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We study a semilocal Abelian Higgs sigma model with CP2-valued scalar fields coupled to gravity.
We establish the conditions needed for self-duality in this system and obtain cosmic strings, both of self-
dual character and out of the self-dual point, in the reference chart of CP2. In any of the other two charts of

a minimum atlas, the transition functions break the global SUð2Þ symmetry to the Abelian subgroup eiσ
3α.

In this context, using the transition functions, a new self-dual structure can be constructed, which defines a
second species of cosmic strings. Because of the presence of a potential energy for the scalar fields, each
species takes values in a different bounded region of the target space and is most naturally described using a
particular chart of CP2.
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I. INTRODUCTION

Topological defects [1] are long lasting solutions of
spontaneously broken field theories whose stability is due
to the existence of topologically disconnected sectors in
the field configuration space, a property inherited from the
nontriviality of certain homotopy group of the vacuum
manifold V, depending on the dimension of the space and
the symmetry of the defect. In many important cases, e.g.,
grand unified theories (GUTs), the vacuum manifold is a
homogeneous coset space V ¼ G

H where G is the symmetry
group of the system and H the subgroup of G surviving
symmetry breaking. Prominent among these topological
defects are strings or vortices in four-dimensional (4D)
space-time that grow themselves along a spacelike curve.
Thus, the sources of string defects are point defects arising
when Π1ðVÞ ≠ 0 and according to the exact homotopy
sequence are classified byΠ0ðHÞ. The core of the string is a
filament of false vacuum which carries a mass per unit
length μ of order v2, where v is the scale of symmetry
breaking which, for grand unified theories, is of order
1016 GeV. Thus, cosmic strings formed during the GUT
phase transition are highly massive, μ ≃ 1022 g=cm, and
they have a major influence on cosmology and galaxy

formation [2]. Given that the great mass density is
accompanied by a similar tension, curved parts of the
string rapidly contract and disappear, so that, finally, the
strings settle themselves in straight line configurations. In
principle, the existence of string solutions is possible in
theories with only global symmetries, although in this case
the Goldstone mode which comes together with symmetry
breaking makes the mass of the string diverge logarithmi-
cally with the distance to the center. If the symmetry is
local, however, the gauge fields neutralize the Goldstone
mode and give rise to strings with finite mass per unit
length, and whose core, apart from false vacuum, contains
also trapped magnetic flux. Gravitational effects are also
very different in the global and local cases. In the former,
there is a gravitational force which decreases inversely
with the distance from the center, while in the latter the
gravitational field far from the string is effectively null.
This is due to the exponential decay of the fields with
distance, and to the fact that the string enjoys both trans-
lational and boost invariance along its direction, implying
that the gravitational pulls of mass density and tension
exactly cancel. There is only one remnant in the form of a
deficit angle, such that the string appears from long
distance as a conic singularity in space. The most important
physical effects revealing the presence of a cosmic string
are thus gravitational lensing, discontinuities in the Doppler
effect for particle moving toward the string, and the
distortions created by the conic geometry in the gravita-
tional or electromagnetic fields of test particles [1].
The most simple model for understanding the structure

of a cosmic string is, apart from the string with Dirac delta
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profile of [3], the exact solution of Gott [4]. In this solution,
the plane transverse to the string direction is divided into
two regions: the core, with a finite radius and uniform mass
density, and the exterior zone, in which the energy-
momentum tensor vanishes. Thus, the geometry of this
plane changes abruptly at the borderline: the string interior
conforms itself as a spherical cap, while the exterior is a flat
cone. There is a critical value μcrit for the mass density such
that if μ < μcrit the cap is smaller than a hemisphere and
the deficit angle of the exterior region is lower than 2π,
while for μ > μcrit the transition between the spherical and
conical geometries occurs above the equator, the deficit
angle exceeds 2π, and the exterior cone is inverted like a
dunce cap. This latter case corresponds to the so-called
supermassive strings and, when it occurs, the exterior
solution closes itself at finite distance and the transverse
plane never reaches infinity. Instead, the vertex of the dunce
cap can be thought of as a new string of zero radius located
in front of the original one. Finally, when μ ¼ 2μcrit, both
strings merge, the geometry closes into a complete sphere
and there is not a string exterior.
The basic field theory which shows how cosmic strings

with finite mass per unit length and a regular profile can
arise in the context of realistic particle physics is the
Abelian Higgs model (AHM)[5]. This theory describes the
interaction between a complex scalar field and a Uð1Þ
gauge field and displays an interesting phenomenology.
When gravity is disregarded, the model constitutes a
relativistic Ginzburg-Landau theory of superconductivity,
with the dynamics depending on the balance between two
nondimensional parameters, the gauge coupling e and the
Higgs self-coupling λ. Superconductivity is thus of type I if
β ¼ λ

e2 < 1 and of type II if β > 1, while in the so-called
self-dual limit β ¼ 1 special features such as Bogomolny
equations and Bogomolny-Prasad-Sommerfield (BPS)
states emerge. Π1ðVÞ ¼ Z in the AHM and, therefore,
the theory supports vortices which are classified by an
integer n. In multivortex configurations, the forces among
vortices are attractive if β < 1 and repulsive when β > 1
[6], whereas for β ¼ 1 the vortices remain in equilibrium
irrespectively of the distances among them. These results
indicate that radially symmetric vortices with n > 1 tend to
disaggregate when β > 1 but keep bound otherwise. Once
gravity is included in the picture, the solutions become
cosmic strings. Cosmic strings in the Abelian Higgs model
where discovered by Garfinkle [7] and their stability was
established by Gregory [8]. The self-dual case was sub-
sequently investigated by Linet [9,10] and Comtet and
Gibbons [11]. The AHM cosmic strings with nonvanishing
cosmological constant where introduced in [12,13] and, in
particular, the de Sitter case has been studied in [14] and the
anti–de Sitter one in [15]. Along with the strings decaying
asymptotically to Minkowski space-time plus a deficit
angle, the AHM has also room for cosmic strings approach-
ing a Kasner-Melvin geometry in the exterior region, and

also in this case there are the normal and supermassive
regimes: for low μ, the length of circles around the string
decreaseswith distance,whereas thatwhenμ is high enough a
circle of infinite perimeter is attained for a finite radius [16].
Finally, let us mention that, although in this case on a three-
dimensional space-time, the AHM can be replaced by other
closely related systems like Maxwell-Chern-Simons-Higgs
or pure Chern-Simons-Higgs theories which also harbor
gravitating vortices, and these solutions have been also
investigated [17].
Along the years, the original Abelian Higgs model has

been generalized in a variety of forms that conserve
however some of its most salient properties, namely, the
existence of type I and II superconductivies and of a self-
dual regime. In particular, it has been considered the
inclusion of a dielectric function depending on the scalar
field [18], the incorporation of function multiplying the
covariant derivatives, which plays the role of a metric in
the scalar field target space [19], or the combined effect of
both factors [20]. Also, the noncommutative version of the
AHM has been studied, both in its original formulation [21]
and with a dielectric function in place [22]. These mod-
ifications made it possible to ponder variants of the AHM in
which the Higgs field is valued on a compact manifold like
a sphere [23,24], and situations of this type have been also
studied in the cosmic string context [25]. Another direction
in which the Abelian Higgs model has been extended is the
addition of more scalar fields, giving rise to the so-called
semilocal models. The insertion of a new complex scalar
field into the AHM enlarges the symmetry group to a tensor
product of a global SUð2Þ times a gauge Uð1Þ groups and
makes the model portray the limit of the bosonic sector of
electroweak theory for Weinberg angle θW ¼ π

2
. The vac-

uum manifold is in this model simply connected, V ¼ S3,
but there are nonetheless vortices, which are dynamically
stable in the type I superconductivity domain, but whose
magnetic field tends to disperse into broad lumps when
superconductivity changes to type II [26–28]. In the self-
dual regime, there is neutral equilibrium among confined
vortices and lumps, and the widening of flux is thus a flat
direction in moduli space. Models of this type have been
recently studied coupled to gravity [29,30]. Here, as in the
usual AHM, it is interesting to consider generalized semi-
local models with dielectric functions or with scalar fields
valued on compact manifolds, although in this case to attain
self-duality there is the requirement that the metric in field
space has to be Kähler. It should be noted that general-
izations of this kind are well motivated physically and
deserve a detailed analysis. In fact, as it is well known, self-
duality has its roots in supersymmetry, but a likely role of
supersymmetric field models in physics is to be low-energy
effective theories describing the dynamics of other, more
fundamental, degrees of freedom. From this perspective,
while the ordinary semilocal model could be interpreted as
the bosonic sector of a fundamental supersymmetric theory,
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if we allow for nonrenormalizable interactions and try to
build a low-energy effective theoryweare forced to introduce
a Kähler potential and a dielectric function [31], and are thus
led to the type of generalized systems mentioned above.
In particular, with several scalar fields, the simplest case

is a semilocal sigma model with target space CP2. This
model was studied in [23] focusing on the analysis and
description of the two species of vortices found in the
system. The central theme of the present article is to extend
the treatment given in [23] to the gravitating case, finding
thus CP2-valued semilocal cosmic strings of two species.
We organize the paper as follows. Section II defines the
model to be studied and fixes the field equations and
boundary conditions obeyed by the cosmic strings encom-
passed in it in the reference chart. In Sec. III, self-duality of
the model is established and radially symmetric solutions
representing self-dual cosmic strings found. Non-self-dual
cosmic strings are the subject of Sec. IV. In Sec. V, we shift
the playground to the second chart of CP2 and describe the
self-dual cosmic strings arising in a new type of semilocal
theory where the global symmetry group is also Uð1Þ.
Some final comments are offered in Sec. VI.
Throughout this work, we follow the seminal papers

[7,9,10], and the excellent book [1], adapting the treatment
given there for the gravitating Abelian Higgs model to
the case of the sigma CP2 theory. Apart from the original
paper [26] in which they appeared for the first time, another
very useful references to deal with semilocal models in
Minkowski space-time are [27,28].

