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We consider quantum phase transitions with global symmetry breakings that result in the formation of
topological defects. We evaluate the number densities of kinks, vortices, and monopoles that are produced
in d ¼ 1, 2, 3 spatial dimensions, respectively, and find that they scale as t−d=2 and evolve toward attractor
solutions that are independent of the quench timescale. For d ¼ 1 our results apply in the region of
parameters λτ=m ≪ 1 where λ is the quartic self-interaction of the order parameter, τ is the quench
timescale, and m is the mass parameter.
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I. INTRODUCTION

The formation of topological defects during a quantum
phase transition is a novel process in which the quantum
vacuum spontaneously breaks up into classical objects.
In a thermal phase transition, the formation of defects is
also a transition from a collection of particles above the
critical temperature to a collection of a complex of particles
(defects) and new excitations at low temperatures. It is no
surprise that there has been so much theoretical and
experimental [1–23] interest in understanding details of
defect formation.
The number density of defects formed during a phase

transition is sensitive to the rates at which external
parameters are changed to pass through the phase tran-
sition. The leading theoretical framework for estimating the
number density of defects is the “Kibble-Zurek” analysis
[1–6]. Numerical simulations have further strengthened the
model [24–30]. However, predictions of the Kibble-Zurek
model have not yet gained universal confirmation, with
most experiments in systems involving 4He, liquid crystals,
superconductors, superfluids in agreement [9–23] and
others in disagreement [11,18,31] with the predictions.
In particular, the appearance of vortices in 4He was claimed
in [13] but was retracted in [11] since it was found that the
vortices in the former case were an externally induced
artifact. Overall, the analysis of the phenomenon of defect
formation in various systems is an ongoing field of research
and has broad implications.

In the present work we follow our analysis of [32] and
solve for the number density of defects (kinks, vortices, and
monopoles) formed during a quantum phase transition. The
analysis is rigorous and without recourse to approximation
but the quantum field theory models we consider are “free,”
the only interaction being with external parameters that
drive the phase transition. These models provide us with
zeroth order solvable problems in different dimensions that
we fully analyze. Even with these minimal interactions,
the analysis is highly nontrivial and in part has to be done
numerically. We discuss how other interactions may be
included in the analysis using perturbation theory and
under what conditions we expect the zeroth order approxi-
mation to be accurate.
We are generally interested in Poincaré invariant field-

theoretic models in dþ 1 spacetime dimensions, featuring
an internal (global)OðdÞ symmetry which is spontaneously
broken during a quantum phase transition. In particular,
we will be considering d real scalar fields Φ1;…;Φd

assembled in an OðdÞ-multiplet Φ≡ ðΦ1;…;ΦdÞT whose
dynamics are given by the Lagrangian density1

LðdÞ ¼ 1

2
∂μΦT∂μΦ − VβðΦTΦÞ: ð1Þ

Here the potential Vβ is OðdÞ invariant and depends on a
(possibly time-dependent) external parameter β. We assume
that Vβ is such that the vacuummanifold isOðdÞ symmetric
for β < 0 and Oðd − 1Þ symmetric for β > 0. In other
words, as the parameter β increases from negative to
positive values, the system transitions from a higher
symmetry phase to a lower symmetry one, and the averagePublished by the American Physical Society under the terms of
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1In this paper we use a mostly plus signature for the
Minkowski metric and natural units, ℏ ¼ c ¼ 1.
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vacuum field configuration starts exhibiting topological
defects. These defects then annihilate with one another
and eventually disappear. It is precisely this dynamics of
formation and annihilation of topological defects that we
are concerned with in this paper. In fact, our main purpose
will be to determine the number density of topological
defects as a function of time and its dependence on the
external parameter β, using a combination of analytical and
numerical methods.
For concreteness we will take β to be the (time-

dependent) mass squared of the field, so that

VβðΦTΦÞ ¼ 1

2
m2ðtÞΦTΦþ λ

4
ðΦTΦÞ2; ð2Þ

where

m2ðtÞ ¼ −m2 tanh

�
t
τ

�
; ð3Þ

and λ,m, τ are positive parameters. In particular, the quench
parameter τ is a timescale quantifying the rate of change of
the potential during the phase transition. It is clear that for
t ≪ −τ, the vacuum manifold reduces to the null field
configuration Φ ¼ 0 and is therefore OðdÞ symmetric,
while for t ≫ τ it includes all field configurations on the
Oðd − 1Þ-symmetric hypersphere given by

λΦTΦ ¼ m2: ð4Þ

In Fig. 1 we sketch the potential (2) at a few different times.
It is well known that these models have topological

defects—kinks (d ¼ 1) in one spatial dimension, vortices
(d ¼ 2) in two spatial dimensions, and monopoles (d ¼ 3)
in three spatial dimensions [33]. In each of these cases the
vacuum manifold described by (4) has nontrivial topology:
for d ¼ 1 it is 2 points, for d ¼ 2 it is a circle, and for d ¼ 3
it is a two-sphere. The defect locations are described by
zeros of Φ even in the symmetry broken phase. The zeros

are trapped due to the nontrivial topology of the vacuum
manifold. We realize that the topology persists even if we
set λ ¼ 0 and the problem of defect formation simplifies.
Then the λ ¼ 0 problem can be thought of as the zeroth
order problem. We discuss the λ ≠ 0 problem for d ¼ 1 in
greater detail in Sec. V where we find that λ dependent
corrections are small if λτ=m ≪ 1.
The overall strategy will be to regulate both the IR and

the UV behaviors of the field theory by working in a finite
box of size Ld (with periodic boundary conditions) and
discretize space on a Nd point lattice (with lattice spacing
a ¼ L=N). Then we can determine an exact expression for
the field probability density functional as a function of a
finite number of quantities that can be computed numeri-
cally. We then find the average expectation value of a
judiciously constructed quantum operator that counts the
number density of zeros of the field multipletΦ in the limit
of the finite resolution imposed by the lattice. We finally
take both the continuum limit N → ∞, a → 0, and the
infinite volume limit, L → ∞ (in this exact order), to
recover the full field theory result. Up to spurious zeros
due to vacuum fluctuations that can consistently be dis-
carded, this accurately gives the number density of topo-
logical defects. The case of a sudden phase transition
(τ ¼ 0) can be treated analytically but the general case will
be treated numerically.
It should be mentioned that the so-called spinodal

decomposition—where one phase evolves into domains of
other phases in the absence of phase barriers—during
quantum phase transitions has been the subject of extensive
work in the literature [34–41]. These studies were in the
context of the Ginzburg-Landau model and in a more general
field theoretic context but were limited to instantaneous
quenches [35–37,41,42]. Our purely quantum approach
applies to noninstantaneous quenches and is readily general-
izable to the case of d-dimensional global topological
defects. The present work aims to describe it in an
elementary and self-contained manner. We find, for different
quench timescales τ, the behavior of the average defect
number density. We observe that defects start being pro-
duced immediately after the phase transition and their
number density reaches a maximum within a short time,
after which they start annihilating with each other and their
number density goes down. The efficiency of topological
defect production is found to depend on the details of the
phase transition. Indeed the defect number density increases
faster and to higher maximum values as τ decreases and the
phase transition becomes more sudden. On the contrary, the
late-time mutual annihilation of topological defects exhibits
universal characteristics. After a transient regime, the num-
ber density of defects decays as a power law t−d=2 with a
coefficient that only depends on the spatial dimension d and
not on τ. Hence the τ ¼ 0 result is an attractor for the
dynamics of defect formation and subsequent decay for a
large class of quantum phase transitions. Our comprehensive

FIG. 1. Snapshots of the d ¼ 1 potential at a few different
times. The plots have been shifted vertically for clarity.
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analysis thus provides a unifying picture of defect formation
and decay during noninstantaneous quenches and fills a gap
in the literature. We are, however, limited to the regime
where the λ ¼ 0 approximation holds, and we discuss this
limitation in some detail in Sec. V.
The paper is structured as follows. In Secs. II and III we

fully describe the average dynamics of kink (d ¼ 1) and
vortex (d ¼ 2) condensation, respectively. In Sec. IV we
extend these results to three and higher dimensions. In
Sec. V we discuss how the previous results constitute only
the zeroth order approximation in a perturbative expansion
in λ and estimate the next-order corrections. We end in
Sec. VI by emphasizing the importance of our results and
contrasting them with previous work done on the subject.

II. ONE DIMENSION: KINKS

One of the challenges in finding the number density of
kinks is to first define a kink in the quantum field theory
given by (1) with d ¼ 1, where we denote the single-
component scalar field Φ by ϕ. This can be done using
the Mandelstam “kink operator” [43], which is a two-
component fermionic operator, χ̂. A key property of χ̂ is
that it satisfies the equal time commutation relations,

½ϕ̂ðt; yÞ; χ̂ðt; xÞ� ¼
�
ηχ̂ðt; xÞ; y < x;

0; y > x;
ð5Þ

where η is a real number. If jsi is an eigenstate of ϕ̂ðt; yÞ
such that ϕ̂jsi ¼ 0 (for all y), then we find that the state
js0i≡ χ̂ðt; xÞjsi satisfies

ϕ̂ðt; yÞjs0i ¼
�
ηjs0i; y < x;

0; y > x:
ð6Þ

Hence the operator χ̂ has created a step in the value of ϕ at x
by an amount η. If ϕ ¼ 0 and ϕ ¼ η are two possible
vacuum expectation values of ϕ, χ̂ would have created a
kink that interpolates between two vacua. The number
density of χ quanta would then correspond to the number
density of kinks.
Unfortunately the relation between χ and ϕ is quite

complicated—χ involves exponentials of ϕ and _ϕ and other
quantum field theory subtleties—and we do not have a
clear way to utilize the Mandelstam operator. Instead, we
find it useful to work entirely with the ϕ field, simply
defining the kink to be a jump in the value of ϕ as further
discussed in Sec. II B. Our definition of the kink operator is
also helpful in the case of vortices and monopoles for
d ¼ 2, 3 as these objects correspond to intersections of
domain walls, i.e., kinks extended to higher dimensions.

