
ai
bj

����z
�
; ð77Þ

with c ¼ 1=6. The resummation is now obtained by
matching the original series onto the corresponding expan-
sion of

XN
n¼0

cnfnðχÞ; ð78Þ

which determines the constants cn.
Although expansion formulas for general Gmn

pq can be
found in [54–57], especially the higher-order terms in the
small-χ expansions can be difficult to find. So, we will for
convenience explain how to obtain the expansions for the
particular G function that we have. The large-χ expansion
can be found starting with the Mellin-Barnes integral
representation, which in our case gives

fn ¼
ffiffiffi
3

p
Γð4

3
þ nÞ

2π

ffiffiffi
ξ

p Z
i∞

−i∞

ds
2πi

�
ξ3

9

�
s

×
Γð−sÞΓð1

3
− sÞΓð2

3
− sÞ

Γð4
3
þ n − sÞ

¼ Γ
�
4

3
þ n

�Z
i∞

−i∞

ds
2πi

31þsξ
1
2
þ3sΓð−3sÞ

Γð4
3
þ n − sÞ ; ð79Þ

where we have used Gauss’s multiplication formula for Γ
[58]. The s integral has poles at s ¼ m, s ¼ ð1=3Þ þm, and
s ¼ ð2=3Þ þm, where m ¼ 0; 1; 2;…, and the expansion
in powers of ξ can now be obtained by performing this
integral with Cauchy’s residue theorem.

As an aside, we note that, while a Meijer-G function can
always, trivially be expressed as a Fox-H function [59] with
twice as many parameters, from the above equation we see
that fn can actually be expressed compactly as a different
Fox-H function,

fn ¼ 3Γ
�
4

3
þ n

� ffiffiffi
ξ

p
H10

11

� ð4
3
þ n; 1Þ
ð0; 3Þ

����3ξ3
�
: ð80Þ

A similar reformulation could be more useful in the
generalization to Meijer-G functions with more parameters,
i.e., to j > 1.
Note that, using this integral representation, the sum in

(78) can be expressed as a single Mellin-Barnes integral, so
this resummation gives an approximation of the Mellin
transform of the probability with respect to χ. It could be
interesting to study whether one could find a resummation
directly in terms of the Mellin transform rather than finding
one via G.
To obtain the small-χ expansion, it is convenient to

rewrite the Mellin-Barnes integral as a “LCF”-type integral:
We obtain this by first using [58]

Γð−3sÞ ¼
Z

∞

0

dt
t
e−tt−3s ð81Þ

and

1

Γða1 − sÞ ¼
Z

du
2πi

euu−a1þs; ð82Þ

where the integration contour for the u integral goes around
the negative axis counterclockwise. We will perform the s
and t integrals. In the s integrand, we have

exp fsðln y − 3½ln jtj þ i argðtÞ� þ ln juj þ i argðuÞÞg; ð83Þ

where y ¼ 3ξ3. To simplify this, we choose an integration
contour for the t integral with argðtÞ ¼ ð1=3Þ argðuÞ and
change variable from t ¼ eTþi argðuÞ=3 to T, where T goes
from −∞ to ∞ on the real axis. Then the s integral gives a
delta function, which we use to perform the T integral. We
obtain

fnðχÞ ¼ Γða1Þ
ffiffiffi
ξ

p Z
du
2πi

1

ua1
exp f−ðyuÞ1=3 þ ug

¼ −34=3
�
3x
i

�
n
Γ
�
4

3
þ n

�

×
Z

dτ
2π

1

τ2þ3n exp

�
i
x

�
τ þ τ3

3

��
; ð84Þ

where x ¼ 1=ξ3=2 ¼ χ=r and the τ contour lies in the upper
complex plane (e.g., from τ ¼ ∞e5iπ=6 to τ ¼ ∞eiπ=6), or
for integration along the real axis the pole at τ ¼ 0 is
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avoided with τ → τ þ iϵ, ϵ > 0. The small-χ expansion is
now readily obtained with the saddle-point method by
changing variable from τ ¼ iþ ffiffiffi

x
p

δτ to δτ and expanding
the integrand in x.
The integral in (84) is of the type that one usually

encounters in LCF. By making partial integration, one can
rewrite it as

fn ¼ P1

�
1

x

�
Ai1ðξÞ þ P2

�
1

x

�
AiðξÞffiffiffi

ξ
p þ P3

�
1

x

�
Ai0ðξÞ
ξ

;