II. THE SEMILOCAL NONLINEAR CP2-SIGMA
MODEL COUPLED TO GRAVITY

We shall deal with a version of the Abelian Higgs
model in which the complex scalar fields are maps from
Minkowski space-time to the complex projective space
CP2. This complex manifold is the quotient manifold of
C3 − fð0; 0; 0Þg modulo proportionality, i.e., modulo the
equivalence relation ðz1;z2;z3Þ≃ðz01;z02;z03Þ if z0a¼wza;
a¼1, 2, 3 for some complex number w ≠ 0. This manifold
has complex dimension two and a minimum atlas is formed
by three charts V1, V2, and V3, such that za ≠ 0 in Va and
the chart is equipped with a pair of complex inhomo-
geneous coordinates by dividing the three-tuples of each
equivalence class by their za element. CP2 is endowed with
a Kähler structure in a natural way such that the metric
tensor, the Fubini-Study metric is, in the reference chart
with inhomogeneous coordinates ðψ1;ψ2Þ, of the form

ds2CP2 ¼ hpq̄ðψ ;ψ�Þdψpdψ�
q; hpq̄ ¼

∂2K
∂ψp∂ψ�

q
;

where the Kähler potential is

Kðψ ;ψ�Þ ¼ 4v2 log

�
1þ jψ1j2 þ jψ2j2

v2

�
≡ 4v2 logD:

Explicitly,

h11̄ ¼
4

D
−
4jψ1j2
v2D2

h12̄ ¼ −
4ψ�

1ψ2

v2D2

h21̄ ¼ −
4ψ�

2ψ1

v2D2
h22̄ ¼

4

D
−
4jψ2j2
v2D2

:

Notice that our conventions are such that if we pass from
CP2 to CP1 ≃ S2 by taking one of the two inhomogeneous
coordinates, say ψ2, to vanish, the Fubini-Study metric
reduces to the standard round metric on S2, with v the
radius of the sphere and ψ1 ¼ v y1þiy2

v−y3
, where ðy1; y2; y3Þ

are real Euclidean coordinates in target space and
y21 þ y22 þ y23 ¼ v2. Since h11̄ and h22̄ are real and
h12̄ ¼ h�

21̄
, the metric is Hermitian and hpq̄Mpq̄ ∈ R if

Mpq̄ is a Hermitian matrix. Besides, the form of the Kähler
potential makes it obvious that the Fubini-Study metric is
isometric under SUð2Þ transformations of the form
χp ¼ Uplψ l, U ∈ SUð2Þ.
We next consider physical models in which the inho-

mogeneous coordinates are promoted to complex scalar
fields ψ1ðxÞ and ψ2ðxÞ living on curved four-dimensional
space-time and taking values on CP2. The action is of
the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð1Þ

where we choose a space-time metric gμν of mostly plus
signature and the Lagrangian density is

L ¼ −
1

4
Eðjψ jÞFμνFμν −

1

2
hpq̄ðψ ;ψ�ÞDμψpDμψ�

q

−
1

2
W2ðjψ jÞ: ð2Þ

We include a dielectric function E and, for later conven-
ience, we write the scalar potential as the square of a
function W. Both E and W depend only on jψ j2 ¼
jψ1j2 þ jψ2j2 in order to respect the SUð2Þ isometry of
the target manifold, and the covariant derivative is defined
as Dμψp ¼ ∂μψp − ieAμψp. The Lagrangian thus exhibits
an interplay between global SUð2Þ and gauge Uð1Þ
symmetries, fitting into the paradigm of semilocal theories.
In the natural system of units where the Planck constant is
2π and the speed of light in vacuum is 1, the physical
dimensions of fields and parameters in terms of massM are
½Aμ� ¼ ½ψp� ¼ M, ½e� ¼ 1, ½W� ¼ M2, and ½E� ¼ ½hpq̄� ¼ 1.
The Kähler potential in turn has dimension ½K� ¼ M2, since
½D� ¼ 1. A remark on notation: for space-time indices, we
use the standard Einstein convention with upper and lower
indices for, respectively, contravariant and covariant ten-
sorial components, but for internal CP2 indices, we think
preferable to keep all indices down in order to reduce
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cluttering. Repeated internal indices are summed; never-
theless, in some formulas, we will write explicitly summa-
tion symbols if it is convenient for clarity.
The Euler-Lagrange equations coming from (1) and (2)

are

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
Eðjψ jÞFμνÞ ¼ i

2
ehpq̄ðDνψpψ

�
q − ψpDνψ�

qÞ;

ð3Þ
1ffiffiffiffiffiffi−gp Dμð

ffiffiffiffiffiffi
−g

p
hpq̄DμψpÞ

¼ 1

2

∂Eðjψ jÞ
∂ψ�

q
FαβFαβ þ ∂hpl̄

∂ψ�
q
DλψpDλψ�

l

þ 2Wðjψ jÞ ∂Wðjψ jÞ
∂ψ�

q
ð4Þ

and must be solved in conjunction with the Einstein
equations

Gμν ≡ Rμν −
1

2
gμνR ¼ 8πGTμν: ð5Þ

The energy-momentum tensor Tμν ¼ gμνL − 2 ∂L
∂gμν takes

the manifestly real and symmetric form

Tμν ¼ Eðjψ jÞFμλFλ
ν −

1

4
Eðjψ jÞgμνFαβFαβ −

1

2
gμνW2ðjψ jÞ

þ 1

2
ðhpq̄DμψpDνψ

�
q þ hqp̄DνψqDμψ

�
p

− gμνhpq̄DαψpDαψ�
qÞ: ð6Þ

We are interested in configurations independent of the
time x0 ≡ t and of the third spatial coordinate x3 ≡ z,
and whose energy per unit length along the z axis is finite.
We choose thus the Weyl A0 ¼ 0 and axial A3 ¼ 0 gauges,
with the consequence that the corresponding covariant
derivatives and gauge field strengths identically vanish:
Dtψp ¼ Dzψp ¼ Ftz ¼ Ftk ¼ Fzk ¼ 0, where we denote
indices 0 and 3 directly as t and z and use Latin indices
i; j; k… for the coordinates x1 and x2 in the plane
perpendicular to the z axis. Accordingly with the situation
that we are going to study, we will take for the metric the
ansatz, [1,10],

ds2 ¼ eAðx1;x2Þð−dt2 þ dz2Þ þ γijðx1; x2Þdxidxj; ð7Þ

with all coefficients depending only on the coordinates
on the normal plane to z. This form of the metric gives a
block-diagonal Einstein tensor with Gtz ¼ Gtk ¼ Gzk ¼ 0
and requires boost invariance in the t–z plane, Gtt ¼ −Gzz.
This is consistent with the Einstein equations (5): using
gtk ¼ gzk ¼ gtz ¼ 0 in (6), we see that Ttz ¼ Ttk ¼
Tzk ¼ 0, whereas the nonvanishing elements are

Ttt ¼ −Tzz

¼ eA
�
1

4
Eðjψ jÞFijFij þ 1

2
hpq̄ðψ ;ψ�ÞDkψpDkψ�

q

þ 1

2
W2ðjψ jÞ

�
; ð8Þ

Tij ¼ Eðjψ jÞFikFk
j −

1

4
Eðjψ jÞγijFlmFlm −

1

2
γijW2ðjψ jÞ

þ 1

2
ðhpq̄DiψpDjψ

�
q þ hqp̄DjψqDiψ

�
p

− γijhpq̄DkψpDkψ�
qÞ: ð9Þ

Thus, the action per unit length along the z-axis for
configurations independent of t and z is

S ¼
Z

dtd2xeA
ffiffiffi
γ

p
L ¼ −

Z
dtd2x

ffiffiffi
γ

p
Ttt;

and both members of the Euler-Lagrange equations (3) with
ν ¼ t or ν ¼ z vanish identically, while in Eq. (4) for the
scalar field there are only contributions coming from space-
time indices 1 and 2. An important quantity is the energy
per unit length along z-axis, which is given by

μ ¼ −
Z

d2x
ffiffiffi
γ

p
Tt

t

¼
Z

d2x
ffiffiffi
γ

p �
1

4
Eðjψ jÞFijFij þ 1

2
hpq̄ðψ ;ψ�ÞDkψpDkψ�

q

þ 1

2
W2ðjψ jÞ

�
ð10Þ

and coincides with minus the action per unit length and
time only if A ¼ 0.
We are interested in the solutions of the system which are

cylindrically symmetric, the seeds indeed of the cosmic
strings living in the model. Cylindrical symmetry makes it
convenient to use polar coordinates x1 ¼ ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and x2 ¼ ϕ ¼ arctan y

x in the perpendicular plane to the
z-axis and to assume for the fields an ansatz of the form

eAρ ¼ 0 eAϕ ¼ n − aðρÞ;
ψp ¼ vfpðρÞeiφpðϕÞ ðno sumÞ; ð11Þ

with p ¼ 1, 2, and

φ1ðϕÞ ¼ n1ϕ φ2ðϕÞ ¼ n2ϕþ ω; ð12Þ

where n, n1, and n2 are integers and f1 and f2 are real
functions. To fix the behavior of the fields at the center of
the string and at infinity, we shall take for granted a fact
to be justified later, namely, that the vacuum expectation
value (vev) of the scalar fields is the same energy scale v
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which determines the Kähler structure of CP2, i.e., we shall
assume that WðvÞ ¼ 0. Also, we make use of the global
SUð2Þ symmetry to choose ψ1 as the field component
taking a nonzero vacuum expectation value at infinity, a
choice which implies that the vorticity n1 coincides with n.
With these stipulations, regularity of the fields at ρ ¼ 0 and
finiteness of the energy per unit length of the string require
the boundary conditions

f1ð0Þ ¼ 0 f2ð0Þ ¼ H0δn2;0 að0Þ ¼ n; ð13Þ
f1ð∞Þ ¼ 1 f2ð∞Þ ¼ 0 að∞Þ ¼ 0; ð14Þ

where H0 ∈ R. To complete the ansatz, we specify the
form of the metric as in [7]

A ¼ AðρÞ γijdxidxj ¼ dρ2 þH2ðρÞdϕ2: ð15Þ
Therefore, in order to forbid conic singularities at the origin
and to ensure that at large distances the space-time is flat,
with the coordinate t measuring the proper time of an
asymptotic observer at rest, the boundary conditions

A0ð0Þ ¼ 0 Að∞Þ ¼ 0; ð16Þ
Hð0Þ ¼ 0 H0ð0Þ ¼ 1 ð17Þ

ought to be imposed, the prime denoting derivation with
respect to ρ. Notice that by fixing the condition Að∞Þ ¼ 0
we discard from the beginning solutions leading to the
Kasner-Melvinvacuum far from the origin and focus instead
on aMinkowskian asymptotic spacewith a deficit angleΔϕ.
This deficit angle is measured by the derivative of HðρÞ at
infinity according to the formula

Δϕ
2π

¼ 1 −H0ð∞Þ:

Moreover, cylindrically symmetric solutions will carry a
magnetic field and a quantized magnetic flux given by

B¼�Ftz¼ 1

HeA
Fρϕ; ΦM¼

Z
d2xHeAB¼2πn

e
ð18Þ

as a consequence of the finiteness of μ. Notice that the
quantization of the magnetic flux comes from the quantized
vorticity of the vector field; see (11).