A. Setup and quantization

We start by treating the d ¼ 1 case in detail. The relevant
Lagrangian density for the real scalar field ϕ is thus

Lð1Þ ¼ 1

2
ð∂μϕÞ2 −

1

2
m2ðtÞϕ2 −

λ

4
ϕ4: ð7Þ

Clearly, for t < 0 the model has a unique vacuum ϕ ¼ 0

while for t > 0 it has two degenerate vacua at ϕ ¼ �m=
ffiffiffi
λ

p
corresponding to the two minima of the double-well
potential. It is well known that in the t ≫ τ limit [where
m2ðtÞ ≈ −m2], there exist static classical kink and antikink
solutions given by

ϕ�ðxÞ ¼ � mffiffiffi
λ

p tanh

�
mxffiffiffi
2

p
�
: ð8Þ

These solutions are nonperturbative and topologically
nontrivial: they interpolate between the two vacua over a
spatial scale ∼1=m. Of course, Poincaré invariance allows
the construction of displaced or even “dynamical” kinks
from the above solutions but, whatever the frame, they will
always be characterized by their topological charge

q ¼
Z

∞

−∞
dx ∂xϕ ¼ ϕð∞Þ − ϕð−∞Þ: ð9Þ

In fact, a kink always has a positive topological charge
since the field undergoes a negative to positive sign change,
while an antikink has the exact opposite property.
Multikink and antikink solutions can be constructed as

well, but these will not be static anymore since the kinks
and antikinks will attract each other and they will even-
tually annihilate. If separations are large and the different
kinks and antikinks are initially at rest, such configurations
will, however, be approximately static. Even though the
topological charge of such field configurations does not
inform us about the number of kinks or antikinks involved
(since the topological charge is a binary valued quantity),
one can, however, in principle recognize the presence of
individual kinks and antikinks in a given field configuration
by focusing on the points where the field changes sign: a
negative-to-positive sign change will be identified as a kink
while a positive-to-negative one will be identified as an
antikink. Of course, this is only part of the picture because
not every sign change should be counted as a kink or
antikink especially if it occurs on time and distance scales
shorter than the characteristic width of 1=m. We will
discuss this subtlety in Sec. II B.
We are interested in the production of kinks during a

quantum phase transition and, in particular, in how their
average number density scales with time. As we have
discussed in Sec. I, we will first be analyzing the λ ¼ 0 case
and the Lagrangian density we will work with will thus be

Lð1Þ ¼ 1

2
ð∂μϕÞ2 −

1

2
m2ðtÞϕ2: ð10Þ

We now need to quantize this model. We start by
assuming that the volume (or length since d ¼ 1) of space
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is finite of size L and that the field obeys periodic boundary
conditions. (We can alternatively think of space as a circle
of length L.) We then discretize space on a lattice consisting
of N points separated by a distance a ¼ L=N. At each
lattice point xj ≡ ja, we define the discretized field
ϕj ≡ ϕðxjÞ, and the full Lagrangian of the discretized
theory reads

Lð1Þ
disc: ¼

a
2
_ϕT _ϕ −

a
2
ϕTΩ2ðtÞϕ; ð11Þ

where we have assembled the discretized fields in a column
vector ϕ≡ ðϕ1;…;ϕNÞT and the matrix Ω2 is defined by

½Ω2�jl ¼
8<
:

þ2=a2 þm2ðtÞ; j ¼ l

−1=a2; j ¼ l� 1 ðmod NÞ
0; otherwise:

ð12Þ

Introducing the canonically conjugate momentum fields,
πj ≡ a _ϕj, and assembling them in a column vector
π≡ ðπ1;…; πNÞT , we can promote both the ϕj’s and
πj’s to operators satisfying canonical commutation rela-
tions ½ϕ̂j; π̂l� ¼ iδjl. The quantum Hamiltonian of the
discretized theory [44] then reads

Ĥð1Þ
disc: ¼

1

2a
π̂T π̂ þ a

2
ϕ̂TΩ2ðtÞϕ̂; ð13Þ

where hats denote operator valued quantities. It is apparent
from (13) that the discretized theory describes the quantum
dynamics of a set of N quadratically coupled, simple
harmonic oscillators.
We are interested in how the (unique) quantum vacuum

before the phase transition [at a time t0 ≪ −τ when the
potential is upright and m2ðt0Þ ≈m2] is destabilized by
the quench and evolves into a more complicated state
featuring dynamical kinks and antikinks. To understand the
dynamics of this process we need to solve the functional
Schrödinger equation associated with (13),

i
∂Ψ
∂t ¼ −

1

2a
ΔΨþ a

2
ϕTΩ2ðtÞϕΨ; ð14Þ

where the wave functional Ψ½ϕ1;…;ϕN ; t� is such that jΨj2
gives the probability density of a given field configuration
at time t, and the Laplacian operator is defined by

Δ≡ ∂2

∂ϕ2
1

þ � � � þ ∂2

∂ϕ2
N
: ð15Þ

One can easily check that the wave functional for the
vacuum state at t ¼ t0 is

Ψðt0Þ ¼ N exp

�
−
a
2
ϕTΩ2ðt0Þ1=2ϕ

�
; ð16Þ

where

N ¼
�
a
π

�
N=4

det ðΩ2ðt0ÞÞ1=8; ð17Þ

and fractional powers of the positive-definite matrix
Ω2ðt0Þ are unambiguously defined in the standard way.
For instance, Ω1=2

2 ¼ ODiagðλ1=21 ;…; λ1=2N ÞOT , where O is
the orthogonal matrix diagonalizing Ω2 and λj are the
(positive) eigenvalues of Ω2. Given this initial condition,
the solution for the wave functional at time t will be
given by

ΨðtÞ ¼ N exp

�
−
1

2

Z
t

t0

dt0TrMðt0Þ þ ia
2
ϕTMðtÞϕ

�
; ð18Þ

where the N × N complex symmetric matrix MðtÞ verifies

_M þM2 þΩ2ðtÞ ¼ 0; ð19Þ

and Mðt0Þ ¼ iΩ2ðt0Þ1=2. Introducing the complex N × N
matrix ZðtÞ defined by

Z̈ þ Ω2ðtÞZ ¼ 0; ð20Þ

and

Zðt0Þ ¼ −
iffiffiffiffiffiffi
2a

p Ω2ðt0Þ−1=4; ð21Þ

_Zðt0Þ ¼
1ffiffiffiffiffiffi
2a

p Ω2ðt0Þ1=4; ð22Þ

we can write

M ¼ _ZZ−1: ð23Þ

Indeed, using (20), (21), and (22), it is easy to check
that this expression yields a symmetric matrix since
_ZZ−1 − ð _ZZ−1ÞT is a conserved quantity which vanishes
at time t0. We can now write the probability density
functional as

jΨðtÞj2 ¼ jN j2 exp
�
−
1

2

Z
t

t0

dt0TrðMðt0Þ þMðt0Þ†Þ

þ ia
2
ϕTðMðtÞ −MðtÞ†Þϕ

�
: ð24Þ

To simplify this expression we first use the fact that
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Z
t

t0

dt0TrðMðt0Þ þMðt0Þ†Þ ¼ TrðlogKÞjtt0 ; ð25Þ

where K ≡ ZZ† is a real positive definite symmetric
matrix; indeed, using (20), (21), and (22), it is easy to
check that ZZ† − Z�ZT is a conserved quantity that
vanishes at time t0. Next, we make use of another
conserved quantity

Z† _Z − _Z†Z ¼ i=a; ð26Þ

which can also be verified via (20), (21), and (22), to
show that

MðtÞ −MðtÞ† ¼ iK−1=a: ð27Þ

Finally, plugging (25) and (27) into (24) yields a simplified
(and manifestly normalized) expression for the probability
density functional

jΨðtÞj2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πKp Þ e

−ϕTK−1ϕ=2: ð28Þ

This expression [along with (20), (21), and (22)] contains
all the information that we will need in order to determine
the average number density of kinks in the lattice. Note that
K is a time-dependent matrix, whose time dependence is
given by that of the matrix Z.
Before going any further, we mention a separate inter-

pretation of the matrix Z. Working in the Heisenberg
picture with respect to time t0, we can define creation
and annihilation operators at time t0 by

âðt0Þ≡ 1ffiffiffiffiffiffi
2a

p ðΩ−1=4
2 π̂ðt0Þ − iaΩ1=4

2 ϕ̂ðt0ÞÞ; ð29Þ

â†ðt0Þ≡ 1ffiffiffiffiffiffi
2a

p ðΩ−1=4
2 π̂ðt0Þ þ iaΩ1=4

2 ϕ̂ðt0ÞÞ: ð30Þ

Notice that we have used column vector notation here but
that the dagger refers to the adjoint operation on the Hilbert
space only: it does not turn column vectors into row
vectors. Then we can expand the Heisenberg picture
discretized field operators at time t as follows:

ϕ̂ðtÞ ¼ ZðtÞ�âðt0Þ þ ZðtÞâ†ðt0Þ: ð31Þ

Equations (20), (21), and (22) ensure that the Heisenberg
equations as well as the proper initial conditions at t0 are
verified. Now it is easy to see that the matrixK is simply the
covariance matrix of the discretized field since, using (31),

h0jϕ̂jϕ̂lj0i ¼
XN
k¼1

Z�
jkZlk ¼ Klj: ð32Þ

Here the Heisenberg picture vacuum j0i is time indepen-
dent and defined by the wave functional (16).
In principle we now have all the ingredients needed to

discuss the quantum production of kinks during the phase
transition. Indeed, Eq. (28) along with the N2 complex
linear ordinary differential equations (20) fully determine
the quantum dynamics of the field configuration. However,
it turns out that not all components of the matrix Z are
relevant and we can reduce the number of differential
equations that need to be solved. It can be shown that the
matrix Z is circulant [45]; i.e., its matrix elements Zjl

depend only on j − l ðmod NÞ. We can therefore diago-
nalize it via the discrete Fourier transform:

