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We calculate the T matrices of elastic pion-nucleon (πN) scattering up to fourth order in SU(3) heavy
baryon chiral perturbation theory. The pertinent low-energy constants are determined by fitting to πN phase
shifts below the 200 MeV pion laboratory momentum in the physical region. The scattering lengths and
scattering volumes are extracted from the chiral amplitudes, and turn out to be in good agreement with
those of other approaches and the available experimental values. We also discuss the subthreshold
parameters and the related issues. On the basis of the various phase shifts, the threshold parameters and the
subthreshold parameters, the convergence of the chiral expansion is analyzed in detail. The calculation
provides the possibility to consider explicitly more complex processes involving strangeness.
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I. INTRODUCTION

Chiral perturbation theory (ChPT) allows one to analyze
hadronic processes at low energies that are not accessible
by a perturbative expansion in the strong coupling constant
αs of quantum chromodynamics (QCD) [1–4]. ChPT is an
efficient framework to calculate in a model-independent
way, e.g., the amplitudes of pion-nucleon (πN) scattering
below the chiral symmetry breaking scale Λχ ≃ 1 GeV.
However, there exists a power-counting problem in baryon
ChPT because of the nonvanishing baryon mass M0 in the
chiral limit. Over the years, several approaches have been
proposed to solve this problem. Heavy baryon ChPT
(HBχPT) [5,6], the infrared regularization of covariant
baryon ChPT [7], and the extended-on-mass-shell scheme
for baryon ChPT [8,9] are some popular approaches. The
last two approaches are fully relativistic and have lead to
substantial progress in many aspects as documented in
Refs. [10–16]. However, the expressions from the loop
diagrams become rather complicated in these fully relativ-
istic approaches [17–19]. On the other hand, HBχPT is a
well-established and versatile tool for the study of low-
energy hadronic processes. The amplitudes in HBχPT
proceeds simultaneously in terms of p=Λχ (nonrelativistic
contributions from tree and loop diagrams) and p=M0

(relativistic corrections), where p denotes the meson
momentum (or mass) or the small residual momentum
of a baryon in a low-energy process.
In recent years, there has been renewed interest in

theoretical studies of elastic meson-baryon scattering at
low energies. These are not only concerned with the
description of the strong mesonic interaction, but also with

the chiral properties of the baryons. The low-energy
processes between pions and nucleons have been inves-
tigated extensively in SU(2) HBχPT in Refs. [20–23].
Furthermore, the subthreshold parameters of pion-nucleon
scattering have also been deeply studied by combining the
Roy-Steiner (RS) equations and SU(2) ChPT [24,25].
For processes involving kaons or hyperons, the situation
becomes more involved, since one has to work out the
consequences of three-flavor chiral dynamics. In a previous
paper [26] we have investigated KN and K̄N elastic
scattering up to one-loop order in SU(3) HBχPT by fitting
low-energy constants to partial-wave phase shifts of KN
scattering and obtained quite reasonable results. This
approach was then extended by predicting the amplitudes
of pseudoscalar-meson octet-baryon scattering in all chan-
nels, with the pertinent low-energy constants fitted to
partial-wave phase shifts of elastic πN and KN scattering
[27]. At this point one should note that the detailed
predictions of SU(3) HBχPT for the meson-baryon scatter-
ing lengths have been given previously in Refs. [28–32].
Moreover, these studies in SU(3) HBχPT has been
extended to partial-wave phase shifts, the pion-nucleon
sigma term, and other quantities. In a recent paper [33], we
have calculated the complete T matrices of pion-nucleon
scattering up to third order in SU(3) HBχPT and obtained
as a byproduct nucleon properties, like the pion-nucleon
sigma term σπN . A good description of the phase shifts of
πN scattering below 200 MeV has been obtained, and then
it can serve as a consistency check to consider also the other
meson-baryon scattering channels. However, no good
convergence of the chiral expansion is observed in calcu-
lations that terminate at third order. Therefore, we will
compute in this paper the T matrices for πN scattering up to
fourth order in SU(3) HBχPT. The pertinent low-energy*bolin.huang@foxmail.com
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constants (LECs) will be determined by fitting to empirical
S- and P-wave phase shifts of πN scattering. In particular,
the LECs related to contact terms of chiral dimension will
be obtained separately. The threshold parameters, the
subthreshold parameters, and the related issues will be
discussed briefly. At last, the convergence of the chiral
expansions will also be analyzed and discussed in detail.
The present paper is organized as follows. In Sec. II, we

summarize the Lagrangians involved in the evaluation of
the fourth-order contributions. In Sec. III, we present some
explicit expressions for the T matrices of elastic πN
scattering at order p4. In Sec. IV, we outline how to derive
phase shifts, scattering lengths, and scattering volumes
from the T matrices. Section V contains the presentation
and discussion of our results and it also includes a brief
summary. Appendixes A and B contain the expressions for
the scattering lengths and the subthreshold parameters,
respectively.

II. CHIRAL LAGRANGIAN

In order to calculate the pion-nucleon scattering ampli-
tude up to order p4 in SU(3) heavy baryon chiral pertur-
bation theory, one has to evaluate tree and loop diagrams
with vertices from the effective chiral Lagrangian:

Leff ¼ Lð2Þ
ϕϕ þ Lð1Þ

ϕB þ Lð2Þ
ϕB þ Lð3Þ

ϕB þ Lð4Þ
ϕB: ð1Þ

These Lagrangians are written in terms of the traceless
Hermitian 3 × 3 matrices ϕ and B that include the pseu-
doscalar Goldstone boson fields (π, K, K̄, η) and the octet-
baryon fields (N, Λ, Σ, Ξ), respectively. The explicit form
of the Lð2Þ

ϕϕ, L
ð1Þ
ϕB, L

ð2Þ
ϕB, and Lð3Þ

ϕB can be found in Ref. [33].