The metric (15) brings along a diagonal Einstein tensor
with Gρϕ ¼ 0, such that consistence with the Einstein
equations (5) requires that the energy-momentum tensor
is also diagonal. We can check that this is the case by
plugging the ansatz (11), (15) into (9), verifying in this way
that the only nonvanishing components of Tμ

ν are

Tt
t ¼ −

1

2
ðεa þ εf þ εaf þ uÞ

Tz
z ¼ −

1

2
ðεa þ εf þ εaf þ uÞ

Tρ
ρ ¼

1

2
ðεa þ εf − εaf − uÞ

Tϕ
ϕ ¼ 1

2
ðεa − εf þ εaf − uÞ;

where we split the elements of the components of the
energy-momentum tensor in the four terms used in the
second paper of Ref. [16], which in our case are

εa ¼
Eðjψ jÞ
e2H2

�
da
dρ

�
2

εf ¼ v2
X2
p¼1

X2
q¼1

hpq̄
dfp
dρ

dfq
dρ

eiðφp−φqÞ

εaf ¼ v2
X2
p¼1

X2
q¼1

hpq̄
H2

ApAqfpfqeiðφp−φqÞ

u ¼ W2ðjψ jÞ; ApðρÞ ¼ aðρÞ þ np − n:

We stress that although Ap and φp carry an internal label,
they are in fact CP2 scalars.
Substitution of the cylindrically symmetric ansatz for the

fields and the metric in the Euler-Lagrange equations (3)
and (4) yields the second-order ordinary differential
equation (ODE) system,

d
dρ

�
eA

H
Eðjψ jÞ da

dρ

�

¼ 1

2
e2v2

X2
p¼1

X2
q¼1

eA

H
ðAp þAqÞhpq̄fpfqeiðφp−φqÞ ð19Þ

v
HeA

X2
p¼1

d
dρ

�
HeAhpq̄

dfp
dρ

eiφp

�
−

v
H2

X2
p¼1

hpq̄A2
pfpeiφp −

v2

H2

X2
p¼1

X2
l¼1

∂hpq̄
∂ψ l

ApAlfpfleiðφlþφpÞ

þ v2

H2

X2
p¼1

X2
l¼1

∂hpq̄
∂ψ�

l
ApAlfpfleið−φlþφpÞ

¼ 1

e2H2

∂Eðjψ jÞ
∂ψ�

q

�
da
dρ

�
2

þ 2Wðjψ jÞ ∂Wðjψ jÞ
∂ψ�

q
þ v2

X2
p¼1

X2
l¼1

∂hpl̄
∂ψ�

q

�
dfp
dρ

dfl
dρ

þApAl

H2
fpfl

�
eiðφp−φlÞ; ð20Þ
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whereas regarding the Einstein equations, there is an
argument given by Garfinkle for the AHM, which depends
only on the regularity of the fields at ρ ¼ 0 and energy-
momentum conservation and it is therefore valid also for
our system, which shows that only two of the three possible
ones are independent. The independent equations can be
expressed in different forms [1], and we choose here to
write them as

1

H
d
dρ

�
dH
dρ

þ 1

2

�
H
dA
dρ

��
þ 1

4

�
dA
dρ

�
2

¼ 8πGTt
t; ð21Þ

d2A
dρ2

þ 3

4

�
dA
dρ

�
2

¼ 8πGTϕ
ϕ: ð22Þ

In particular, integration in ρ of Eq. (21) gives the
relation between the deficit angle and the energy per unit
length as [7]

Δϕ ¼ 8πGμþ π

2

Z
∞

0

dρH

�
dA
dρ

�
2

: ð23Þ

Thus, the problem of finding semilocal CP2 cosmic strings
consists in solving the second-order ODE system (19)–(22)
with the boundary conditions (13), (14), (16), and (17).
We will come back to this system later, but first we study
in the next section a self-dual regime which makes the
problem easier.

III. SELF-DUALITY IN THE SEMILOCAL
CP2-SIGMA MODEL COUPLED TO GRAVITY

A. Self-duality and first-order field equations

The dynamics of the gravitating semilocal CP2-sigma
model is governed by a system of quite complicated
second-order differential equations allowing cosmic
strings. Let us now search for a self-dual version of the
model which simplifies matters by making room to first-
order field ODE equations, to be satisfied not only by
cylindrically symmetric configurations. In order to do so,
we will assume from the start that A ¼ 0 in the metric, such
that the energy and action per unit length along z are
proportional. This assumption simplifies also greatly the
Einstein tensor, because it implies that the only nonvanish-
ing Christoffel symbols are those with three Latin indices.
Thus, the four-dimensional curvature scalar R coincides
with the two-dimensional one RðγÞ coming from γij,
whereas this metric, being two-dimensional, gives a trivial
Einstein tensor, namely,

Gtt ¼ −Gzz ¼
1

2
RðγÞ Gtk ¼ Gzk ¼ Gij ¼ 0;

where RðγÞ is the scalar curvature in the plane perpendicular
to the string. This is consistent with Ttt ¼ −Tzz, which, as

we have seen, is true in our model, but requires also
Tij ¼ 0, the old Poincare stability criterion [32], a fact that
will be necessary to check after the self-duality equations
will be found. An important ingredient to establish this
first-order ODE system is the Levi-Civita tensor of the γij
metric

εij ¼
ffiffiffi
γ

p
ε̃ij εij ¼ 1ffiffiffi

γ
p ε̃ij

ε̃12 ¼ −ε̃21 ¼ ε̃12 ¼ −ε̃21 ¼ 1;

which has some useful properties like

εijε
ik ¼ δkj εijε

ij ¼ 2

εijεklγ
jl ¼ γik εijεklγjl ¼ γik:

To proceed, we focus our attention on two quadratic
expressions which are as follows:
(1) The first one, denoted X2

F, is given by

X2
F ¼

	 ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðjψ jÞ

p
Fij � εijWðjψ jÞ




×
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðjψ jÞ
p

Fij � εijWðjψ jÞ



and can be directly expanded into an expression
containing two terms appearing in the energy
density,

X2
F ¼ Eðjψ jÞFijFij þ 2W2ðjψ jÞ

� 4ffiffiffi
γ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðjψ jÞ

p
Wðjψ jÞF12:

(2) The second one, denoted as jXDj2, is

jXDj2 ¼ hpq̄ðDiψp � iεikDkψpÞðDiψ�
q ∓ iεilDlψ

�
qÞ:

It may be recast as

jXDj2 ¼ 2hpq̄DkψpDkψ�
q ∓ 4ffiffiffi

γ
p R with

R ¼ i
2

ffiffiffi
γ

p
hpq̄εijDiψpDjψ

�
q:

In the modulus-argument form of complex functions
ψp ¼ jψpjeiχp (no sum), the covariant derivatives
read Diψp ¼ ψpð∂i log jψpj − ieVipÞ (no sum) with
Vip ¼ Ai − 1

e ∂iχp. Introduce now the real symmetric

matrix Mpq ¼ 4
D ðjψpj2δpq − jψpj2jψqj2

v2D Þ (no sum) to
find
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R ¼ e
ffiffiffi
γ

p
εijVipSjp where

Sjp ¼ Mpq∂j log jψqj ¼ 2∂j
jψpj2
D

:

This implies

R¼ 2e∂j

� ffiffiffi
γ

p
εijVip

jψpj2
D

�
þ 2e

jψ1j2 þ jψ2j2
D

F12;

allowing to write finally jXDj2 as

jXDj2 ¼ 2hpq̄DkψpDkψ�
q ∓ 8effiffiffi

γ
p ∂j

� ffiffiffi
γ

p
εijVip

jψpj2
D

�

∓ 4effiffiffi
γ

p Pðjψ jÞF12;

where

Pðjψ jÞ ¼ 2
jψ1j2 þ jψ2j2

D
: ð24Þ

The point of introducing X2
F and jXDj2 is that we can use

them to write the energy per unit length (10) as

μ ¼
Z

d2x
ffiffiffi
γ

p �
1

4
X2
F þ 1

4
jXDj2 ∓ 1ffiffiffi

γ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðjψ jÞ

p
Wðjψ jÞF12

� 2effiffiffi
γ

p ∂j

� ffiffiffi
γ

p
εijVip

jψpj2
D

�
� effiffiffi

γ
p Pðjψ jÞF12

�
: ð25Þ

Therefore, the choice of the “superpotential” Wðjψ jÞ and
the dielectric function Eðjψ jÞ such that

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðjψ jÞ

p
Wðjψ jÞ ¼ eðPðjψ jÞ − v2Þ ð26Þ

shows μ as the sum of two squares plus a topological term
proportional to the magnetic flux,

μ ¼
Z

d2x
ffiffiffi
γ

p �
1

4
X2
F þ 1

4
jXDj2

�
� ev2ΦM: ð27Þ

The choice (26) fixes the generic dependence of Wðjψ jÞ
on Eðjψ jÞ,

Uðjψ jÞ≡ 1

2
W2ðjψ jÞ ¼ e2v4

2Eðjψ jÞ
�jψ1j2 þ jψ2j2 − v2

jψ2
1 þ jψ2j2 þ v2

�
2

;

ð28Þ

which determines the self-dual character of the system.
By this statement, we mean that the zeroes of XF and XD,
the solutions of the first-order ODE system

F12 ¼ �ev2
ffiffiffi
γ

p v2 − jψ1j2 − jψ2j2
Eðjψ jÞðv2 þ jψ1j2 þ jψ2j2Þ

; ð29Þ

D1ψp � i
ffiffiffi
γ

p
D2ψp ¼ 0 ð30Þ

are absolute minima of μ. The string tension of any solution
of the first-order equations with the appropriate boundary
condition is thus

μ ¼ 2πjnjv2;
which coincides with the nongravitating CP2 string
tensions unveiled in Ref. [23] if we set v2 ¼ a2

2
as the

proportionality between the parameters introduced in the
present work and [23].
Moreover, it is clear from the form of Uðjψ jÞ that the set

of its zeroes is the set of constant scalar fields such that

jψ ðvÞ
1 j2 þ jψ ðvÞ

2 j2 ¼ v2. Therefore, the vacuum orbit is S3 if
Eðjψ jÞ has no poles in CP2 and the vacuum expectation

value of the scalar field is any point in S3, e.g., ψ ðvÞ
1 ¼ v,

ψ ðvÞ
2 ¼ 0, as announced in the previous section. A subtle

point is hidden in the selection of the Kähler metric and the
vacuum orbit in terms of a unique parameter. On one hand,
g2 ¼ 1

v2 is the (dimensionful) coupling constant appearing in
the nonlinear sigma model. On the other hand, v also sets the
energy scale of the symmetry breaking. The dual role of v
reveals a very economic structure of the space of parameters.
Configurations of finite energy density tend thus to

S3-vacuum orbit jψ ðvÞ
1 j2 þ jψ ðvÞ

2 j2 ¼ v2 in the circle at
spatial infinity in the plane perpendicular to the string,
e.g., jψ1j ¼ v, jψ2j ¼ 0 for jxj → ∞. As recently men-
tioned, the flux quantization condition (18) and the struc-
ture of (27) imply that the bound

μ ≥ ev2jΦMj ¼ 2πv2jnj ð31Þ
is saturated if the Bogomolny equations (29) and (30) are
satisfied. The upper sign gives F12 > 0 ever that jψ1j2 þ
jψ2j2 < v2 and corresponds thus toΦM > 0, i.e., to positive
vorticity n. Given the proportionality between μ and the
action per unit length along the z axis, and the fact that
solutions of the Bogomolny equations give absolute min-
ima of μ, these solutions are also extrema of the actions and
thus solutions of the Euler-Lagrange equations. It remains
to check that solutions of (29) and (30) have vanishing Tij.

