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We generalize the modular invariance approach to include the half-integral weight modular forms.
Accordingly the modular group should be extended to its metaplectic covering group for consistency.
We introduce the well-defined half-integral weight modular forms for congruence subgroup I'(4N) and

show that they can be decomposed into the irreducible multiplets of finite metaplectic group [y.
We construct concrete expressions of the half-integral/integral modular forms for I'(4) up to weight 6 and

arrange them into the irreducible multiplets of I'y. We present three typical models with [, modular
symmetry for neutrino masses and mixing, and the phenomenological predictions of each model are

analyzed numerically.
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I. INTRODUCTION

How to understand the mass hierarchies and flavor
mixing patterns of quark and lepton is still one of the
greatest challenges in particle physics. The origin of the
large mass hierarchies among quarks and charged leptons,
the tiny but nonzero neutrino masses, and observed
drastically different patterns of quark and lepton flavor
mixing cannot be explained by the Standard Model (SM).
In many scenarios beyond the SM, flavor symmetry is still
a very interesting and promising approach to solve these
mysteries. Especially in recent years, the attempt to explain
the large mixing angles in lepton sector with some discrete
non-Abelian flavor groups has made good progress.
However, generally a large number of scalar fields so-
called flavons transforming nontrivially under discrete
flavor symmetry are necessary to spontaneously break
the flavor symmetry group. Moreover, auxiliary sym-
metries such as the product of cyclic groups are generally
introduced to forbid the dangerous terms and to achieve the
desired vacuum alignment in the neutrino and charged
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lepton sectors. In short, the flavor symmetry breaking
sector has to be intelligently designed and the structure
is complex in traditional discrete flavor symmetry models.

Recently modular invariance has been suggested as the
origin of flavor symmetry [1]. Notice that modular sym-
metry naturally appears in torus and orbifold compactifi-
cations of string theory. Some recent related work about the
modular symmetry on 72 and 7% x T? with magnetic fluxes
can been seen in [2,3], where zero-modes wave functions
behave as weight 1/2 and 1 modular forms. The modular
invariance as flavor symmetry is a bottom-up approach [1],
flavons are not absolutely necessary, and flavor symmetry
can be uniquely broken by the vacuum expectation value
of complex modulus z. Therefore, the above mentioned
issue of vacuum alignment is drastically simplified
although a moduli stabilization mechanism is needed. In
this approach, the Yukawa couplings are modular forms
which are holomorphic functions of modulus z, and the
superpotential is completely determined by modular invari-
ance in the limit of supersymmetry while the Kihler
potential is not fixed by modular symmetry [4]. In a
top-down approach motivated from string theory [5-7],
the modular and traditional flavor symmetries are com-
bined to form the eclectic flavor groups. The Kihler
potential as well as the representation and weight assign-
ment for the matter fields are severely restricted in this
scheme although the order of eclectic flavor group is larger.

The finite modular group I', = S; [8-11], I'; = A,
[1,8,9,12-32], Iy = S, [25,33-40], I's = A5 [38,41,42]
and T'; = PSL(2,7Z;) [43] have been considered. The
quark masses and CKM parameters together with the
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TABLE 1.

The dimension formula of dim M, (I'(N)) for N =4, 5, 7, 9, the linear space M, (I'(N))|,_, of the lowest fractional

weight modular forms, and the finite metaplectic group I'y. Notice that the functions f,(fv ) (7) and the theta constants 0, 3(0|27) are

defined in Egs. (32) and (37) respectively.