The complete fourth-order heavy baryon Lagrangian Lð4Þ
ϕB

naturally splits up into two parts: relativistic corrections
with fixed coefficients and counterterms proportional to
new low-energy constants. The relativistic terms can be
obtained from the original leading order, next-to-leading
order, and next-to-next-to-leading order Lorentz-invariant
Lagrangians through path integral manipulations [6]. For
three-flavors and at chiral order four, the Lorentz-invariant
meson-baryon Lagrangian has been constructed in
Ref. [34] and we can obtain from it the counterterms

relevant for our purpose. Since the dimension-four chiral

meson-baryon Lagrangian Lð4Þ
ϕB is very lengthy, the explicit

expressions will not be given in this paper, where we
consider only elastic pion-nucleon scattering. Of course,
the expansions in SU(3) and SU(2) HBχPT are consistent
with each other. For this reason the notation of low-energy
constants ēiði ¼ 14;…; 22; 35;…; 38Þ for the fourth-order
counterterms in SU(2) HBχPT introduced in Ref. [21] will
also be used in this paper.

III. T MATRICES FOR PION-NUCLEON
SCATTERING

We are considering the elastic pion-nucleon scattering
process πðqÞ þ NðpÞ → πðq0Þ þ Nðp0Þ in the center-of-
mass system. In states with total isospin I ¼ 1=2 or I ¼
3=2 of the pion-nucleon system, the corresponding T
matrix takes the following form in spin space:

TðIÞ
πN ¼ VðIÞ

πNðw; tÞ þ iσ · ðq0 × qÞWðIÞ
πNðw; tÞ ð2Þ

where w ¼ q0 ¼ q00 ¼ ðm2
π þ q2Þ1=2 is the pion center-of-

mass energy, and t ¼ ðq0 − qÞ2 ¼ 2q2ðz − 1Þ is the invari-
ant momentum transfer squared with z ¼ cos θ the cosine
of the angle θ between q and q0. Based on relativistic
kinematics, one gets the relation:

q02 ¼ q2 ¼ M2
Np

2
lab

m2
π þM2

N þ 2MN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2lab
p ; ð3Þ

where plab denotes the momentum of the incident meson in

the laboratory system. Furthermore, VðIÞ
πNðw; tÞ refers to the

non-spin-flip pion-nucleon scattering amplitude and

WðIÞ
πNðw; tÞ is called the spin-flip pion-nucleon scattering

amplitude.
From leading order OðpÞ up to third order Oðp3Þ, the

expressions for the amplitudes VðIÞ
πNðw; tÞ and WðIÞ

πNðw; tÞ
can be found in Ref. [33]. At fourth orderOðp4Þ, the SU(3)
results for the πN amplitudes from tree diagrams are
essentially the same as those calculated in SU(2) HBχPT
in Ref. [21]. After an appropriate renaming of the low-
energy constants, these contributions read

Vð3=2;N3LOÞ
πN ¼ −

ðDþ FÞ2
32M3

0w
4f2π

½ðt4 þ 7t3w2 þ 11t2w4 − 3tw6 þ 4w8Þ − ð11t3 þ 49t2w2 þ 32tw4 þ 4w6Þm2
π

þ ð45t2 þ 110tw2 þ 26w4Þm4
π − 3ð27tþ 26w2Þm6

π þ 54m8
π� þ

m2
π − w2

32M3
0f

2
π
ð4m2

π − t − 4w2Þ

þ 1

16M2
0f

2
π
½4C0ðtþ 2w2 − 2m2

πÞm2
π þ C1ð2t2 þ 4tw2 − 8tm2

π − 8w2m2
π þ 8m4

πÞ
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þ 4C2ð3tw2 þ 14w4 − 4tm2
π − 22w2m2