Let us write Tij ¼ TðFÞ
ij þ TðDÞ

ij with TðFÞ
ij and TðDÞ

ij , respec-
tively, the first and second lines of (9). Then, using (29),
one finds

TðFÞ
ij ¼ γklEðjψ jÞFikFjl −

1

4
γijðEðjψ jÞFmnFmn þ 2W2ðjψ jÞÞ

¼ γklεikεjlW2ðjψ jÞÞ− 1

4
γijðεmnε

mnW2ðjψ jÞÞ
þ 2W2ðjψ jÞÞÞ ¼ 0:
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By means of (30) in turn, we unveil the identity

DkψpDkψ�
q ¼ �iεlmDlψpDmψ

�
q;

from which we derive the formula

DiψpDjψ
�
q þDjψpDiψ

�
q ¼ �iγijεlmDlψpDmψ

�
q;

making clear that TðDÞ
ij ¼0. Thus, the Bogomolny equations

and the Einstein equations involving latin indices are
compatible. Finally, we must consider together with (29)
and (30) the only remaining Einstein equation

RðγÞ ¼ 16πGTtt: ð32Þ

We express the tt-component of the energy-momentum
tensor as

Ttt ¼
1

2
hpq̄DiψpDiψ�

q

þ e2v4

Eðjψ1j2; jψ2jÞ
�jψ1j2 þ jψ2j2 − v2

jψ1j2 þ jψ2j2 þ v2

�
2

;

using again the Bogomolny equation. We arrive thus to
the complete system of equations for obtaining self-dual
cosmic strings in the CP2-sigma model.
In sum, self-duality fixes Wðjψ jÞ in terms of Eðjψ jÞ,

but leaves still freedom to choose the dielectric function at
will. In what follows, we will focus on the minimal and
most natural choice Eðjψ jÞ ¼ 1. There are, however, other
interesting possibilities. We mention two of them. First, by
choosing

Eðjψ jÞ ¼ 2

D
¼ 2v2

v2 þ jψ1j2 þ jψ2j2
; ð33Þ

the Bogomolny equations take the form

F12 ¼ � e
2

ffiffiffi
γ

p ðv2 − jψ1j2 − jψ2j2Þ; ð34Þ

D1ψp � i
ffiffiffi
γ

p
D2ψp ¼ 0; ð35Þ

which is exactly that of the Bogomolny equations of the
standard gravitating semilocal model, even though we are
now working with scalar fields taking values on CP2 rather
than in C. The difference is encoded in the Einstein
equation (32), where the kinetic term in the tt-component
of the energy-momentum tensor includes the metric of
CP2, and thus the solutions of (34) and (35) curve the

space-time manifold in a different way than standard
semilocal cosmic strings would do.
A second example is

Eðjψ jÞ ¼ μ2

4e2
D2

jψ1j2 þ jψ2j2
¼ μ2

4e2v4
ðjψ1j2 þ jψ2j2 þ v2Þ2

jψ1j2 þ jψ2j2
:

ð36Þ

In the nongravitational case, and working in 2þ 1
dimensions, this dielectric function is the appropriate
for obtaining self-dual Chern-Simons-Higgs vortices
with target CP2 and Chern-Simons coupling μ. Thus,
(36) gives self-dual gravitating vortices which converge
to Chern-Simons vortices when the Newton constant
tends to zero: G → 0. They are not true Chern-Simons
gravitating solitons, however: these carry not only mag-
netic, but also electric field, and thus angular momentum,
which requires a metric with nondiagonal tk components
instead of (7). Nevertheless, when Gv2 is small, the role
of these nondiagonal components in the solutions of [17]
is subdominant, and the vortices obtained by means of
(36) are good approximations to the solutions of the full
Chern-Simons gravitating model. In particular, employ-
ing (36), one can extend to the gravitational case some of
the phenomenology of Chern-Simons vortices, like the
presence of solitons of both topological and nontopo-
logical nature whose existence is due to the fact that
the vacuum orbit in this case includes also the points
ψ ðvÞ ¼ 0 and ψ ðvÞ ¼ þ∞. Models with dielectric func-
tions interpolating between (33) and (36) have also
been investigated [22,33].
To end this subsection, let us finally compare our system

with other very rich nonlinear field theory with CPN as the
target space: the CPN model studied, e.g., in the paper [34]
or [35] and reviewed in Sec. 4.5 of [36], where other
relevant references can be found. These models are for-
mulated in two-dimensional Euclidean space and include
N þ 1 complex scalar fields arranged into a N þ 1 tuple
n⃗ðxÞ subjected to the constraint n⃗�ðxÞ · n⃗ðxÞ ¼ 1 and the
Uð1Þ gauge identification n⃗ðxÞ≡ n⃗eiΛðxÞ. This system
enjoys a very interesting dynamics and displays some
of the typical features of non-Abelian gauge theories, like
asymptotic freedom and the presence of instantons. In fact,
the model can be described in terms of an Abelian gauge
field minimally coupled to the scalars, and the instantons
obey first-order equations, saturate a Bogomolny bound for
the action, and are classified by a topological number
proportional to the magnetic flux of the gauge field. In
that sense, there are some remarkable similarities with
the theory we are studying, but there are also important
differences. In particular, in CPN models, the gauge
field is effective and does not represent any independent
degrees of freedom, and thus the Maxwell term is
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absent.1 Also, like pure Yang-Mills theory in ð3þ 1ÞD
Minkowski space-time, the CPN model is scale invariant,
so that a potential like the one we have engineered is
forbidden. In fact, if we ignore gravity and consider
our x1–x2 plane as the two-dimensional Euclidean space
where a CP2 model lives, it turns out that the self-duality
equations for instantons, when expressed in any chart, are
simply the Cauchy-Riemann conditions in the complex
coordinate z ¼ x1 þ ix2 for the fields ψ1 and ψ2. Thus, they
coincide with our Bogomolny equations only if the
coupling e, and thus the potential, vanishes. It seems
therefore that our approach and the usual CPN models
are in some sense complementary: because the scale of
instantons ranges from zero to infinity, they disappear from
the spectrum in our system. The two ingredients, gauge
coupling and potential energy density, required to accom-
modate cosmic strings or vortices break scale invariance.
This complementarity manifests itself also in that regular
CPN-instantons embedded in our model have an infinite
energy cost: e.g., the instanton with topological number one
is in our coordinates

ψ1ðzÞ ¼ α
z − z0
ω

; ψ2ðzÞ ¼ β
z − z0
ω

; ð37Þ

where α and β are complex constants such that
jαj2 þ jβj2 ¼ 1 and z0 and ω are, respectively, complex
and real arbitrary constants reflecting the translational and
scale invariance of the pure CP2 model. Thus, for jzj → ∞,
the fields diverge in our nonscale-invariant system: they do
not approach the vacuum orbit, the zeroes of the potential,
at spatial infinity.

B. Self-dual semilocal CP2 cosmic strings

Let us now specialize to cylindrically symmetric sol-
utions. Thus, we take x1 ¼ ρ and x2 ¼ ϕ and use the
ansatz (11), (12) for the fields and the metric (15), working
with Eðjψ jÞ ¼ 1. Plugging these expressions into the
Bogomolny equations and the energy-momentum tensor,
using that the curvature scalar of (15) is RðγÞ ¼ − 2

H
d2H
dρ2 ,

and turning to nondimensional quantities by means of the
redefinitions

x ¼ evρ hðxÞ ¼ evHðρÞ 8πGv2 ¼ κ2;

we arrive to the ODE system which are the self-duality
equations for cylindrically symmetric configurations,

da
dx

¼ h
f21 þ f22 − 1

f21 þ f22 þ 1
; ð38Þ

df1
dx

¼ a
h
f1; ð39Þ

df2
dx

¼ aþ l − n
h

f2; ð40Þ

1

h
d2h
dx2

¼ −κ2
�
mpq

dfp
dx

dfq
dx

þ
�
f21 þ f22 − 1

f21 þ f22 þ 1

�
2
�
: ð41Þ

For definiteness, we work with the upper sign of (29) and
(30), we put n2 ¼ l, and define mpq as the real symmetric
matrix of elements

mpq ¼
4

1þ f21 þ f22

�
δpq −

fpfq
1þ f21 þ f22

�
:

The boundary conditions are (13), (14), (16), and (17),
with the understanding that the prime means now a
derivative with respect to x. Besides, the nondimensional
magnetic field B ¼ B

e2v2 and energy density ϵðxÞ, defined by
μ ¼ 2πv2

R
∞
0 dxϵðxÞ, are as follows:

eB ¼ −
1

h
da
dx

;

ϵðxÞ ¼ hðxÞ
�
mpq

dfp
dx

dfq
dx

þ
�
f21 þ f22 − 1

f21 þ f22 þ 1

�
2
�
: ð42Þ

The standard procedure in the search of self-dual cosmic
string solutions is the following three-step shooting
approach:
(1) First, we solve analytically the system of ODE’s (41)

near the origin. If x ≃ 0, we assume the following
form of the solutions:

f1ðxÞ ≃ α1xr1 ; f2ðxÞ ≃ δl0H0 þ α2xr2 ;

aðxÞ ≃ n − δxs ð43Þ

at leading order. Here α1, α2, r1, r2, H0, δ, and s
are constants to be determined by solving the
linearized system. For instance, in the case l ¼ 0
and H0 ≠ 0, Eq. (39) implies r1 ¼ n, Eq. (38) fixes

s ¼ 2 and δ¼ 1
2

1−H2
0

1þH2
0

, whereas (40) gives r2¼2 and

α2¼−1
2
δH0. If l ≠ 0, we find again r1 ¼ n and

s ¼ 2, but now (38) gives δ ¼ 1
2
and (40) implies

r2 ¼ l. In both cases, for x ≃ 0, (41) implies hðxÞ ≃ x
at leading order. To sum up, for x near zero, the
leading order approximations for the fields and the
metric are