ð85Þ

where AiðξÞ is the Airy function,

Ai1ðξÞ ¼
Z

∞

ξ
dtAiðtÞ; ð86Þ

and Pi are polynomials. This might seem like a simpler
formulation of this resummation. However, these polyno-
mials are not arbitrary, but related by the fact that the small-
χ expansions should not have negative powers of χ. In any
case, we see that for some terms in LCF this resummation
will converge to the exact result after summing a finite
number of fn. For example, here we find that the one-step
contribution from P11 is exactly given by f0ðχÞ, so if we
resum P11 separately then we simply have cn ¼ 0 for all
n > 0 in (78). This is perhaps not so surprising given that
exact results for OðαÞ processes have been expressed in
terms of Meijer-G functions in [60], and P11 has a structure
similar to OðαÞ processes.
In principle, one could use both the small-χ and large-χ

expansions of P to determine the coefficients cn in (78).
However, in this case, it turns out to be much better to use
more terms from the large-χ expansion. In fact, we find a
very good resummation using only the large-χ expansion.
For example, in Fig. 4, we use only the large-χ expansion
and find a resummation that works down to much smaller
χ compared to the Padé resummation, even using only half
as many terms from (62). The reason for this is that the
new resummation has the same exponential scaling at
small χ as the exact result, while the Padé approximant can
only approximate this using a large power. So, for a fixed
order, the Padé approximant will break down as χ
decreases, while the new resummation can still give a
good approximation at small χ, even if none of the
coefficients cn in (78) are determined with the coefficients
Tn in (63). In Fig. 5, we show that the relative error can be
made very small, even at small χ, by including more terms
in (78). Having a resummation of the large-χ expansion
that works down to such small χ is very useful, because
this means that there will be a significant overlap with the
resummations of the small-χ expansion, even for a simple
resummation such as Borel þ Padé, which in turn means
that one can check the precision of these resummations
without using any numerical data for the exact result.

Using the new resummation to resum the large-χ expan-
sion, we find results that, for a given order, eventually start
to deviate from the exact result at small χ as seen in Fig. 5.
However, the result vanishes exponentially as χ → 0, so it
is not necessarily very useful to have a high precision at
very small χ anyway.

B. LCF integrals

Applying the LCF approach to some nonconstant field
means replacing χ in the above with the locally constant
χðσÞ and integrating over σ. [In doing this, one should
replace the overall factor of a0 in e.g., (63) with χðσÞ=b0.]
Here it is an advantage that the above resummation
methods give the result for an entire interval in χ rather
than just the result for a single value of χ. In other words,
the output of one resummation is a function of χ, not just a
number. We just have to make sure that the resummation
function is valid up to the maximum of χðσÞ and down to
values of χ where the σ integrand starts to become
negligible. Since the dependence on χ is slow, the integral
over σ is not difficult to perform numerically. For
some field shapes, we can even perform the σ integral
analytically.
Consider e.g., a0ðσÞ ¼ a0sin2σ for 0 < σ < π, i.e.,

χðσÞ ¼ χ0 sin2 σ where χ0 ¼ a0b0. We are motivated to
consider such a short pulse since this makes the one-step
terms more important compared to the two-step part. [We
could trivially consider a train of such pulses, e.g., with
different sign such that að∞Þ ¼ að−∞Þ.] Using the Mellin-
Barnes integral representation of G and

Z
π

0

dσ sincσ ¼
ffiffiffi
π

p
Γ½1þc

2
�

Γ½1þ c
2
� ; ð87Þ

which follows from a suitable integral representation of the
Beta function ΓðaÞΓðbÞ=Γðaþ bÞ (see [58]), we find

hnðχ0Þ ≔
Z

dσχðσÞfn½χðσÞ�

¼
ffiffiffi
3

p
Γð4

3
þ nÞ

2
ffiffiffiffiffiffi
2π

p ffiffiffiffiffi
ξ0

p
G50

35

 
5
6
; 4
3
; 4
3
þ n

0; 1
3
; 2
3
; 7
12
; 13
12

���� ξ309
!
; ð88Þ

where ξ0 ¼ ðr=χ0Þ2=3. So, having found the coefficients cn,
going from a constant field to this pulsed field is simply
done by replacing fn in (78) with hn.
For an oscillating field, a0ðσÞ ¼ a0 sin σ and χðσÞ ¼

