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We consider a scalar field in a slice of Lorentzian five-dimensional AdS at arbitrary energies. We show
that the presence of bulk interactions separates the behavior of the theory into two different regimes:
Kaluza-Klein and continuum. We determine the transition scale between these regimes and show that
UV-brane correlation functions are independent of IR-brane-localized operators for four-momenta beyond
this transition scale. The same bulk interactions that induce the transition also give rise to cascade decays.
We study these cascade decays for the case of a cubic self-interaction in the continuum regime. We find that
the cascade decay progresses slowly towards the IR region and gives rise to soft spherical final states,
in accordance with former results from both gravity and CFT. We identify a recursion relation between
integrated squared amplitudes of different leg numbers and thus evaluate the total rate. We find that cascade
decays in the continuum regime are exponentially suppressed. This feature completes the picture of the
IR brane as an emergent sector as seen from the UV brane. We briefly discuss consistency with the
holographic dual description of glueballs and some implications for dark sector models.
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I. INTRODUCTION

The AdS/CFT correspondence states that gauge theories
with large ’t Hooft coupling are dual to a weakly coupled
string theory with a curved extra dimension [1–4]. For
sufficiently large ’t Hooft coupling, string states are heavy
and the 5D theory is described by an effective field theory
(EFT) living in an AdS5 background; see e.g., [5–10].
Variations of this duality can deform and even truncate the
IR region of the AdS space, leading to a discrete tower of
Kaluza-Klein (KK) states analogous to the hadron spec-
trum in QCD [11–21]. Unlike QCD—which has small
’t Hooft coupling—cascades of radiation at large ’t Hooft
coupling do not form jets because there is no reason for soft
or collinear phase-space configurations to be preferred.
Instead, cascades produce spherical events ending in a large
number of low-momentum final states [22–27]. Earlier

field-theoretical studies of these soft bomb events in AdS5
assume that Kaluza-Klein modes are narrow [28]. In this
work we show that around some transition scale, the narrow
modes merge to form a continuum. We extend the study of
soft bombs into this continuum regime.
We briefly sketch the energy regimes of field theory in a

slice of 5D AdS, as obtained in this work. The fundamental
scales fixed by geometry are the AdS curvature k and the
IR-brane position 1=μ. The Kaluza-Klein scale is μ ≪ k
and represents the mass gap in the dual gauge theory. In the
presence of interactions, the theory has a 5D cutoff Λ and a
transition scale Λ̃ that is explained below. These have a
hierarchy Λ > k > Λ̃ > μ that defines four different energy
regimes:

(i) The 4D regime, E < μ. In this limit, Kaluza-Klein
modes are integrated out, and only sufficiently light
4D modes such as gauge or Goldstone bosons
remain in the spectrum.

(ii) The Kaluza-Klein regime, μ < E < Λ̃. The theory in
this regime has a tower of regularly spaced narrow
resonances. The resonances in this energy window
are narrow glueballs in the dual gauge theory.

(iii) The continuum regime, Λ̃ < E < k. In this regime,
the effective theory breaks down in the IR region of
AdS. Quantum corrections mix the KK modes and
merge them into a continuum. An observer on the
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UV brane effectively sees pure AdS. The theory can
equivalently be described by a holographic CFTwith
no mass gap.

(iv) The flat space regime, k < E < Λ. Here the curva-
ture of AdS becomes negligible, and KK modes
from any other compact dimensions appear. No
simple CFT dual is expected in this regime.

The presence of the distinct Kaluza-Klein and continuum
regimes can be deduced qualitatively from [29,30]. A
quantitative description of the transition and the typical
scale Λ̃, however, is more subtle. Interactions (even 5D
gravity) resolve the KK poles through bulk quantum
corrections to the self-energy. One must account for these
corrections to observe the transition between narrow KK
modes and the continuum [31]. Across this transition, the
bulk correlators in the continuum regime effectively lose
contact with the IR brane as the effective theory breaks
down in that region of position-momentum space. We say
that the IR brane effectively emerges for bulk correlators as
their energy is decreased through this KK-continuum
transition.
One puzzle is whether cascade decays into soft bombs

may challenge this picture of effective emergence. Cascade
decays can split the energy of individual excitations across
many offspring states. Thus, a cascade can convert a single
state in the continuum regime into many states in the KK
regime. The soft bomb naively appears to be a way for a
bulk field to propagate information to the IR brane even
when the initial excitation is in a regime where it is not
sensitive to the IR brane. The picture of effectively
emergent IR-brane physics thus depends on a careful
understanding of soft bomb events from bulk decays.
In this work, we establish the existence of a continuum

regime in the presence of interactions and study soft bomb
events in this regime. There are multiple motivations for
such a study:

(i) The earlier work on soft bombs in the Kaluza-Klein
regime [28] does not apply in the continuum regime
because the effective theory breaks down in the IR
region of AdS. KK modes are thus not appropriate
degrees of freedom. We thus investigate whether
events are indeed spherical and soft in the continuum
regime. This also serves as a check of the soft bomb
picture in the CFT dual.

(ii) In addition to the kinematic considerations, we
calculate occurrence probabilities for soft bomb
events. To the best of our knowledge, such a
calculation has not been presented in the literature.

(iii) Understanding the KK-continuum transition and the
soft bomb rate allows us to complete the picture of the
emergence of the IR brane. Without knowledge of the
soft bomb rates, it remains unclear whether the theory
can actually be described by a high-energy effective
theory with no IR brane in the continuum regime.

(iv) Both IR-brane emergence and the properties of soft
bombs have phenomenological implications for
models of physics beyond the Standard Model that
involve a strongly coupled hidden sector with an
AdS dual. This holographic dark sector scenario has
recently been presented in [32,33]; see also [34–39]
for earlier and related attempts.

This paper is organized as follows. Section II establishes
the basic five-dimensional formalism in a slice of AdS. In
particular, we present the classical propagator for a scalar
field in mixed position-momentum space. Interactions in the
bulk of AdS play a central role in our study. Section III
provides the necessary tools for dimensional analysis at
strong coupling. In Sec. IV, we dress the propagator with
quantum corrections. The imaginary part of the self-energy
induces distinct KK and continuum regimes. The transition
scale is understood both qualitatively from the viewpoint
of effective theory validity and from the viewpoint of the
opacity of the IR region resulting from the dressing of the
propagator by bulk fields. In Sec. V, we identify a recursion
relation that relates the continuum-regime cascade decay
rates with an arbitrary number of legs. Section VI presents
the general picture of soft bomb events in the continuum
regime. Building on this, we spell out the notion of IR-brane
emergence. Asymptotically AdS backgrounds and implica-
tions for holographic dark sectors are also discussed. In
Sec. VII, we connect our analysis to strongly coupled gauge
theories using AdS/CFT. We discuss CFT soft bombs,
establish the relation between bulk matter interactions and
large-N expansion, and analyze the transition scale in the
EFT of glueballs. Conclusions are given in Sec. VIII.

II. BULK SCALAR IN A SLICE OF AdS

In studies of the gravity-scalar system, a general ansatz
for the metric preserving the 4D Poincaré invariance is

ds2 ¼ gMNdXMdXN ¼ e−2AðyÞημνdxμdxν − dy2; ð2:1Þ

where ημν is the 3þ 1-dimensional Minkowski metric with
ðþ;−;−;−Þ signature. This metric appears in certain 5D
supergravities; see e.g., [40]. It can depart from AdS and
develop a singularity at large y, beyond which spacetime
ends; see e.g., [11–13,16,18,19]. In other classes of models,
an IR brane truncating the y coordinate is explicitly
included. In this paper, we focus on the simplest example
of a slice of AdS for which the metric is exactly anti-de
Sitter. Using the conformally flat coordinates z ¼ eky=k,
the metric is

ds2 ¼ gMNdXMdXN ¼ ðkzÞ−2ðημνdxμdxν − dz2Þ: ð2:2Þ

Space is truncated at end points

zUV ¼ k−1 and zIR ¼ μ−1 > zUV; ð2:3Þ

COSTANTINO, FICHET, and TANEDO PHYS. REV. D 102, 115038 (2020)

115038-2



which correspond to the positions of a UVand an IR brane,
respectively.