1A Maxwell term and a mass for scalars are generated by
radiative corrections in the large N limit. In the effective one-loop
theory, Uð1Þ is unbroken and there is confinement, but there are
not instantons [35].
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f1ðxÞ ≃ α1xn

f2ðxÞ ≃ δl0H0

�
1 −

1

4

1 −H2
0

1þH2
0

x2
�
þ ð1 − δl0Þα2xl

aðxÞ ≃ n −
1

2

1 − δl0H2
0

1þ δl0H2
0

x2 hðxÞ ≃ x: ð44Þ

(2) Second, we solve the system (41) for x → ∞. A first
consequence of the boundary conditions at
infinity and (40) is that l is limited to the values
l ¼ 0; 1; 2;…; n − 1. Given that the energy-
momentum vanishes in this region, (41) implies a
linear profile for hðxÞ and we approximate the metric
very far from the origin in the form hðxÞ ≃ cþ rx
where r and c are constants. Then, combining (39)
and (40), it follows that f2ðxÞ ≃ Cx

l−n
r f1ðxÞ for

large x at leading order and some constant C. If
we put f1ðxÞ ¼ 1 − gðxÞ with gðxÞ small, from (39)
a ¼ −rx dg

dx and then from (38) we obtain the
equation

x2
d2g
dx2

þ x
dg
dx

− x2g ¼ −
C2

2
x2

rþl−n
r ;

with solution gðxÞ ¼ C2

2
x2

l−n
r for x → ∞. Thus, very

far from the origin, the dominant behavior is

f1ðxÞ ≃ 1 −
C2

2x2
n−l
r

f2ðxÞ ≃
C

x
n−l
r

aðxÞ ≃ ðn − lÞ C2

x2
n−l
r

hðxÞ ≃ rx: ð45Þ

Knowledge of the solution of the cosmic string
gravitational field at infinity suffices to determine
the deficit angle. Since A ¼ 0 in the self-dual
case, (23) and the saturation of the bound (31)
imply Δϕ ¼ 2πκ2n, both here and in the standard
AHM. Thus, because r ¼ 1 − Δϕ

2π , this parameter

measures the relation r ¼ 1 − κ2

κ2crit
between the gravi-

tational coupling and the critical coupling κcrit ¼ 1ffiffi
n

p ,

which is the threshold for the formation of super-
massive cosmic strings.

(3) Third, and last step, we develop a numerical method
to find a solution interpolating between the solution
close to the origin with the solution near infinity. We
integrate the self-duality equations (41) by means of
an explicit Runge-Kutta method, starting from a
small x0 ¼ 10−6 value of the nondimensional radial
coordinate and seeking for the value of α1 in (44)
which gives the best convergence of the fields to the
boundary conditions at large x.

We show some figures with results for the scalar fields
f1ðxÞ and f2ðxÞ, the magnetic field, the energy density, and
the metric coefficient hðxÞ. Figures 1 and 2 refer to the case
with vorticity n ¼ 1 and a value of H0 ¼ 0.4, taking for

FIG. 1. Profiles of f1, f2 and the magnetic field for n ¼ 1 and H0 ¼ 0.4 and several strengths of the gravitational interaction.

FIG. 2. Profiles of the energy density and the metric coefficient h for n ¼ 1 and H0 ¼ 0.4 and several strengths of the gravitational
interaction.
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the gravitational coupling five values between κ ¼ 0 and
the critical value κcrit ¼ 1 at the frontier of supermassive
behavior. In Figs. 3 and 4, we consider vorticity n ¼ 2 with
l ¼ 0 and the same value of H0 than before, also with five
values of the gravitational coupling growing up to the
critical value κcrit ¼ 1ffiffi

2
p corresponding to that vorticity.

Finally, Figs. 5 and 6 present also results for the n ¼ 2

case, but now with l ¼ 1 and α2 ¼ 0.4 in (44). As we can
see from the figures, for each x, the scalar fields are greater
for smaller gravitational coupling, while the magnetic field
shows the opposite behavior. The field f1 grows mono-
tonically with x, but it has nonzero slope at the center of the
string only for vorticity n ¼ 1, being the initial growing
softer for higher n as a consequence of (44). For both

FIG. 3. Profiles of f1, f2 and the magnetic field for n ¼ 2, l ¼ 0, and H0 ¼ 0.4 and several strengths of the gravitational interaction.

FIG. 4. Profiles of the energy density and the metric coefficient h for n ¼ 2, l ¼ 0, and H0 ¼ 0.4 and several strengths of the
gravitational interaction.

FIG. 5. Profiles of f1, f2 and the magnetic field for n ¼ 2, l ¼ 1 and α2 ¼ 0.4 and several strengths of the gravitational interaction.

FIG. 6. Profiles of the energy density and the metric coefficient h for n ¼ 2, l ¼ 1 and α2 ¼ 0.4 and several strengths of the
gravitational interaction.
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vorticities, f2 decreases monotonically if l ¼ 0, but when
n ¼ 2 and l ¼ 1, f2 vanishes at the center of the string and
grows for small values of x, reaching a maximum for a
range of values of x comparable to the range in which f1
begins to be close to its vacuum expectation value. The
magnetic field is maximum at x ¼ 0 for n ¼ 1 and n ¼ 2
with l ¼ 1, but in the case n ¼ 2 with l ¼ 0, the highest
value of the magnetic field is displaced from the origin and
configures a narrow annulus around the string center. In all
cases, the energy density is zero at x ¼ 0 and grows up to a
maximum, which is higher for lower gravitational coupling;
for n ¼ 1 and n ¼ 2, l ¼ 0, the maximum is appreciably
closer to the center for smaller κ, but when n ¼ 2, l ¼ 1, the
distance from the maximum to the center is very similar for
all values of κ. Also, in all cases, the metric coefficient hðxÞ
grows with x, reaching a clearly visible linear behavior
quite soon, even before than the fields reach their asymp-
totic values. The slope of hðxÞ decreases, and thus the
deficit angle increases with κ, being 1 for κ ¼ 0 and 0
for κ ¼ κcrit.
Although all the physical properties of the self-dual

cosmic string solutions in the reference chart are precisely
described in the formulas and figures in this subsection, we
emphasize three qualitative features that distinguish them
as belonging to a first species of string defects in this
system:
(1) All the energy lumps associated to these solutions

are concentrated in the spatial plane perpendicular to
the string, either decaying to their vacuum values
exponentially when f2ðρÞ ¼ 0 or more spread
throughout the spatial plane if f2ðρÞ ≠ 0. The crux
of the matter is that all of them are mapped into the
subset of the reference chart of CP2 comprised
between the point (f1ð0Þ ¼ 0, f2ð0Þ ¼ δl0H0) and
the S3-vacuum orbit.

(2) In the case f2ðxÞ ¼ 0, the situation is easier to
visualize because the system reduces to target in a
CP1 submanifold of CP2, the vacuum orbit becomes

the parallel jψ ðvÞ
1 j2 ¼ v2, and the solution is mapped

into the spherical cap bounded by this parallel and
the South Pole jψ1j ¼ 0.

(3) Any attempt to prolongate these cosmic strings to
the North Hemisphere would demand infinite energy
because the fields should trespass the vacuum orbit.

CP2 instantons appear in our model when we decouple
gravity (G ¼ 0) and the gauge field (e ¼ 0). They are
similar to the solutions found in this subsection in that
in both cases there is a modulus ruling their spatial size, the
ω parameter of (37) for instantons and H0 for cosmic
strings, although the origin of the instanton modulus is
scale invariance and this symmetry is lost for cosmic
strings. Objects of both types show however appreciable
differences in the range that they cover on target space: the
scalar fields of cosmic strings take values on a region
of CP2 bounded by the vacuum orbit, whilst instantons

spread over all CP2. As commented before, this makes
instantons infinitely massive when we take e > 0 to obtain
cosmic strings.

C. Multicenter self-dual cosmic strings

A generalization of the Atiyah-Singer index theorem led
E. Weinberg in [37] to show that the moduli space of self-
dual vortices in the AHM has dimensions 2n were n is the
vorticity. This means that there is freedom of placing the
centers of the flux tubes with a quantum of magnetic flux
throughout the plane. The explicit zero modes correspond-
ing to this freedom were found and explicitly constructed in
Ref. [38] for the AHM. Identical task was performed
in Ref. [39] about the vortex zero modes in the nonlinear
CP1-sigma model. In both papers, we started from the
cylindrically symmetric multivortex solutions to find their
deformations respecting self-duality. The index theorem
showing that the dimension of the moduli space of self-dual
vortices in the semilocal AHM is 4n was developed in
Refs. [40,41]. The construction of the general self-dual
vortices in the semilocal AHM in terms of the n-centers of
the magnetic flux tubes plus other n complex parameters
characterizing the behavior of the ψ2 field was achieved in
Ref. [28]. It is natural to explore how much this scheme
survives the coupling to gravity. Thus, let us now briefly
consider the existence of self-dual solutions beyond those
with cylindrical symmetry. For this purpose, it is conven-
ient to adopt for the metric on the transverse plane
the conformal gauge γij ¼ e−4VðxÞδij [10]. This gauge is
advantageous in that the Bogomolny equation (30) takes in
it the same form D1ψp þ iD2ψp ¼ 0 than in Euclidean
coordinates, and thus we can use the Poincaré ∂̄-lemma to
guarantee that the solution of (30) for p ¼ 1 has exactly n
zeros on the plane, counted with multiplicity [42]. Let us
denote these zeros by z1; z2;…; zn, where we are now using
a complex coordinate z ¼ x1 þ ix2. Also, (30) for p ¼ 2
implies that ψ2 ¼ wðzÞψ1, where [28]

wðzÞ ¼ QnðzÞ
PnðzÞ

; PnðzÞ ¼
Yn
s¼1

ðz − zsÞ;

QnðzÞ ¼ qn−1zn−1 þ � � � þ q1zþ q0:

Using these expressions, the remaining Bogomolny equa-
tion (29) may be rewritten in the form

Δ log jψ1j ¼ e2v2e−4V
jψ1j2ð1þ jwj2Þ − v2

jψ1j2ð1þ jwj2Þ þ v2

þ 2π
Xn
s¼1

δð2Þðz − zsÞ; ð46Þ

where Δ denotes here the Euclidean Laplacian, while the
Einstein equation (32) is
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Δ
�
V − 4πGv2

�
logD −

1

2
log

jψ1j2Q
n
s¼1 jz − zsj2

��
¼ 0:

This means that the expression into the brackets is
harmonic and bounded, and hence a constant. Thus, we
obtain for the conformal factor exponent Vðx1; x2Þ,

V ¼ 4πGv2
�
log ðv2 þ jψ1j2ð1þ jwj2ÞÞ

−
1

2
log

jψ1j2Q
n
s¼1 jz − zsj2

�
þ constant: ð47Þ

Therefore, a solution of (46) with Vðx1; x2Þ given by (47)
and such that ψ1 → v for jzj → ∞ and ψ1 ¼ 0 at the n
zeros zs represents a system of separated and parallel
cosmic strings which are centered around the positions
z ¼ zs. Of course, to show rigorously that (46) with these
boundary conditions has a unique solution is a difficult
problem in functional analysis which is beyond the scope
of this work, but we can nevertheless argue through the
heuristic physical arguments pointed in [10] that this is the
case. We saw in previous subsection that out of the core
of the vortex the metric converges very quickly to the
Minkowskian form with a deficit angle, meaning that well-
separated strings at rest do not feel any mutual gravitational
forces. Therefore, the existence of a state of equilibrium for
such a system depends only on the balance between the
Uð1Þ and scalar interactions among the strings, and given
that gravity does not enter in this balance, we can study it in
the limit in which the gravitational coupling G vanishes.
G ¼ 0 implies V ¼ 0 and with the change of variables