π þ 8m4
πÞ þ 2C3ð−t2 − 4tw2 þ 4tm2

πÞ� −
8

M0f2π
C0C2w2m2

π

þ 1

2M0f2π
½H1ð4m2

π − t − 4w2Þm2
π þH2ð4w2 þ t − 4m2

πÞtþ 3H3ð4m2
π − t − 4w2Þw2 þ 2H4w2t�

þ 1

f2π
½4ē14ð4m4

π − 4m2
πt − t2Þ þ 8ē15ð2w2m2

π − tw2Þ þ 16ē16w4�; ð4Þ

Wð3=2;N3LOÞ
πN ¼ ðDþ FÞ2

16M3
0w

4f2π
½ðt3 þ 5t2w2 þ 3tw4 − w6Þ − ð9t2 þ 25tw2 þ 4w4Þm2

π

þ 3ð9tþ 10w2Þm4
π − 27m6

π� þ
w2 −m2

π

16M3
0f

2
π
þ 1

8M2
0f

2
π
½8C0m2

π þ C1ð2t − 4m2
πÞ

− 4C2w2 − 2C3ðtþ 2w2 − 2m2
πÞ� þ

1

2M0f2π
H4ð8w2 þ t − 4m2

πÞ

þ 1

f2π
½ē17ð−8m2

π þ 4tÞ − 8ē18w2�; ð5Þ

Vð1=2;N3LOÞ
πN ¼ ðDþ FÞ2

64M3
0w

4f2π
½ðt4 þ 7t3w2 þ 11t2w4 þ 16w8Þ − ð11t3 þ 49t2w2 þ 32tw4

þ 16w6Þm2
π þ 5ð9t2 þ 22tw2 þ 4w4Þm4

π − 84ðtþ w2Þm6
π þ 60m8

π�

þ w2 −m2
π

16M3
0f

2
π
ð4m2

π − t − 4w2Þ þ 1

8M2
0f

2
π
½2C0ðtþ 2w2 − 2m2

πÞm2
π þ C1ðt2 þ 2tw2

− 4tm2
π − 4w2m2

π þ 4m4
πÞ þ 2C2ð3tw2 þ 14w4 − 4tm2

π − 22w2m2
π þ 8m4

πÞ

þ 2C3ðt2 þ 4tw2 − 4tm2
πÞ� −

8

M0f2π
C0C2w2m2

π þ
1

M0f2π
½H1ð−4m2

π þ tþ 4w2Þm2
π

−H2ð4w2 þ t − 4m2
πÞt − 3H3ð4m2

π − t − 4w2Þw2 þH4w2t�

þ 1

f2π
½4ē14ð4m4

π − 4m2
πt − t2Þ þ 8ē15ð2w2m2

π − tw2Þ þ 16ē16w4�; ð6Þ

Wð1=2;N3LOÞ
πN ¼ ðDþ FÞ2

32M3
0w

4f2π
½ð−t3 − 5t2w2 − 3tw4 þ 4w6Þ þ ð9t2 þ 25tw2 þ 4w4Þm2

π

− 3ð9tþ 10w2Þm4
π þ 24m6

π� þ
m2

π − w2

8M3
0f

2
π
þ 1

4M2
0f

2
π
½−2C0m2

π þ C1ðt − 2m2
πÞ − 2C2w2

þ 2C3ðtþ 2w2 − 2m2
πÞ� þ

H4

2M0f2π
ð8w2 þ t − 4m2

πÞ þ
8

f2π
½ē17ð2m2

π − tÞ þ 2ē18w2�; ð7Þ

where Ci (i ¼ 0, 1, 2, 3) and Hi (i ¼ 1, 2, 3, 4) are linear
combinations of low-energy constants defined in Eqs. (22)
and (27) of Ref. [33], respectively. For the dimension-four
LECs, we follow the same strategy as in Ref. [21]. The
subset of dimension-four low-energy constants ēi (i ¼ 19,
20, 21, 22, 35, 36, 37, 38) can be absorbed onto the
dimension-two LECs ci (i ¼ 1, 2, 3, 4), see Eq. (3.23) in
Ref. [21]. We note that, the dimension-two LECs ci (i ¼ 1,
2, 3, 4) introduced in SU(2) HBχPT can be replaced
equivalently by the combinations of LECs Ci (i ¼ 0, 1, 2,
3) of SU(3) HBχPT. Thus, ēi (i ¼ 14, 15, 16, 17, 18) are
the five remaining dimension-four LECs that are relevant in

our calculation. At fourth order, additional πN amplitudes
from one-loop diagrams must be taken into account. The
pertinent one-loop diagrams generated by the interaction

vertices from Lð2Þ
ϕϕ, L

ð1Þ
ϕB and Lð2Þ

ϕB are shown in Fig. 1. The
expressions for these one-loop πN amplitudes are rather
tedious and will therefore not be reproduced here. The
explicit analytical expressions for the loop contributions of
order Oðp4Þ to elastic πN scattering can be obtained from
the authors upon request. For orientation of the readers, we
remark that these πN loop amplitudes are composed of the
following basic loop functions:
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J0ðw;mÞ ¼ 1

i

Z
dDl
ð2πÞD

1

ðv · l − wÞðm2 − l2Þ ¼
w
8π2

�
1 − 2 ln

m
λ

�

þ

8>>><
>>>:

1
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 −m2

p
ln −wþ

ffiffiffiffiffiffiffiffiffiffi
w2−m2

p
m ðw < −mÞ;

− 1
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − w2

p
arccos −wm ð−m < w < mÞ;

1
4π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 −m2

p �
iπ − ln wþ

ffiffiffiffiffiffiffiffiffiffi
w2−m2

p
m

�
ðw > mÞ;

ð8Þ

1

i

Z
dDl
ð2πÞD

f1; lμ; lμlνg
ðm2 − l2Þ½m2 − ðl − kÞ2� ¼

�
I0ðt; mÞ; k

μ

2
I0ðt; mÞ; gμνI2ðt; mÞ þ kμkνI3ðt; mÞ

�
; ð9Þ

I0ðt; mÞ ¼ 1

8π2

(
1

2
− ln

m
λ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − t

p
þ ffiffiffiffiffi

−t
p

2m

)
; ð10Þ

I2ðt; mÞ ¼ 1

48π2

(
2m2 −

5t
12

þ
�
t
2
− 3m2

�
ln
m
λ
−
ð4m2 − tÞ3=2

2
ffiffiffiffiffi
−t

p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − t

p
þ ffiffiffiffiffi

−t
p

2m

)
; ð11Þ

I3ðt; mÞ ¼ 1

24π2

(
7

12
−
m2

t
− ln

m
λ
−
�
1 −

m2

t

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

t

r
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − t

p
þ ffiffiffiffiffi

−t
p

2m

)
: ð12Þ

Note that terms proportional to the divergent constant
λD−4½ 1

D−4 þ 1
2
ðγE − 1 − ln 4πÞ� have been dropped. Further-

more, one observes that the one-loop amplitudes of order
Oðp4Þ involve the full set of dimension-two LECs biði ¼
D;F; 0;…; 11Þ and not just the few combinations of LECs
Ci (i ¼ 0, 1, 2, 3) arising from tree diagrams.