χ0j sin σj, we find a similar result for the integral over each
cycle,

Z
π

0

dσχðσÞfn½χðσÞ� ¼
ffiffiffi
3

p
Γð4

3
þ nÞ

2
ffiffiffi
π

p ffiffiffiffiffi
ξ0

p
G40

24

� 4
3
; 4
3
þ n

0; 1
3
; 2
3
; 5
6

����ξ309
�
:

ð89Þ
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For a Gaussian pulse, a0ðσÞ ¼ a0e−σ
2

, the σ integral
gives

Z
dσ exp

�
−
�
2

3
− 2s

�
σ2
�

¼
ffiffiffiffiffiffi
3π

pffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 6s

p : ð90Þ

The square root means that the s integrand now has a
branch cut and can therefore not be performed in terms of a
Meijer-G function. However, the result is still expressed as
a single Mellin transform, and a common way of evaluating
Meijer-G functions is anyway to perform a 1D integral, so it
is not really a problem if a field shape leads to a Mellin
transform that cannot be expressed as a Meijer-G function.
Thus, having expressed the χ dependence of the prob-

ability as a Mellin transform can be quite useful for going
from a constant to an inhomogeneous field in LCF.

VI. RESUMMATION OF SMALL-
AND LARGE-χ EXPANSIONS

In this section, we will show how to simultaneously
resum both the small- and the large-χ expansions. In the
previous section, we resummed into a sum of single Meijer-
G functions (78), where the difference between the terms is
governed by an integer. We saw that this works well for the
resummation of the large-χ expansion, but less well for the
small-χ expansion. One could view this as the resummation
functions being too rigid for the small-χ expansion. In this
section, we will therefore present another, more flexible
resummation method. We are inspired here by the resum-
mation method in [33], which we used in Sec. IV, to resum
the small-χ expansion with the exponential part factored
out, i.e., for T in (63). In this section, we are interested in
something similar to (59), but for the whole probability,
not just the exponential part. One can expect that treating
the whole probability could be useful and allow for an
improved resummation, e.g., because if one factors out the
exponential expð−2r=½3χ�Þ, then the large-χ expansion of it
gives a power series in 1=χ, which would have to be
compensated somehow by the expansion of the resummed
T in order to obtain the correct series for the whole
probability, which we know only involves factors of
1=χ2=3. It therefore seems advantageous to look for
resummations of the whole rather just part of the proba-
bility. However, we see immediately that we cannot simply
take one of the Meijer-G functions from the previous
section and rescale its argument, because if GðχÞ gives the
correct exponential as in (63), then Gðχ=χ0Þ gives a
different exponential and hence a very different scaling.
This is in contrast to a resummation of a series without
exponential part, because if ϕðχÞ has the correct type of
power series expansion, so too does ϕðχ=χ0Þ. To overcome
this obstacle, we propose a resummation which is quadratic
in (e.g.) Meijer-G functions.

So, we are looking for a function fðχ=rÞ that, roughly
speaking, has the same type of small- and large-χ expan-
sions as the square root of the probability (or rather the one-
step part). Using arguments similar to the previous section,
we find that one such function is given by

fðxÞ ¼ −
Γ½− 1

12
�

8
ffiffiffi
3

p
πx1=6

G30
13

� 11
12

0; 1
3
; 2
3

���� 1

9x2

�
: ð91Þ

Then the following function has the same type of small- and
large-χ expansions as the probability:

Fðw; xÞ ¼ ð1 − w2Þ1=4f
�

2x
1þ w

�
f

�
2x

1 − w

�
; ð92Þ

where w is a continuous parameter. Note that for w ≠ 0 the
two separate factors of f each has a different exponential
scaling than Pone, but their product still has the same
exponential scaling as Pone because ð1þ wÞ=2þ ð1 − wÞ=
2 ¼ 1. The factor of ð1 − w2Þ1=4 in the prefactor is just
for convenience. We also find it convenient to change
variable from w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð1=νÞp
to ν. The resummation is

now given by

XN
n¼1

cnF

�
wn;