ξ ¼ logðjf1j2ð1þ jwj2ÞÞ − u1;

u1 ¼ logðjPnðzÞj2 þ jQnðzÞj2Þ −
Xn
s¼1

log ðνþ jz − zsj2Þ;

where ν is an arbitrary constant, Eq. (46) becomes

Δξ ¼ g0 þ tanh
u1 þ ξ

2
g0 ¼ 4

Xn
s¼1

ν

νþ jz − zsj2
: ð48Þ

This is the variational equation of the functional

aðξÞ ¼
Z

d2z

�
1

2
j∇ξj2 þ g0ξþ 2 log

�
cosh

u1 þ ξ

2

��

ð49Þ

and the proof that (48) has a unique solution with ξ → 0 for
jzj → ∞ and ξ → −∞ at the n zeros zs proceeds through
the analysis of this functional along the lines developed
by Taubes [42] for the AHM. Notice, however, that for
jzj → ∞ and at the points zs, (49) and the functional
corresponding to standard semilocal vortices coincide. It is

thus to be expected that the result of the analysis is the same
in this case than for the semilocal model [28], leading also
for theCP2 model to the existence of multivortex solutions.
In fact, as explained in [28], the crucial points of the proof
are to show that aðξÞ is strictly convex and that its radial
derivative ðDξaÞðξÞ is positive for a sufficiently large ball
in the space of ξ functions. To check the first point, it is
convenient to adopt the notation of [42] to write

aðξÞ ¼ 1

2
k∇ξk2 þ hg0; ξi þ 2

�
1; log

�
cosh

u1 þ ξ

2

��
;

with L2ðCÞ norm and scalar product. Then, given that the
first term is quadratic, hence strictly convex, the second is
linear and the third has positive second derivative respect ξ,
and it is thus also convex, it follows that aðξÞ is strictly
convex. With regard to the second point, the radial
derivative of aðξÞ is

ðDξaÞðξÞ ¼ k∇ξk2 þMðξÞ

MðξÞ ¼
�

ξ

eu1þξ þ 1
; g0 − 1þ eu1þξð1þ g0Þ

�

and has the same structure than in the standard semilocal
case, in which

MSMLðξÞ ¼ hξ; g0 − 1þ eu1þξi:
Now, by taking ν large enough, it is easy to see that
negative contributions to MðξÞ are always less important
than those appearing inMSMLðξÞ. Thus, like in the standard
semilocal case, one can prove that the radial derivative is
positive and there is a unique solution of (46).

IV. TYPE I AND TYPE II VERSUS SELF-DUAL
COSMIC STRINGS

We come back in this section to the second-order ODE
system obtained at the end of Sec. II, taking, as in Sec. III,
Eðjψ jÞ ¼ 1 for the dielectric function but now the scalar
potential is noncritically coupled, i.e.,

Uðjψ jÞ≡ 1

2
W2ðjψ jÞ ¼ λv4

2

�jψ1j2 þ jψ2j2 − v2

jψ1j2 þ jψ2j2 þ v2

�
2

; ð50Þ

with λ ≠ e2. Substitution of the explicit form of the Fubini-
Study metric in the Euler-Lagrange equations (19) and (20)
brings about the cancellation of all phases and then, passing
to nondimensional variables, the equations become

d
dx

�
eA

h
da
dx

�
¼ 2

eA

h

�
2

D

X2
p¼1

Apf2p

−
1

D2

X2
p¼1

X2
l¼1

ðAp þAlÞf2pf2l
�
; ð51Þ
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1

heA
d
dx

�
heA

�
1

D

dfq
dx

−
fq
D2

X2
l¼1

fl
dfl
dx

��

−
A2

qfq
h2D

þAqfq
h2D2

X2
l¼1

Alf2l

¼−
1

D2

�X2
l¼1

X llfqþ
X2
l¼1

Xqlfl−
2

D

X2
p¼1

X2
l¼1

Xplfpflfq

�

þ β
D− 2

D3
fq; ð52Þ

where there is no sum on repeated q indices, β ¼ λ
e2, and

D ¼ 1þ f21 þ f22

Xpl ¼
dfp
dx

dfl
dx

þApAl

h2
fpfl ðno sumÞ:

Also, in nondimensional variables, the Einstein equa-
tions (21) and (22) are

1

h

�
d2h
dx2

þ 1

2

d
dx

�
h
da
dx

��
þ 1

4

�
dA
dx

�
2

¼ −
κ2

2
ðεa þ εf þ εaf þ uÞ; ð53Þ

d2A
dx2

þ 3

4

�
dA
dx

�
2

¼ κ2

2
ðεa − εf þ εaf − uÞ; ð54Þ

where the different contributions to the energy-momentum
tensor turn out to be

εa ¼
1

h2

�
da
dx

�
2

εf ¼ 4

D

�X2
l¼1

�
dfl
dx

�
2

−
1

D

�X2
l¼1

fl
dfl
dx

�2�

εaf ¼
4

h2D

�X2
l¼1

A2
l f

2
l −

1

D

�X2
l¼1

Alf2l

�2�

u ¼ β

�
D − 2

D

�
2

:

Thus, to find non-self-dual cosmic strings, we have to solve
the system (51)–(54) with boundary conditions (13), (14),
(16), and (17), but given that the equations are invariant
under the shift of AðxÞ by a constant, it is more convenient
for the shooting method to change (16) by the initial
condition

Að0Þ ¼ 0 A0ð0Þ ¼ 0; ð55Þ

since for a solution approaching Minkowski space with a
deficit angle at large distances, Einstein equations ensure

that AðxÞ will be constant at infinity and thus, subtracting
this constant from the solution obtained with (55), we
recover the behavior (16). We will concentrate on the case
with l ¼ 0, so that from the boundary conditions at the
origin we can assume that for very small x the fields are of
the form

f1ðxÞ ≃ α1xr1 f2ðxÞ ≃H0 þ α2xr2 aðxÞ ≃ n − δxs

hðxÞ ≃ x AðxÞ ≃ ηxt;

with positive exponents and t ≥ 2. The difference with the
self-dual case is that now the equations are second order
and we need to fix not only the field values, but also their
derivatives, for some x0 very close to zero, so that although
l ¼ 0 we have to retain the second term in f2ðxÞ.
Substituting these expressions in (51)–(54) and working
to leading order, we find r1 ¼ n and r2 ¼ s ¼ 2 like in the
self-dual situation, and also

t ¼ 2 α2 ¼ −
1

4

1 −H2
0

1þH2
0

H0β

η ¼ κ2
�
δ2 −

1

4

�
1 −H2

0

1þH2
0

�
2

β

�
:

We have thus two free parameters, α1 and δ, and we shall
proceed by a shooting procedure in which we will take
x0 ¼ 10−6 and will try to adjust the values of these
parameters in such a way that for large x the fields behave
consistently with the boundary conditions at infinity. In
particular, an interesting case to be considered is that of
H0 ¼ 0. In that situation, the target manifold of the scalar
fields reduces to CP1, or S2, and we have thus cosmic
strings with values on the sphere. Vortices and cosmic
strings on the sphere were previously studied by means of
the Bogomolny equations in [23–25] and we will here
revisit this problem to provide some new results for the
non-self-dual case, where the main novelty is the presence
of a nonvanishing function AðxÞ. Thus, we show in Figs. 7
and 8 the profile of this function, and also of the other
metric coefficient hðxÞ, where we have considered the
effect of several values of the gravitational coupling for
scalar potentials of types I and II, namely, with β ¼ 0.8 and
β ¼ 1.5. As one can see from the figures, the space-time
of the cosmic string becomes Minkowskian at distances
quite close to the string center and, for fixed gravitational
coupling, the slope of hðxÞ becomes smaller, and thus the
deficit angle greater, as β increases. As for AðxÞ, we see that
for values of the coupling β in the range studied, the
departure of this function with respect to the self-dual
regime AðxÞ ¼ 0 is rather small, and that AðxÞ decreases
monotonically from positive values to zero when β > 1,
whereas its performance is just the opposite for β < 1.
We have also computed the values of the energy per unit

length and the deficit angle for cosmic strings on the sphere
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in several cases, and we show the results in Tables I and II.
As we can see, for each fixed value of the coupling κ, μ and
Δϕ increase with β, a behavior that in the second case was
also clearly observed in the Figs. 7 and 8. Moreover, while
the deficit angle always increases as the gravitational
coupling grows, the energy per unit length increases or
decreases with κ depending on whether β > 1 or β < 1.
Finally, in Table III, we present the values of the energy

per unit length of non-self-dual vortices on the sphere with
κ ¼ 0 for several vorticities. We observe that for β > 1 the
energy of a vortex with vorticity n is higher than n times
the energy of the vortex of unit vorticity, while in the
case β < 1 we obtain the opposite behavior; see Fig. 9.

This confirms the character of superconductivity in this
system in the usual way: for β > 1, the forces between
vortices are repulsive and the superconductivity is of
type II, while forces are attractive for β < 1 giving rise
to type-I superconductivity.
When H0 ≠ 0, it is more difficult to make the shooting

converge properly at large distances, because in these cases
the fields approach their asymptotic values as inverse
powers of x instead of exponentially. Typically, by fixing
the parameters α1 and δ with a precision of nine decimal
digits, one obtains a solution which behaves correctly for x
up to around 10 or 12, but to extend the solution beyond
that range requires much more precision and computer
time. In general, the rates of convergence of the scalar and
gauge fields, and that of the metric tensor coefficient hðxÞ,
are quite satisfactory, while AðxÞ meets the expected
behavior at infinity much poorly. To palliate this problem,
the pure shooting method has to be supplemented by an
estimation of the fields at large distances. In fact, as one can
check using Eqs. (51) and (52), for β ≠ 1, the dominant
contributions to the fields at high x have the same form (45)
than in the self-dual case, and bearing this in mind we can

FIG. 8. The metric coefficients AðxÞ and hðxÞ for H0 ¼ 0, β ¼ 0.8 and several strengths of the gravitational interaction.

TABLE I. Energy per unit length normalized to 2π for H0 ¼ 0
and several values of β and κ.

Energy per unit length ð μ
2πÞ

κ 0 0.2 0.4 0.6 0.8 0.9
β ¼ 0.8 0.963 0.962 0.961 0.958 0.954 0.951
β ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000
β ¼ 1.5 1.071 1.072 1.075 1.081 1.092 1.100

TABLE II. Deficit angle normalized to 2π for H0 ¼ 0 and
several values of β and κ.