A. Action

A generic effective theory on this background involves
gravitons andmatter fields of different spins. In this paper, we
focus on the case of a scalar fieldΦwith nonderivative, cubic
interactions.We expect that the results of this studygeneralize
readily to any other type of field. The action for this field is

S ¼
Z

d5X
ffiffiffi
g

p �
1

2
∇MΦ∇MΦ −

1

2
m2

ΦΦ2 þ 1

3!
λΦ3

�

þ SUV þ SIR þ � � � ð2:4Þ
where we explicitly write the kinetic, mass, and interaction
terms. The ellipses denote additional contributions from
gravity and higher-dimensional operators that are suppressed
by powers of the effective theory’s cutoff. A convenient
parametrization of the scalar mass is

m2
Φ ≡ ðα2 − 4Þk2: ð2:5Þ

The Breitenlohner-Freedman bound requires α2 ≥ 0 [41,42].
In this work, we routinely takeα to be noninteger. The actions
SUV and SIR encode brane-localized operators. These can
include mass terms for the scalar which are conveniently
parametrized with respect to dimensionless parameters bUV
and bIR as (see e.g., [43])

SUV þ SIR ⊃
1

2

Z
d5X

ffiffiffī
g

p ½ðα − 2 − bUVÞkδðz − zUVÞ

− ðα − 2þ bIRÞkδðz − zIRÞ�Φ2: ð2:6Þ

We leave these parameters unspecified and simply assume
that bUV ≠ 0. There is a special mode in the spectrum with
mass∼bUVk. ForbUV sufficiently small, thismodemay affect
the physical processes studied here. We assume this special
mode is heavy such that it is irrelevant in our analysis.
Note that ḡμν is the induced metric on the brane
so that

ffiffiffī
g

p ¼ ðkzÞ−4. Other degrees of freedom may be
localized on the brane and interact withΦ.1 In the context of
our analysis, such brane modes provide asymptotic states for
the bulk scattering amplitudes.

B. Scalar propagator

The classical equation of motion obtained by varying the
bulk action for the scalar field, Φ, is

DΦ≡ 1ffiffiffi
g

p ∂MðgMN ffiffiffi
g

p ∂NΦÞ þm2
ΦΦ ¼ 0: ð2:7Þ

The Feynman propagator is the Green’s function of the D
operator,

DXΔðX;X0Þ ¼ −iffiffiffi
g

p δð5ÞðX − X0Þ: ð2:8Þ

Rather than work in position-space coordinates, XM ¼
ðxμ; zÞ, we Fourier transform along the 4D Minkowski
slices: ΦpðzÞ≡

R
eiημνx

μpνΦðxμ; zÞ. We call this Poincaré
position-momentum space. The AdS dilatation isometry
becomes ðpμ; zÞ → ðpμ=λ; λzÞ so that pz is invariant. Here
p is the Minkowski norm p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ημνpμpν
p

, which is real
(imaginary) for timelike (spacelike) four-momentum, pμ.
In these coordinates, the propagator is (see e.g., [44])

Δpðz; z0Þ ¼ i
πk3ðzz0Þ2

2

½ỸUV
α Jαðpz<Þ − J̃UVα Yαðpz<Þ�½ỸIR

α Jαðpz>Þ − J̃IRα Yαðpz>Þ�
J̃UVα ỸIR

α − ỸUV
α J̃IRα

; ð2:9Þ

where z<;> is the lesser/greater of the end points z and z0.
The p-dependent quantities J̃UV;IR are

J̃UVα ¼ p
k
Jα−1

�
p
k

�
− bUVJα

�
p
k

�

J̃IRα ¼ p
μ
Jα−1

�
p
μ

�
þ bIRJα

�
p
μ

�
; ð2:10Þ

with similar definitions for ỸUV;IR.

For timelike momentum, the propagator (2.9) has poles
set by the zeros of the denominator. This propagator can
always be written formally as an infinite sum over 4D
poles. Let us introduce the matrix notation

fðzÞ ¼ ½fnðzÞ�; D ¼
�

δnr
p2 −m2

n

�
; ð2:11Þ

where f is a one-dimensional infinite vector and D is an
infinite diagonal matrix indexed by the KK numbers n
and r. The propagator in the Kaluza-Klein represent-
ation is

Δpðz; z0Þ ¼ ifðzÞ ·D · fðz0Þ: ð2:12Þ

1There are hints that a brane-localized degree of freedom
always arises from a bulk field and is thus necessarily accom-
panied by a tower of Kaluza-Klein modes [44]. This tower can be
decoupled from the brane so that it is consistent to consider only
the brane-localized mode.
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Amplitude calculations often feature sums over KK
modes. We can represent these sums as contour
integrals [31],

X̃n
n¼0

UðmnÞfnðzÞfnðz0Þ ¼ −
1

2π

I
C½ñ�

dq2Uðq2ÞΔqðz; z0Þ;

ð2:13Þ

where the contour C½ñ� in momentum space encloses the
first ñ poles. Here, U can be any function that does not
obstruct the contour with singularities. The identity (2.13)
is a useful link between the KK and closed form repre-
sentations of the propagator.

III. INTERACTIONS: DIMENSIONAL ANALYSIS

A key ingredient of our study is the magnitude of the
couplings of the bulk scalar from an EFT perspective. In
the presence of interactions, a five-dimensional theory is
understood to be an EFT with some ultraviolet cutoff Λ
beyond which the EFT becomes strongly coupled. This
cutoff is tied to the strength of interactions through dimen-
sional analysis in the strong coupling limit through so-
called naive dimensional analysis (NDA) [45–49]; see e.g.,
[43] for a pedagogical introduction of NDA to 5D theories.
The crux of this analysis is to compare amplitudes of
different loop order or involving higher-dimensional oper-
ators. Let us define the loop factors

l5 ¼ 24π3 and l4 ¼ 16π2: ð3:1Þ

A. Gravitational interactions

The interactions of the graviton in AdS are controlled by
the dimensionless coupling

κ ¼ k
MPl

: ð3:2Þ

The reduced 4D and 5D Planck masses are related by
M3

5 ¼ M2
Plk. By NDA, the cutoff in the gravity sector is

Λ3
grav ¼ l5M3

5 ¼ l5κM3
Pl: ð3:3Þ

In order to keep higher order gravity terms under control, κ
should be at most Oð1Þ [48,50].
The gravity cutoff Λgrav is sometimes taken as a universal

scale setting the strength of all interactions in the effective
Lagrangian. However, in the EFT the typical strength of
interactions in various sectors can, in principle, be different
with different strong coupling scales. Strongly interacting
matter cannot influence the strength of gravity, which is
protected by diffeomorphism invariance and set by the
background geometry. In particular, matter interactions are
at least as strong as gravity. The strong coupling scale of

pure matter interactions can thus be lower than Λgrav.
Notice that gravity can even be removed, MPl → ∞, while
the matter cutoff remains unchanged.2

B. Matter interactions

We assume that a universal cutoff Λ sets the strength of
interactions in the matter sector of our theory. To make
this connection manifest in D dimensions, one writes the
fundamental action in terms of dimensionless fields Φ̂ with
lD factored out [43,48]:

SD ¼ NsΛD

lD

Z
dDXL̂½Φ̂; ∂=Λ�: ð3:4Þ

Note that Ns counts the number of species in the
Lagrangian; for the present study we set Ns ¼ 1. NDA
states that an Oð1Þ coupling in L̂ corresponds to a strong
interaction strength. The dimensionful Lagrangian is recov-
ered by canonically normalizing the fields. For the case of a
cubic interaction, the NDA coupling dictated by (3.4) is
λ ∼ ðl5ΛÞ1=2.
The gravitational cutoff Λgrav is related to the AdS

curvature k through (3.2) and (3.3). One may determine
a similar relation between the matter cutoff Λ and k by
considering the effective 4D interactions between
specific KK modes. When expanding the 5D field in
terms of canonically normalized 4D modes, Φ ¼
kz