χ

r

�
; ð93Þ

where the constants cn and wn (or νn) are obtained by
matching with the small- and large-χ expansions of P. In
[33], it was shown that the coefficients in (59) can be
obtained conveniently from a Padé approximant. What we
have here is more complicated and we cannot use the same
method. Instead, we have simply obtained cn and wn by a
numerical root finding with the Newton-Raphson method
and just guessing a starting point. Fortunately, this is not a
big problem because, as we will show, we do not actually
need to include many terms. The constants cn and wn can
be obtained by using only the small-χ expansion, but using
terms from both expansions allows us to find a resumma-
tion that converges to the exact result as both χ → 0 and
χ → ∞. So, in some cases, this will give a uniform
resummation with a maximum relative error at some finite
χ. In the particular case considered here, Pone changes sign
at χ ∼ 3, which means that there will be a short interval
around this point where the relative error diverges.
However, this is not a real problem since it is just due
to the fact that the exact result goes to zero, and in effect we
have a resummation which gives a good precision for any
value of χ.
As an example, we consider q1 ¼ q2 ¼ 1=3. WithN ¼ 3

in (93), we find by matching with the first three terms in the
small- and the large-χ expansions: c1 ∼ 1.3 − 0.26i;
ν1 ∼ 1.1þ 0.66i; c2 ¼ c�1; ν2 ¼ ν�2; c3 ∼ −2.9; ν3 ∼ 2.0.
We see that these constants are in general complex, but the
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complex constants come in conjugate pairs, ensuring that
the result is real. The relative error is less than 0.1% for
χ ≲ 1.27 and χ ≳ 3.59 and becomes increasingly more
precise as χ becomes smaller or larger. The relative error is
larger around the point where the result changes sign, but
the resummation is nevertheless indistinguishable from the
exact result on a plot like Fig. 4. So, with only three terms
each from the small- and the large-χ expansions, we obtain
a resummation that works for any χ. This is illustrated
in Fig. 6.
If we only use the small-χ expansion, then we need to

go to N ¼ 4 in order to have a precise resummation at
large χ; see Fig. 6. In this case, we find c1 ∼ 62.9–98.7i;
ν1 ∼ 1.3þ 0.075i; c2 ¼ c�1; ν2 ¼ ν�2; c3 ∼ 0.39; ν3 ∼ 0.61;
c4 ∼ −126.5; ν4 ∼ 1.4. From this, we see that in some cases
0 < νi < 1, which makes wi purely imaginary. The result is
still real though because (92) is an even function of w. The
relative error is less than 0.3% in the large-χ limit, which
can be seen by noting that the relative error in the first
couple of terms in the large-χ expansion is fjðLre

1 =L1Þ−
1j;jðLre

2 =L2Þ−1j;…g∼f0;0029;0.0028;0.004;0.01;0.007;
…g, where Ln are the exact expansion coefficients in (62)
and Lre

n are the corresponding ones obtained by expanding
(93). From this we see that, with the first eight terms from
the small-χ expansion, the resummation in (93) actually
gives a good approximation of the first couple of large-χ
expansion coefficients, even though none of the constants
in (93) were obtained by matching with the large-χ
expansion coefficients (i.e., only using the basic fact that
the expansion is in powers of 1=χ2=3). The fact that
jðLre

i =LiÞ − 1j is already small means that, if we want a
higher precision at large χ, then the solution for ci and νi
that was obtained using only small-χ coefficients also
serves as a good starting point for numerically finding
the corresponding solution if e.g., six terms are obtained

from the small-χ coefficients and the remaining two from
the large-χ coefficients.
One can imagine many different resummuations that,

like (91) and (92), involve products of two or more
functions with rescaled arguments such that the exponential
part at small χ remains fixed. For example, with

fðxÞ ¼ 2
ffiffiffi
π

p
51=6x1=15

Ai

�
1

ð5xÞ2=3
�
; ð94Þ

we have that f5ðχ=rÞ has the correct type of small- and
large-χ expansions. So, we can use this function for
resummation by matching onto e.g.,

XN
n¼1

cnð1 − w2
nÞ1=5fðxÞf2

�
x

1 − wn

�
f2
�

x
1þ wn

�
ð95Þ

or

XN
n¼1

cnð1 − v2nÞ1=10ð1 − w2
nÞ1=10fðxÞ

× f

�
x

1 − vn

�
f

�
x

1þ vn

�
f

�
x

1 − wn

�
f

�
x

1þ wn

�
; ð96Þ

where x ¼ χ=r and cn, vn, and wn are constants to be
obtained by matching with the small- and/or large-χ
expansions. These two examples seem to lead to somewhat
slower convergence if only the small-χ expansion coef-
ficients are used. However, with N ¼ 3 and with, say,
three of the first terms from the large-χ expansion, we
again obtain resummations that are indistinguishable from
the exact result on a plot like Fig. 6. An advantage of
resummations that only involve well-used functions like the
Airy function is that they can be faster or more convenient
to evaluate numerically.