N Weight r dim M, (T(N)) M, (T(N))|j=y Ty Ty GAPID
4 k)2 k+1 {93(0|2T) 0,(027)} 3, 96 [96,67]
5 k/5 k+1 {f ( ). 5)(1)} I x Zs 600 [600,54]
7 2k/7 4k -2 (for k >2) {f ( ). f; ( ). S 7)( "N I'; xZ; 1176 [1176,212]
3 (for k=1)
9 k/3 9%k -9 (for k> 3) {f ( ). f ( )’f(9) (T)’f(9) (7)} Iy 1944 [1944,2976]
{ 10 (for k =2) ’ > !
4 (for k=1)

lepton masses and mixing can be explained by using
modular symmetry [15,18,31,44]. Modular symmetry has
been also discussed in SU(5) grand unification theory
[10,14]. Notably, the dynamics of modular symmetry could
be tested at present and future neutrino oscillation experi-
ments [45]. The modular symmetry can be consistently
combined with the generalized CP symmetry [46-50].
Multiple modular symmetries with direct product has been
proposed [35,37]. A comprehensive discussion about flavor
symmetry, CP symmetry and modular invariance in string
theory was recently given in [47,51]. The modular invari-
ance approach is generalized to include the odd weight
modular forms which can be arranged into irreducible
representations of the homogeneous finite modular group
Iy [52]. T'y is the double covering of the inhomogeneous
finite modular group I'y. A simultaneous description of
quark and lepton sectors can be achieved in the modular
symmetries I'; = T’ [44,52] and T, = S, [53,54]. It is
notable that quite predictive flavor models can be con-
structed with §; [53]. The modular symmetry has the merits
of both Abelian flavor symmetry and discrete non-Abelian
flavor symmetry, it can naturally generates texture zeros in
fermion mass matrix [44] after including odd weight
modular forms, and the modular weight can play the role
of Froggatt-Nielsen charge to generate the fermion mass
hierarchies [30].

In this work, we further extend the modular invariance
approach to include half-integral weight modular forms. In
order to consistently discuss the action of the modular
transformations of the half-integral weight modular forms,
one should consider the metaplectic covering of the
classical modular group SL,(Z). Accordingly the frame-
work of modular invariance is extended to the metaplectic
modular invariance. The more general modular forms of
rational weights can be studied in a similar way. It is known
that the half-integral weight modular forms of congruence
subgroup can (and can only) be defined at level 4N. We
find that the half-integral weight modular forms for I'(4N)
can be arranged into irreducible multiplets of the finite
metaplectic modular group T'yy which is the quadruple
covering of the inhomogeneous finite modular group I'4y

or the double covering of the homogeneous finite modular
group I",. In this work, we focus on the lowest level
case of ['(4), and use the corresponding modular forms of
half-integral weight to construct lepton mass models.

The rest of the paper is organized as follows. In Sec. II,
we introduce the metaplectic group and give the definition
of the half-integral weight modular forms. We show that
the half-integral weight modular forms of I'(4N) arrange
themselves into different irreducible multiplets of the finite
metaplectic group I'yy. We also present some useful known
results of rational weight modular forms by mathematician,
the explicit expressions of the lowest rational weight
modular forms for certain congruence subgroup T'(N),
and the corresponding finite metaplectic group I'y are
summarized in Table I. In Sec. III, we construct the half-
integral and integral weight modular forms for I'(4) up to
weight 6 in terms of Jacobi theta constants, and organize
them into irreducible representations of finite metaplectic
group Iy = 8,. In Sec. IV, we generalize the modular
invariant theory to include the half-integral weight modular
forms. Moreover, we present three phenomenologically
viable models for lepton masses and flavor mixing based on
the finite metaplectic group I’y = S,. The multiplier sys-
tems of the rational weight modular forms are given in
Appendix A. The group theory of S, and the Clebsch-
Gordan (CG) coefficients in our working basis are pre-
sented in Appendix B.

II. MODULAR SYMMETRY, METAPLECTIC
GROUP, AND HALF-INTEGRAL WEIGHT
MODULAR FORMS

The full modular group SL,(Z) is the group of 2 x 2
matrices with integer entries and determinant 1:

SLZ(Z):{C’ Z) c:l}. (1)

It is quite common to use the notation I" for SL,(Z). It is
well-known that SL,(Z) is finitely generated, and its
generators are usually chosen to be S and 7,
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which satisfy the relations
§* = (ST =1 (3)

Here I is the two dimensional unit matrix. Let N be a
positive integer, the principal congruence subgroup I'(NV)
of level N is defined as