P
n f̃nðzÞϕnðxÞ, one finds that f̃nð1=μÞ is of orderffiffiffi

k
p

.3 Because KK modes are localized towards the IR
brane, this implies that the order of magnitude of an
effective 4D coupling between KK modes is obtained from
the 5D coupling by multiplying by powers of

ffiffiffi
k

p
and the

warp factor w ¼ μ=k. For a given KK mode, the 4D NDA
action is

SKK ¼ w4Λ4

l4

Z
d4xL̂½ϕ̂; ∂=ðwΛÞ� ð3:5Þ

following the same conventions of (3.4). Notice that the
cutoff only appears through the warped down cutoff scale
wΛ ¼ Λ̃; we discuss this feature in Sec. IVA.
Consider a general monomial interaction λ5DΦn=n! in

the 5D action with n > 2. Note that 5D NDA, (3.4), reveals
that the strong coupling coefficient is

λ5D ¼ l5
n=2−1Λ5−3n=2: ð3:6Þ

2In a UV completion, the Λ, Λgrav scales would likely be
correlated, and a fine-tuning might be needed to separate these
scales.

3The KK mode normalization is
R
dzðkzÞ−1f̃nðzÞf̃mðzÞ ¼ δmn.

One has f̃mðzÞ ¼ ðkzÞ−1fmðzÞ, where the fm are introduced in
Sec. II.
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An interaction between n KKmodes withOð1Þ dimension-
less couplings is then

λ4D ∼ l5
n=2−1Λ5−3n=2kn=2−1w4−n: ð3:7Þ

On the other hand, the 4D NDA value for λ4 is

λ4 ¼ l4
n=2−1Λ4−nw4−n: ð3:8Þ

For the effective theory of KK modes to be valid, one must
require the effective λ4 in (3.7) to be smaller than or equal to
its strong coupling estimate, (3.8). This implies

Λ >
l5

l4

k: ð3:9Þ

This universal relation arises because the
ffiffiffi
k

p
and the loop

factors have the same powers in the NDA estimates, which
are in turn fixed by field counting. When (3.9) is not
saturated, the effective 4D couplings of KK monomials are
suppressed by powers of ðl5k=l4ΛÞ1=2 with respect to their
strong coupling value. This systematic suppression factor is
reminiscent of the large-N suppression in the dual CFT; see
Sec. VII B.

C. Value of the cubic coupling

In this work we consider a scalar field, whose natural
mass scale would beOðΛÞ, as reflected by NDA. While the
NDA value of the cubic coupling is λ ∼ ðl5ΛÞ1=2, for this
paper we set it to a smaller value,

λ ∼mΦ
l1=2
5

Λ1=2 : ð3:10Þ

This value is consistent with a bulk mass parametrically
lower than Λ: the self-energy bubble diagram from λ gives
an Oðm2

ΦÞ contribution, in accordance with NDA. The λ
coupling tends to zero in the free limit Λ → ∞ (i.e.,
N → ∞) as it should.

IV. KALUZA-KLEIN AND CONTINUUM
REGIMES OF AdS

We study the behavior of the effective theory using the
results of the free theory in Sec. II and the interaction
strengths in Sec. III. Quantum corrections from the bulk
interactions “dress” the bulk propagator and cause it to have
qualitatively different behavior depending on the four-
momentum, p. We show how these corrections separate
the Kaluza-Klein and continuum regimes of a bulk scalar.

A. Transition scale

The homogeneity of AdS implies a homogeneous 5D
cutoff on proper distances smaller than ΔX ∼ 1=Λ. In the
conformal coordinate system the cutoff is z dependent with

respect to the Minkowski distance, since
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ημνΔxμΔxν

p
∼

kz=Λ. In position-momentum space the condition amounts
to p ∼ Λ=ðkzÞ. This implies that the 5D cutoff for an
observer at position z in the bulk is warped down toΛ=ðkzÞ.
One can see this from an EFT perspective: the effects of

higher-dimensional operators in the action are enhanced by
powers of z. For example, consider dressing the propagator
with a higher derivative bilinear, □ð∂μΦÞ2=Λ2 with an
Oð1Þ as dictated by NDA [see Eq. (3.4)]. This term
dominates for

pz≳ Λ=k: ð4:1Þ

For a fixed p, this implies that the EFT breaks down in the
IR region of AdS, z≳ ðΛ=kÞ=p; see e.g., [29–31]. The
cutoff is warped below the scale p for values of z beyond
this region. Therefore, propagation into this region of
position-momentum space falls outside the EFT’s domain
of validity.
It follows that the theory also contains a scale

Λ̃ ¼ Λ
μ

k
; ð4:2Þ

the warped down cutoff at the IR brane. At energies p > Λ̃,
the correlation functions cannot know about the IR brane
since it is in the region of position-momentum space hidden
by the EFT validity condition (4.1). In short, for p > Λ̃ the
IR brane is “outside of the EFT”; see Sec. VI.
This is a hint that the behavior of the theory undergoes a

qualitative change at Λ̃. The IR brane imposes a boundary
condition that leads to discrete KK modes. Thus, for
p < Λ̃, one can expect that the theory features KK modes.
On the other hand, for p > Λ̃ the IR brane is outside the
EFT; hence no KKmodes should exist. Instead, an observer
should see a continuum of states.

B. Dressed propagator

The free propagator in (2.9) encodes narrow KK modes.
It amounts to Λ → ∞ or N → ∞. The continuum behavior
becomes apparent when one dresses the free propagator
with quantum corrections.4 These quantum corrections
resolve the poles in the free propagator with timelike
momenta as they do in 4D Minkowski space. Including
these effects corresponds to evaluating the leading 1=N2

effect on the propagator of the strongly coupled dual
theory; in our case this is 1=N2 ∼ λ2=k.
We focus on bulk self-energy corrections from a cubic

self-interaction. Brane-localized self-energies only modify

4The exact calculation of diagrams in AdS has recently been an
intense topic of research; see e.g., [51–56] for loop-level
diagrams and [57–60] for developments in position-momentum
space. Throughout this paper we instead use approximate
propagators.
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the boundary conditions and are thus unimportant for our
purposes. In contrast to the free propagator, the Green’s
function equation for the dressed propagator satisfies

DXΔðX;X0Þ − 1ffiffiffi
g

p
Z

dYΠðX; YÞΔðY; X0Þ

¼ −
iffiffiffi
g

p δð5ÞðX − X0Þ; ð4:3Þ

where iΠðX; YÞ are 1PI insertions that dress the propagator.
In our case, the leading iΠ insertion is induced by the scalar
bubble induced by the λΦ3 interaction. We are interested
only in the imaginary part of the self-energy, which is finite.
A calculation of iΠðX; YÞ is performed analytically in

[31] with self-consistent approximations in the limit of
strong coupling and moderate bulk masses α ¼ Oð1Þ. One
of the tricks for the analytical estimate is to expand the
nonlocal self-energy as a series of local insertions, which
amounts to a ∂z expansion. Using this method, we estimate
of the contribution from the jpj > 1=z< regime. The
imaginary part of the 1-loop bubble induces a shift of p,

Δdressed
p ðz; z0Þ ∼ Δfree

pð1þicÞðz; z0Þ c ∼ a
λ2

l5k
; ð4:4Þ

where c is loop induced and estimated to have a ∼Oð1=10Þ
with a large uncertainty.5 Using the NDA value of λ in
(3.10) and taking mΦ ¼ OðkÞ, one finds c ∼ ak=Λ∼
a=ðπN2Þ. The jpj > 1=z< regime provides a larger con-
tribution to a than the result previously presented from the
jpj < 1=z> regime [31]. This extends the validity of our
calculations to weaker coupling, hence allowing large N. A
self-consistent numerical solution to the integro-differential
equation of motion, (4.3), may be required to obtain the
general dressed propagator. We leave this for future work.