Deficit angle ðΔϕ
2π Þ

κ 0 0.2 0.4 0.6 0.8 0.9
β ¼ 0.8 0.000 0.038 0.154 0.345 0.611 0.770
β ¼ 1 0.000 0.040 0.160 0.360 0.640 0.810
β ¼ 1.5 0.000 0.043 0.172 0.389 0.699 0.891

TABLE III. Energy per unit length normalized to 2π for
vortices on the sphere of several vorticities without gravitational
coupling.

Energy per unit length ð μ
2πÞ

n 1 2 3 4
β ¼ 0.8 0.963 1.897 2.821 3.740
β ¼ 1 1.000 2.000 3.000 4.000
β ¼ 1.5 1.071 2.203 3.357 4.522

FIG. 7. The metric coefficients AðxÞ and hðxÞ for H0 ¼ 0, β ¼ 1.5 and several strengths of the gravitational interaction.
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approximate the component Tϕ
ϕ of the energy-momentum

tensor for large x as

Tϕ
ϕ ≃ −

1

2

C2n2

r2
x−2ðnrþ1Þ

at leading order. Using this result in Eq. (54), we obtain for
AðxÞ, also at leading order and far from the origin,

AðxÞ ≃ −
κ2C2n2

4nð2nþ rÞ x
−2n

r þ constant; ð56Þ

an expression that can be employed to extend the results
obtained by shooting to longer x when necessary. As
an example, we show in Fig. 10 the results of the
shooting method with α1 and δ adjusted to nine decimal
figures for the case n ¼ 1,H0 ¼ 0.3, β ¼ 1.2, and κ ¼ 0.6.
As we can see from the figure, the convergence of
fðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21ðxÞ þ f22ðxÞ

p
, aðxÞ, and hðxÞ is quite convinc-

ing, but AðxÞ does not attain so quickly its constant
asymptotic value: the blue part of the profile, obtained
by the shooting, shows still a slope of 0.00059, for an
absolute value of 0.0076, even when the fields have already

reached very close values to their vevs. This can be repaired
by means of (56), which has been used to draw the red part
of the graphic. Thus, while for small values of H0, we
expect a form of AðxÞ similar to those found for cosmic
strings on the sphere, when H0 is higher the pattern is
different: in the case at hand, AðxÞ begins decreasing near
x ¼ 0, but it arrives to a minimum for finite x and then
increases asymptotically toward zero, keeping constant
negative sign for all x. As some further examples of the
behavior of the system for H0 ≠ 0, we present several
results for the case H0 ¼ 0.3 in Tables IV and V. To obtain
the values shown in Table IV, we have taken into account
that (45) implies that Tt

tðxÞ ∝ x−
2n
r −2 at leading order for

large x. Thus, if we define μ̂ðyÞ ¼ −
R y
0 dxhðxÞTt

tðxÞ, we
can estimate

μ

2π
¼ μ̂ðyÞ þ 1

2
rμ̂0ðyÞy;

where for y we substitute the larger x value for which the
shooting method achieves a good convergence, and μ̂0ðyÞ is
the corresponding value of the integrand. In the case of
Table V, we use the known behaviors of Tt

tðxÞ and AðxÞ for

FIG. 9. Energy per unit length (left) and deficit angle (right) normalized to 2π as a function of κ and several values of β for the case
H0 ¼ 0.

FIG. 10. Profiles of aðxÞ, fðxÞ, hðxÞ, and AðxÞ for the case n ¼ 1, H0 ¼ 0.3, β ¼ 1.2, and κ ¼ 0.6.

TABLE IV. Energy per unit length normalized to 2π for several
values of β and κ for the case with H0 ¼ 0.3.

Energy per unit length ð μ
2πÞ

κ 0.0 0.2 0.3 0.4 0.5 0.6
β ¼ 0.8 0.974 0.974 0.975 0.977 0.980 0.984
β ¼ 1 1.000 1.000 1.000 1.000 1.000 1.000
β ¼ 1.2 1.037 1.037 1.040 1.042 1.047 1.055

TABLE V. Deficit angle normalized to 2π for several values of
β and κ for the case with H0 ¼ 0.3.

Deficit angle ðΔϕ
2π Þ

κ 0.0 0.2 0.3 0.4 0.5 0.6
β ¼ 0.8 0.000 0.039 0.087 0.156 0.243 0.352
β ¼ 1 0.000 0.04 0 0.090 0.160 0.250 0.360
β ¼ 1.2 0.000 0.042 0.094 0.167 0.263 0.382
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large x and Eq. (53) to approach h0ðxÞ ≃ r − ð2r − 1Þbx,
with some constant b, in that zone, and from this it follows
the estimate

Δϕ
2π

¼ 1 −
2h0ðyÞ

2 − h00ðyÞy ;

with the same y than before. At any rate, we find a similar
pattern than that described previously; see Fig. 11.
Let us finally comment on the issue of stability. Viewed

as solutions on the sphere, cosmic strings with H0 ¼ 0 are
stable by topological reasons, although for type II super-
conductivity those with n > 1 tend to break up into n ¼ 1
components due to repulsive forces. Their stability status,
however, is different when they are embedded in the full
CP2 model. For the standard semilocal model without
gravity, the analysis of the stability of Nielsen-Olesen
vortices (i.e., with ψ2 ¼ 0) of topological number n ¼ 1
was carried out in [27], and that paper offers also an
explanation of the results based on the following heuristic
argument. When we perturb a Nielsen-Olesen vortex add-
ing a non-null ψ2 component, new terms in the energy per
unit length appear; those coming from the covariant
derivatives are always positive, giving rise to an increase
in energy, but the presence of a ψ2 ≠ 0 component makes
the potential energy

Uðjψ jÞ ¼ λv4

2
ðjψ1j2 þ jψ2j2 − v2Þ2

to go down. If the coupling λ in the potential is great
enough, the effect of the potential prevails, the energy per
unit length decreases, and the Nielsen-Olesen solution turns
out to be unstable. On the other hand, when λ → 0, the
potential is very small and the most important contribution
comes from gradient energy, making the Nielsen-Olesen
solution stable. The boundary between both regimes is
precisely the self-dual limit λ ¼ e2, because in this case we
know from the Bogomolny analysis that H0 is a modulus
and the energy is the same for ψ2 null or different from
zero: all vortices are in neutral equilibrium by saturating
the lower bound μ ¼ 2πv2. In the CP2 model, the terms
coming from covariant derivatives are more complicated,
but the behavior of the potential energy (50) with regards to
the addition of a ψ2 component to the Nielsen-Olesen

solution is exactly the same than in the standard semilocal
case. Therefore, like there, the CP2 solutions with H0 ¼ 0
and high β have an unstable mode toward developing a
second scalar component, with the accompanying
dispersion of the magnetic flux. Also, like there, this
behavior has to cease when β ¼ 1 due to the saturation
of the Bogomolny bound. Thus, we expect that the self-
dual limit of the CP2 theory is again the borderline between
unstable and stable Nielsen-Olesen solutions for, respec-
tively, type II and type I superconductivity. This reasoning
does not depend on the presence or absence of gravity
and, in any case, the qualitative behavior without gravity
backreaction should still be valid for small gravitational
coupling. Although a complete justification of these
expectations requires a detailed analysis of the Hessian
spectrum, the results shown in Figs. 9 and 11 seem to point
in the correct direction. For instance, we can see in these
figures that the type I solution with β ¼ 0.8 and κ ¼ 0.6
displays a lower energy per unit length when H0 ¼ 0 than
for H0 ¼ 0.3, while in the case of the type II solution with
β ¼ 1.4 and the same κ the situation is the opposite.
At any event, it is stressed in [27] that the instability

of type II Nielsen-Olesen vortices does not preclude the
existence of some metastable semilocal vortex solution
with β > 1 in which the magnetic flux disperses throughout
some broad but finite core. From this perspective, a detailed
study of type II solutions with H0 ≠ 0 is interesting.

V. CHANGING CHARTS: A SECOND SPECIES
OF SEMILOCAL CP2 COSMIC STRINGS

In this section, we investigate cosmic strings living in a
second chart of the minimum atlas of CP2: the structure of
the cosmic string manifold in the third chart is identical to
the structure in the second chart, i.e., cosmic strings of the
second species live both in the second and third charts.
We choose the transition functions from the previous chart
Vψ to the new chart Vϕ in their intersection Vψ ∩ Vϕ as
follows:

ϕ1 ¼
v2

ψ�
1

; ϕ2 ¼ v
ψ�
2

ψ�
1

: ð57Þ

Note that we use in the definition of the transition function
the conjugates of the original fields. The reason is that we

FIG. 11. Energy per unit length (left) and deficit angle (right) normalized to 2π as a function of κ for several values of β withH0 ¼ 0.3.
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want the quanta to carry the same electric charge in all the
charts. The Kähler potential looks slightly different,

K ¼ 4v2
�
log

�
1þ jϕ1j2 þ jϕ2j2

v2

�
− log

ϕ1ϕ
�
1

v2

�
;

but gives a Kähler metric formally identical to that in Vψ ,

h11̄ ¼
4

D̃
−
4jϕ1j2
v2D̃2

h12̄ ¼ −
4ϕ�

1ϕ2

v2D̃2

h21̄ ¼ −
4ϕ�

2ϕ1

v2D̃2
h22̄ ¼

4

D̃
−
4jϕ2j2
v2D̃2

;

where D̃ ¼ 1þ jϕ1j2þjϕ2j2
v2 . The vacuum orbit, however,

changes from S3 to the three-dimensional solid torus
D2 × S1, the direct product of the 2D disk times a circle,

jψ ðvÞ
1 j2 þ jψ ðvÞ

2 j2 ¼ v2 ⇒ jϕðvÞ
1 j2 − jϕðvÞ

2 j2 ¼ v2:

The explanation of this statement is clear if we write the
algebraic equation defining the vacuum orbit in the form

jaj2 − jbj2 ¼ 1 where a ¼ ϕðvÞ
1

jvj and b ¼ ϕðvÞ
2

jvj . A point in the

solid torus corresponds thus to ðba ; a
jajÞ since b

a parametrizes

the open disk D2. The closure of D2 is achieved adding the
infinity points jaj ¼ ∞, jbj ¼ ∞. It is of note that the solid
torus is homeomorphic to the SUð1; 1Þ Lie group formed
by the set of matrices M ¼ ð ab� b

a�Þ.
As a consequence, the G ¼ Uð1Þgauge × SUð2Þglobal

symmetry exhibited in the reference chart

�
ψ1

ψ2

�
→ eieχðxÞ

�
ψ1

ψ2

�
;

�
ψ1

ψ2

�
→ ei

P
3

a¼1
αa

σa
2

�
ψ1

ψ2

�
;

where σa are the Pauli matrices and αa the parameters
of the SUð2Þ group, collapses to the subgroup
Uð1Þgauge ×Uð1Þglobal,

�
ϕ1

ϕ2

�
→

�
eieχðxÞϕ1

ϕ2

�
;

�
ϕ1

ϕ2

�
→ eiα3

σ3

2

�
ϕ1

ϕ2

�

in the new chart, whereas the Uð1Þgauge subgroup only acts
on the ϕ1 scalar field. Note that this Uð1Þglobal is also the

subgroup ðeiα3
0

0
e−iα3Þ of SUð1; 1Þ.