Zjl ¼
1ffiffiffiffi
N

p
XN
n¼1

cnðtÞe−iðj−lÞ2πn=N: ð33Þ

This allows us to recast (20), (21), and (22) in terms of the
complex mode functions cnðtÞ thus obtaining

c̈n þ
�
4

a2
sin2
�
πn
N

�
þm2ðtÞ

�
cn ¼ 0; ð34Þ

and

cnðt0Þ ¼
−iffiffiffiffiffiffi
2L

p
�
4

a2
sin2
�
πn
N

�
þm2ðt0Þ

�
−1=4

; ð35Þ

_cnðt0Þ ¼
1ffiffiffiffiffiffi
2L

p
�
4

a2
sin2
�
πn
N

�
þm2ðt0Þ

�
1=4

: ð36Þ

Rewriting the dynamical equations in terms of mode
coefficients provides an enormous computational gain:
we now only have to solve N equations instead of N2.
Additionally, as we will shortly see, mode coefficients
are particularly well suited to discussing problems related
to the N → ∞ limit and divergences related to vacuum
fluctuations of the quantum field. We can achieve further
simplification by writing the mode functions in trigono-
metric form

cn ≡ ρneiθn ; ð37Þ

where ρn and θn are, respectively, the modulus and argu-
ment of the complex number cn, and making use of the
conserved quantity (26), which in this representation takes
the form of a conserved angular momentum,

ρ2n _θn ¼ 1=2L: ð38Þ

Then (34) reduces to a set ofN real (but nonlinear) ordinary
differential equations,
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ρ̈n þ
�
4

a2
sin2
�
πn
N

�
þm2ðtÞ

�
ρn ¼

1

4L2ρ3n
; ð39Þ

with initial conditions

ρnðt0Þ ¼
1ffiffiffiffiffiffi
2L

p
�
4

a2
sin2
�
πn
N

�
þm2ðt0Þ

�
−1=4

; ð40Þ

_ρnðt0Þ ¼ 0: ð41Þ

Even though working in terms of modes is computa-
tionally advantageous, kinks are configurations (field
zeros) in physical space. Thus we have to straddle the
two descriptions as in the following Sec. II B.

B. Average kink number density

We are now in a position to tackle the problem of
kink production during the phase transition. As mentioned
earlier, since kinks and antikinks occur at zeros of the field
configuration, we first introduce a quantum operator n̂Z
that gives the number density of zeros in a given field
configuration:

n̂Z ¼ nZðϕ̂Þ≡ 1

L

XN
j¼1

1

4
½sgnðϕ̂jÞ − sgnðϕ̂jþ1Þ�2

¼ N
2L

−
1

2L

XN
j¼1

sgnðϕ̂jϕ̂jþ1Þ: ð42Þ

More precisely, such an operator is sensitive to the number
of sign changes that occur between adjacent points on the
lattice. We should stress that this is only accurate up to the
finite resolution given by the lattice spacing a. It may, in
fact, undercount the number of zeros of the actual con-
tinuous field configuration (if there are multiple sign
changes within a lattice spacing). We expect, however,
that, as N becomes large enough, this operator will become
more and more accurate. This assumption is reasonable as
long as we can find a way to disregard high frequency
noiselike fluctuations due to the quantum vacuum thus
counting only “true” kinks and antikinks.
We now calculate the vacuum expectation value of this

operator or, in the Heisenberg picture

hn̂Zi≡ h0jn̂ZðtÞj0i: ð43Þ

Given that we know the probability density functional
explicitly for the Schrödinger picture time-dependent state
we can write

hn̂Zi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πKp Þ

Z
dNϕnZðϕÞe−ϕTK−1ϕ=2

¼ N
2L

−
1

2L

XN
j¼1

hsgnðϕ̂jϕ̂jþ1Þi; ð44Þ

where

hsgnðϕ̂jϕ̂jþ1Þi

≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πKÞp Z

dNϕsgnðϕjϕjþ1Þe−ϕTK−1ϕ=2: ð45Þ

Introducing the permutation (shift) matrix

Pij ¼
�
1; j ¼ iþ 1ðmod NÞ;
0; otherwise;

ð46Þ

and performing the change of variables ϕ → P1−jϕ, we can
rewrite (45) as

hsgnðϕ̂jϕ̂jþ1Þi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πKÞp Z

dNϕsgnðϕ1ϕ2Þe−ϕTPj−1K−1P1−jϕ=2:

ð47Þ

As mentioned earlier, Z is a circulant matrix and, con-
sequently, it has to be polynomial in P. Therefore, the
matrix K ¼ ZZ† is also circulant and K−1 is seen to
commute with P. This implies that

hsgnðϕ̂jϕ̂jþ1Þi ¼ hsgnðϕ̂1ϕ̂2Þi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πKÞp Z

dNϕsgnðϕ1ϕ2Þe−ϕTK−1ϕ=2;

ð48Þ

and the average number density of zeros simply reduces to

hn̂Zi ¼
N
2L

½1 − hsgnðϕ̂1ϕ̂2Þi�: ð49Þ

Let it be mentioned here that the circulant property of the
covariance matrix K is the mathematical counterpart of the
fact that the system has translational invariance (which is
maintained at a discretized level by our choice of periodic
boundary conditions). In other words, it is a consequence of
the fact that two-point correlation functions hϕðxÞϕðyÞi
depend only on the relative position jx − yj.
We now need to evaluate (48) more explicitly. We start

by writing
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hsgnðϕ̂1ϕ̂2Þi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πKÞp XIV
Q¼I

Z
Q
dϕ1dϕ2sgnðϕ1ϕ2Þ

×
Z

dϕ3 � � � dϕNe−ϕ
TK−1ϕ=2; ð50Þ

where the sum runs over the four quadrants in the ðϕ1;ϕ2Þ
plane (denoted by Roman numerals). We then decompose
K−1 into suitably sized blocks,

K−1 ¼ ðZZ†Þ−1 ¼
�

A B

BT C

�
; ð51Þ

where A and C are real symmetric matrices of respective
sizes 2×2 and ðN − 2Þ × ðN − 2Þ, while B is a 2 × ðN − 2Þ
real matrix, and introduce the notations χ ¼ ðϕ1;ϕ2ÞT ,
ξ ¼ ðϕ3;…;ϕNÞT . We also assume that C is invertible,
which will be true generically. This allows us to rewrite the
bilinear in the exponent in (50) as

ϕTK−1ϕ ¼ ðξ þ C−1BTχ ÞTCðξ þ C−1BTχ Þ
þ χ TðA − BC−1BTÞχ : ð52Þ

Using

Z
dN−2ξe−ðξþC−1BTχ ÞTCðξþC−1BTχ Þ=2 ¼ ð2πÞðN−2Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

detðCÞp ; ð53Þ

we can perform the Gaussian integral over ϕ3;…;ϕN and
obtain

hsgnðϕ̂1ϕ̂2Þi ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðKÞ detðCÞp

×
XIV
Q¼I

Z
Q
dϕ1dϕ2sgnðϕ1ϕ2Þ exp

×

�
−
1

2
ðϕ1;ϕ2ÞA0

�
ϕ1

ϕ2

��
; ð54Þ

where

A0 ≡ A − BC−1BT ð55Þ

is the so-called Schur complement of C. The leftover two-
dimensional quadrant integrals,

IQ ≡
Z
Q
dϕ1dϕ2sgnðϕ1ϕ2Þ exp

�
−
1

2
ðϕ1;ϕ2ÞA0

�
ϕ1

ϕ2

��
;

ð56Þ

can also be carried out. For the first quadrant, for example,
sgnðϕ1ϕ2Þ ¼ þ1 and we can write

II ¼
Z

∞

0

Z
∞

0

dϕ1dϕ2

× exp

�
−
1

2
ðA0

11ϕ
2
1 þ 2A0

12ϕ1ϕ2 þ A0
22ϕ

2
2Þ
�

¼
Z

∞

0

ds
Z

∞

0

ϕ2dϕ2

× exp

�
−
1

2
ðA0

11s
2 þ 2A0

12sþ A0
22Þϕ2

2

�

¼
Z

∞

0

ds
1

A0
11s

2 þ 2A0
12sþ A0

22

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0
11A

0
22 − A0

12

p �
π

2
− tan−1

�
A0
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A0
11A

0
22 − A0

12

p ��

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA0Þp �

π

2
− tan−1

�
A0
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðA0Þp ��
; ð57Þ

where in going from the first to the second line we used the
change of variables ϕ1 → sϕ2.
The integrals over the remaining three quadrants are

readily obtained from II as follows. To begin with, the
change of variables ϕ1→−ϕ1 and ϕ2 → −ϕ2 makes it clear
that IIII ¼ II , and III ¼ IIV . Furthermore, notice that the
change of variables ϕ1 → −ϕ1 (leaving ϕ2 unchanged) on
III has the same effect (up to an overall sign) as changing
A0
12 into −A0

12 in (57). We thus obtain

III ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðA0Þp �
π

2
þ tan−1

�
A0
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðA0Þp ��
; ð58Þ

and all the four integrals IQ appearing in (54) are accounted
for. We can achieve further simplification by taking
advantage of the properties of the matrix A0. In particular,
since