C. Two regimes

The self-energy dressing of the propagator presents
distinct Kaluza-Klein and continuum regimes. The poles
of the free propagator are set by zeros of its denominator.
For momenta much larger than the IR-brane scale, p ≫ μ,
the asymptotic form of the Bessel functions leads to a
propagator that is approximately proportional to

Δpðz; z0Þ ∝
1

sin ðpμ − π
4
ð1þ 2αÞÞ : ð4:5Þ

The effect of the dressing, (4.4), softens the poles and
causes them to merge at a scale

p ∼
μ

c
∼
Λ̃
a
: ð4:6Þ

Above this scale the propagator describes a continuum
rather than distinct Kaluza-Klein modes. Thus, we observe
that the dressing of the propagator reaffirms the existence of
distinct KK and continuum regimes separated by a tran-
sition scale controlled by Λ̃ ¼ ðμ=ΛÞk. Let us comment
further on both sides of the transition.

D. Kaluza-Klein regime: p < Λ̃
For momenta less than the transition scale Λ̃, UV

correlation functions are sensitive to the physics of the
IR brane. The IR brane provides a boundary condition for
the bulk equation of motion and hence imposes a discrete
spectrum of KK modes. These modes may be narrow.
However, as the KK mass approaches the transition scale,
the KK modes must merge to form a continuum. To see
this, one may use the full form of the dressed KK
propagator from (4.3). This propagator may be written

Δqðz; z0Þ ¼ ifðzÞ · ½D−1 þ iImΠ�−1 · fðz0Þ ð4:7Þ

where

iΠ≡
Z

du
Z

dviΠðu; vÞfðuÞ ⊗ fðvÞ: ð4:8Þ

The imaginary part of Π gives rise to a “width matrix” for
the KK resonances. Critically, ImΠ is not diagonal: the KK
modes mix due to this nondiagonal, imaginary contribution
to the mass matrix. The KK modes may merge into a
continuum either because they become broad or because of
the mixing induced by ImΠ. This property of the AdS
propagator is suggestive of how heavy glueballs in the
strongly coupled dual tend to merge near the Λ̃ cutoff;
see Sec. VII C.
At low enough four-momentum p, the narrow-width

approximation applies to the KK modes. The KK modes
can then be treated as asymptotic 4D states. The optical
theorem applies to these light KK modes. In contrast, when
approaching the transition scale, the KK modes cannot be
seen as asymptotic states due to large widths and KK-mode
mixing. This is consistent with the properties of non-
truncated AdS.

E. Continuum regime: p > Λ̃
When p is above the transition scale, Λ̃, the oscillating

pieces of the propagator are smoothed. Within this regime,
the end points of the propagator define additional scales for
which the propagator realizes different behavior.
Continuum regime, low momentum. In the continuum

regime with low momentum, jpj > Λ̃ and jpj < z−1> , and
away from the poles, the propagator is

5This estimate is confirmed in the upcoming detailed analysis
of [61].
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Δpðz; z0Þ ≈ ΔUV þ Δheavy þ Δlight; ð4:9Þ

where the pieces are

ΔUV ¼ i
ðbUV þ 2αÞðkzÞ2−αðkz0Þ2−α
αðp2=ðα − 1Þkþ 2bUVkÞ

Δheavy ¼ −i
ðkzÞ2ðkz0Þ2

2αk

�
z<
z>

�
α

; ð4:10Þ

Δlight ¼ −i
Γð−αÞðkzÞ2ðkz0Þ2
Γðαþ 1Þ2b2UVk

gðz<Þgðz>Þ
�
−p2

4k2

�
α

gðzÞ ¼ bUV þ 2α

ðzkÞα − bUVðzkÞα: ð4:11Þ

Notice that the dependence on the μ parameter has dropped
this expression. This is a manifestation of the propagator’s
agnosticism of the IR brane in this regime. Conversely, this
implies that when varying p from UV scales to IR scales,
the IR brane is effectively emergent when p drops below Λ̃.
The content of each term in (4.9) is also instructive. The

first term, ΔUV, represents a 4D mode localized near the
UV brane.6 This 4D mode is assumed to be very heavy,
bUV ¼ Oð1Þ, such that it does not play a role in the
processes in this paper. The second term, Δheavy, is analytic
and encodes the collective effect of heavy KK modes. The
third term, Δlight, is nonanalytic and encodes the collective
effect of light modes.
Continuum regime, high momentum. In the continuum

regime with high momentum, jpj > λ̃ and z−1> < jpj < z−1< ,
the numerator of the propagator oscillates:

Δpðz; z0Þ ∝
cos ðpμ−1 − pz>Þ
cos ðpμ−1 þ φ−Þ

×

�
1 for z−1> < p < z−1<
cos ðpz< − φþÞ for p > z−1< ;

ð4:12Þ

where we have written phase shifts as φ� ¼ πð1� 2αÞ=4.
Upon dressing, the nonoscillatory part of the propagator in
this region scales as

Δpðz; z0Þ ∼
�
e−jpjz> for pμ spacelike

e−cpz> for pμ timelike:
ð4:13Þ

This is an important feature: the IR region of AdS is opaque
to propagation for both spacelike and timelike momenta.
The regions of opacity are somewhat different—the sup-
pression for spacelike momentum occurs at z ∼ 1=jpj,
while the suppression for timelike momentum occurs at

z ∼ 1=cp. Substituting in c, we see that the suppression in
the timelike regime occurs for

pz> ≳ Λ
ak

: ð4:14Þ

This behavior is similar to the region of EFT breaking in
(4.1). Therefore, the opacity of the space effectively censors
the region where the EFT breaks down. This behavior was
qualitatively predicted in Ref. [29]. For the specific case
with an end point on the IR brane, z> ¼ 1=μ, the opacity
threshold (4.14) is the same as the scale at which the
Kaluza-Klein poles disappear, (4.6). The two effects are, of
course, closely related: the poles vanish precisely when the
IR brane becomes opaque to the propagator.
In the continuum regime, KK modes are not appropriate

variables to describe the theory because the fn profiles fall
into a spacetime region where the EFT breaks down, (4.1).
Instead, the meaningful variables are those localized on the
UV brane. These remain in the theory up to the ultimate
cutoff p ∼ Λ. This was already observed in [30] from EFT
considerations and is completely consistent with the holo-
graphic formalism needed for AdS=CFT.

V. CASCADE DECAYS IN THE
CONTINUUM REGIME

The same bulk interactions that induce opacity in the
IR region necessarily induce cascade decays in the bulk.
These cascade decays, in turn, may appear to be a possible
loophole to the arguments in the previous section. In
particular, it is possible that a continuum with p ≫ Λ̃
undergoes cascade decays down the KK regime, ending in
light narrow KK states and/or in IR-localized states. In such
a process, it may seem that at any initial momentum the
cascade decay “knows” that an IR brane exists. This
appears to contradict the global picture of timelike propa-
gation and the emergence of the IR brane in Sec. IV, where
the theory at p ≫ Λ̃ does not know at all about the IR
brane. We evaluate explicitly this process in this section and
discuss implications in Sec. VI.
The properties of cascade decays initiated in the KK

regime are fairly well understood and are summarized in
Sec. VI A. We instead focus on the cascade decays starting
in the continuum regime. This regime is always present
unless interactions are removed (Λ → ∞). Furthermore, in
the strong coupling limit Λ ∼ k, there is essentially no KK
regime and all propagation is in the continuum regime. We
seek to determine the overall shape and the total probability
for a cascade decay event to occur in the continuum regime.
The bulk of AdS does not permit asymptotic states or

a conventional S-matrix (see e.g., [62,63]). However,
the 4D modes localized on the branes, which have a 4D
Minkowski metric, can provide the usual asymptotic states.
We thus consider decays that are initiated on the UV brane.
The decay may end back on the UV brane or reach

6In our convention, the 4D mode squared mass is positive for
negative bUV.
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asymptotic states on the IR brane. It can also end in narrow
KK modes which are effectively asymptotic states in the
limit of the 4D narrow-width approximation.

