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We consider the possibility of an axionlike particle (ALP) that is a ghost, with wrong-sign kinetic and
mass terms. Such an ALP can arise as the partner to an ordinary particle in theories with higher-derivative
quadratic terms. We compute the photon regeneration probability in light-shining-through-wall experi-
ments and show that the presence of such a ghostly ALP can lead, in principle, to discernible effects.

DOI: 10.1103/PhysRevD.102.115039

I. INTRODUCTION

The axion is the pseudo-Goldstone boson of a sponta-
neously broken U(1) global symmetry that is anomalous
with respect to the SU(3) color gauge group of the standard
model [1]. Since models with axions can solve the strong
CP problem [2], axion phenomenology has been the focus
of considerable attention. Axionlike particles (ALPs) have
a similar low-energy effective Lagrangian and can be
probed via the same experimental techniques used to
search for axions [3]. Whether or not an ALP contributes
to the solution of the strong CP problem, the fact that such
particles can arise so generically in extensions of the
standard model makes them of interest for phenomeno-
logical investigation.
In the case where the ALP is pseudoscalar, its coupling to

photons is given by the Lagrangian

L ¼ −
1

4
FμνFμν þ 1

2
∂μa∂μa −

1

2
m2a2 þ 1

4
gaγγaF̃μνFμν;

ð1:1Þ

where Fμν is the photon field strength tensor, F̃μν ≡
1
2
ϵμναβFαβ is its dual, and gaγγ is a dimensionful coupling,

with units of inverse mass. In the case where the ALP is a
scalar, we may relabel a → s and replace the interaction
term in Eq. (1.1) with 1

4
gsγγsFμνFμν. It has been long known

that the ALP-photon interaction may lead to the conversion
of photons to ALPs in the presence of a strong magnetic
field. While photons from an incident beam can be blocked
by a barrier, the ALPs may proceed through it and be

converted back to photons subsequently in the presence of a
magnetic field on the other side [4]. Such light-shining-
through-wall (LSW) experiments have provided excluded
regions in the mA-gAγγ plane [5], for A ¼ a or s.
The possibility we consider here is a second ALP that

appears in a higher-derivative generalization of this effec-
tive Lagrangian, with quadratic terms

L ¼ −
1

2
â□â −

1

2
m2â2 −

1

2M2
â□2â: ð1:2Þ

In cases where the distinction between scalar and pseudo-
scalar does not matter, we will refer to the ALP as a, with a
hat to signify the higher-derivative form of the theory. In a
theory where the ALP is associated with the spontaneous
breaking of a global symmetry via the vacuum expecta-
tion value of a complex scalar field ϕ, a similar higher-
derivative term for ϕ in its Lagrangian leads to Eq. (1.2), as
we will see later. In the next section, we review how
Eq. (1.2) can be recast as a theory without higher-derivative
terms, but with a new field ã that has wrong-sign kinetic
and mass terms, i.e., one that corresponds to a Lee-Wick
ghost [6]. Like the Lee-Wick standard model [7], such a
theory will have a unitary S matrix provided that (i) the
Lee-Wick partner is excluded from the spectrum of
asymptotic states [6] and (ii) certain prescriptions are
applied in evaluating loop diagrams [8]. If one assumes
that Lee-Wick partners serve as a solution to the hierarchy
problem, then partners must be present for every particle,
including in sectors that represent extensions of the
standard model. The masses of these partner particles
are free parameters; no physical consideration forces a
common Lee-Wick scale for all the partner particles,
though this is often assumed in the literature as a simplify-
ing assumption. We will therefore take M as a free
parameter in our discussion. We will see that the coupling
of ã to photons (and in fact to anything else) will have the
same form as an ordinary ALP, justifying the choice to call
it an ALP as well.
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In this paper, we investigate the effects of a light Lee-
Wick ALP on LSW experiments. The most common
computation of the probability for regeneration of photons
on the far side of a barrier first computes the probability of a
photon converting to an ALP (and vice versa) in a magnetic
field, as inferred from solutions to classical field equations
(see, for example, Ref. [4]). This approach is not useful for
taking into account the virtual Lee-Wick contribution or its
interference with the ordinary one; we instead approach the
problem in a quantum field theory setting, maintaining the
requirement that the Lee-Wick partner not appear in a
Feynman diagram as an external line. We show that the new
contribution to the scattering amplitude alters the photon
regeneration probability when both the ordinary and Lee-
Wick ALPs are light. The effect we identify is one that
might be experimentally discerned. It is worth noting that
there are many other examples in the literature of exten-
sions of the standard model, such as supersymmetry, in
which the possibility of a light member of the spectrum of
new particles, such as a light gluino [9] or light axino [10],
has been investigated due to their interesting phenomeno-
logical implications; the present work is similarly moti-
vated and the unusual nature of the ghostlike particles that
we consider makes our study distinct.
In the next section we discuss the relevant effective

theory, and in Sec. III present the computation of the
probability relevant to LSW experiments. In the final
section, we summarize our conclusions.