I(N) = { <Z Z) € SLy(2Z)[a.d = 1(mod N),
b, ¢ = 0(mod N)}, 4)

which implies that T'(N) is a normal subgroup of finite
index in SL,(Z), and obviously we have I'(1) = SL,(Z).
We denote by ‘H the upper half plane, i.e., the set of
complex numbers 7 with Im(z) > 0. We can view elements
of SL,(Z) as acting in the following way on H:

_a1—|—b
Ccr+d’

y = (“ Z) eSL,(2).,  yr=y(7)

c

(5)

The modular form f(z) of weight k and level N is a
holomorphic function of the complex modulus 7z and it
satisfies the transformation formula

f(m ks b) = (et + d)*f(z) for all

ct+d
a b
( )EF(N) and 7€ H. (6)
c d

It has been shown that the modular forms of integral weight
k and level N can be arranged into different irreducible
representations of the homogeneous finite modular group
Iy =T/T(N) up to the factor (¢t + d)* in [52]. In the
present work, we intend to include half-integral weight
modular forms such that the square root of the ¢t + d
appears in the transformation formula. It is crucial to
deal with the two branches for the square root in a
systematic way. The most common choice and the one
we will always use is to choose the principal branch of the
square root, i.e., for a complex number z, z'/? always means
—/2 < arg(z'/?) < x/2, in particular if z < 0 is real, z'/?
is a pure positive imaginary number such as (—1)/2 = i

=i
Therefore, (z,2,)"/? is equal to Z}/zzéﬂ

only up to a sign
£1,ie, (2122)"? = 2,72 for —w <arg(z)) +arg(z,) <z
and (z2)'/? = —zi/zzé/z otherwise. For an (even or odd)
integer k, z¥/2 always refer to (z'/?)¥. Note that this is not

always equal to (z¥)!/2 for k odd. It is nontrivial to define

the half-integral weight modular forms, and Jy,(y,7) =
(ct 4+ d)¥/?* is not the automorphy factor anymore, and
certain multiplier is generally needed. For instance, the
half-integral k/2 weight modular form f(z) can be con-
sistently defined for the principal congruence subgroup
I'(4N), it is a holomorphic function of 7 and satisfies the
following condition,

fht) = o*(h)(cT + d)? f(2) = v*(h)J o (R ) (),
a b
h = ( ) eTI'(4N), (7)
c d
where v(h) = (§) is the Kronecker symbol, it is 1 or —1
here and more details can be found in the textbook [55].

Notice that v*(h) and Jy,(h,7) satisfy the following
identities [55,56],

Jip2(r172:7) = 52/12(7/1, v k2 (11 727 k2 (725 7)s

ri2 €L, (8a)
vk (hyhy) = Cipa(hys ha)vF(hy ) ok (hy), hy, €T(4N),
(8b)

where Ck/z(h,?’z) = C’f/z(}’w’z) € {l’eﬂik}, and 41/2(71, 72)
is the so-called two-cocycle on SL,(Z) [55,56]. Note that
1/2(r1,72) can only take values +1 and —1 such that
Cij2(r1.72) is always equal to 1 for any values of y; and y,
if k is even. We denote the factor Jy(h.7)=
v¥(h)(ct + d)¥/?, using Egs. (8a) and (8b) it is easy to
check J, /2 satisfies the cocycle relation

jk/Z(hlhz»T) = jk/Z(hl’hZT)jkﬂ(thT)» hi, €T(4N).

©)

This means that J, /2(h, 7) is the correct automorphy factor
for I'(4N), this generalized automorphy factor eliminates
the ambiguity caused by half-integral weight, and the half-
integral weight modular form defined in Eq. (7) really
makes sense.

A. Metaplectic group

In order to discuss the action of the full modular group
on the half-integral modular forms, one has to consider
the metaplectic (twofold) cover group Mp,(Z) of SL,(Z)
[57]. For notational simplicity, we shall denote Mp,(Z) as
I in the following. The elements of I" can be written in the
form [57]:
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r={r=tato=({ ) eroer=(crra .