A. Decay process

The explicit evaluation of a generic decay diagram with
an arbitrary number of legs is, in principle, challenging
because there are many phase-space and position integrals
to perform over a nontrivial integrand. However, it turns
out that a recursive approach can be adopted based on
simplifying approximations. We build on this approach to
estimate the total rate for a generic decay.
For intermediate steps in this calculation, it is convenient

to formally write the final states as KK modes, even if the
corresponding momenta are in the continuum regime. Sums
over KK modes may then be reexpressed in terms of the
closed form propagator at the end of the calculation.
Measurable event rates, such as cross sections and decay

widths, depend on the integral of the squared amplitude
over phase space. To emphasize that our approach does not
depend on how the continuum is created, we work at the
level of this integrated square amplitude, denoted as PM.
For the diagram in Fig. 1 with M þ 1 final states,

PMþ1 ≡
Z X

FSðMþ1Þ
jMMþ1j2ð2πÞ4dΦMþ1: ð5:1Þ

The sum over FSðM þ 1Þ is shorthand for a sum over all
possible combinations of (M þ 1) KK modes that are
kinematically allowed final states. Here, dΦMþ1 is the
volume element of the (M þ 1)-body Lorentz-invariant
phase space [64]. We label specific final state KK numbers
and four-momenta as m, pm and n, pn. The amplitude for a
given set of final state KK modes is expressed as

Mðm;n;���Þ
Mþ1 ¼

Z
duI ð���Þ

M ðuÞ
Z

1=μ

1=k
dv

λΔqðu; vÞ
ðkvÞ5 fmðvÞfnðvÞ:

ð5:2Þ

Here, I ð…Þ
M ðuÞ is the amplitude that has been amputated just

before the propagator that produces the m and n modes;
see Fig. 1.

The MM amplitude, shown on the right-hand side of
Fig. 1, is

Mðn;���Þ
M ¼

Z
duI ð���Þ

M ðuÞfnðuÞ: ð5:3Þ

The corresponding integrated square amplitude is

PM ≡
Z X

FSðMÞ
jMMj2ð2πÞ4dΦM: ð5:4Þ

We now relate PMþ1 to PM.

B. Recursion relation

Propagators with timelike momentum are suppressed
beyond z> ∼ 1=ðcpÞ, as seen in (4.13). We assume for
simplicity that c ∼ 1. This implies that our evaluation
assumes nearly strong coupling; i.e., Λ is not far from k.
Following this, the position integrals effectively have no
support beyond z ∼ 1=p. Note that this is equivalent to only
considering contributions from the μ < jpj < z−1> region of
position-momentum space; see (4.9).
We have numerically evaluated contributions from the

jpj > z−1> regions and found that they tend to be smaller or
of the same order as the results from this section for c near
unity. These contributions can be somewhat larger for
smaller c, though a detailed analysis is beyond the scope of
this paper.
We square the amplitude and write sums on KK modes

as integrals over the propagator using (2.13). In the
continuum regime, only the third term of the continuum
propagator in (4.9) contributes to the contour integral
because it carries a branch cut. By deforming the contour
to fit snugly around the branch cut, we determine that

X̃n
n¼0

Uðm2
nÞfnðzÞfnðz0Þ ¼−

1

2π

I
C½ñ�

dq2Uðq2ÞΔqðz; z0Þ

¼−1
2π

Z
m2

ñ

0

dq2Uðq2ÞDisc½Δqðz;z0Þ�:

ð5:5Þ

In terms of the propagator, PMþ1 then reads

FIG. 1. Cascade decay amplitudes. Here, u and v are coordinates in the z direction. In our recursive approach, we relate the integrated
square amplitude of the left diagram to that of the right diagram.
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PMþ1 ¼ 4π2
X

FSðM−1Þ

Z
dΦMþ1

Z
du

Z
du0IMðuÞI�

Mðu0Þ

×
Z

1=q

1=k
dv

Z
1=q

1=k
dv0

λ2Δqðu; vÞΔ�
qðu0; v0Þ

ðkvÞ5ðkv0Þ5 ×

×
Z

dp2
1Disc½Δp1

ðv; v0Þ�
Z

dp2
2Disc½Δp2

ðv; v0Þ�:

ð5:6Þ

The integrals over the p2
1, p

2
2 variables implement the sum

over KK modes in (5.5). We break up the phase space using
the standard recursion relation (see e.g., [64])

dΦMþ1 ¼ dΦ2ðq;p1; p2ÞdΦMð2πÞ3dq2: ð5:7Þ

The integrands (5.6) carry positive powers of v and v0 so
that the dvdv0 integrand is largest at the upper limit,
v; v0 ∼ 1=q. Because q is the momentum flowing through
the parent, this implies that the cascade decay progresses
slowly towards the IR region.

PMþ1 ¼ ð2πÞ4
X

FSðM−1Þ

Z
dΦM

Z
du

Z
du0IMðuÞI�

Mðu0Þ

×
Z

1=q

1=k
dv

Z
1=q

1=k
dv0

λ2

ðkvÞ5ðkv0Þ5 ×

×
Z

dp2
1Disc½Δp1

ðv; v0Þ�
Z

dp2
2Disc½Δp2

ðv; v0Þ�

×
Z

dq2

64π4q2
Kðq; p1; p2ÞΔqðu; vÞΔ�

qðu0; v0Þ:

ð5:8Þ

Here, Kðq; p1; p2Þ is the 2-body kinematic factor,

Kðq; p1; p2Þ2 ≡ ½q2 − ðp1 þ p2Þ2�½q2 − ðp1 − p2Þ2�:
ð5:9Þ

We approximate the integrals over p2
1 and p2

2 as

Z
q

0

dp1

Z
q−p1

0

dp2p
2αþ1
1 p2αþ1

2 Kðq; p1; p2Þ

≈
Z

q=2

0

dp1

Z
q=2

0

dp2p
2αþ1
1 p2αþ1

2 q2: ð5:10Þ

This approximation introduces a small amount that depends
on α.7 Note that the dominant contribution to the integral
in (5.10) comes from the region near the upper limit. This
indicates that the continua tend to decay near kinematic
threshold. The cascades give rise to soft spherical final

states, in accordance with former results from both the
gravity and CFT sides.
Integrating over p2

1, p
2
2, v, and v0, we have

PMþ1 ¼ Cα

X
FSðM−1Þ

ð2πÞ4
Z

dΦM

Z
dq2

k

�
q
k

�
2α
Z

du

×
Z

du0IMðuÞI�
Mðu0ÞðkuÞ2þαðku0Þ2þα; ð5:11Þ

where the constant prefactor is

Cα ¼
84ð1−αÞλ2

α4π4k

�
Γð1 − αÞ sinðπαÞ

Γð1þ αÞ
�

2

×
jð2þ 3αÞ4α − ðαþ 2Þ Γð1−αÞ

Γð1þαÞ e
iαπj2

ð2þ 3αÞ2ð2þ αÞ2ð1þ αÞ2 : ð5:12Þ

One may replace the dq2 in favor of a sum over the
continuum of KK final states by applying (5.5). This yields
a recursion relation

PMþ1 ¼ r
Z X

FSðMÞ

����
Z

duIMðuÞfnðuÞj
2

ð2πÞ4dΦn ¼ rPM:

ð5:13Þ

The fact that one obtains a simple relation is a consequence
of the integrand having a specific momentum dependence,
and it is nontrivial. This relation is clearly useful since it can
be used to give an estimate of a total rate with an arbitrary
number of legs.
The recursion coefficient r is given by

r≡ λ2

k
1

10241þα

1

2π3α3

�jð2þ 3αÞ4α − ð2þ αÞ Γð1−αÞΓð1þαÞe
iαπj2

ð2þ 3αÞ2ð2þ αÞ2ð1þ αÞ2
�

×
Γð1− αÞ sinðπαÞ

Γð1þ αÞ : ð5:14Þ

Even for the strongly coupled case, λ2 ∼ l5k, this coef-
ficient is much smaller than one.