IV. PARTIAL-WAVE PHASE SHIFTS AND
SCATTERING LENGTHS

The partial-wave amplitudes fðIÞj ðq2Þ, where j ¼ l� 1=2
refers to the total angular momentum and l to orbital
angular momentum, are obtained from the non-spin-flip
and spin-flip amplitudes by the following projection for-
mula:

fðIÞl�1=2ðq2Þ ¼
MN

8π
ffiffiffi
s

p
Z þ1

−1
dzfVðIÞ

πNðw; tÞPlðzÞ

þ q2WðIÞ
πNðw; tÞ½Pl�1ðzÞ − zPlðzÞ�g; ð13Þ

where PlðzÞ denotes the conventional Legendre polyno-
mial, and

ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ q2
p

is the total
center-of-mass energy. For the energy range considered

in this paper, the phase shifts δðIÞl�1=2 are calculated as (see
also Refs. [20,35])

δðIÞl�1=2ðq2Þ ¼ arctan½jqjRefðIÞl�1=2ðq2Þ�: ð14Þ

The scattering lengths for S waves and the scattering
volumes for P waves are obtained by dividing out the

FIG. 1. Nonvanishing one-loop diagrams contributing at chiral

order four. The heavy dots refer to vertices from Lð2Þ
ϕB. Crossed

graphs are not shown.
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threshold behavior of the respective partial-wave amplitude
and approaching the threshold [36]

aðIÞl�1=2 ¼ lim
jqj→0

jqj−2lfðIÞl�1=2ðq2Þ: ð15Þ

V. RESULTS AND DISCUSSION

Before presenting results, we have to determine the
LECs. The parameters M0, bD, bF, and b0 have been
determined in our previous paper by using of the four
octet-baryon masses (MN , MΣ, MΞ, MΛ) and the pion-
nucleon σ term σπN ¼ 59.1� 3.5 MeV [26]. In this
paper, we take the same value M0 ¼ 646.3 MeV, but the
parameters b0, bD, and bF are obtained in the fitting.
Unfortunately, the 14 dimension-two LECs cannot be
regrouped up to fourth order in SU(3) HBχPT. Then, in
total, there are 23 unknown constants that need to be
determined. Throughout this paper, we also use mπ ¼
139.57 MeV, mK ¼ 493.68 MeV, mη ¼ 547.86 MeV,
fπ ¼ 92.07 MeV, fK ¼ 110.03 MeV, fη ¼ 1.2fπ, MN ¼
938.92� 1.29 MeV, MΣ ¼ 1191.01� 4.86 MeV, MΞ ¼
1318.26� 6.30 MeV, MΛ ¼ 1115.68� 5.58 MeV, λ ¼
4πfπ ¼ 1.16 GeV, D ¼ 0.80, and F ¼ 0.47 [37–39].
We have various fitting strategies to determine the

pertinent constants, and the related discussion is given in
Ref. [33]. One of them is using the octet-baryon masses
(MN;Σ;Ξ;Λ) and the phase shifts of πN scattering simulta-
neously. This can no longer be done up to fourth order due
to the appearance of the more constants for octet-baryon
masses. Thus, we determine the LECs by using the πN
phase shifts from RS equations [40,41]. The explicit
numerical solutions for the πN phase shifts can be found
in Appendix D of Ref. [41]. Note that the RS phase shifts
are different from the WI08 phase shifts [42,43] and the
phase shifts errors can be obtained in the RS solution. Thus,
we do not need to choose an inaccurate uncertainty for all
phase shifts before the fitting procedure. The choice for the
RS phase shifts is also expected to improve our fitting. The
data points of the S andPwaves in the range of 10–200MeV
pion lab momentum are used. The resulting LECs can be
found in the N3LO of Table I. The uncertainty for the
respective parameter is purely estimated (for a detailed
discussion, see, e.g., Refs. [44,45]). It is not surprising that
most LECs are natural sizeOð1Þ; i.e., the absolute values of
these LECs are between one and ten when one introduces
the dimensionless LECs (e.g., b0i ¼ 2M0bi), whereas some
of LECs come out fairly large. The situation also can be
found in SU(2) HBχPT [21]. In fact, the dimension three
LECs Hi are not terribly large. Because we have H1¼
4d̄5þ2ðd̄1þ d̄2Þ,H2¼ d̄1þ d̄2,H3 ¼ 2d̄3,H4 ¼ d̄14 − d̄15,
where d̄i are from SU(2) HBχPT. Then, we can
obtain fd̄1 þ d̄2; d̄3; d̄5; d̄14 − d̄15g ¼ f10.98;−4.94; 4.61;
15.48gGeV−2. However, the results of d̄i are clearly not
Oð1Þ, which indicates the presence of additional degree of