(10)

which implies ¢(y.7) = £(ct +d)"/? = €J,2(y,7) with
€ = £1. The multiplication law of Mp,(Z) is given by

(11, @(r1:7) (72, #(r2: 7)) = (1172, b1, 27) P (12: 7)),

(11)

or equivalently

(r1-€191)2(r1: 7)) (r2 €2J1/2(r2, 7))
= (rira- €681 2(r1-v2)012(1172.7)),  (12)

where €, ¢, € {£1}. Obviously each element y € " cor-
responds to two elements 7 = (y,4J,/,(y.7)) of the
metaplectic group I'. Let us consider the natural projection
mapping P:(y,£Jy,,(y.7)) = 7, then it is easy to see
the kernel Ker(P) = (1,£1) = {£1}, therefore, [" can be
viewed as the central extension of the modular group I by
the group {+1}.

Using the generators S and T of SL,(Z), it is easy to
see that the metaplectic group I" can be generated by S
and T [56,58]:

(D) G

where \/—7 denotes the principal branch of the square root,
possessing positive real part. Notice that S is of order 8
while T is of infinite order, and we have

(e

s (00 e

which are of orders 3 and 4, respectively. Hence, the
generators S and 7 fulfill the relations

ST

=877 =1, (15)

or equivalently

-k  (TP=R'-=1, TR=RT, (16)
Because R is commutable with both generators S and

T, R generates the center of I. Notice the identities
R =(()).~1) and R*(r.J1pa(r.7)) = (r.=J1a(r. 7)),

therefore, the modular group SL,(Z) is isomorphic to the
quotient of Mp,(Z) over the Z, subgroup Z&* = {1, R?},

Mpy(Z)/Z]" = SLy(Z). (17)
A well-known metaplectic congruence subgroup is [56,58]:
[(4N) = {h = (h, v(h)Jy2(h.7))|h €T(4N)},  (18)

where v(h) = (4) is the Kronecker symbol. I'(4N) is an
infinite normal subgroup of T" and it is isomorphic to the
principal congruence subgroup I'(4N). Likewise the finite
metaplectic group is the quotient group T'yy = T'/T(4N). It

is easy to check
4N -
] ) 1> eT'(4N). (19)

- ((

Consequently, the relation
TN =1 (20)

is generally fulfilled in the group I'yy. In the present work,
we focus on the lowest case N = 1. The finite metaplectic
group I, denoted as S, is a group of order 96 with group ID
[96, 67] in GAP [59]. The conjugacy classes and the
irreducible representations of S, are given in Appendix B.
For larger N, the relations in Egs. (15) and (20) or
equivalently Egs. (16) and (20) are not sufficient and
addition relations are needed to render the group Iy finite.
For instance, for the case of N = 2, the multiplication rules
of I'y for the generators S, 7 and R are'

||
’;cz

s
T

(ST)> = R* = T® = R*STOST*ST*8T* =
T. (21)

=
Il
>l

Thus Iy is a group of order 768 and its group ID in GAP is
[768,1085324].

B. Half-integral weight modular forms

For an element ¥ = (7, ¢(y, 7)), we define the weight-
k/2 slash operator |[7];, on the modular function f(z)

as [57]:
F@IFly2 = Fro)g™ (v, 7). (22)

The slash operator has the property,

FONF D lPdin = FOI i 712 €T (23)

'The relations can also be written as $% = (§7) =78 =

SOTOSTAST28T* = 1,T5% = §°T.
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The modular forms of the metaplectic congruence sub-
group f(4N ) is a holomorphic modular function invariant
under the action of the slash operator |[], /2 1€,

F@|hlg2=f(r) or f(ht) = ¢*(h.7)f (7).
h eT(4N). (24)