VI. SOFT BOMBS AND EMERGENCE
OF IR BRANE

The recursion relation (5.14) allows us to study the
qualitative features of a complete cascade decay event. An
event initiated on the UV brane with timelike momentum
P > Λ̃ starts in the continuum regime and decays as a
cascade of continua. This decay eventually reaches the KK
regime.

7The error monotonically increases from ∼25% for α near 0 to
∼30% for α near 1.
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A. Shape

The differential event rate—the integrand in the expres-
sion for PM—determines the most likely configurations in
phase space. The phase-space approximation (5.10) shows
that decays tend to occur near threshold with final momenta
evenly split between the offspring. The event thus tends to
be soft and spherical. This confirms the soft bomb picture
obtained in the KK regime [28], in string calculations (see
e.g., [22]), and in the gauge theory dual [24,27].
The integrand in (5.8) shows that vertices tend to occur

at z ∼ 1=p where p is the momentum of the parent
continuum. There is a sense of progression in the fifth
dimension: the cascade decay proceeds from the UV to the
IR, with each offspring moving further into the IR than its
parent.
Let pf be the average momentum of states after some

number of branchings. The soft bomb then leaves the
continuum regime and enters the KK regime at pf ∼ Λ̃.
This is roughly the scale at which the KK modes become
narrow. These features are summarized in Fig. 2.

B. Total rate

The soft bomb enters the regime of narrow KK modes
when the constituents have average momenta pf ∼ Λ̃.
At this scale, the narrow-width approximation is valid,
and the recursion (5.13) halts because subsequent decays
factorize. This highlights a key feature of the continuum
regime in contrast to the KK regime: the phase-space
suppression in cascade decays is not compensated by
narrow poles due to the breakdown of the narrow-width
approximation. Thus, the rates of long cascade decays
are suppressed by powers of the recursion coefficient r
in (5.14).
One may estimate the total rate of cascade decays using

the recursion approximation (5.13). A continuum cascade
initiated with momentum P stops at momentum pf ∼ Λ̃.

Assuming an equal split of momenta among a total of M
offspring gives

M ∼ P=Λ̃: ð6:1Þ

The recursion relation (5.13) shows that the rate is sup-
pressed by rM−1,

PM ∼ rP=Λ̃: ð6:2Þ

Since r ≪ 1, the soft bomb is exponentially suppressed as a
function of P for initial timelike momenta in the continuum
regime P > Λ̃.

C. Emergence of the IR brane

The suppression of the soft bomb rate in the continuum
regime completes our picture of quantum field theory in
AdS for timelike momenta. We can now make a statement
about the “disappearance” of the IR brane in QFT first
hinted at in Sec. IVA.
Consider, for example, a UV-localized field φ that

couples to the bulk scalar, Φ. The collision of two φ states
can induce a cascade decay φφ → Φ → ΦΦ → � � � When
the center-of-mass four-momentum is in the KK regime,
P < Λ̃, the event rate is determined by the φφ → ΦðnÞ

amplitude to create an on-shell KK mode ΦðnÞ with mass
mn ∼ P. In contrast, in the continuum regime, P > Λ̃, the
cascade is initiated with 5D continua that have no poles and
thus no notion of being on shell. Narrow KK modes only
appear after the cascade has produced enough offspring
for the typical momentum to drop below Λ̃. The amplitude
under consideration must include the entire cascade up to,
and including, the first narrow KK modes. The rate for a
cascade in the continuum regime is suppressed with respect
to that in the KK regime by the tiny factor rP=Λ̃ in (6.2).

FIG. 2. Typical field-theoretical soft bomb event in AdS5 in the continuum regime p > Λ̃. The rate for such an event to occur is
exponentially suppressed.
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This suppression implies that continua produced tend to
not cascade down to many narrow KK states which can
interact with an IR brane, but instead tend to go promptly
into UV-brane states with no cascade. Thus, in the
continuum regime, the theory truly does not know about
the IR brane. The observables—including decays—in this
regime of the theory can be equivalently obtained in AdS
background with no IR brane.
Formally, this statement can be spelled out using the

partition function of the theory,

eiE½J� ¼
D
e
i
R

zIR
zUV

dzd4pΦJ
E

¼
Z

D½fields� exp i
�Z

zIR

zUV

dzd4pðLbulk þΦJÞ

þ SUV þ SIR

�
; ð6:3Þ

where E½J� is the generating functional of the connected
correlators. Our claim is that in the p ≫ Λ̃ regime, the
correlators are equivalently described by

eiE½J�jp≫Λ̃

≈
Z

D½fields� exp i
�Z

∞

zUV

dzd4pðLbulk þΦJÞ þ SUV

�

≡ eiE½J�jzIR→∞ : ð6:4Þ

On the right-hand side, E½J�jzIR→∞ amounts to the theory
with the IR brane removed. In other words, the IR brane—
and the fields and operators localized on it—effectively
vanishes for p ≫ Λ̃. Conversely, the IR brane affects
correlators for lower p and is thus effectively emergent.8

Finally, we notice that the continuum regime is exactly
described by an appropriate CFT model as dictated by the
AdS=CFT correspondence. Apart from the UV brane which
amounts to a UV cutoff in the CFT, the theory is exactly
AdS in the continuum regime.

D. Optical theorem

In Sec. IV D we observed that in the Kaluza-Klein
regime, KK modes are valid asymptotic states that obey
the optical theorem. In the continuum regime, even though
the rate of cascade decays is exponentially suppressed, the
imaginary part of the bulk self-energy ImΠ is not. This does
not contradict the optical theorem, though it may appear to
do so when using the intuition from KK modes. This is

because unlike the KK regime, the continuum regime has
no narrow state on which one may perform a unitarity cut.
Thus, the loop-level contribution to the self-energy is not
related to a decay—the optical theorem does not apply.
One may insist on identifying propagators of light KK

modes with narrow widths upon which one may perform a
unitarity cut. Because of the “near-threshold” property of
KK vertices in Sec. VI A, these light KK modes only
appear at high loop order. A unitarity cut on this high-loop
order diagram ultimately reproduces the typical soft bomb
diagram in Fig. 2 that ends in states with mKK ∼ Λ̃. Such
diagrams only amount to a tiny portion of ImΠ.

E. Asymptotically AdS backgrounds

Our study focuses on a slice of pure AdS with no
departure from AdS in the IR region. The qualitative features
of our results can apply to models whose backgrounds are
deformed in the IR. One kind of model is the slice of AdS
stabilized by the Goldberger-Wise mechanism. This produ-
ces a non-negligible backreaction of the metric near the IR
brane. Another class of models are those where the metric
develops a naked curvature singularity in the IR—the soft-
wall models; see e.g., [11–13,16,18,19] for some points of
entry in the literature. Such models are typically asymptoti-
cally AdS towards the UV brane, with the IR deformation
becoming relevant near the IR brane/singularity.
One can apply the reasoning of Sec. IV to these models.

By dimensional analysis, there is some typical scale μ̂
associated with the IR region. A transition scale Λμ̂=k
thus also exists, above which the IR region should drop
from the correlation functions if the EFT is to remain
under control.
More quantitatively, one can integrate out the IR region

and encapsulate it into an effective IR brane with nontrivial
form factors localized on it [19]. This holographic projec-
tion of the IR region demonstrates that the two regimes can
indeed be meaningfully separated. The effective IR brane
contains the details of the model-dependent KK regime.
Since the bulk is pure AdS, our results from Secs. II–VI
apply. This immediately shows that at high enough p,
the effective IR brane leaves the theory, thus leaving a
(quasi-)AdS continuum regime like the one described in
this paper. Conversely, when decreasing p, the deviation
from AdS gradually emerges from the viewpoint of an
UV-brane observer.

F. Holographic dark sector

The soft bomb suppression rate has phenomenological
implications for theories where a dark (or hidden) sector is
confined to the IR brane and the Standard Model is
confined to the UV brane, as recently proposed in [32].
Suppose, for concreteness, that the decay chain ends in
stable IR-brane particles that could naturally be identified
with dark matter.