K−1 ¼
�
I BC−1

0 I

��
A0 0

0 C

��
I 0

C−1BT I

�
; ð59Þ

we have

detðK−1Þ ¼ 1

detðKÞ ¼ detðA0Þ detðCÞ ð60Þ

and (54) collapses to

hsgnðϕ̂1ϕ̂2Þi ¼ −
2

π
tan−1

�
A0
12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðA0Þp �
: ð61Þ

But we can go even further. Indeed, inverting (59),

K ¼
�

I 0

−C−1BT I

��
A0−1 0

0 C−1

��
I −BC−1

0 I

�
; ð62Þ
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shows that A0−1 coincides with the upper-left 2 × 2 block of
the matrix K. More explicitly we can write

A0−1 ¼
�
α β

β α

�
ð63Þ

where, using (33) and the reality of K,

α≡ K11 ¼
XN
n¼1

jcnj2; ð64Þ

β≡ K12 ¼
XN
n¼1

jcnj2 cosð2πn=NÞ: ð65Þ

Thus

A0 ¼ 1

α2 − β2

�
α −β
−β α

�
ð66Þ

and (61) becomes

hsgnðϕ̂1ϕ̂2Þi ¼
2

π
tan−1

�
βffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − β2
p �

¼ 2

π
sin−1

�
β

α

�
: ð67Þ

Finally we obtain the average number density of zeros

hn̂Zi ¼
N
2L

�
1 −

2

π
sin−1

�
β

α

��
: ð68Þ

Recall, however, that we are interested in the average
number density of kinks which may differ from the number
density of zeros as given in (68) because the latter includes
zeros due to vacuum fluctuations of the quantum field. The
difference between the two quantities is clearest long before
the phase transition, where the field is in its unique vacuum
and its expectation value vanishes everywhere on the
lattice. However, the field fluctuates about zero and there
is a nonzero average number density of zeros. This is to be
contrasted with the average number density of kinks which
should be exactly zero before the phase transition.
Moreover, the average number density of zeros is expected
to be highly sensitive to the number of lattice pointsN since
the finer the resolution, the more zeros can be identified.
This is again different for the average number density of
kinks which are supposed to be extended objects whose
separation is set by the correlation length of the field
fluctuations. We therefore need a systematic procedure to
eliminate the spurious zeros from the result in (68). One
way is to restrict the sums in (64) and (65) to those modes
cnðtÞ that are not oscillating [46], in other words, to indices
n verifying

ωðnÞ
2 ðtÞ≡ 4

a2
sin2
�
πn
N

�
þm2ðtÞ ≤ 0: ð69Þ

It is indeed the presence of such unstable modes that
allows for the production of the nonperturbative kink and
antikink solutions. Then the formula for the average
number density of kinks, nK , is obtained by restricting
the modes that enter (68), giving us

nK ¼ N
2L

�
1 −

2

π
sin−1

�
β̄

ᾱ

��
; ð70Þ

where now

ᾱ≡ X
ωðnÞ
2

≤0

jcnj2; ð71Þ

β̄≡ X
ωðnÞ
2

≤0

jcnj2 cosð2πn=NÞ: ð72Þ

These equations only apply for t ≥ 0 when the modes start
to become unstable. For t < 0, there are only fluctuating
modes, and we set nK ¼ 0. We will discuss the difference
between hn̂Zi and nK in Sec. II D.
After the phase transition and as long as the lattice

spacing a is small enough, a < 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijm2ðtÞj

p
for all times

t > 0, we can introduce ncðtÞ, the time-dependent critical
value of n that separates unstable modes from modes that
oscillate,

ncðtÞ≡
�
N
π
sin−1

�
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijm2ðtÞj

p
2

�	
; ð73Þ

where bc denotes the integer part function. Then
ncðtÞ < N=2 and (71) and (72) can be rewritten in a more
explicit way:

ᾱ≡ X
jnj≤ncðtÞ

jcnj2 ¼ jc0j2 þ 2
XncðtÞ
n¼1

jcnj2; ð74Þ

β̄≡ X
jnj≤ncðtÞ

jcnj2 cosð2πn=NÞ

¼ jc0j2 þ 2
XncðtÞ
n¼1

jcnj2 cosð2πn=NÞ: ð75Þ

Here we have identified c−n with cN−n for concision and
exploited the symmetry cN−n¼cn (valid for 1≤ n≤N−1),
which can be checked directly via (34), (35), (36). Since
the ratio β̄=ᾱ belongs to the interval [0, 1] one can also
rewrite (70) as
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nK ¼ N
πL

cos−1
�
β̄

ᾱ

�
: ð76Þ

Before diving into analytical and numerical estimates of
nK we need to discuss the continuum and infinite volume
limits of our discretized theory. We start with the con-
tinuum limit. Keeping L fixed, and noticing that, for all N,
ncðtÞ ≤ mL=4, we can safely take the N → ∞ limit in
expressions involving n=N. In particular,

ωðnÞ
2 ðtÞ ≈

�
2πn
L

�
2

þm2ðtÞ ð77Þ

and

ncðtÞ ≈
�
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijm2ðtÞj
p

2π

	
: ð78Þ

Then the expression for the ratio β̄=ᾱ reads

β̄

ᾱ
≈ 1 −

2π2

N2

P
ωðnÞ
2

ðtÞ≤0n
2jcnj2P

ωðnÞ
2

ðtÞ≤0jcnj2
: ð79Þ

Now, it is clear that this expression is of the form 1 − 2x2

with x ∈ ½0; 1�, and therefore we may use the identity

cos−1 ð1 − 2x2Þ ¼ 2 sin−1 x ð80Þ

to simplify (76) and obtain

nK ¼ 2N
πL

sin−1

0
B@π

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ωðnÞ
2

ðtÞ≤0n
2jcnj2P

ωðnÞ
2

ðtÞ≤0jcnj2

vuut
1
CA

¼ 2

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ωðnÞ
2

ðtÞ≤0n
2jcnj2P

ωðnÞ
2

ðtÞ≤0jcnj2

vuut : ð81Þ

This is the expression of the continuum limit (N → ∞)
average number density of kinks. The main property of this
expression is that it does not depend onN anymore. Indeed,
although the system’s dynamics is governed by an infinite
number of mode functions, only a finite number appears
in the formula; it is only those modes with n ≤ mL=2π
that trigger the instabilities required for the production of
kinks. This means that the result is stable in the UV limit
and does not depend on the resolution of our discretization.
Physically, the contribution of the vacuum fluctuations of
the quantum field has been discarded.
Let us now end this section by discussing the infinite

volume (or length since we are working in one spatial
dimension) limit L → ∞. This is readily done by noticing
that the finite size of the spatial dimension is responsible for
the discreteness of the wave vectors

kn ≡ 2πn
L

; ð82Þ

corresponding to different modes. As L increases, however,
these wave vectors become more and more numerous and
densely packed until they form a continuum spanning the
entire interval ½−m;m�. At this point, it is convenient to
switch notations and index any relevant quantities by kn
instead of just n. Then

ωðknÞ
2 ðtÞ ¼ k2n þm2ðtÞ ð83Þ

and

kcðtÞ≡ 2πncðtÞ
L

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2ðtÞj

p
: ð84Þ

The average kink number density can therefore be rewritten

nK ¼ 1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jknj≤kcðtÞk

2
njckn j2P

jknj≤kcðtÞjckn j2
s

: ð85Þ

In the L → ∞ limit the sums over kn become integrals over
k, so that

nK ≈
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR kcðtÞ
0 dkk2jckj2R kcðtÞ
0 dkjckj2

vuut : ð86Þ

Here we have tacitly introduced the infinite volume mode
functions ck verifying

c̈k þ ðk2 þm2ðtÞÞck ¼ 0; ð87Þ

and we used their k → −k symmetry properties. We now
have all the tools required to perform simple analytical
estimates of the average kink number density.

C. Analytical estimate

In the limit of a sudden phase transition (τ ¼ 0), we can
solve (34) exactly since m2ðtÞ ¼ −m2ΘðtÞ (where Θ is the
Heaviside function). In fact, one may then choose the initial
time to be t0 ¼ 0− and solve the differential equations

c̈n þ
�
4

a2
sin2
�
πn
N

�
−m2

�
cn ¼ 0; ð88Þ

with initial conditions

cnð0Þ ¼
−iffiffiffiffiffiffi
2L

p
�
4

a2
sin2
�
πn
N

�
þm2

�
−1=4

; ð89Þ

_cnð0Þ ¼
1ffiffiffiffiffiffi
2L

p
�
4

a2
sin2
�
πn
N

�
þm2

�
1=4

: ð90Þ
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Since the time dependence of the frequency has disappeared,
the above differential equations can be solved analytically.
This yields the unstable mode functions cnðtÞ involved in
the formula for the average number density of kinks (70),
i.e., those verifying jnj ≤ N sin−1ðma=2Þ=π. More precisely
we have

cnðtÞ ¼
−iffiffiffiffiffiffi
2L

p
�
4

a2
sin2
�
πn
N

�
þm2

�
−1=4

cosh ðκntÞ

þ 1ffiffiffiffiffiffi
2L

p
�
4

a2
sin2
�
πn
N

�
þm2

�
1=4 sinhðκntÞ

κn
; ð91Þ

where κn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4

a2 sin
2ðπnN Þ

q
. Taking first the continuum

limit N → ∞ while keeping L fixed we obtain, for
jnj ≤ mL=2π,

cknðtÞ ≈
−iffiffiffiffiffiffi
2L

p ðk2n þm2Þ−1=4 cosh
�
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − k2n

q �

þ 1ffiffiffiffiffiffi
2L

p ðk2n þm2Þ1=4
sinh



t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − k2n

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − k2n

p ; ð92Þ

where we labeled the mode functions by kn ¼ 2πn=L as
in the previous section. In the L → ∞ limit, the discrete
variable kn becomes continuous and we can write an
analytical formula for the average kink number density as
in (86):

nK ¼ 1

π

�Z
m

0

dk

�
k2ðm2 cosh ð2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − k2

p
Þ − k2Þ

ðm2 − k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
��1=2

×

�Z
m

0

dk

�
m2 cosh ð2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − k2

p
Þ − k2

ðm2 − k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
��−1=2

:

ð93Þ

With this expression in hand we can immediately estimate a
few important quantities. First of all, we can predict the late
time behavior of the average kink number density. Indeed,
for large t the integrals simplify considerably and it is easy to
see that they are dominated by values of k ≪ m. We can then
estimate (93) to be

nK ≈
1

π

�Rm
0 dkk2 exp ð−tk2=mÞR
m
0 dk exp ð−tk2=mÞ

�
1=2

≈
1

π

ffiffiffiffi
m
2t

r
: ð94Þ

Using Eq. (93), one can also estimate the maximum number
density of kinks that are produced after the phase transition.
In fact, taking a time derivative of (93), it is easy to convince
oneself that this maximum occurs at t ¼ 0þ, in other words,
immediately after the phase transition. Moreover, its value
can be computed exactly to be

nKð0Þ ¼
1

π

 R
m
0 dkk2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
R
m
0 dk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
!