A. Another example

So far, we have used q1 ¼ q2 ¼ 1=3 as an example. We
can of course use the same methods for other points in the
longitudinal momentum spectrum. As another example, we
consider q1 ¼ 1=3 and q2 ¼ 1=10. In Fig. 7, we show that
we have several different resummation that give essentially
the same result over a large interval of χ. The resummations
that use more of the large (small)-χ expansion coefficients
tend to be more precise at larger (smaller) χ.
For the confluent hypergeometric resummation, note

that, while a is fixed by the leading large-χ scaling, which is
1=χ2=3 for any point in the spectrum, b is not fixed by this
scaling. In Fig. 4 (for q1 ¼ q2 ¼ 1=3), we chose a value of
b that leads to a resummation with good agreement with the
large-χ expansion at large χ, and in Fig. 7 we can see that
the same choice of b also gives a good agreement with the

FIG. 6. Resummation in (93). ½m; n� means that the first m
terms from the small-χ expansion and the first n terms from the
large-χ expansion have been used to determine the constants cn
and wn in (93). The MG line is the linear Meijer-G resummation
(78), which, as demonstrated in Fig. 4, effectively represents the
exact result on the scale of this plot.
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other resummations for this second example, q1 ¼ 1=3
and q2 ¼ 1=10.
The simple Padé approximant of the large-χ expansion

has a good agreement with the other resummations on the
scale of Fig. 7. However, by zooming in on smaller χ in
Fig. 8, we can see that the Padé approximant eventually

breaks down as χ decreases. In contrast, the Meijer-G
resummation in (78), using only large-χ coefficients, is still
good even as the result becomes very small.
In Fig. 9, we consider the Airy-function resummation in

(95). As for the previous example, if only the small-χ
coefficients are used, then this resummation has a some-
what slower convergence compared the Meijer-G resum-
mation in (93). However, if we use both the small- and the
large-χ coefficients, then we obtain a competitive resum-
mation. With (4,2) terms from the (small,large)-χ expan-
sions, we find a decent precision at χ ≳ 1, but a significant
difference around the point in the small-χ region where the
result changes sign. By matching with two more terms in
the large-χ expansion, i.e., going to (4,4), the precision is
naturally increased at χ ≳ 1, but, more importantly, we
obtain a significant improvement at smaller χ, with now a
good agreement with the other resummations. So, including
more terms from the large-χ expansion helps also at smaller
χ, even though the same number of terms from the small-χ
expansion were used. Thus, with only four terms from the
small- and large-χ expansion, respectively, we obtain a
good resummation for arbitrary χ. As mentioned, this Airy-
function resummation can be more convenient for numeri-
cal evaluation.

FIG. 7. Total one-step. Another illustration of the fact that
several different small- and/or large-χ resummations have
large overlap. The confluent hypergeometric resummation is of
the same type as in Fig. 4, i.e., with n ¼ 5, a ¼ 5=6, and
b ¼ 156=100.

FIG. 8. Same as Fig. 7.

FIG. 9. Different orders of the Airy-function resummation in
(95), where ½m; n�means that the constants in (95) are determined
by the first ðm; nÞ terms in the (small, large)-χ expansions.
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VII. RESUMMING ONE-STEP IN
PHOTON TRIDENT

In the previous sections, we have showed how to resum
the one-step part in double Compton. Exactly the same
resummation methods can also be used for photon trident.
Here we do not have any previous results to compare with,
but, as shown in the previous sections, we have several
resummations that can be compared with each other and we
find a large overlap for the resummation of the small- and
the large-χ expansions.
As an example, we consider s0 ¼ s2, which is a saddle

point (see Sec. III B), and for definiteness s0 ¼ 1=3, which
means that the final state particles share the initial longi-
tudinal momentum equally. We showed in Sec. III B that
the direct and exchange parts of the one-step cancel to
leading order for small χ. However, as shown in Fig. 10, for
this example, these terms do not cancel for larger χ. This
means that it makes more sense in this case to resum the
direct and exchange parts separately, compared to the
double Compton example above where these terms cancel
also for larger χ.