freedom. For instance, the presence of the Δð1232Þ
resonance can explain the values of some LECs
[7,24,46,47]. The corresponding S- and P-wave phase
shifts are shown by the solid lines of Fig. 2. Obviously,
we obtain an excellent description of all waves. Especially,
the description of the P11-, P33-, and P13-wave phase
shifts are improved at high energies as compared to the
third-order calculation. For comparison, we present results
from the best fits up to third (N2LO) and second (NLO)
order in Table I. Clearly, the resulting LECs have different
values in the respective order. It is not surprising that the
LECs at NLO and N2LO show different values. However,
the LEC values at N3LO and N2LO are also very different,
even an order of magnitude in some cases, which are
expected to be same. Thus, for the amplitudes up to the
given order, the corresponding fit to determine their
respective constants is necessary. This is similar to what
was found in SU(2) HBχPT [24,25]. The feature can lead to
the potential convergence problems in the chiral expansion;
further analysis of the threshold and subthreshold param-
eters is required.

TABLE I. Values of the various fits. The fits N3LO, N2LO, and
NLO refer to the best fit up to fourth, third, and second order,
respectively. For a detailed description of these fits, see the main
text. Note that the ð�Þ values are calculated by bi.

N3LO N2LO NLO

bD (GeV−1) −3.44� 0.13
bF (GeV−1) 4.64� 0.18
b0 (GeV−1) −1.03� 0.25
b1 (GeV−1) 1.61� 0.08
b2 (GeV−1) 0.10� 0.03
b3 (GeV−1) −4.50� 0.32
b4 (GeV−1) −1.34� 0.17
b5 (GeV−1) −23.28� 1.56
b6 (GeV−1) 1.90� 0.21
b7 (GeV−1) 8.96� 0.99
b8 (GeV−1) −5.62� 0.67
b9 (GeV−1) 1.86� 0.23
b10 (GeV−1) −0.38� 0.00
b11 (GeV−1) 17.66� 1.56
C0 (GeV−1) −0.86� 0.55ð�Þ −3.59� 0.06 −1.69� 1.49
C1 (GeV−1) −7.31� 0.65ð�Þ −6.60� 0.03 −4.30� 0.15
C2 (GeV−1) −3.46� 2.53ð�Þ 3.71� 0.05 2.94� 1.45
C3 (GeV−1) 1.48� 0.23ð�Þ 1.41� 0.01 1.37� 0.07
H1 (GeV−2) 40.38� 4.12 6.26� 0.35
H2 (GeV−2) 10.98� 1.52 4.78� 0.07
H3 (GeV−2) −9.88� 0.82 −7.65� 0.31
H4 (GeV−2) −15.48� 0.78 −5.76� 0.15
ē14 (GeV−3) 0.99� 0.03
ē15 (GeV−3) −26.22� 3.12
ē16 (GeV−3) 22.61� 2.93
ē17 (GeV−3) 4.57� 0.52
ē18 (GeV−3) 4.57� 0.52
χ2=d:o:f: 0.24 1.24 21.83

PION-NUCLEON SCATTERING TO ORDER p4 IN SU(3) … PHYS. REV. D 102, 116001 (2020)

116001-5



In the following, let us apply the chiral fourth-order
amplitudes to estimate the threshold parameters. The
analytical expressions for scattering lengths are shown in
Appendix A. However, the pion-nucleon scattering lengths
and scattering volumes can also be obtained by using an
incident pion lab momentum jplabj ¼ 5 MeV and approxi-
mating their values at the threshold. The results are shown
in Table II in comparison with the values of the various
analyses. Obviously, our results for most of the threshold
parameters are consistent with the ones from SU(2) HBχPT
and SP98 in Ref. [21] and the RS solution in Ref. [41]. For
scattering volume a1=21þ , our result is larger than the SU(2)
and SP98, but it is closer to the RS solution. The values of
SP98 are obtained by the use of dispersion relations with
the help of a fairly precise tree-level model. In addition,
there are two experimental values for scattering lengths in
Table II. The values of EXP2001 are from pionic hydrogen
and deuterium in Ref. [48]. The values are updated in
Ref. [41] and are not shown again because they are very

close to the results from RS solution. The latter, EXPnew,
are obtained by combining with the analysis of the results
from Refs. [40,49–53]. As expected, our results for
scattering lengths are consistent with those values within
errors. In order to check the convergence, the threshold
parameters from the different order are shown in Table III.
Now we discuss the subthreshold parameters. For

comparing with the precise subthreshold parameters from
the RS analysis [24], we consider the parameters from D�

and B� amplitudes. Here, D� ¼ A� þ νB�, for the
detailed relations about them, see Eqs. (3.32)–(3.34) of
Ref. [41]. We can obtain the subthreshold parameters from
our VIðw; tÞ and WIðw; tÞ amplitudes by following
Appendix E of Ref. [20]. Note that, we have fV;Wg3=2 ¼
fg; hgþ − fg; hg− and fV;Wg1=2 ¼ fg; hgþ þ 2fg; hg−
for the isospin relationship. The corresponding subthresh-
old parameters can be obtained by expanding our ampli-
tudes around (v ¼ 0, t ¼ 0). We show the results from our
amplitudes with the LECs extracted from the phase shifts

TABLE II. Values of the S- and P-wave scattering lengths (fm) and scattering volumes (fm3) in comparison with
the values of the various analyses.