1=2

¼ m
π

� ffiffiffi
2

p
− sinh−1ð1Þ

2 coth−1ð ffiffiffi
2

p Þ

�1=2

≈ 0.175m: ð95Þ

Both the power law for the asymptotic behavior of the
average kink number density and the maximum number of
kinks value will be numerically confirmed in the following
subsection. Our analytic results agree with previous work
on sudden phase transitions in thermal quenches studied in
[34,39,40,42] using different techniques.

D. Numerical results

We now discuss our numerical results for the time
evolution of nK for different values of the quench parameter
τ. In principle this involves solving the complex differential
equations (34) with initial conditions (35) and (36), for the
unstable mode functions cnðtÞ—those with jnj ≤ ncðtÞ. We
can then directly evaluate the average number density of
kinks using (70). However, since this formula only involves
jcnðtÞj ¼ ρnðtÞ, considerable computational gain can be
achieved by instead solving the real differential equa-
tions (39) with initial conditions (40) and (41).
It turns out that this system of ordinary differential

equations presents a major computational difficulty caused
by the fact that ρnðtÞ grows exponentially for jnj ≤ ncðtÞ.
Therefore the numerical evolution is limited to short time
periods after the phase transition beyond which the num-
bers involved become extremely large and results cannot be
trusted. One way to get around this problem is to factor out
the exponential growth, i.e., the zero mode ρ0ðtÞ ¼ ρNðtÞ,
from the other modes and evolve it separately. So we write

ρnðtÞ ¼ ρ0ðtÞrnðtÞ ð96Þ

for n ¼ 1;…; N − 1. With this redefinition it can be shown
that the differential equation (39) now becomes

̈rn þ 2
_ρ0
ρ0

_rn þ
�
ωðnÞ
2 − ωð0Þ

2 þ 1

4L2ρ40

�
1 −

1

r4n

��
rn ¼ 0;

ð97Þ

and its corresponding initial conditions are given by

rnðt0Þ ¼
1ffiffiffiffiffiffi
2L

p ωðnÞ
2 ðt0Þ−1=4
ρ0ðt0Þ

; ð98Þ

_rnðt0Þ ¼ 0: ð99Þ

Recall here that
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ωðnÞ
2 ¼ 4

a2
sin2
�
πn
N

�
þm2ðtÞ ð100Þ

and ωð0Þ
2 ¼ ωðNÞ

2 . Furthermore, one can also efficiently
solve for ρ0ðtÞ by introducing the auxiliary function
qðtÞ ¼ ln ρ0ðtÞ, verifying

q̈þ _q2 þ ωð0Þ
2 ¼ e−4q

4L2
ð101Þ

with initial conditions

qðt0Þ ¼ ln

�
1ffiffiffiffiffiffi
2L

p ðm2ðt0ÞÞ−1=4
�
;

_qðt0Þ ¼ 0: ð102Þ

By going to the qðtÞ variable we avoid the exponential
growth of ρ0ðtÞ. Thus, both the differential equation for
rnðtÞ (97) and its corresponding initial conditions can be
rewritten in terms of this auxiliary function:

r̈nþ2_q_rnþ
�
ωðnÞ
2 −ωð0Þ

2 þe−4q

4L2

�
1−

1

r4n

��
rn¼0 ð103Þ

with initial conditions

rnðt0Þ ¼
�
ωð0Þ
2 ðt0Þ

ωðnÞ
2 ðt0Þ

�1=4

;

_rnðt0Þ ¼ 0: ð104Þ

In summary, the numerically efficient way to study the
dynamics of kink formation in our model is to solve (101)
and (103) with respective initial conditions (102) and (104).
The computational problem we had is indeed resolved
since we managed to eliminate the exponential growth of
ρnðtÞ by suitable function redefinitions. The numerics can
now be trusted for much longer periods of time.
In our numerical work we work in units where m ¼ 1

and pick t0 ¼ −200. To get accurate results we choose
large L and N. Most of our results are for L ¼ 6400 and
N ¼ 12800. The evolution of the average number density
of kinks nK for different quench timescales τ is shown in
Fig. 2. The different curves exhibit the same qualitative
behavior: immediately after the phase transition (t ¼ 0) the
average number density of kinks increases from 0 to a
maximum value ðnKÞmax within a time tmax, and this is
followed by a gradual decrease that asymptotically con-
verges to a power law. Physically this corresponds to the
production of a random distribution of kinks and antikinks
during the phase transition, followed by their mutual
annihilation over time. Noticeably, the asymptotic behavior
of the average kink number density is independent of the
quench timescale: at late times the plots for different values

of τ converge to the same function that falls off as t−1=2.
[We have also cross-checked this result by computing the
correlation length ξðtÞ of field fluctuations and showing
that it scales as 1=nK ∼ t1=2, as expected from existing
results in the literature [35–37,39,40].] This scaling law
also agrees with the analytical estimate of Eq. (94) and
shows that the τ ¼ 0 solution is a universal attractor. To
analyze the rate at which the kink densities for different
values of τ converge, we plot ΔnKðt; τ1; τ2Þ≡ nKðt; τ1Þ −
nKðt; τ2Þ versus t in Fig. 3. We observe that at late times
these differences fall off as t−3=2. We can therefore
conclude that

nKðtÞ ¼ CK

ffiffiffiffi
m
t

r
þOðt−3=2Þ; ð105Þ

t 1/2

0 10 50 100 250 550 1050 t

0.010

0.050

0.100

nK

FIG. 2. Log-log plot of nK versus time for τ ¼ 0.1 (purple,
topmost curve), 0.5 (red curve), 1.0 (green curve), 5.0 (orange
curve), 10.0 (blue curve). The black dashed line shows the
exhibited power law at late times, i.e., t−1=2.

t 3/2

0 10 50 100 250 550 1050t
10 6

10 5

10 4

0.001

0.010

0.100

nK

FIG. 3. Log-log plot of the differences between the average
kink number density for different values of τ, nKðt; τ1 ¼ 0.1Þ −
nKðt; τ2Þ versus time for τ2 ¼ 0.5 (blue curve), 1.0 (red curve),
5.0 (purple curve), 10.0 (green curve). The black dashed line
shows the exhibited power law, i.e., t−3=2.
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where CK ≈ 0.22 is a constant of proportionality that is
independent of the quench timescale τ. This agrees well
with the analytical estimate found in Eq. (94): 1=ðπ ffiffiffi

2
p Þ≈

0.225.
We can explicitly check, as shown in Fig. 4, that our

results are independent of both L and N as long as they are
sufficiently large and a ¼ L=N is sufficiently small. In
Fig. 5 we have also plotted hn̂Zi and nK for different values
of N. Although the curves depend on N (or are UV
sensitive) near the phase transition, the late time behaviors
are universal. This is to be expected since unstable modes
grow exponentially and dominate the sums in (74) and (75).
Thus our technique of restricting the mode sums to
differentiate between field zeros and kinks is reasonable
and gets rid of the artifacts arising due to finite N.
The plots of ðnKÞmax versus τ and tmax versus τ are shown

in Fig. 6 and Fig. 7, respectively. From these we note that
the faster the phase transition (smaller quench time τ),
the more kinks and antikinks are produced and the faster
their maximum number density is attained. In Fig. 6 we
see that the maximum density of kinks ðnKÞmax flattens;

i.e., it becomes a constant as quench timescales approach
zero. The value of ðnKÞmax for which this happens is seen to
be approximately 0.175. This agrees remarkably well with
the analytical estimate in Eq. (95).

III. TWO DIMENSIONS: VORTICES

The analysis done in Sec. II can be generalized to the
d ¼ 2 case. We will be considering a two-dimensional
complex scalar field Φ whose dynamics are described by
the Lagrangian density

Lð2Þ ¼ 1

2
∂μΦ�∂μΦ −

1

2
m2

2ðtÞΦ�Φ −
1

4
λðΦ�ΦÞ2: ð106Þ

This theory is known to possess solitonic solutions called
vortices, characterized by a topological charge known as
the winding number. Assuming a vortex field configuration
Φðx; yÞ ¼ rðx; yÞeiθðx;yÞ ¼ ϕðx; yÞ þ iψðx; yÞ centered at a
point ðx0; y0Þ, the winding number is given by

L = 6400, N = 12800

L = 6400, N = 25600

L = 12800, N = 25600

0 10 50 100 350 t

0.02

0.05

0.10

nK

FIG. 4. Log-log plot of nKðtÞ versus time for τ ¼ 1.0 for
various values of L and N as given in (70).

nK with N = 12800

with N = 12800

with N = 25600

0.1 1 10 100 t0.01

0.05

0.10

0.50

1

FIG. 5. Log-log plot of nK and hn̂Zi versus time for τ ¼ 1.0,
L ¼ 6400, and various values of N.