II. LEE-WICK ALPS

The procedure for converting the Lagrangian in Eq. (1.2)
into one without the higher-derivative term, by use of an
auxiliary field, is now well known from the literature on the
Lee-Wick standard model [7]. Here we give only a brief
review.
The following Lagrangian:

LAF ¼ −
1

2
â□â −

1

2
m2â2 − ã□âþ 1

2
M2ã2 þ LintðâÞ

ð2:1Þ

can be shown to be equivalent to Eq. (1.2) by functionally
integrating over the auxiliary field ã in the generating
functional for the theory. Rewriting this in terms of the
shifted field

â ¼ a − ã; ð2:2Þ

the Lagrangian becomes

L ¼ −
1

2
a□aþ 1

2
ã□ã −

1

2
m2ða − ãÞ2 þ 1

2
M2ã2

þ Lintða − ãÞ: ð2:3Þ

In the case where m ¼ 0, it is clear by inspection that ã
corresponds to a particle of mass M with wrong-sign
kinetic and mass terms. In the case where m ≠ 0, there
is mass mixing. Since the kinetic terms are already
diagonal, with opposite signs corresponding to the pro-
pagator residues found in the higher-derivative form
of the theory, one can only diagonalize the mass matrix
using a transformation that preserve the kinetic term matrix
diagð1;−1Þ. Applying this constraint to the components of
an arbitrary, real two-by-two transformation matrix leaves
one degree of freedom, which can be parameterized

�
a

ã

�
¼

�
cosh θ sinh θ

sinh θ cosh θ

��
a0
ã0

�
; ð2:4Þ

for transformations that are continuously connected to the
identity. [This is a symplectic transformation [11], since
Eq. (2.4) also leaves a two-by-two nondegenerate skew-
symmetric matrix invariant.] This leads to the form

L ¼ −
1

2
a0□a0 þ

1

2
ã0□ã0 −

1

2
m2

0a
2
0 þ

1

2
M2

0ã
2
0

þ Lintðe−θ½a0 − ã0�Þ; ð2:5Þ

where the 0 subscript indicates a mass eigenstate. One can
treat either ðm;MÞ or ðm0;M0Þ as free parameters. We
will do the latter, in which case the mixing angle θ is
determined by1

tanh θ ¼ −
m2

0

M2
0

: ð2:6Þ

The effect of field redefinition that we have described
implies that the coupling of a0 and ã0 to photons is given by

Lint ⊃
1

4
gaγγe−θða0 − ã0ÞF̃μνFμν; ð2:7Þ

where the same substitutions described earlier may be
applied in the case where the ALPs are scalar rather than
pseudoscalar. Equation (2.7) will be used in the calculation
of Sec. III.
The wrong-sign quadratic terms of ã0 in Eq. (2.5) have

consequences for unitarity and causality, issues that have
been discussed extensively in the past literature on Lee-
Wick theories [6,8,13]. Lee and Wick [6] were first to point
out that unitarity can be preserved in such a theory provided
that the Lee-Wick partners are excluded from the spectrum
of asymptotic scattering states. Cutkosky et al. [8] devel-
oped a prescription for the appropriate evaluation of loop
diagrams, specifying the deformation of contours around
poles in the complex plane so that unitarity is preserved

1Equation (2.6) is equivalent to tanh2θ¼−2m2
0M

2
0=ðm4

0þM4
0Þ

found in Ref. [12].
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beyond tree level. In a more modern treatment, Grinstein,
O’Connell, and Wise [13] confirmed unitarity in a scalar
O(N) model, showing the importance of contributions from
multiparticle states in assuring agreement between the left-
and right-hand sides of the optical theorem. They also study
another feature of such theories, the apparent violation of
microcausality in the wrong-sign vertex ordering for the
production and decay of a Lee-Wick resonance, an effect
determined indirectly from the asymptotic positions and
momenta of incoming and scattered wave-packet states.
The significance of the demonstrated unitarity of Lee-Wick
theories is that it implies that the microscopic violation of
causality can lead to no logical paradoxes, as the unitary S
matrix provides a one-to-one mapping from past to future
descriptions of the system [13]. Hence, Refs. [6,8,13]
suggest that the framework for the ALP that we have
adopted is one that is free of any inconsistencies.
When the ALP arises via the spontaneous breaking of an

approximate global symmetry, it is often identified via a
nonlinear redefinition of a complex scalar field that
provides the symmetry-breaking vacuum expectation value
f=

ffiffiffi
2

p
:

ϕ̂ ¼ 1ffiffiffi
2

p ðρ̂þ fÞeiâ=f: ð2:8Þ

In this case, we assume the Lagrangian

L ¼ −ϕ̂�
□ϕ̂ −

1

M2
ϕ̂�

□
2ϕ̂þm2

ϕϕ̂
�ϕ̂ −

λ

2
ðϕ̂�ϕ̂Þ2; ð2:9Þ

which includes a higher-derivative quadratic term and
provides for the spontaneous breaking of the U(1) global
symmetry when m2

ϕ > 0. Substituting Eq. (2.8) into
Eq. (2.9), one obtains an effective Lagrangian for â and
ρ̂ of the form

L ¼ −
1

2
â□â −

1

2M2
â□2â −

1

2
ρ̂□ρ̂ −

1

2M2
ρ̂□2ρ̂

−
�
−
1

2
m2

ϕðρ̂þ fÞ2 þ λ

8
ðρ̂þ fÞ4

�
þ Lint; ð2:10Þ

whereLint include derivative interactions involving ρ̂ and â,
as well as couplings to standard model fields that may be
arise, for example, via loops of heavy particles. The
potential for ρ̂ is minimized for f ¼ ffiffiffiffiffiffiffi

2=λ
p

mϕ, and one
finds that m2

ρ ¼ 2m2
ϕ. In axion models, the scale of f, and

hence the mass scale for ρ̂, is extremely high; even if it were
as low as a TeV in a generic ALP model, this would place
the mass scale for ρ̂ far above the sub-meV scale of
relevance to LSW experiments. Thus, we may work in an
effective theory in which ρ̂, or equivalently ρ and its Lee-
Wick partner ρ̃, are integrated out of the theory. We are left
with

L ¼ −
1

2
â□â −

1

2M2
â□2â −

1

2M2f2
∂μâ∂νâ∂μâ∂νâ

þ 1

4
gaγγâF̃μνFμν þ � � � ; ð2:11Þ

where the ellipsis refer to any other induced couplings to
standard model fields. The point here is that the higher-
derivative term that we assumed previously for â is present;
had we included a small, explicit breaking of the U(1)
global symmetry in Eq. (2.9), we would also generate the â
mass term of Eq. (1.2) as well. The only new term is the
higher-derivative interaction that is quartic in â. It is
interesting to note that this term is not suppressed by four
powers of the high scale f but by f2M2 instead, due to the
fact that it originates from application of the nonlinear field
redefinition to the 1=M2-suppressed higher-derivative term
in Eq. (2.9). This term can lead to a three-body decay of ã,
though decays may also arise via nonderivative interactions
that appear when explicit breaking of the U(1) symmetry is
taken into account. Whether this term can have any other
phenomenological consequences will not have any rel-
evance to the calculation that we present in the next section.

III. LIGHT SHINING THROUGH WALLS

To start, consider a toy example of the interaction
between two real scalar fields χ and ψ with classical
sources, VðxÞL and VðxÞR, via the interaction Hamiltonian

HR ¼
Z

d4x½χψVðxÞL þ χψVðxÞR�: ð3:1Þ

Let us assume that ψ is massless and consider one-into-one
scattering of ψ particles, in the presence of these sources. In
addition, we assume that the interaction region includes a
barrier that is impenetrable to ψ particles; the sources VL
(VR) are assumed to be nonvanishing over a finite region to
the left (right) of the barrier. As the asymptotic states
include only ψ particles, and no intermediate measurement
is made of the χ particles, the quantum mechanical
scattering amplitude is given by

iM ¼ −
Z

d4x
Z

d4x0DFðx − x0ÞVðxÞLVðx0ÞR
× hp0jψðxÞψðx0Þjpi; ð3:2Þ

whereDFðx − x0Þ is the Feynman propagator for the χ field.
After a series of elementary manipulations, this can be
reduced to the momentum space expression

iM ¼
Z

d4q
ð2πÞ4

i
q2 −m2

χ þ iϵ
½iṼðp0 − qÞL�½iṼðq − pÞR�;