So, we first consider the resummation of the direct and
exchange parts separately. Eventually, one needs to sum the
direct and exchange parts since it turns out that they are on
the same order of magnitude and only their sum is gauge
invariant. However, since the exchange part has a much
more complicated integrand, it is useful to know whether or
not there is some regime where it is negligible. To resum
the small-χ expansions, we can use the general methods
described in Sec. IV. The convergence properties of the
large-χ expansion can be improved by off-diagonal Padé
approximants as in Sec. V. However, a much better resum-
mation is achieved with the new Meijer-G resummation
in Sec. V. The only difference is that the direct and exchange
terms separately have small-χ expansions that start
with ð1= ffiffiffi

χ
p Þ expð−2r=½3χ�Þ rather than ffiffiffi

χ
p

expð−2r=½3χ�Þ
[cf. (49), (50), and (63)], which can be taken into account

FIG. 10. First plot: exchange and minus direct part of the one-
step, Rex and −Rdir. The large-χ lines are obtained with only
large-χ expansion coefficients, resummed with the Meijer-G
resummation (78), and the Ai2Ai03 lines are obtained with only
the small-χ expansion, by resumming the first nine terms using
(99). Second plot: total one-step, Rdir þ Rex. Same notation as
in Fig. 6.

FIG. 11. The relative difference between large- and small-χ
resummations, RL and RS, for the direct (solid lines) and
exchange parts (dashed lines) of the one-step in the first plot
and directþ exchange in the second plot. RS has been obtained
by resumming the small-χ expansion with Borel þ Padé, but
Borel + conformal + Padé, or the confluent Hypergeometric
resummation would give the same plots since the relative dif-
ference between these three is much smaller than j1 − RL=RSj.
The different lines correspond to different resummations of the
large-χ expansion, with the same notation as in Fig. 5. For the
direct and exchange parts, Meijer-G [m] corresponds to (78)
with n ¼ −1;…; m − 1.
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simply by starting the sum in (78) with n ¼ −1 instead of
n ¼ 0. The improved precision is illustrated in Fig. 11,where
a much higher precision is obtained and even with
fewer terms.
We can also use resummations similar to the ones in VI

to resum the small- and large-χ expansions simultaneously,
which gives high precision for any value of χ. However, we
cannot use exactly the same resummations because the
small-χ expansions have an overall factor of 1=χ compared
to the total one-step, while the large-χ expansions are still
of the same type. Note that this means that one cannot
simply apply the previous resummations to χPone

dir and χPone
ex

because such an overall multiplication changes the large-χ
expansion. So, instead of a resummation that only involves
the Airy function, here we use both AiðzÞ and its derivative
Ai0ðzÞ. Let

f1ðxÞ ¼
2
ffiffiffi
π

p
51=6

Ai

�
1

ð5xÞ2=3
�

ð97Þ

and

f2ðxÞ ¼ −2
ffiffiffi
π

p
51=6Ai0

�
1

ð5xÞ2=3
�
; ð98Þ

then f21ðxÞf32ðxÞ=x1=3 has the correct type of small- and
large-χ expansions. So, as one possible resummation, we
take

XN
n¼0

cn
ð1 − v2nÞ1=6

x1=3ð1 − w2
nÞ1=6

f1

�
x

1 − vn

�
f1

�
x

1þ vn

�

× f2

�
x

1 − wn

�
f2

�
x

1þ wn

�
f2ðxÞ; ð99Þ

where the 3N constants cn, vn, and wn can be obtained by
matching with either the small-χ expansion or both the
small- and large-χ expansions. For the example considered
here, we find that these constants are in general complex, as
in the previous section, but this time a single solution for cn,
vn, and wn can give resummations with a small imaginary
part. However, this is not a problem because the complex
conjugate c�n, v�n, and w�

n is also a solution, so by summing
over both solutions one obtains real resummations. This is
the same as simply taking the real part in cases where a
single solution gives resummations with nonzero imaginary
part, and we still only need 3N coefficients from the small-/
large-χ expansions. As shown in Fig. 12, this Airy function
approach allows us to obtain resummations with uniform
precision, with a finite maximum relative error at some
finite χ. In general, if there are N constants at a given order
of some resummation and all of them are determined by the
first N coefficients of the large-χ expansion, then the result
is usually more precise at large χ compared to a resumma-
tion where e.g., half of the constants are determined by the