This is actually the same as the condition in Eq. (7) which
the half-integral weight modular forms of I'(4N) should
satisfy. It can be seen that ['(4N) is the more natural group
acting on the half-integral weight modular forms of T'(4N).
The weight k/2 modular forms of T'(4N) span a
linear space M, ,(I'(4N)) of finite dimension n =
dimM; > (T(4N)). Let us denote a multiplet of linearly
independent modular form f(z)=(f,(7),f2(7),....fn(2))7,
¥ = (r.eJy2(y.7)) and h = (h, v(h)J/,(h, 7)) stand for a
generic element of I and I"(4N) respectively. It is straight-
forward to check that the following identity is fulfilled,

f(@)][7] k/2| [ﬁ]k/z = f(7) [77]k/2- (25)

This means that the function f(z)|[7];/, is invariant under
the action of the slash operator |[A];/,. In other words,
J@I[7lij2 = f(y7)¢~*(y.7) should be a modular form of
['(4N), therefore, f(7)|[7];/, can be written as a linear
combination of f;(z):

SOl =p@)f(2) or flye) = ¢ r.0)p([7)f(7),

where p(7) is a n x n dimensional matrix depending on .
Using the identity f(7)|[71]y2[72li/2 = f(D)|[7172)52 In
Eq. (23), we can obtain®

p(71)p(72) = p(7172)- (27)

Hence, p is a linear representation of the metaplectic
group [. For 7=h=(h, v(h)Jy ), (h. 7)) € ['(4N),
Eq. (26) gives us

f@|lRl2 = p(M)f (7). (28)

Comparing with the definition of modular form
f(1)|[13]k/2 = f(z) in Eq. (24), we obtain p(h) = 1. As a
consequence, p(7) is actually a linear representation of the
quotient group I,y = I'/T'(4N). The finite representation p
can always be decomposed into a direct sum of irreducible
unitary representations of I';y such that the modular forms
of half-integral weights can be arranged into different
irreducible representations of the finite group I'y.

Furthermore, applying Eq. (26) for 7 = R, we obtain
f(Rt) = f(2) = (=) p(R)f (2), (29)
which implies

kodd:

keven:

p(R) = i* { (30)

Taking into account with the general relations in Egs. (15)

(26)  and (20), we can know
|
{koddi P*(8) = p(R), YR =p*8T)=p*™(T) =1,  p(T)p(R) = p(R)p(T). (1)
keven: pX(8)=p(R),  pPR)=pST)=p"(T) =1,  p(D)p(R) =p(R)p(T

Notice that the representation matrices of the generators S
and T satisfy the same relations as those of the homo-
geneous finite modular group I}, [52]. The equations in
Eq. (31) show explicitly that the half-integral weight
modular form can be decomposed into irreducible repre-
sentation of finite metaplectic group I'yy, and the integral
weight modular forms are arranged into irreducible mul-
tiplets of I7.

2Analogously we find that p forms a projective representation
of the modular group T p(y172) = Ciya(r1.72)p(r1)p(r2) for
712 €I'. That is to say, the projection representation is lifted to
the linear representation by extending the I' to the metaplectic
group I

C. Rational weight modular forms

Analogously, modular forms of rational weights r can be
defined for certain congruence subgroups. Similar to
Eq. (7), a multiplier system w»(y) is needed such that
v(y)(ct 4+ d)" is the correct automorphy factor satisfying
the cocycle relation, and the ambiguity of multivalued
branches caused by the rational power is properly elimi-
nated. It is also a big challenge to explicitly construct the
basis of the linear space of the rational weight modular
forms. It is remarkable that some mathematicians have
found out the multiplier system v(y) for the principal
congruence subgroup I'(N) with odd integer N > 5, the
explicit expression of v(y) is given in Appendix A, and
the corresponding modular forms of rational weights are
constructed [60,61]. We will describe the main
results below.