ð3:3Þ
where Ṽ is the Fourier transform of a given source
(following the conventions of Peskin and Schroeder [14])
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and p (p0) represents the four-momentum of the incoming
(outgoing) ψ particle. The arguments of Ṽ represent the
momenta flowing out of each source; conservation of
momentum at the vertices leaves one momentum, q,
unconstrained, which is integrated over in the amplitude.
The analogous approach may be applied to the ALP-

photon vertex that we encountered previously, with com-
binatoric factors included to take into account that there are
two ways to choose which field strength tensor in each
vertex is treated as the classical source. Assume for the
moment that the Lee-Wick ALP is absent (which is useful
for comparing our result to the one obtained by the classical
approach in Ref. [4]). The amplitude that is analogous to
Eq. (3.3) is

iM ¼ g2aγγ
4

ϵμναβϵρσκηϵμðpÞϵρðp0Þ�pνp0
σ

×
Z

d4q
ð2πÞ4

i
q2 −m2

0 þ iϵ
½iF̃cl

αβðq − pÞL�

× ½iF̃cl
κηðp0 − qÞR�; ð3:4Þ

where the ϵðpÞ and ϵðp0Þ� four-vectors encode the photon
polarizations. The tildes in Eq. (3.4) indicate a Fourier
transform, not a dual tensor; the latter is taken into account
via the Levi-Civita symbols in the prefactor. We now work
in the laboratory frame, where we assume a fixed magnetic
field B⃗ in the z direction, and consider polarized photons
moving in the x direction, with their electric fields aligned
with the applied B field, namely,

Fμν ¼

0
BBB@

0 0 0 0

0 0 −Bz 0

0 Bz 0 0

0 0 0 0

1
CCCA; pμ ¼

0
BBB@

ω

ω

0

0

1
CCCA; ϵμ ¼

0
BBB@

0

0

0

1

1
CCCA:

ð3:5Þ

To proceed, it is simplest to substitute these choices into
Eq. (3.4), square the amplitude, and sum over the final
photon polarization states, yielding

jMj2 ¼ g4aγγω2ðp02
0 − p02

3 ÞjI0ðp0; pÞj2; ð3:6Þ

where

I0ðp0; pÞ ¼
Z

d4q
ð2πÞ4

B̃ðLÞ
z ðq − pÞB̃ðRÞ

z ðp0 − qÞ
q2 −m2

0 þ iϵ
: ð3:7Þ

We assume that the magnetic field is constant, with
magnitude B0, and significantly greater in spatial extent
than the incoming photon beam in the y and z directions.
In the x direction, the magnetic field is constant over the
finite interval −L=2 ≤ x ≤ L=2 (to the left of the wall) and

L=2 ≤ x ≤ 3L=2 (to the right of the wall) and vanishing
otherwise; the wall is assumed to be thin and located at
x ¼ L=2. With these choices, the Fourier transform of the
magnetic field in the x direction

Z
dxBðLÞ

z ðxÞe−iqx ¼ B0L

�
sinðqL=2Þ
qL=2

�
≡ B0LFðqÞ; ð3:8Þ

where the Fourier transforms in the 0, 2, and 3 directions
yield delta functions. Here and henceforth, we use q to
represent one-dimensional momentum in the x direction,
rather than a four-momentum. For the source on the right of
the wall,

Z
dxBðRÞ

z ðxÞe−iqx

¼
Z

dxBðLÞ
z ðx − LÞe−ikq ¼ B0Le−iqLFðqÞ: ð3:9Þ

Combining Eqs. (3.7)–(3.9), one may write the squared
amplitude as

jMj2 ¼ g4aγγω4B4
0L

4½ð2πÞ3δðp00 − ωÞδðp02Þδðp03Þ�2jIðωÞj2;
ð3:10Þ

where IðωÞ is the one-dimensional integral

IðωÞ ¼
Z

dq
2π

Fðq − ωÞ2eiðq−ωÞL
q2 − ðω2 −m2

0Þ − iϵ
: ð3:11Þ

We note that the quantity in brackets can be written as
½ð2πÞ3δð3Þð0Þ�δðp00 − ωÞδðp02Þδðp03Þ, while the scattering
probability is determined by

dP ¼ 1

hijii
d3p0

ð2πÞ3
1

2ω0 jMj2

≡ 1

2ω½ð2πÞ3δð3Þð0Þ�
d3p0

ð2πÞ3
1

2ω0 jMj2: ð3:12Þ

The prefactor takes into account the normalization of the
incoming scattering states. The divergent factor cancels (or,
more rigorously, can be canceled after regulating the delta
functions by making the four-volume of the Universe
finite), while the remaining three delta functions are
eliminated by the phase space integration. We are left with
the scattering probability