8For the purpose of taking functional derivatives, the source J
can formally be any distribution. If instead J is given a physical
meaning, it is typically localized towards the UV brane to avoid
any backreaction of the metric towards the IR. In the context
of holography, J is exactly localized on z ¼ zUV, giving rise to
UV-localized variables as done in Sec. VII B.
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A standard way to search for dark matter at colliders is to
look for missing energy signatures. In our holographic dark
sector scenario, the suppression of the cascade decay rate in
the continuum regime implies that the missing energy
spectrum should vanish around the Λ̃ scale. This character-
istic of the holographic dark sector framework is com-
pletely distinct from standard 4D dark sectors.
Another standard constraint on dark sectors with light

states that couple to the Standard Model is stellar cooling
from the emission of dark states. In the holographic dark
sector scenario, stars emit KK modes with narrow widths
when the temperature of the star is roughly between μ and
Λ̃. In contrast, if the star is hotter than Λ̃, the center-of-mass
energy for dark state production is typically in the con-
tinuum regime. One may then expect that the anomalous
cooling rates are exponentially suppressed within the AdS
model. One must be cautious with this intuition, however,
as the finite-temperature system may be better described by
an AdS-Schwarzschild geometry [65]. The phenomenol-
ogy of this situation may lead to new possibilities to get
around the stellar cooling bounds that constrain standard
dark sectors.
These effects are very interesting from a phenomeno-

logical viewpoint: they may alleviate experimental con-
straints and change the experimental complementarity of
dark matter searches. The direct detection signatures of this
type of framework are studied in [38], which also discusses
some qualitative differences of timelike correlation func-
tions in models of near-conformal sectors. We explore these
effects in upcoming phenomenological studies.

VII. AdS/CFT

This paper focused primarily on the physics of 5D
anti–de Sitter spacetime. In this section we connect our
analysis to the properties of the dual gauge theory by
the AdS/CFT correspondence. First, we briefly discuss
the consistency of our soft bomb picture with the one
obtained in the CFT literature. We then show how
dimensional analysis (see Sec. III) applied to the holo-
graphic action naturally relates to the dual large-N
expansion. Finally, we study the transition scale in the
dual low-energy EFT of glueballs.

A. CFT soft bombs

There is strong evidence that gauge theories with large
’t Hooft coupling exhibit vastly different behavior than
weakly coupled gauge theories; see e.g., [66].9

In [27], the fragmentation of a jet at large ’t Hooft
coupling was qualitatively studied using properties of
spacelike and timelike anomalous dimensions. The jet is

assumed to be created from well-defined asymptotic states
such as in eþe− annihilation. In our AdS dual this is
realized using asymptotic states localized on the UV brane.
The jet evolves and ends at some infrared scale ΛIR at
which the parton momenta are measured. In our AdS dual
this ΛIR corresponds to the infrared scale Λ̃ that we have
determined in Sec. IV.
Reference [27] finds that parton splitting tends to be

democratic because there is no reason for soft or collinear
phase-space configurations to be preferred—all partons
tend to have minimum momentum pf ∼ ΛIR. Hence,
cascades give rise to spherical events with a large number
of low-momentum final states. This matches our explicit
AdS calculation in Sec. VI A. The total number of offspring
is found to be n ∼ P=ΛIR, which corresponds to (6.1),
with ΛIR ∼ Λ̃.
We conclude that the shape of an AdS soft bomb event is

consistent with findings on the CFT side.

B. Dimensional analysis and large N

In Sec. III B we have shown that 4D KK mode
interactions are naturally suppressed by powers of
ðl5k=l4ΛÞ. Here we show that this suppression corre-
sponds to the large-N suppression in the dual CFT. To see
this correspondence, instead of KK modes, we must
consider the 5D theory in AdS using an appropriate
variable—the value of the bulk field on the UV brane,

Φ̂0ðxÞ≡ Φ̂ðXÞjUV brane: ð7:1Þ

Note that Φ is the dimensionless bulk field in (3.4). The
bulk field in the action is rewritten as Φ̂ ¼ Φ̂0K, whereK is
the classical field profile sourced by Φ̂0. In terms of this
holographic variable, the partition function (6.3) takes the
form

R
DΦ̂0 exp ðiS5½Φ̂0K�Þ, where S5 is the 5D action for

which the 5D NDA in (3.4) applies.
The leading term of the effective action in the semi-

classical expansion is the classical holographic action

Γhol ¼
Λ5

l5

Z
d4xLhol½Φ̂0; ∂=Λ� þ � � � ; ð7:2Þ

where the ellipses represent quantum terms that are
irrelevant for our discussion. The Lagrangian Lhol has
dimension −1. To recover a 4D NDA formulation as in
(3.4), we need to introduce a dimensionless Lagrangian.
From explicit calculations (see e.g., [3,43]), the quadratic
part of Lhol,

1
2
Φ̂0Π½∂2�Φ̂0, is proportional to the inverse of

Δqðz0; z0Þ and contains an analytic part representing a 4D
mode. Schematically, it is

Π½∂2� ∼ −
1

k
∂2 þm2

0

Λ2
þ… ð7:3Þ

9In the gauge theory context, the strongly coupled analog of
jets is sometimes referred to as “spherical events” or “jets at
strong coupling” instead of “soft bombs” as done here.
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up to an Oð1Þ coefficient. In the language of AdS=CFT,
this is the kinetic term of the 4D source probing the
CFT. The exact expression can be read directly from the
propagator (4.9) and is not needed here.
We introduce the dimensionless Lagrangian 1

kL̂hol¼Lhol,
such that the dimensionless source described in (7.3)
is canonically normalized. The action now can be
rearranged as

Γhol ¼
�
l4Λ
l5k

�
Λ4

l4

Z
d4xL̂hol½Φ̂0; ∂=Λ� þ � � � ; ð7:4Þ

where we explicitly write the Λ4=l4 factor appearing in
accordance with 4D NDA. The factor in parentheses is the
same suppression factor as obtained in Sec. III B. From
(7.2) it is clear that this factor systematically appears
alongside ℏ in the semiclassical expansion of the holo-
graphic action.
We may now perform dimensional analysis on the

canonically normalized holographic variable,

Φ0 ¼
�
l4Λ
l5k

�
1=2 Λ

l1=2
4

Φ̂0: ð7:5Þ

Functional derivatives with respect to Φ0 are suppressed as

δnΓhol

δΦ0ðx1ÞδΦ0ðx2Þ � � �
∝
�
l5k
l4Λ

�
n=2−1

ð7:6Þ

at leading order. Hence, by applying dimensional analysis
at the 5D and 4D levels in the holographic action, we have
shown that a small parameter (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l5k=l4Λ

p
) systematically

suppressing the interactions and controlled by the AdS
curvature appears.
The AdS/CFT correspondence dictates that the above

quantity reproduces the connected n-point functions of a
conformal gauge theory with adjoint fields and large N.
The main contribution to the correlator at large N is
suppressed as [67,68]

hOO…icon ∝
1

Nn−2 ; ð7:7Þ

with canonical normalization such that the two-point
function does not scale with N. Comparing the AdS
expression (7.6) and the CFT expression (7.7), we see that
the suppression factor in AdS corresponds to the 1=N2

suppression of the CFT,

l5k
l4Λ

∼
1

N2
: ð7:8Þ

We thus obtain a precise, field-theoretical version of the
correspondence between the 1=N expansion in the CFT
and the parameters of the AdS effective field theory. At

fixed AdS curvature k, and i.e., fixed ’t Hooft coupling, the
N → ∞ limit corresponds to the Λ → ∞ limit. This sets all
interactions to zero and therefore produces a free 5D theory.
The relation (7.8), when put in the holographic action (7.4),
gives Γhol ¼ N2 Λ4

l4

R
d4xL̂hol. The N2 factor accompanying

ℏ in this action is a hallmark feature of AdS/CFT [4].