115035-5
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First of all, for any odd integer 5 < N < 13, the ring of
the modular forms of rational weight r = (N — 3)/(2N) for
the principal congruence subgroup I'(N) can be con-

structed from the holomorphic functions f, ,SN) (7) [60],

1) = 6,5 (ND) ()P, (32)

n L
2N72

where n are odd integers with 1 < n < N — 2, and the theta
constant with characteristic (m', m”) is defined by

m’ m” E e2rit(5(m+m' ot (m+m')m” )’ (33)

mezZ

and the Dedekind eta function reads

_ eﬂn’/lZ H Zmnr (34)

Consequently, there are (N —1)/2 linearly independent

modular forms f (IN>, ng)’ fg\,N_)z of rational weight

= (N —=3)/(2N), and the graded rings of modular forms

M(L(N)) = @M, s2(T(N)) can be generated by the
m>1

tensor products of these lowest weight modular forms. The
dimension formula of M,,x- 3(F( )) for any odd integer

N >5 and any integer m > ( ) is given by [60,61]
2 -13) - —
dim M s (T(N)) :N [m(N —3) —2(N - 6)]
o 48
<[] <1 - —) (35)
pIN

where the product is over the prime divisors p of N. As
shown in Sec. I B, we expect that rational weight modular
forms can be organized into different irreducible multiplets
of the finite metaplectic congruence subgroup. We sum-
marize the dimension formula, modular forms of rational
weight r = (N —3)/(2N) and the corresponding finite
metaplectic congruence subgroup in Table I. We also
include the half-integral weight case which we are con-
cerned with. We would like to mention that the theory of
modular forms with real weight and even complex weight
are also developed [62], and then the modular group
SL,(Z) should be extended to the universal covering
groups. Some concrete examples are given in [63,64].

III. HALF-INTEGRAL/INTEGRAL WEIGHT
MODULAR FORMS OF LEVEL 4

Half weight modular forms of level 4N have been
studied extensively in math since Shimura’s original work
[65], a general construction of the modular space
M, »(I'(4N)) using theta functions associated with lattices
has been given in the literature [66,67]. In particular for the

simplest case of level 4N = 4, the linear space of the half
weight modular forms can be generated by the following
two Jacobi theta constants”:

M, p(T'(4)) = {ei(7) = 05(0]27), e5(r) = 6,(0[27) },
(36)
with
02(012¢) = Y2 =214 (14 ¢+ ¢0 + g2+ ..),
mezZ
03(0127) = > ¥ =1+2g+2¢* +2¢° +2¢"° + ...
mezZ
94(0|2T) — Z(_l)meZﬂirmz
mez
=1-2g+2¢*-2¢° +2q'% + ..., (37)

where g = e?**. Using the basic transformation properties
of Jacobi theta function [68], we can obtain the following
transformation rules under the action of the generators S
and T,

0:(0120) L05(0127),  0,(0[20) 56, (0]27),

0,(0122) >0, <0| —%> - <—i§> ", (0 5),
0,(0122) >0, <0| —%> - (—i%) s (o %) (38)

From the definition of the theta constants in Eq. (37), we
know

05 (0
= 05(0|27) + 6,(0]27),

N <0 %) = Z( m emiGm* Zeznzm Zezﬂif(,,Jr%)Z

mezZ nez nez

= 65(0]27) — 6,(0]27). (39)

e

P2 ; 1y2
) E em Im?) E e2ritn +§ e2mr(n+2)

mezZ nez nez

As a consequence, under the action of S and 7, the basis
vectors e;(7) and e,(r) transform as

es(7)Dies(7),

el(f)i(—@ l/z(el(f) +e(7)),

e1(7) Dy (2),

ez(r)i<-i%> l/z(el (7) — es(7)). (40)

These two modular forms also appeared in [54].
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We find these two linearly independent modular forms
e;(r) and e,(r) arrange themselves into a doublet

denoted as
Po-(Lw)=() @

which transforms in the two-dimensional irreducible rep-
resentation 2 of r,=5,

1

(=1/2) = ~v=p5(3)¥} (2).
Y (e +1) = py(1)YY (2, (42)