Regarding the covariant derivatives, in the second chart
they are related with their counterparts in the reference
chart as follows:

Dμψ1 ¼ −
v2

ϕ�2
1

ð∂μϕ
�
1 þ ieAμϕ

�
1Þ;

Dμψ2 ¼ −
vϕ�

2

ϕ�2
1

ð∂μϕ
�
1 þ ieAμϕ

�
1Þ þ

v
ϕ�
1

∂μϕ
�
2:

We observe again that the field ϕ2, coupled to the gauge
field only from the Kähler potential, is neutral. The
transition functions neatly show that ϕ2 is invariant with
respect toUð1Þ gauge transformations. ϕ1, however, carries
charge e, compelling us to define the covariant derivatives,
separately for ϕ1 and ϕ2, in the compact form

Dμϕp ¼ ∂μϕp − ieNpAμϕp; p ¼ 1; 2;

N1 ¼ þ1; N2 ¼ 0: ð58Þ

Armed with this tool, we write the action in identical form
in the Vϕ-chart to the action in the Vψ -chart introducing a
new superpotential to be adjusted by requiring self-duality,

S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p
L;

L ¼ −
1

4
Eðjϕ1j; jϕ2; jÞFμνFμν −

1

2
hpq̄ðϕ;ϕ�ÞDμϕpDμϕ�

q

−
1

2
W̃2ðϕ;ϕ�Þ; ð59Þ

where ϕ ¼ ðϕ1;ϕ2Þ. Now all the steps starting in for-
mula (2) and ending in formula (26) are almost identical
with some minor differences, e.g., in the behavior of the ϕ2

field. We skip to repeat all this stuff here, but remark that
there is an important novelty: the function PðψÞ reduces in
the new chart to

P̃ðjϕ1j; jϕ2jÞ ¼ 2
jϕ1j2
D̃

;

because ϕ2 is neutral. Therefore, self-duality is possible if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðjϕ1j; jϕ2jÞ

p
W̃ðjϕ1j; jϕ2jÞ ¼ eðP̃ðjϕ1j; jϕ2jÞ − v2Þ

⇒ Ũðjϕ1j; jϕ2jÞ ¼
e2v4

2Eðjϕ1j; jϕ2jÞ
� jϕ1j2 − jϕ2j2 − v2

jϕ1j2 þ jϕ2j2 þ v2

�
2

:

ð60Þ

Thus, we see that self-duality and the change of charts
work consistently and, in fact, the potential (60) might
be also directly computed applying the transition function
to the self-dual potential working in the Vψ reference
chart. Then, one easily derives the self-duality first-order
equations,

F12 ¼ � ev2
ffiffiffi
γ

p
Eðjϕ1j; jϕ2jÞ

� jϕ1j2 − jϕ2j2 − v2

jϕ1j2 þ jϕ2j2 þ v2

�
; ð61Þ
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D1ϕp � i
ffiffiffi
γ

p
D2ϕp ¼ 0; p ¼ 1; 2: ð62Þ

We omit that calculation, but the proof that the solutions
of (61) and (62) have null the planar components of the
energy momentum tensor, Tij ¼ 0, runs in parallel to the
same demonstration for self-dual cosmic strings of the first
species. Finally, we must solve together with (61) and (62)
the Einstein equation

RðγÞ ¼ 16πGTtt: ð63Þ

As it is described in the subsection 3.3 for the reference
chart, Eq. (62) in the conformal gauge, γij ¼ e−4Ṽðx1;x2Þδij,
becomes D1ϕp �D2ϕp ¼ 0, i.e., is identical to the akin
equations in the Euclidean plane ∂̄Aϕp ¼ 0. Therefore, for
the field ϕ2ðx1; x2Þ, (62) is the Cauchy-Riemann equation
in this conformal gauge. The ϕ2-solutions are accordingly
holomorphic/antiholomorphic functions ϕ2 ¼ fðx1 � ix2Þ.
Together with the finite energy conditions, we shall keep
only constant functions as bona fide solutions. The
boundary condition limz→þ∞ ϕ2ðzÞ ¼ w2 ∈ C then sets
ϕ2ðzÞ ¼ w2 as the solutions throughout the whole plane.
To reach the vacuum orbit at infinity, the limit of the other
field at the boundary limz→þ∞ ϕ1ðzÞ ¼ w1 ∈ C is forced to
satisfy the equation jw1j2 − jw2j2 ¼ v2. We stress that
the string tension of self-dual solutions in this chart is
also μ ¼ 2πjnjv2 like the tension of cosmic strings in the
reference chart. The tension of this species of cosmic
strings fits with the tension of nongravitating strings in the
analogous chart described in [23] if we identify v2 ¼ ρ2

where ρ is the parameter introduced in [23].
The vortex equation (61) may be rewritten à la Jaffe-

Taubes [42],

△ log jϕ1j ¼ e2v2e−4Ṽ
jϕ1ðz; z̄Þj2 − jw2j2 − v2

jϕ1ðz; z̄Þj2 þ jw2j2 þ v2

þ 2π
Xn
s¼1

δð2Þðz − zsÞ: ð64Þ

The dimension of the moduli space of solutions of Eq. (64)
is 2nþ 2 due to the freedom of moving the centers of the
cosmic strings zs and the freedom of choosing a point in

D2 × S1 by changing w2. In particular, the choice ϕ
ðvÞ
1 ¼ v,

ϕðvÞ
2 ¼ 0 selects as the self-dual cosmic strings in this chart

identical solutions to the self-dual cosmic strings in the
CP1-sigma model.
It remains to solve the Einstein equation (63). In the

conformal gauge, this equation becomes

△

�
Ṽ − 4πGv2

�
log D̃ −

1

2
log

jϕ1ðz; z̄Þj2Q
n
s¼1 jz − zsj2

��
¼ 0: ð65Þ

Therefore, the quantity between brackets is harmonic and
the solution for the metric is

Ṽðz; z̄Þ ¼ 4πGv2
�
log

v2 þ jϕ1ðz; z̄Þj2 þ jw2j2
v2

−
1

2
log

jϕ1ðz; z̄Þj2Q
n
s¼1 jz − zsj2

�
þ constant: ð66Þ

The search for cylindrically symmetric cosmic strings of
the second species proceeds along similar lines to the task
performed on the first species. Thus, we stop here to avoid
unnecessary repetitions. Nevertheless, we emphasize the
main features of this second species of self-dual cosmic
strings which are as follows:
(1) Like the cosmic strings of the first species, the

cosmic strings of the second species are concen-
trated in the plane perpendicular to the string.
Contrarily to the first species, they take values in
the subset of Vϕ, instead of Vψ , comprised between
the point (ϕ1 ¼ 0, ϕ2 ¼ w2) and the vacuum orbit
D2 × S1. This is a region of CP2 disjoint to the
region in which cosmic strings of the first species
are evaluated. In particular, if w2 ¼ 0, the cosmic
strings are mapped into the spherical cap of CP1

complementary to the spherical cap in Vψ where the
cosmic strings of the first species live.

(2) Solutions of both species can be described using any
chart. Nevertheless, at the center of a cosmic string
of the first species ψ1 ¼ 0, so that ϕ1 ¼ ∞ and the
string looks as a singular configuration from the
point of view of Vϕ. The same is true for the second
species as seen from the reference chart. Thus, the
most natural treatment is to use Vψ and Vϕ for,
respectively, first and second species.

(3) Since there is a potential energy for CP2 fields,
solutions taking values in different bounded regions
of CP2 come from different effective dynamics,
which can therefore lead to different physical prop-
erties. Nevertheless, cosmic strings of both species
have in our model the same energy per unit length.

(4) One might think of a configuration encompassing a
cosmic string of the first species plus another string
of the second species, both of vorticity n. Since
the total string tension adds to 4πjnjv2 and this is
precisely the degree of a map from S2 to CPN that
characterizes the CPN-instantons, this combination
of two strings of different species could be inter-
preted as a partonic (or meronic) structure of the
instanton. A caveat: even BPS vortices suffer a low-
energy dynamics, see, e.g., [43] and references
quoted therein. Thus, the double cosmic string
configuration is not solution of the static field
equations. Only in the limit G ¼ 0, e2 ¼ 0 the
instanton partonic structure can survive.
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VI. FINAL COMMENTS

The main theme of this investigation has been the cosmic
strings, type I, type II, and self-dual, existing in Abelian
gauged nonlinear CP2-sigma model coupled to gravity.
Thus, we address a concrete case in the general framework
of research about topological defects in gravitational
scenarios. This is a fertile subject with many branches,
some more theoretical, see, e.g., a former work [44]
centered around kinks interacting with the gravitational
field created by themselves in Jackiw-Teitelboim (1þ 1)-
dimensional pseudo-Riemannian universes, and some more
directly connected to realistic cosmological problems, like
in the present case. Namely, we have studied topological
defects and the gravitational fields created by them in
the context of Abelian gauged nonlinear sigma models
coupled to Einstein gravity in (3þ 1)-dimensional pseudo-
Riemannian universes.
A first remark about the construction of the cosmic

strings achieved in this work is the observation that trading
the target manifold CP2 by CPN the same structure arises.
There is a first species of cosmic strings living in the
reference chart, but identical cosmic strings of the second
species appear in the remaining N charts that, together with
the reference chart, form a minimum atlas of CPN .
It is also of note that, in comparison with the non-

gravitating solitonic strings of Ref. [23], here the parameter
space is reduced for simplicity. From ρ, the radius of
the sphere which determines the Fubini-Study metric, and
a, which sets the scale of the gauge symmetry breaking,

in [23], in this work there is a reduction to a single
parameter v which determines both the Kähler metric
and the vacuum expectation value of the scalar fields.
As a consequence, the differences between the cosmic
strings of the two species are less evident, but the parameter
space used in [23] could be easily translated to the
gravitating case dealt with in the present work.
Another possible route to extend this work is the choice

of more general dielectric functions. In Ref. [45], Bazeia
et al. proposed an interesting family of dielectric functions
susceptible of supporting self-dual topological vortices in
shrewd generalizations of the Abelian Higgs model. The
main novelty is the existence of vacuum orbits formed by
several connected components. The challenge is to promote
these structures to nonlinear gauged sigma models coupled
to gravity.
Finally, we comment about the possibility of introducing

another Kähler metrics different from the Fubini-Study
metric. The existence of self-dual cosmic strings when the
target manifold is endowed with general Kähler metrics is
to be expected because these metrics permit the extension
of Abelian gauged nonlinear sigma models to their N ¼ 2
supersymmetric partners [46].
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