large-χ expansion and the rest from the small-χ expansion.
And vice versa if all constants are determined by the small-
χ expansion. However, using coefficients from both expan-
sions (still with the number of constants, N, fixed) allows
us to obtain resummations that is precise for arbitrary χ, and
it can be much faster to obtain e.g., five terms in the small-
and five terms in the large-χ expansions rather than ten
terms in the small-χ expansion.
We have now showed how the direct and exchange parts

can be resummed separately. From this, we see that the
exchange term is on the same order of magnitude as the
direct term also for large χ, but they do not cancel in this
case. This means that we can simply add the two separate
resummations without losing precision. However, having
seen that they are on the same order of magnitude and
recalling that only their sum is gauge invariant, it is also
natural to sum the two terms from the start and construct
resummations of their sum. To resum the small-χ expan-
sion, we can e.g., use the GG resummation in (93). As
shown in Fig. 10, this approach allows us to obtain good
precision up to large χ with relatively few terms. To resum
the large-χ expansion, we can use the G resummation in
(78). The precision of this resummation is shown in Fig. 11.
We have used s0 ¼ s2 ¼ 1=3 as an example. The same

methods can of course be used for other points in the

FIG. 12. Estimated relative error of resummations of small-,
large-, or both small- and large-χ expansions. Solid and dashed
lines correspond to the direct and exchange parts, respectively.
The exact result has been approximated by (78) with N ¼ 9 for
χ > 1 (χ > 1=2) for the direct (exchange) part and for smaller χ
by the Borel þ Padé ½7=7� (½5=5�) resummation of the small-χ
expansion. The relative difference from the actual exact result is
smaller than the scale of this plot [this can be estimated by
comparing the two approximations at χ ¼ 1 (χ ¼ 1=2)]. The
small-χ lines have been obtained with the confluent hyper-
geometric resummation of the first ten terms, and, by testing
different b ¼ n=100 and comparing with the large-χ expansion at
χ ¼ 103, b ¼ 74=100 (b ¼ 66=100) for the direct (exchange)
part. The large-χ lines are ½1=9� Padé approximants of the large-χ
expansion. The Ai2Ai03½m; n� lines correspond to (99) with the
constants obtained by matching onto the first ðm; nÞ terms in the
(small,large)-χ expansion.
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spectrum. The only difference is how many terms from
the expansions one needs. In Fig. 13, we consider s0 ¼
s2 ¼ 4=9, where the final-state photon has lower momen-
tum compared to the pair. We find that −Pone

dir is roughly a
factor of 2 larger than Pone

ex for large χ, so in this example
too these two terms do not cancel each other. We see that
we again can obtain a large overlap between the resum-
mations that only use either the small- or the large-χ-
expansion coefficients. In the previous example, Fig. 10,
we found a very good precision at large χ by resumming
just the first six terms in the small-χ expansion with the
resummation in (93). This time, the same order of resum-
mation gives a small, but noticeable error. This can be fixed
by using ten terms from the small-χ expansion. However,
by using coefficients from both the small- and the large-χ
expansions, we can find a similar agreement with only three
terms from each expansion.
In some cases, it can be challenging to obtain a high

precision at large χ if one only has access to and only uses
∼10 of the first coefficients in the small-χ resummation.
Figures 14 and 15 show two such examples. However, the
resummations in Sec. VI allow us to fix this by using just a

couple of coefficients from the large-χ expansion. In
Fig. 14, we obtain good precision for arbitrary χ by using
just (4,2) coefficients from the (small,large)-χ expansions.
The momentum of the final photon is the same in Figs. 10
and 14, but in Fig. 10 the fermion momenta are at the saddle
point, s0 ¼ s2, while in Fig. 14 s0 and s2 differ by a factor
of 5. As expected, this means that there is more exponential
suppression in the second example.
In these photon trident examples, the direct and

exchange parts do not cancel at larger χ in the way that
they do in the double Compton examples. However, even
for these photon trident examples, there is a partial
cancellation because the direct and exchange parts are
on the same order of magnitude but have opposite sign.
We have also found that the cancellation increases if one
keeps s0 þ s2 fixed but moves away from the saddle point
s0 ¼ s2. This is illustrated in Fig. 15, where Pone

ex is much
closer to −Pone

dir compared to the case in Fig. 13, where
−Pone

dir ≳ 1.8Pone
ex for χ > 10 and −Pone

dir ∼ 2.2Pone
ex as

χ → ∞.
In this paper we have focused on resumming the one-

step term. We could use these resummations methods
also for the two-step part. However, the two-step part
can anyway be expressed in terms of Airy functions, so a
Meijer-G approach would simply lead to the same, exact
result.