Our results SU(2) SP98 RS EXP2001 EXPnew

a3=20þ −0.122ð4Þ −0.119 −0.125ð2Þ −0.122ð3Þ −0.125ð3Þ −0.119ð6Þ
a1=20þ 0.240(3) 0.249 0.250(2) 0.240(2) 0.250þ0.006

−0.004 0.235(2)

a3=21þ 0.603(13) 0.586 0.595(5) 0.598(8) � � � � � �
a1=21þ −0.102ð6Þ −0.054 −0.038ð8Þ −0.083ð3Þ � � � � � �
a3=21−

−0.110ð9Þ −0.113 −0.122ð6Þ −0.116ð3Þ � � � � � �
a1=21−

−0.221ð12Þ −0.181 −0.207ð7Þ −0.200ð11Þ � � � � � �

FIG. 2. Fits and predictions for pion-nucleon (πN) phase shifts from RS equations versus the pion lab momentum jplabj in πN
scattering. The dot-dashed, dotted, dashed, and solid lines refer to the best fits up to first, second, third, and fourth order, respectively.
The open circles denote the WI08 solution, and the data with error bars are from RS equations.
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up to third order (N2LO) and fourth order (N3LO) in
comparison to the RS analysis in Table IV. Not surprisingly,
the values from the third-order amplitudes are not precise.
When using the fourth order amplitudes, we do not find an
improvement of the subthreshold parameters, and in some
parameters they are even clearly worse. The situation is
same as in SU(2) HBχPT [20,21]. Furthermore, the

convergence problems obviously come out. Most of the
subthreshold parameters from N3LO and N2LO are not
consistent, and some even have opposite signs. The fact is
that one cannot properly reproduce the subthreshold
kinematic parameters from the amplitudes with conver-
gence problems in the low-energy region. This is exactly
similar to what is found when the scattering lengths are
predicted from LECs extracted at the subthreshold point up
to N2LO. Thus, we can use the subthreshold parameters to
determine the LECs, as done in Ref. [24], and then discuss
the pertinent physical quantity. But we have 23 LECs at
fourth order in SU(3) HBχPT. That means we need 23
precise subthreshold parameters from RS analysis. This
solution will be done in future works.
However, the subthreshold parameters only involve

eight LECs at third order in both SU(3) and SU(2)
HBχPT. That means we need the eight subthreshold
parameters to determine the LECs at third order. The
expressions of the subthreshold parameters in SU(3)
HBχPT can be found in Appendix B. The pertinent
expressions in SU(2) HBχPT can be obtained by sub-
tracting the contributions from K and η internal meson
lines in one-loop diagrams. We use the precise values of
the subthreshold parameters from the RS analysis [24] to
determine the same LECs in both SU(3) and SU(2)
HBχPT. The results are shown in Table V. The results of
SU(2) are slightly different from Ref. [24] because of
the different physical quantity from Particle Data Group
(PDG) was taken. Note that the errors as propagated from
the subthreshold parameters are same in both SU(3) and
SU(2) solutions because the expressions from K and η
loop diagrams do not involve the LECs at third order.
The SUð3ÞK presents the result that the contributions
from η-meson loop diagrams is subtracted. Clearly, all
LECs, except for d̄1 þ d̄2, are obviously different in
SU(2) and SU(3) solutions. Thus, it is interesting to
predict the threshold parameters by using the LECs from
the subthreshold parameters. Let us look at the scattering
lengths as an example; for the pertinent expressions, see
Appendix A. In unites of fm, we obtain

TABLE III. Values of the S- and P-wave scattering lengths (fm)
and scattering volumes (fm3) from the different order.

OðqÞ Oðq2Þ Oðq3Þ Oðq4Þ
a3=20þ −0.113 −0.111ð87Þ −0.121ð18Þ −0.122ð4Þ
a1=20þ 0.225 0.226(87) 0.240(16) 0.240(3)

a3=21þ 0.241 0.531(11) 0.624(15) 0.603(13)

a1=21þ −0.121 −0.082ð9Þ −0.080ð11Þ −0.102ð6Þ
a3=21−

−0.121 −0.106ð11Þ −0.113ð14Þ −0.110ð9Þ
a1=21−

−0.483 −0.129ð15Þ −0.215ð19Þ −0.221ð12Þ

TABLE IV. Subthreshold parameters for the D� and B�
amplitudes in comparison to the RS analysis.

N2LO N3LO RS

dþ00½m−1
π � −0.91ð12Þ −0.99ð15Þ −1.36ð3Þ

dþ10½m−3
π � 1.12(7) 1.21(13) 1.16(2)

dþ01½m−3
π � 1.30(5) 1.28(8) 1.16(2)

dþ20½m−5
π � −0.13ð6Þ 0.13(6) 0.196(3)

dþ11½m−5
π � −0.011ð9Þ 0.16(11) 0.185(3)

dþ02½m−5
π � 0.0298(18) 0.076(13) 0.0336(6)

bþ00½m−3
π � −6.14ð8Þ −6.11ð14Þ −3.45ð7Þ

d−00½m−2
π � 0.93(11) 0.63(17) 1.41(1)

d−10½m−4
π � −0.395ð21Þ −0.12ð9Þ −0.159ð4Þ

d−01½m−4
π � −0.105ð13Þ −0.24ð9Þ −0.141ð5Þ

b−00½m−2
π � 9.92(6) 9.73(8) 10.49(11)

b−10½m−4
π � 0.44(5) 0.11(14) 1.00(3)

b−01½m−4
π � −0.28ð9Þ 0.39(16) 0.21(2)

TABLE V. Results for the πN LECs at NLO andN2LO in both SU(3) and SU(2) HBχPT. The results for the ci and d̄i
are given in units of GeV−1 and GeV−2, respectively. Note that the results from SU(2) and SU(3) are the same at NLO.