0.33

0.1 0.5 1 5 10 50 100

0.050

0.075

0.100

0.125

0.150

0.175

(nK) max

FIG. 6. Log-log plot of the maximum average kink number
density ðnKÞmax versus τ. For larger values of τ the maximum
average kink number density falls off as τ−0.33.

0.34

0.1 0.5 1 5 10 50 100

0.5

1

2

5

t max

FIG. 7. Log-log plot of the time at which the maximum average
kink number density ðnKÞmax occurs (tmax) versus τ. For larger
values of τ, tmax grows as τ0.34.
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Γ ¼ 1

2π

I
C
dθ ¼ 1

2π

Z
C

1

r2
ðϕdψ − ψdϕÞ; ð107Þ

where C is any closed loop around ðx0; y0Þ. Generically a
nonzero winding number along a closed loop implies the
existence of a vortex configuration and the vanishing of the
field somewhere within the bounded region. Therefore, as
in the case of kinks, vortices are to be found among zeros
of Φ.
To study the production of vortices during the quantum

phase transition we will thus do a similar analysis to the one
we did for kinks. We start by setting λ to zero and express
the Lagrangian density in terms of the two real scalar fields
ϕ and ψ , respectively, defined as the real and imaginary
parts of the complex field Φ:

Lð2Þ ¼ 1

2
ð∂μϕÞ2 þ

1

2
ð∂μψÞ2 −

1

2
m2ðtÞðϕ2 þ ψ2Þ: ð108Þ

This is a model for two noninteracting real scalar fields
in two spatial dimensions. In order to apply the methods
outlined in Sec. II, we need to discretize this model. We
first compactify both spatial dimensions by assuming
periodic boundary conditions, ϕðxþL;yÞ¼ϕðx;yþLÞ¼
ϕðx;yÞ (and similarly for ψ). Space is thus seen to be
a 2-torus of area L2. We then discretize it on a regular
square lattice consisting of N2 points separated by a
distance a ¼ L=N along both the x and y directions.
Now for each lattice point ðxj; ylÞ≡ ðja; laÞ we can define
the discretized fields ϕjl ≡ ϕðxj; ylÞ and ψ jl ≡ ψðxj; ylÞ.
Writing the discretized Lagrangian and quantizing it
can be done analogously to the one-dimensional case,
with the understanding that any vectors and matrices are
now N2- and N2 × N2-dimensional, respectively. For
example, the vector of discretized field values of ϕ is
given by

ϕ≡ ðϕ11;ϕ12;…;ϕ1N;ϕ21;…;ϕ2N;…;ϕNN−1;ϕNNÞT:
ð109Þ

More generally, any N2 × N2 matrix A will be represented
by a two-dimensional array of matrix elements Aij;kl

arranged in the following way:

A¼

0
BBBBBBBBBBBBB@

A11;11 A11;12 �� � A11;1N A11;21 A11;22 � � �
A12;11 A12;12 �� � A12;1N A12;21 A12;22 � � �

..

. ..
. ..

. ..
. ..

.

A1N;11 A1N;12 �� � A1N;1N A1N;21 A1N;22 � � �
A21;11

A22;11

..

.

1
CCCCCCCCCCCCCA
:

With these conventions in mind (where matrices are four
index objects and vectors are two index objects), we can
directly generalize the computations in Sec. II A to solve
the functional Schrödinger equation for the wave-
functional are Ψ½ϕij;ψ ij; t�. In fact, we can define a new
N2 × N2 matrix Z obeying Eqs. (20), (21), and (22) as long
as the matrix elements of Ω2 are given by

½Ω2�ij;kl¼
8<
:
þ2=a2þm2ðtÞ; i¼k;j¼ l;

−1=a2; i¼k�1;j¼ l�1ðmodNÞ;
0; otherwise:

ð110Þ

It is then easy to write the probability density functional as
in Eq. (28),

jΨðtÞj2 ¼ 1

detð2πKÞ e
−ϕTK−1ϕ=2e−ψ

TK−1ψ=2: ð111Þ

where the matrix K is still related to Z via K ¼ ZZ†.
We can be even more explicit by realizing that the

matrix ZðtÞ is once again real and circulant, i.e., the matrix
elements of Z, Zpq;rs depend only on p − r (mod N) and
q − s (mod N). We can therefore again diagonalize Z using
the discrete Fourier transform:

Zpq;rs ¼
1

N

XN
n;n0¼1

cn;n0 ðtÞe−iðp−rÞ2πn=Ne−iðq−sÞ2πn0=N: ð112Þ

Using Eqs. (20), (21), and (22), the complex mode
functions cn;n0 ðtÞ verify

c̈n;n0 þ
�
4

a2

�
sin2
�
πn
N

�
þ sin2

�
πn0

N

��
þm2ðtÞ

�
cn;n0 ¼ 0;

ð113Þ

and

cn;n0 ðt0Þ ¼
−iffiffiffiffiffiffi
2a

p 1

N

�
4

a2

�
sin2
�
πn
N

�
þ sin2

�
πn0

N

��

þm2ðt0Þ
�
−1=4

; ð114Þ

_cn;n0 ðt0Þ ¼
1ffiffiffiffiffiffi
2a

p 1

N

�
4

a2

�
sin2
�
πn
N

�
þ sin2

�
πn0

N

��

þm2ðt0Þ
�
1=4

: ð115Þ

Note that cn;n0 ¼ cn0;n which immediately implies that
Zpq;rs ¼ Zqp;sr, and again we assume the initial time t0
to be such that t0 ≪ −τ. This follows from the rotational
symmetry of the system.
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A. Average vortex number density

To find the vortex number density, we first need a
quantum operator that counts the number of zeros nZ of the
complex field Φ (as in Sec. II B), or in other words,
coincident zeros of both the fields ϕ and ψ . Since space is
discretized, such an operator necessarily yields a coarse-
grained estimate of the actual number of zeros of a given
field configuration. As the number of lattice points N2

increases, so does the operator’s resolution: while certain
“zeros” cease to be counted, new ones are revealed. In the
limit where N → ∞ we expect divergences, just as in the
kink case, and we will return to this point later on.
We think of the vortex as the intersection of a domain

wall of ϕ—for our purposes, a domain wall is a curve on
which ϕ ¼ 0—with a domain wall of ψ . Then, as shown in
Fig. 8, there could be a situation where a ϕ domain wall
enters a plaquette through one edge and leaves through the
opposite edge, while a ψ domain wall passes through the
plaquette in the orthogonal direction. Then the two domain
walls must intersect, leading to coincident zeros that
correspond to a vortex within that plaquette. Other pos-
sibilities include the case where the ϕ wall enters the
plaquette from the lower edge but leaves from the right

edge in Fig. 8 while the ψ domain wall goes through as
shown or bends to exit from the top edge. It is ambiguous
whether a coincident zero exists in these other cases but the
ambiguity is minimized as the lattice resolution is increased
(N → ∞). Hence we can count zeros of Φ in the large N
limit by counting the plaquettes in which ϕ and ψ domain
walls enter across orthogonal edges.
Then, motivated by the discussion in Sec. II B, we can

define the number density of zeros of Φ by

n̂Z ¼ nZðϕ̂; ψ̂Þ≡ 1

L2

XN
i;j¼1

1

16
½fsgnðϕ̂ijÞ − sgnðϕ̂iþ1;jÞg2fsgnðψ̂ ijÞ − sgnðψ̂ i;jþ1Þg2 þ ðϕ ↔ ψÞ�

¼ 1

4L2

XN
i;j¼1

½f1 − sgnðϕ̂i;jϕ̂iþ1;jÞgf1 − sgnðψ̂ ijψ̂ i;jþ1Þg þ f1 − sgnðψ̂ ijψ̂ iþ1;jÞgf1 − sgnðϕ̂ijϕ̂i;jþ1Þg�: ð116Þ

We can now write down the vacuum expectation value of
the operator n̂Z: hn̂Zi≡ h0jn̂ZðtÞj0i. Using the fact that the
fields ϕ and ψ are independent and that, consequently, the
probability density functional factorizes as in Eq. (111), we
first notice that

hsgnðϕ̂ijϕ̂i;jþ1Þi

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πKÞp Z

dNϕsgnðϕijϕi;jþ1Þe−ϕTK−1ϕ=2:

ð117Þ

Then, using the fact that the matrix K−1 is circulant and,
moreover, symmetric under the interchange of its first (or
last) two indices—properties that are inherited from Z, we
can establish that

hsgnðϕ̂ijϕ̂i;jþ1Þi ¼ hsgnðϕ̂11ϕ̂12Þi
¼ hsgnðϕ̂11ϕ̂21Þi
¼ hsgnðϕ̂ijϕ̂iþ1;jÞi: ð118Þ