FIG. 13. Same notation as in Fig. 10, different momentum.

FIG. 14. Same notation as in Fig. 10. Ai5 is the resummation in
(95). The large-χ½4=16� is indistinguishable from the exact result
on this scale, but diverges from it at small χ. FIG. 15. Same notation as in Fig. 10, different momentum.
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VIII. CONCLUSIONS

We have studied the photon trident process in plane-
wave backgrounds. In contrast to the other two Oðα2Þ
processes with only one incoming particle, trident and
double Compton, photon trident has not attracted much
attention, and we are only aware of one previous paper [32].
However, as these Oðα2Þ processes are the first steps in the
formation of cascades, it is important to study all three
Oðα2Þ processes. We have already showed that several
results for double Compton can be obtained by making
certain replacements in our results for trident. This is
especially useful for the exchange term, because it is in
general difficult to calculate and so it is good to know that
one can use the same methods to compute these exchange
terms in trident and double Compton. In this paper, we have
shown that there is an even closer relation between double
Compton and photon trident. All terms can be obtained by
replacing the longitudinal momenta in the double Compton
expressions. We have shown this explicitly for the leading
order in χ ≪ 1.
This means that we can immediately obtain saddle-point

approximations for photon trident from our corresponding
results in [27] for double Compton by just replacing the
longitudinal momenta. In particular, this means that the
direct and exchange parts of the one-step cancel each other
to leading order, not just for double Compton, but also for
photon trident. One reason to consider trident, double
Compton, and photon trident is to better delineate the
region of parameter space where a two-step approximation
works, and by extension where a corresponding “N-step”
approximation works for cascades. The near cancellation
between the direct and exchange parts of the one-step in
double Compton and photon trident is thus important as it
tells us that the two-step approximation is better than what
one would have otherwise guessed based on the scaling of
the two-step and one-step with respect to a0. In the double
Compton case, this near cancellation continues up to large
χ for large parts of the spectrum. Here we have seen that
this does not in general happen for photon trident, but the
direct and exchange terms anyway continue to be on the
same order of magnitude.
The one-step terms can be challenging to calculate,

especially the exchange part. Here we have shown how the
small- and large-χ expansions can be resummed to obtain a
good precision for large intervals of χ or even arbitrary χ.
The small-χ expansion is divergent. We have showed that
this series can be resummed with Borel transformation,
conformal maps, and Padé approximants, or with a new
resummation [33] based on a confluent hypergeometric
function. The large-χ expansion seems to be convergent
and does not need resummation for χ larger than some fixed

value. However, with a finite number of terms, one can
significantly extend the large-χ expansion by suitable
resummations. A first improvement can be obtained by
(far from diagonal) Padé approximants. However, the exact
result has an exponential scaling at small χ, so any Padé
approximant of the large-χ expansion eventually breaks
down as χ decreases. For this reason, we have developed
new resummation methods, which have the same type of
expansions as the exact result for both small and large χ.
These resummations can be expressed in terms of Meijer-G
functions. We were inspired to look for such resummations
by the Meijer-G resummation in [53]. But in contrast to
[53], we are dealing with a class of Meijer-G functions that
have exponential rather than power-law scaling at large
argument (small χ). And our resummations involve sums of
Meijer-G functions, rather than a single Meijer-G with
increasing number of parameters. We have found that these
new resummations work well for resummation of the one-
step terms, including the exchange part. We expect this to
be useful also for other processes and quantities in LCF,
because the structure of the small- and large-χ expansions is
largely determined by the exponential part of the lightfront-
time integrands, which can in general, for all processes with
a single particle in the initial state, be expressed in terms of
Kibble’s effective mass.
One useful generalization of what has been studied here

would be to consider quantities where the large-χ expan-
sion has logarithmic terms, which is e.g., the case for
the trident probability integrated over the longitudinal
momenta. One can expect that it should be possible to
treat also such cases with Meijer-G functions, as they have
log terms for certain parameters. It could also be useful to
consider resummations of expansions in the longitudinal
momenta of the final-state particles, as this might allow one
to find results that work simultaneously for both double
Compton and photon trident (because they are related via
replacements of the momenta).5
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5Such expansions would also bring out the IR divergences in
these processes. We have shown that IR divergences cancel in
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