C. Dual interpretation of transition scale

In this section, we consider the dual gauge theory
interpretation of the transition scale using Λ=k ∼
N2l5=l4 as established in (7.8). In the following discus-
sion, we estimate l5=l4 ∼ π. Interactions vanish in the
Λ → ∞ limit. In this limit, the AdS theory thus contains an
infinite tower of free, stable KK modes.10 This is the AdS
manifestation of the infinite tower of stable glueballs
when N → ∞.
For finite N, the transition scale is

Λ̃ ∼ N2πμ: ð7:9Þ

The scale controlling the mass of the KK modes, πμ,
appears. The KK masses grow linearly; hence the transition
is reached around the mass of the N2th KK mode.
The Λ̃ scale would be the cutoff of the glueball EFT. Does

the value (7.9) make sense from the gauge theory side?
Recall that the large-N theory contains, in principle, many
glueballs at low energy. It is thus described by an EFT
containing many species. The interactions between glueballs
are set by the Λ̃ scale and suppressed by powers of 1=N. In
the loop diagrams, such suppression is compensated by the
multiplicity of glueballs. For N2 glueballs, the cutoff of the
EFT becomes Λ̃. This feature can be seen by using 4D NDA
applied to the glueball theory with an arbitrary number of
species Ns and D ¼ 4. The prefactor of (3.4) is

NsΛ̃4

N2l4

; ð7:10Þ

which indicates strong coupling when the number of glue-
balls Ns is of order N2. This paints a consistent picture: the
N2 modes of the KK regime in AdS match the N2 glueballs
of the gauge theory.
These considerations are only about the number of

species and do not tell us about glueball masses.
However, we also know that an infinite tower of glueballs
is needed to reproduce the logarithmic momentum depend-
ence of the correlator between gauge currents [67]. At finite
N, the width-over-mass ratio of the n glueball is expected to

10A confined gauge theory produces a spectrum with particles
of arbitrary spin. In the QFT approach to AdS/QCD, glueballs
of a given spin correspond to a given field on the AdS side; see
e.g., [11]. Focusing on a bulk scalar amounts to focusing on the
sector of scalar glueballs.
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grow as Γn=mn ∼ n=N2. The ð1=NÞ2 factor comes from the
1=N suppressed cubic vertices, and the n factor comes from
the number of accessible decay channels into lighter
glueballs. Hence, the glueballs tend to become broad at
n ∼ N2, which signals the transition to a continuum. Since
there is a tower of glueballs, the cutoff of the glueball EFT
has to be around the mass of the N2th glueball, i.e.,
Λ̃ ∼mN2 . This matches the picture obtained on the AdS
side in (7.9), where the N2th KK mode is indeed of order of
Λ̃. Notice this reasoning relies on state counting and only
requires enough of a hierarchy between masses for the
decays to occur. This is a very mild condition. In this work,
the mass distribution obtained from the AdS side ismn ∼ n,
but the same line of reasoning would apply to e.g., a Regge-
like spectrum mn ∼

ffiffiffi
n

p
.11

The spectral density of glueballs obtained from the above
considerations is summarized in Fig. 3.

VIII. CONCLUSION

We revisit the behavior of an effective theory of
interacting matter fields in a slice of AdS5. We work in
Poincaré position-momentum space—the AdS Poincaré
patch Fourier transformed along Minkowski slices.
We study new features induced by bulk interactions for

timelike four-momenta. These correspond to including the
leading 1=N2 effects in the strongly coupled dual theory.
We show using dimensional analysis that there is a

transition scale Λ̃, above which bulk propagators lose
contact with the IR brane because the latter falls beyond
the domain of validity of the effective theory. The scale
separates the Kaluza-Klein and continuum regimes of the
bulk propagator. The continuum regime would be absent if
interactions were not taken into account. Conversely, the
continuum regime is the only one present in the limit of
strong interactions.
For timelike momenta the transition between the KK

and continuum regimes occurs because the propagator is
dressed by bulk interactions, a leading 1=N2 effect. This
induces an exponential suppression of the propagator in the
region where the EFT would become invalid. This censor-
ship property was qualitatively predicted in [29]. Our
treatment invokes approximations to loop integrals; more
details of opacity in AdS may be better elucidated with
future calculational developments.
In the CFT dual, the existence of the transition scale

corresponds to the fact that the effective theory of glueballs
cannot contain infinitely many species. It becomes strongly
coupled if more than approximately N2 glueballs are
included in the spectrum. Beyond the transition scale, a
gauge theory with no mass gap should appear. This is
indeed what we demonstrate in the AdS theory.
For timelike bulk propagators, the IR brane is effectively

absent when p > Λ̃. However, cascade decays could allow
correlators with energy beyond Λ̃ to be sensitive to the IR
brane because the momentum is split between many off-
spring states. We therefore study cascade decays to better
understand the notion of IR-brane emergence. We focus on a
scalar with a bulk cubic interaction and investigate the
squared matrix element integrated over final states that are
the main ingredients of observable event rates. A recursion
relation between cascades of different branching depth is
valid for a range of momenta. In this regime, we estimate of
the rate for an arbitrarily deep cascade.
We have checked that contributions from other effects

are subleading. These include direct decays into an IR-
brane-localized state or into light KK modes via a tower of
off-shell KK modes. We found that the contribution from
the region in which the propagator is exponentially sup-
pressed may be of the same order, but that this does not
change our conclusions.
The cascade decay calculation provides a picture of soft

bombs in the continuum regime of AdS. We find that the
shape of the cascade events tends to be soft and spherical in
the 4D Minkowski slices. This is because the momentum
tends to be split evenly between states near threshold,
which matches previous results for the CFT dual. Along the
fifth dimension, the decays tend to occur near the region
z ∼ 1=p, where p is the parent four-momentum. Therefore,
the soft bomb diagram grows in the Minkowski direction
and slowly progresses towards the IR. Once the typical
momentum of the offspring reaches Λ̃, the soft bomb enters
the KK regime.

FIG. 3. Schematic spectral density of the two-point correlator
of the large-N glueball EFT. The solid line shows the glueball
resonances merging into a continuum when approaching the
cutoff of the EFT. The merging of resonances that we describe is
distinct from the multiparticle continuum, which we show
schematically for completeness.

11For completeness, we notice that at energies approaching the
cutoff Λ̃, contributions from the multiparticle continuum should
become sizable. This is expected since, by definition, at the EFT
cutoff the contributions from all loop orders become the same
order of magnitude—the EFT becomes strongly coupled. The
multiparticle contributions are suppressed by additional 1=N
factors and by loop factors 1=l4 which define the perturbative
expansion in the EFT. Near the cutoff, the 1=N suppression is
compensated by the multiplicity of states in the loop(s). Hence,
near the cutoff, one expects that the resonances merge into a tree-
level continuum and that loop-level continua become of the same
order as the tree-level one. This is included in Fig. 3.
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While there is no diagrammatic change between the
KK and continuum regimes, the crucial change occurs in
the behavior of the propagators. In the KK regime, the
narrow-width approximation applies, such that ampli-
tudes giving the soft bomb rate can effectively be cut. In
the continuum regime, the propagators do not have
poles, and the event cannot be cut before reaching the
KK regime. The phase-space factors associated with
each of the final states accumulate, and the soft bomb
rate in the continuum regime acquires an exponential
suppression. It follows that the continuum regime can be
described by a high-energy effective theory with no IR
brane. In other words, the operators on the IR brane
effectively emerge at the energy scale E ∼ Λ̃, i.e.,
schematically E½J�jp≫Λ̃ ≈ E½J�no IR brane in terms of gen-
erating functionals of correlators. We expect that the
same conclusions qualitatively apply to asymptotically
AdS backgrounds with a metric deformation in the IR
region, such as soft-wall models.
These features can lead to new possibilities for physics

beyond the Standard Model, as already pointed out in [32].
In particular, holographic dark sector scenarios may have
bulk fields that mediate interactions between a UV-brane-
localized Standard Model and IR-brane dark states that are

emergent. This implies that a light dark particle can be
invisible at high-energy experiments. For instance, bounds
from stellar cooling or missing energy searches may be
alleviated if the dark particles are light enough. The many
phenomenological consequences of an emergent dark
sector require further study.
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