Physically, this set of equalities is a manifestation of the
translational and rotational invariance of the system. It is
also clear that, ϕ being a dummy variable in the integral
of Eq. (117),

hsgnðψ̂ ijψ̂klÞi ¼ hsgnðϕ̂ijϕ̂klÞi: ð119Þ

These properties thus allow us to write the average number
of zeros of the field in a very simple form:

hn̂Zi ¼
N2

2L2
½1 − hsgnðϕ̂11ϕ̂12Þi�2: ð120Þ

From this point on, the computation of the average
number of zeros follows along the same lines as in Sec. II,
and we obtain

hn̂Zi ¼
N2

2L2

�
1 −

2

π
sin−1

�
β

α

��
2

; ð121Þ

where α and β are now defined as

FIG. 8. A plaquette showing how zeros are counted.
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α≡ K11;11 ¼
XN
n;n0¼1

jcn;n0 j2; ð122Þ

β≡ K11;12 ¼
XN
n;n0¼1

jcn;n0 j2 cosð2πn0=NÞ: ð123Þ

Here, once again, we have used the reality of the matrix Z.
Equation (121) gives us the number density of field

zeros but we are interested in counting the number density
of vortices. We have already discussed how quantum
fluctuations can induce a nonzero number density of
zeros of the field even in the absence of spontaneous
symmetry breaking. We thus need to eliminate such
spurious zeros by restricting the sums in (122)
and (123) to the mode functions cn;n0 ðtÞ that are non-
oscillating. In this case we include the modes correspond-
ing to n and n0 verifying

ωðn;n0Þ
2 ðtÞ≡ 4

a2

�
sin2

�
πn
N

�
þ sin2

�
πn0

N

��
þm2ðtÞ ≤ 0:

ð124Þ

The average number density of vortices formed after the
phase transition is finally given by

nV ¼ N2

2L2

�
1 −

2

π
sin−1

�
β̄

ᾱ

��
2

; ð125Þ

where

ᾱ≡ X
ωðn;n0Þ
2

≤0

jcn;n0 j2; ð126Þ

β̄≡ X
ωðn;n0Þ
2

≤0

jcn;n0 j2 cosð2πn0=NÞ: ð127Þ

Similar to the case of kinks (see discussion in Sec. II B),
this result makes sense only after the phase transition;
it is ill-defined before. As might be intuitively expected,
the average number density of vortices is obtained, up to a
combinatorics factor due to the ϕ ↔ ψ symmetry, by
squaring the average number density of kinks. In the next
subsections we will see that this intuition is supported by
both analytical and numerical estimates of the asymptotic
dynamics of the problem.
Analogously to Sec. II B, Eq. (125) can be further

simplified by first taking the continuum limit N → ∞
(at fixed volume L) to obtain

nV ≈
8

L2

P
ωðn;n0Þ
2

≤0
n02jcn;n0 j2P

ωðn;n0Þ
2

≤0
jcn;n0 j2

; ð128Þ

where the sums run over pairs of integers ðn; n0Þ ∈ Z2

verifying

ωðn;n0Þ
2 ðtÞ ≈

�
2πn
L

�
2

þ
�
2πn0

L

�
2

þm2ðt0Þ ≤ 0; ð129Þ

and it is understood that c−n;n0 ≡ cN−n;n0 , cn;−n0 ≡ cn;N−n0

for 0 ≤ n; n0 ≤ N − 1. Relabeling the mode functions by
the discrete two-dimensional wave vector

k⃗n;n0 ¼ ðkðnÞx ; kðn
0Þ

y Þ≡
�
2πn
L

;
2πn0

L

�
; ð130Þ

and taking the large L limit, Eq. (128) can be recast as

nV ≈
2

π2

R
k≤kcðtÞ d

2kk2yjck⃗j2R
k≤kcðtÞ d

2kjck⃗j2
: ð131Þ

Here we have once again introduced the infinite volume
mode functions ck⃗—labeled by a continuum of two-

dimensional wave vectors k⃗≡ ðkx; kyÞ—verifying

c̈k⃗ þ ðk2 þm2ðtÞÞck⃗ ¼ 0; ð132Þ

and defined k≡ jk⃗j and kcðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijm2ðtÞj

p
as in Sec. II B.

Noticing that ck⃗ depends2 only on k and going to polar
coordinates, we can turn the double integrals in (131) into
single integrals to finally obtain the continuum, infinite
volume limit of the average vortex number density:

nV ≈
1

π2

R kcðtÞ
0 dkk3jck⃗j2R kcðtÞ
0 dkkjck⃗j2

: ð133Þ

With the possible exception of our particular choice of UV
cutoff, this formula is in agreement with known results in
the literature [see, e.g., Eq. (5) in [42]].

B. Analytical estimate

Just as we did in the case of kinks in Sec. II C, we can
also compute the average number density of vortices at late
times in the limit of a sudden phase transition (τ ¼ 0). This
can be achieved once again by exactly solving the differ-
ential equations for the mode coefficients cn;n0 ðtÞ. As we
saw in Sec. III these differential equations are as follows:

c̈n;n0 þ
�
4

a2

�
sin2
�
πn
N

�
þ sin2

�
πn0

N

��
−m2

�
cn;n0 ¼ 0;

ð134Þ
with initial conditions

2This can be checked explicitly using Eqs. (113), (114), (115)
and is a consequence of the rotational invariance of the problem.

QUANTUM FORMATION OF TOPOLOGICAL DEFECTS PHYS. REV. D 102, 116002 (2020)

116002-15



cn;n0 ð0Þ ¼
−iffiffiffiffiffiffi
2a

p 1

N

�
4

a2

�
sin2
�
πn
N

�
þ sin2

�
πn0

N

��
þm2

�
−1=4

; ð135Þ

_cn;n0 ð0Þ ¼
1ffiffiffiffiffiffi
2a

p 1

N

�
4

a2

�
sin2
�
πn
N

�
þ sin2

�
πn0

N

��
þm2

�
1=4

: ð136Þ

The solution to these equations can be obtained analytically. In fact, they look very similar to the ones we obtained in the
kinks case but now involve two indices instead of just one. This gives the unstable mode functions cn;n0 ðtÞ involved in the
formula for the average number density of vortices:

cn;n0 ðtÞ ¼
−iffiffiffiffiffiffi
2L

p
�
4

a2

�
sin2
�
πn
N

�
þ sin2

�
πn0

N

��
þm2

�
−1=4

cosh ðκn;n0 tÞ

þ 1ffiffiffiffiffiffi
2L

p
�
4

a2

�
sin2
�
πn
N

�
þ sin2

�
πn0

N

��
þm2

�
1=4 sinhðκn;n0tÞ

κn;n0
; ð137Þ

where

κn;n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −

4

a2

�
sin2
�
πn
N

�
þ sin2

�
πn0

N

��s
: ð138Þ

Now, taking first the continuum limit N → ∞ while keeping L fixed, we obtain, for n2 þ n02 ≤ ðmL=2πÞ2,

ck⃗n;n0 ðtÞ ≈
−iffiffiffiffiffiffi
2L

p


kðnÞ2x þ kðn

0Þ2
y þm2

�
−1=4

cosh
�
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − kðnÞ2x − kðn

0Þ2
y

q �

þ 1ffiffiffiffiffiffi
2L

p


kðnÞ2x þ kðn

0Þ2
y þm2

�
1=4

sinh

�
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − kðnÞ2x − kðn

0Þ2
y

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − kðnÞ2x − kðn

0Þ2
y

q ; ð139Þ

where we have relabeled the mode functions by k⃗n;n0 ¼ ðkðnÞx ; kðn
0Þ

y Þ and recall that kðnÞx ¼ 2πn=L, kðn
0Þ

y ¼ 2πn0=L. In the

limit L → ∞, the discrete variables k⃗n;n0 become continuous and, as in Eq. (133), we can write an analytical formula for the
average number density of vortices:

nV ≈
1

π2

�Z
m

0

dk
�
k3ðm2 cosh ð2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − k2

p
Þ − k2Þ

ðm2 − k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
���Z

m

0

dk
�
kðm2 cosh ð2t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − k2

p
Þ − k2Þ

ðm2 − k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
��−1

: ð140Þ

Using this equation, we can once again estimate the late
time behavior of the average number of vortices. In the
limit, k; k0 ≪ m, we have

nV ≈
1

π2

R
m
0 dkk3 exp ð−tk2=mÞR
m
0 dkk exp ð−tk2=mÞ ≈

m
π2t

¼ 2!n2K: ð141Þ

As mentioned below Eq. (127), the vortex number density
is obtained by squaring the kink number density and
multiplying by the combinatorial factor of 2! due to the
exchange symmetry ϕ ↔ ψ.
Furthermore, as in the case of kinks, the maximum

number density of vortices can be estimated using

Eq. (140). This maximum is reached immediately after
the phase transition, at time t ¼ 0þ and is found to be

ðnVÞmax ¼
1

π2

R
m
0 dkk3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
R
m
0 dkk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

¼ m2
ffiffiffi
2

p

3π2
≈ 0.0478m2: ð142Þ

C. Numerical results

We use numerical techniques to solve (113) and then
calculate the average vortex number density using (125).
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For reasons discussed earlier, the parameters L and N that
we choose for our numerical simulations need to be
sufficiently large to accurately describe the continuum
infinite volume limit. We choose L¼2000 and N¼4000.
As in the case of kinks, the results are insensitive to the
UV and IR cutoffs. In practice, because of the order N2

computational complexity of the problem and the exponen-
tial growth of the magnitudes of mode functions, we directly
solve for ρn;n0 ¼ jcn;n0 j and factor out the zero mode to
improve the numerical accuracy (see Sec. II D for details).
In Fig. 9 we show the average vortex number density for

different quench parameters τ as a function of time. As
in the kink case, the plots of nV versus t for different τ
converge to the same function and decay as t−1 as we
expect from the analytical estimate in (141). The result also
agrees with the intuition that a vortex corresponds to the
intersection of two independent domain walls.
Figure 9 also shows that immediately after the phase

transition, nV increases from zero to some maximum value
ðnVÞmax in a time tmax. As time goes on nV starts to decay.
At very early times, after the phase transition, randomly
distributed vortices of positive and negative winding
numbers are produced, but then the system starts relaxing,
the vortices-antivortices start annihilating, and the dynam-
ics reaches its scaling regime.
We can also plot the differences of vortex number