NLO

c1 c2 c3 c4

SU(2) −0.75ð4Þ 1.81(3) −3.62ð6Þ 2.16(3)

N2LO

c1 c2 c3 c4 d̄1 þ d̄2 d̄3 d̄5 d̄14 − d̄15

SU(3) −1.23ð4Þ 4.57(3) −6.36ð6Þ 4.19(3) 1.08(6) −0.28ð2Þ 0.04(4) −1.56ð6Þ
SUð3ÞK −1.23ð4Þ 4.54(3) −6.34ð6Þ 4.16(3) 1.11(6) −0.29ð2Þ 0.04(4) −1.57ð6Þ
SU(2) −1.07ð4Þ 3.20(3) −5.32ð6Þ 3.55(3) 1.03(6) −0.47ð2Þ 0.13(4) −1.89ð6Þ
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a3=20þ ¼ f−0.113;−0.146;−0.130gSUð2Þ; f−0.113;−0.146;−0.128gSUð3Þ;
a1=20þ ¼ f0.225; 0.192; 0.263gSUð2Þ; f0.225; 0.192; 0.266gSUð3Þ; ð16Þ

where the three entries of the arrays refer to theLO,NLO, and
N2LO scattering length values, respectively. The situation
SUð3ÞK is not shown because the contributions from
η-meson loop are very small. Not surprisingly, the results
from the SU(2) and SU(3) are almost the same at third order.
The contributions from the kaon loops cannot improve
the predictions for the scattering lengths fromLECs extracted
at the subthreshold point up to N2LO. Therefore, the
convergence problems still exist the same as in SU(2)
HBχPT [24]. The differences between the scattering lengths
from Eq. (16) and Table III emphasize these convergence
problems. Furthermore, we try to impose constraints to the
LECs both from the threshold and subthreshold kinematic
parameters to analyze whether the discrepancies improve.
First, we obtain the LECs combinations −2c1 þ c2 þ c3 ¼
0.59 GeV−1 and d̄1 þ d̄2 þ d̄3 þ 2d̄5 ¼ 0.28 GeV−2 by
using the two scattering lengths from the RS solution at
N2LO in SU(3)HBχPT. Then, the c2, c3, d̄1 þ d̄2, and d̄3 are
fixed by the subthreshold parameters; see Table V. Now we
predict the subthreshold parameters dþ00 ¼ −1.41½m−1

π � and
d−00 ¼ 1.30½m−2

π �. The dþ00 is very closed to the value from the
RS solution, but the d−00 has a certain gap. The results are
disappointing. However, the inclusion of the resonance
Δð1232Þmight help to solve all previous observed problems.
Finally, we discuss the convergence of the chiral expan-

sion in detail. In Fig. 2, we show the best fits up to the
respective order. In all partial waves, the fourth-order
corrections are smaller than the third-order ones below
150 MeV, indicating convergence. In most cases, the
third-order corrections are smaller than the second-order
ones. The second-order corrections are smaller than the first-
order ones in a few partial waves. Therefore, the convergence
of the chiral expansion becomes better along with the
increase of the order. However, with the energy increasing
the convergence of the chiral expansion becomes worse. It is
not surprising because the chiral expansion is expanded in
terms of p=Λχ . We can also study the convergence of the
threshold parameters; see Table III. The two scattering
lengths a3=20þ and a1=20þ from S waves are almost unchanged
in a different order, indicating convergence in each order. The
other four scattering volumes from P waves are consistent
from order Oðq3Þ. The calculation results indicate that the
convergence of the threshold parameters is fast because it is
due to mπ=Λχ ∼ 1=7. However, the convergence problems

obviously come out when the subthreshold parameters are
considered. These problems become more complicated. A
great improvement on the convergence of the chiral expan-
sion is still necessary.
In summary, we calculated the T matrices for pion-

nucleon scattering to the fourth order in SU(3) HBχPT.
We fitted the RS phase shifts of πN scattering in range of
10–200 MeV pion lab momentum to determine the LECs.
This led to an good description ofS- andP-wave phase shifts
below 200 MeV pion lab momentum. The separated LECs
bi were also obtained; they can be used as input to the other
physical processes. The scattering lengths and scattering
volumes were also calculated at this order, which turned out
to be in agreement with those of other approaches and
available experimental data. Then, we discussed the sub-
threshold parameters, and found that itwas not a good choice
to obtain the subthreshold parameters from the πN phase
shifts. We also discussed the different LECs obtained by
subthreshold parameters in both SU(2) and SU(3) HBχPT,
and it turned out that the contribution from kaon loops can
contribute to the LECs, but the prediction from subthreshold
parameters to threshold parameters was not improved.
Finally, the convergence of the chiral expansion was dis-
cussed in detail. To sum up, the calculation of πN scattering
in SU(3) HBχPT provides the possibility to consider
explicitly more complex processes involving strangeness.
An improved result for πN scattering can be achieved
through including the resonance Δð1232Þ and the other
hadronic contributions.
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APPENDIX A: SCATTERING LENGTHS