P ¼ 1

4
g4aγγB4

0L
4ω2jIðωÞj2; ð3:13Þ

with IðωÞ as given previously. We now evaluate that
integral: For convenience, we first shift the integration
variable
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IðωÞ ¼
Z

dq
2π

FðqÞ2eiqL
ðqþ ωÞ2 − ðω2 −m2

0Þ − iϵ
ð3:14Þ

and note that FðqÞ2eiqL has no singularities for any finite
complex q and depends only on non-negative powers of
eiqL. Hence, we can evaluate q the integral along the real
axis of the complex q plane by closing the contour at
infinity via a semicircle in the upper half-plane. Defining

ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −m2

0

q
; ð3:15Þ

the contour just described encloses a pole at q� ¼ ka − ω.
By the residue theorem, one thus finds

P ¼ 1

16
g4aγγB4

0L
4

�
ω

ka

�
2

Fðq�Þ4: ð3:16Þ

This agrees with the expression quoted in Ref. [4], up to a
different sign convention for the momentum q�.
It is interesting to note that the approach of Ref. [4]

involves squaring a γ ↔ a transition probability that is
inferred from a classical field amplitude. Using quantum
field theory, if one computes the probability of one-into-
one γ → a scattering off a single source (say, the one on the
left of the barrier), one finds that the square of this
probability also agrees with Eq. (3.16). Though that may
provide a convenient shortcut to obtaining the final answer,
such a calculation is not the appropriate one: It corresponds
to a different physical situation, one in which a measure-
ment is made of the ALP directly, an assumption that
cannot apply to the second, Lee-Wick ALP. Our approach
does not run into this difficulty.
It is straightforward to include the effect of the Lee-Wick

ALP in our approach, by modifying

���� iω2kaFðq�Þ
2eiq�L

����
2

→

���� iω2ka Fðq�Þ
2eiq�L−

iω

2k̃a
Fðq̃�Þ2eiq̃�L

����
2

;

ð3:17Þ

where q̃� and k̃a are defined in the same way as q� and ka,
with m0 replaced byM0; the sign difference between terms
reflects the difference in the sign of the propagators for the
ordinary and Lee-Wick ALPs, as well as a sign flip at each
vertex. After including the appropriate dependence on
mixing angle in the prefactor, the conversion probability
becomes

P ¼ 1

16
g4aγγB4

0L
4e−4θGðω; m0;M0; LÞ; ð3:18Þ

where

Gðω; m0;M0; LÞ

¼
��

ω

ka

�
2

Fðq�Þ4 þ
�
ω

k̃a

�
2

Fðq̃�Þ4

−2
�
ω

ka

��
ω

k̃a

�
Fðq�Þ2Fðq̃�Þ2 cos½ðq� − q̃�ÞL�

�
: ð3:19Þ

We plot the function Gðω; m0;M0; LÞ in Fig. 1, as a
function of M0 (left) and photon energy ω in the left and
right panels, respectively, with other parameters held fixed.
For the purpose of illustration, we have fixed L ¼ 10 m
and m0 ¼ 0.1 meV in each of these subfigures. We note
that L ¼ 10 m and ω ¼ 2.5 eV were the benchmark values
assumed in Ref. [4]; moreover, current exclusion regions
for axions from LSW experiments like OSQAR [15] go up
to about 1 meV, which motivates the M0 range in the left
panel in Fig. 1. The line that is at (or asymptotes to) G ¼ 1

FIG. 1. The functionG defined in the expression for the photon regeneration probability [Eq. (3.18)] for fixed L andm0. The curves in
the left panel are labeled by photon energy ω; in the right panel, by the Lee-Wick ALP mass M0.
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corresponds to the case whereM0 ¼ ∞, i.e., where only the
normal ALP is present, and is provided as a point of
comparison. Note that the separate factor of e−4θ in
Eq. (3.18) can be computed from Eq. (2.6) and is of
Oð1Þ for values ofm0 andM0 relevant in these figures; for a
fixed choice of m0 andM0, this factor can be absorbed into
a redefinition of the coupling gaγγ . These figures illustrate
that the presence of the Lee-Wick ALP can lead to non-
negligible differences in the photon regeneration probability
compared to ALP models without the higher-derivative
quadratic terms. The right panel of the figure makes clear
that this difference might be probed experimentally by
performing LSW experiments at different photon energies,
where the energy dependence of the conversion probability
could become apparent.
A number of comments are in order: (i) One might object