densities for different values of τ as we did in the case
of kinks: ΔnVðt; τ1; τ2Þ≡ nVðt; τ1Þ − nVðt; τ2Þ. This is
shown in Fig. 10 which shows that ΔnVðt; τ1; τ2Þ decays
as t−2 at late times. We thus deduce the asymptotic form,

nVðtÞ ¼ CV

�
m
t

�
þOðt−2Þ; ð143Þ

where CV is some constant of proportionality that is
independent of the quench timescale τ. Numerically, we
find CV ≈ 0.092. This is again in reasonable agreement with

the value we calculated analytically for a sudden phase
transition (τ ¼ 0) in Eq. (141), more precisely 1=π2 ≈ 0.101.
The plots of ðnVÞmax versus τ and tmax versus τ are shown

in Fig. 11 and Fig. 12, respectively. The intuitive under-
standing that a faster phase transition (smaller quench
timescale τ) leads to greater and more rapid vortex produc-
tion is confirmed by these plots. Moreover, from Fig. 11 we
see that the maximum number density of vortices ðnVÞmax
flattens as the quench timescale τ approaches zero. This
happens for a value ðnVÞmax ≈ 0.0483which is once again in
good agreement with our analytical result in Eq. (142).
As a final remark, comparing Fig. 6 to Fig. 11 shows

us right away that for the same quench timescales τ, the
maximum vortex number density ðnVÞmax is much lower
than the maximum kink number density ðnKÞmax. For
example, in the limiting case of τ → 0, ðnVÞmax ≈ 0.050
while ðnKÞmax ≈ 0.175. This is again to be expected since
the formation of a vortex requires the simultaneous

t 2

0 10 50 100 250 550 1050t

10 6

10 4

0.01

nV

FIG. 10. Log-log plot of the differences between the average
vortex number density for different values of τ, nVðt; τ1 ¼ 0.1Þ −
nVðt; τ2Þ versus time for τ2 ¼ 0.5 (blue line), 1.0 (red line), 5.0
(purple line), 10.0 (green line). The black dashed line shows the
exhibited power law, i.e., t−2.
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FIG. 11. Log-log plot of the maximum average vortex number
density ðnVÞmax versus τ. For larger values of τ the power law
manifested is ∼τ−0.64.
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FIG. 9. Log-log plot of nVðtÞ versus time for τ ¼ 0.1 (purple,
topmost curve), 0.5 (red curve), 1.0 (green curve), 5.0 (orange
curve), 10.0 (blue curve). The black dashed line shows the
exhibited power law at late times, i.e., t−1.
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vanishing of two fields, which is less probable than the
vanishing of a single field necessary for the formation of a
kink in one dimension.

IV. HIGHER DIMENSIONS: MONOPOLES

Having worked out the details of the d ¼ 1 and d ¼ 2
cases, it is easy to see that the methods described in the
previous sections directly generalize to higher dimensions.
Without going into the details of a rigorous proof, the
average number density of zero-dimensional topological
defects nD formed in the d-dimensional field theory
discussed in Sec. I is given by

nD ¼ d!ndK ¼ d!

2d=2πd

�
m
t

�
d=2

þOðt−ðdþ2Þ=2Þ ð144Þ

for late times. The factor of d! arises because of permu-
tation symmetry. To get a monopole in d dimensions we
need coincident zeros of d fields in a cell of the lattice. As
in Sec. III, the point Φ ¼ 0 corresponds to the intersection
of d orthogonal domain walls. The d! permutations of the
wall positions preserves theΦ ¼ 0 point that leads to the d!
prefactor in (144).
In Fig. 13 we show numerical results for d ¼ 3 for the

monopole number density as a function of time, obtaining
the first term on the right-hand side of (144). In Fig. 14
we provide evidence for the second term on the right-hand
side of (144).

V. EFFECT OF SELF-INTERACTIONS

A key question is to understand the range of parameters
for which our results are a good approximation even when
λ ≠ 0. We will address this in the context of the model in
one spatial dimension given in (7). We check for self-
consistency of our solution and examine the conditions
under which it breaks down.

Our solution for the wave function is a Gaussian at all
times and so hϕ4i ¼ 3hϕ2i2. With λ ≠ 0, the evolution of
the wave functional,Ψ½ϕ; t�, will depend on λ. As long asΨ
can be approximated by a Gaussian centered at ϕ ¼ 0 we
can use the Hartree approximation (e.g., [47]) to write λϕ4

as 3λhϕ2iϕ2. Taking into account mass renormalization at
lowest order in λ we obtain an effective mass squared
meff

2 ðtÞ,

meff
2 ðtÞ ¼ m2ðtÞ þ

3

2
λhϕ2iin −

3

2
λhϕ2i; ð145Þ

where the “in” subscript refers to evaluation at the initial
time (t → −∞). The mass counterterm 3λhϕ2iin=2 is
chosen such that the effective mass equals m at the initial
time. Therefore, in the Hartree approximation, the effects of

t 5 2
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0.001
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FIG. 14. Log-log plot of the differences between the average
monopole number density for different values of τ, nMðt; τ1 ¼
0.1Þ − nMðt; τ2Þ versus time for τ2 ¼ 0.5 (blue line), 1.0 (red
line), 5.0 (purple line), 10.0 (green line). The black dashed line
shows the exhibited power law, i.e., t−5=2.
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FIG. 12. Log-log plot of the time at which the maximum
average vortex number density ðnVÞmax occurs (tmax) versus τ. For
larger values of τ the power law exhibited is ∼τ0.34.
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FIG. 13. Log-log plot of nMðtÞ versus time for τ ¼ 0.1 (purple,
topmost curve), 0.5 (red curve), 1.0 (green curve), 5.0 (orange
curve), 10.0 (blue curve). The black dashed line shows the
exhibited power law at late times, i.e., t−3=2. Here we use
L ¼ 800, N ¼ 1600.
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interactions are negligible if the λ dependent corrections to
m2 are small and meff

2 ðtÞ ≈m2ðtÞ, or

3λ½hϕ2i − hϕ2iin� ≪ 2jm2j: ð146Þ

The condition in (146) will fail in two circumstances.
First, around the time of the phase transition, t ∼ 0, when
m2 ∼ −m2t=τ [see (3)] is very small; second, at late times,
when hϕ2i grows large. We can make these statements
more precise by noticing that (146) is strongly violated
whenever the function

fλ;τðtÞ≡ 2jm2j − 3λ½hϕ2i − hϕ2iin� ð147Þ

becomes negative. It turns out that, generically, fλ;τ has
three zeros that we denote as t1, t2, t3, and it is negative on
the intervals ½t1; t2� and ½t3;∞Þ (see Fig. 15 for a qualitative
sketch of fλ;τ). The late time violation is not important for
us as long as by that time all the kinks have already been
formed. Moreover, their mutual interactions are exponen-
tially suppressed on distances longer than 1=m in d ¼ 1,
and they can be completely neglected given that the average
separation of the kinks is larger than ∼ðnKÞ−1max ∼ 6=m. On
the other hand, the early time violation in the interval ½t1; t2�
can be important as it might interfere with kink production
and change the maximum kink number density.
We can thus deduce three necessary conditions for the

kink number density in the λ ¼ 0 model to be a good
approximation to that in the λ ≠ 0 case:

(i) The duration of early time violation of (146) needs to
be finite, i.e., t2 < ∞.

(ii) All the kinks need to have been produced by the time
the late time violation of (146) sets in, i.e., tmax < t3.

(iii) The duration of the early time violation of (146)
needs to be much smaller than the fastest time-
scales of variation of the wave functional, i.e.,
Δt≡ t2 − t1 ≪ 1=m.

We have swept the ðλ; τÞ parameter space to determine
the regions where the above conditions are verified. This
has been done numerically by approximating fλ;τ via

fλ;τðtÞ ≈ 2jm2j − 3λ
XN
n¼1

ðjcnðtÞj2 − jcnðt0Þj2Þ ð148Þ

and determining the corresponding values of t1, t2, t3 for a
wide range of values of λ and τ. The results are shown in
Fig. 16 where we used the same numerical parameters as in
Sec. II D. The regions shaded in red, orange, and pink are
excluded by the necessary conditions (i), (ii), and (iii),
respectively. Alternatively we expect the λ ¼ 0 model to
be accurate inside the green region. Remarkably, the
λτ=m ¼ 1 curve lies deep inside this region which indicates
that λτ=m ≪ 1 is a sufficient condition for the approxima-
tion to be valid.

VI. CONCLUSIONS

In this work we carried out a thorough analysis of the
dynamics of topological defect formation in a quantum
field theory where the only interactions are with external
parameters that induce a quantum phase transition. We thus
worked in the limit where self-interactions can be
neglected. Results for the number density of kinks in
one spatial dimension are summarized in Fig. 2, for vortices
in two spatial dimensions in Fig. 9, and for monopoles in
three spatial dimensions in Fig. 13. These results indicate
that the number density of topological defects in d spatial
dimensions scales as t−d=2 and does not depend on the
quench timescale, in the late time limit. Moreover,
we showed that the sudden phase transition analytical
result is a universal attractor. These novel results stand in
contrast to the Kibble-Zurek prediction for a thermal
phase transition.
We have also discussed the limit within which our results

can be expected to be a good approximation for a more
realistic theory where self-interactions are not explicitly set
to zero. In the case of kinks (d ¼ 1) we found the condition
λτ=m ≪ 1 where λ is the self-interaction coupling strength,

FIG. 16. Plot showing the allowed and disallowed regions of
the ðλ; τÞ parameter space in units where m ¼ 1.

FIG. 15. Sketch of fλ;τðtÞ to show its generic features.
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to be a sufficient condition for our results to hold. This
condition can be generalized on dimensional grounds to be
λmd−2τ ≪ 1 in d spatial dimensions.
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