In this Appendix, the analytical expressions for the
scattering lengths from SU(3) HBχPT up to third order
are given by

aþ0þ ¼ m2
π½−ðDþ FÞ2 þ 8MNð−2c1 þ c2 þ c3Þ þ 4m2

πðDþ FÞd̄18�
16πðMN þmπÞf2π

þ 3ðDþ FÞ2MNm3
π

256π2ðMN þmπÞf4π

−
MNm2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K −m2
π

p
384π3ðMN þmπÞf2πf2K

�
7π þ 4 arccos

mπ

mK
þ 4 arcsin

mπ

mK

�
−

ðD − 3FÞ2MNm2
πmη

768π2ðMN þmπÞf2πf2η
; ðA1Þ
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a−0þ ¼ MNmπ

8πðMN þmπÞf2π
þm3

π½ðDþ FÞ2 þ 32M2
Nðd̄1 þ d̄2 þ d̄3 þ 2d̄5Þ�

32πMNðMN þmπÞf2π
þ MNm3

π

64π3ðMN þmπÞf4π
−

MNm2
π

384π3ðMN þmπÞf2πf2K

	
−3mπ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K −m2
π

q �
π − 2 arccos

mπ

mK
þ 4 arcsin

mπ

mK

�

; ðA2Þ

where we use the physical decay constants f2πf2K and f2πf2η in K and η internal meson lines from one-loop diagrams,
respectively. Note that, for comparing with the results from SU(2) HBχPT, the same LECs (ci; d̄i) are used. For the isospin
relationship, we also have a3=20þ ¼ aþ0þ − a−0þ and a1=20þ ¼ aþ0þ þ 2a−0þ.

APPENDIX B: SUBTHRESHOLD PARAMETERS

In this Appendix we present the expressions for the subthreshold parameters from the third order amplitudes in SU(3)
HBχPT. In the same conventions with the scattering lengths, the subthreshold parameters read

dþ00 ¼ −
2ð2c1 − c3Þm2

π

f2π
þ ðDþ FÞ2½3þ 8ðDþ FÞ2�m3

π

64πf4π
þ 1

192πf2πf2K
ð19D4 þ 12D3F

þ 58D2F2 − 36DF3 þ 75F4ÞmKm2
π þ

1

192πf2πf2η
ðD − 3FÞ2½−1þ 4ðDþ FÞ2�mηm2

π; ðB1Þ

dþ10 ¼
2c2
f2π

−
½4þ 5ðDþ FÞ4�mπ

32πf4π
−

1

768πf2πf2KmK
½72m2

K þ ð19D4 þ 12D3F þ 58D2F2

− 36DF3 þ 75F4Þðm2
π þ 4m2

KÞ� −
1

192πf2πf2ηmη
ðD − 3FÞ2ðDþ FÞ2ðm2

π þ 4m2
ηÞ; ðB2Þ

dþ01 ¼ −
c3
f2π

−
ðDþ FÞ2½77þ 48ðDþ FÞ2�mπ

768πf4π
−

1

384πf2πf2K
ð15D2 − 18DF þ 27F2 þ 19D4 þ 75F4

þ 58D2F2 − 36DF3 þ 12D3FÞmK þ 1

6912πf2πf2ηmη
ðD − 3FÞ2½5m2

π − 72ðDþ FÞm2
η�; ðB3Þ

d−00 ¼
1

2f2π
þ 4m2

πðd̄1 þ d̄2 þ 2d̄5Þ
f2π

þ ðDþ FÞ4m2
π

48π2f4π
þ 1

288π2f2πf2K
ð23D4 − 20D3F − 14D2F2

þ 60DF3 þ 111F4Þm2
π þ

1

36π2f2πf2η
ðD − 3FÞ2ðDþ FÞ2m2

π; ðB4Þ

d−10 ¼
4d̄3
f2π

−
15þ 7ðDþ FÞ4

240π2f4π
−

1

1440π2f2πf2Km
2
K
½5ð9þ 23D4 − 20D3F − 14D2F2 þ 60DF3

þ 111F4Þm2
K þ 2ð17D4 − 12D3F − 2D2F2 þ 36DF3 þ 57F4Þm2

π�

−
1

180π2f2πf2ηm2
η
ðD − 3FÞ2ðDþ FÞ2ðm2

π þ 5m2
ηÞ; ðB5Þ

d−01 ¼ −
2ðd̄1 þ d̄2Þ

f2π
−
1þ 7ðDþ FÞ2 þ 2ðDþ FÞ4

192π2f4π
þ 1

3456π2f2πf2K
½39 − 47D2 þ 282DF þ 141F2

− 138D4 þ 120D3F þ 84D2F2 − 360DF3 − 666F4� − 1

72π2f2πf2η
ðD − 3FÞ2ðDþ FÞ2; ðB6Þ
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bþ00 ¼
4MNðd̄14 − d̄15Þ

f2π
−
ðDþ FÞ4MN

8π2f4π
−

1

432π2f2πf2K
ð47D4 þ 60D3F þ 18D2F2 þ 108DF3

þ 279F4ÞMN −
1

24π2f2πf2η
ðD − 3FÞ2ðDþ FÞ2MN; ðB7Þ

b−00 ¼
1

2f2π
þ 2c4MN

f2π
−
ðDþ FÞ2½1þ ðDþ FÞ2�MNmπ

8πf4π
−

1

96πf2πf2K
ð2D2 − 12DF − 6F2 þ 9D4

þ 20D3F − 2D2F2 þ 36DF3 þ 33F4ÞMNmK −
1

48πf2πf2η
ðD − 3FÞ2ðDþ FÞ2MNmη: ðB8Þ
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