that the sensitivities of current LSW experiments are super-
seded by other bounds on light particles, particularly from
searches for solar axions (see the bound from the CAST
experiment [16] in the exclusion plot in Ref. [5]). While this
is true, the present result is of interest due to the substantial
room for improvement in the sensitivity anticipated for future
LSW experiments, corresponding to values of gAγγ that are
more than 4 orders of magnitude smaller than those acces-
sible by LSW experiments today. This is illustrated by the
projected exclusion region for the proposed ALPS-II [17],
ALPS-III [18], and STAX2 [19] experiments in Fig. 6 of
Ref. [3]. Thebasic qualitative conclusionof thepresentwork,
that it may be useful to look at the dependence of the
conversion probability on photon energy to search for effects
like those shown in the right panel in Fig. 1, is potentially of
value. (ii) Thosewho haveworkedwith Lee-Wick theories in
other contexts may have anticipated a suppression of the
squared amplitude due to the cancellation between the
ordinary and the Lee-Wick particle propagators (the effect
that leads to better convergence of loop diagrams in the Lee-
Wick standard model). However, this is not the case here,
since each term in the amplitude is a finite integral in q that is
dominated by q�, as is clear from Eq. (3.19), and q� ≪ m0.
[Note that when m0 ≪ ω, as we have been assuming,
q� ≈m2

0=ð2ωÞ ≪ m0.] Hence, the ultraviolet behavior of
the integrand is not determining the final result. (iii) We
presented the form of the photon-ALP vertex in the case
where the ALP is scalar rather than pseudoscalar in Sec. I. In
this case, the amplitude given in Eq. (3.4) would bemodified
by the replacement

ϵμναβϵρσκη → ðgμαgνβ − gναgμβÞðgρκgση − gσκgρηÞ: ð3:20Þ

The subsequent derivation is the same as the one described in
the case of a pseudoscalar ALP, and the final result turns out
to be identical to the one given in Eqs. (3.18) and (3.19), with

only the notational replacement gaγγ → gsγγ . (iv) The Lee-
Wick ALP could have a width Γ that is larger in magnitude
than the ordinary ALP, depending on the model. When a
width is included, the exact Lee-Wick propagator has a pair of
complex conjugate poles and a cut. In the narrow width
approximation, one of these poles and the cut piece cancel, so
that a single pole remains, withM2 replaced byM2 þ iMjΓj;
this expression reflects the fact that Lee-Wick particles have
Γ < 0. Notice that thewidthmoves the location of propagator
poles in a direction opposite that given by the iϵ prescription.
The Lee-Wick prescription [6] requires that an integration
contour that is initially on the real axis and given by the
Feynman prescription is deformed as the width is turned on,
so that the poles remain in the same relative location, either
above or below the contour,without crossing it. The end result
in the present calculation would be to replace M2 by M2 þ
iMjΓj in Eq. (3.17) and modify Eqs. (3.19) accordingly. We
have done this exercise and checked that including a width of
the order of 0.01M0–0.1M0 in our previous calculation does
not change the results shown in Fig. 1 qualitatively.

IV. CONCLUSIONS

Wehave considered the consequences of higher-derivative
quadratic terms inmodelswithALPs. Such higher-derivative
terms have been of interest in extensions of the standard
model intended to address the hierarchy problem [7], as well
as in attempts to formulate renormalizable theories of
quantum gravity [20]. Their generic presence is well moti-
vated, and themass scales associatedwith these terms are free
parameters. Higher-derivative quadratic terms in ALP mod-
els give rise to a second ALP, a Lee-Wick partner [6]. Their
appropriate treatment in quantum field theory is well known
[6,8] and requires that they be excluded from the spectrum of
asymptotic scattering states. Nevertheless, if the Lee-Wick
ALP is not decoupled from the relevant low-energy effective
theory, it can have observable consequences.We have shown
this in the context of LSW experiments, where the ordinary
and Lee-Wick ALPs have similar interaction vertices with
photons (up to a sign) and can both contribute to the photon
regeneration amplitude. Our result shows a distinctive
dependence of the regeneration probability on incident
photon energy. With substantial improvements in the sensi-
tivity ofLSWexperiments anticipated [17–19], such an effect
might be relevant experimentally in distinguishing the
possibility considered here from more conventional ALP
scenarios.
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