Y

> —~
B> I

NG

where the unitary representation matrices ps(S) and p;(T)
are given in Table VII. All higher (half-integral and
integral) weight modular forms can be constructed from
of group S,. For instance, we find the weight 1 modular
forms make up a triplet 3’ of S,

the tensor products of Y.*(z) by using the CG coefficients

V28,9,
yO = Ly | e 43)
y T AVe )y T I

_,9%

where we have multiplied an overall constant 1/v/2 to
make the resulting expression relatively simple. The non-
trivial constraint Y<11)2 + 2Y§1)Ygl> = 0 in Ref. [53] is now
(%>)A _
2 i
because of the antisymmetric CG coefficient for the

A
trivial. Notice another tensor product (Y;Z) Y

contraction 2 ®ﬁ -1 It is straightforward to check
that Y ;}) is the same as the original weight one modular

forms given in [54] up to a permutation, the discrepancy
arises from the different convention for the representation
matrices of the generators S and 7. In a similar fashion,
we can obtain higher weight modular forms and decom-
pose them into different irreducible multiplets of S,. In
the following, we present linearly independent half-
integral and integral weight modular forms up to weight
6, and we normalize the overall constant for simplicity.
There are four linearly independent modular forms of
weight 3/2, and they can be arranged into a quartet
representation 4’ of Sy,

9
Y(%>_L<Y(%>Y(1>) _ | V39 (44)
ARV AN I AV

V39,93

The weight 2 modular forms of level 4 can be decomposed
into a doublet 2 and a triplet 3,

O _ (yhydy _ [ 5+
g = (rvd), = 2
-2/39183
-9
1 N3
Y %(Y%)Y‘(ﬁ)> = | 2va2sis, | (45)
21/29,83

At weight 5/2, we have 6 independent modular forms
which transform according to the irreducible representa-

tions 2 and 4 of 5‘4,

; ; 93 59,94
N ( 1= 2>,
2\ 93-59%9,

9, (97 + 83)
vd - (rdvp), - 23819 | g
2 4 —8,(97 + 83)
-2V38293

The weight 3 modular forms can be arranged into a singlet
and two triplets representation of S; as follows,

/w6
vy = (7)), = 910,91 - 83).

1 2 2
429393
Y(AS) — _L YE%) Y(%) — 196 3192194
3 \/§ 2 74 3 1+ 1V 5
93387 + &%
5391+ 93)
. 21/29,9,(91 + 93)
3 _ _ Oy _ 6 <qdq2
=5 (vivy )3; = 9s-seter  |.(47)

59294 — 96

The linear space of modular forms of weight 7/2 and level
4 has dimension 8, and it can be decomposed into three S,
multiplets 2/, 2 and 4’ as follow,

® e 9
Yie = (Yiz Y%/)>2, = 191’92('9411 - 83) (192 ) ’

Y@:—i(y@yﬂ”) :< 97 + 79193 )
2 2\ 203 2\ =93(91 +793)

59493 — 9]
vd - (v - V3919,(91 +38) 8)
¢ 273 Ju 59398 — 9] '
V39,95(38] +93)

At weight 4, we find the following modular multiplets,
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i) =—(rvy)), = o+ 140108 + 98,
8 4 g4 8
y@ _ _(Yg%)Y@)) _ < 91 — 10879 + 83 >
’ 22 \a3Rao+ o))
95 — g8
1 A
v = (Vi) = | vanusi+ 7918 |,
V29,87 +79193)
i V29,9,
) ( o) <%>> _ - )
vy = — (YPr2) =900t -9h)| -
3 5 55 )y 172V 2 2
V2 3 o

(49)

We have 10 linearly independent weight 9/2 modular

forms which arrange themselves into a S, doublet 2 and
two quartets transforming in the representation 4,

® 34 9
vy = (v, = @+ 14&?8§+&§)<82>,

91(9% — 108195 + 95)

vy — (i) - —4V/39193(9 + 93)
T2 T2 e (98 — 109493 + 98)
4/39293(9% + 93)

8 — 78795 — 29,95
—V3RB(] +79799)
—93 + 79195 + 2839,
V391(9] + 79193)
(50)

At weight 5, we find the following modular multiplets:

2 Q2
<s>_1< ) <%>) _ oo (2V39193
vy =3 (), = oot - (7L )
®) o) ~8V20I0(91 4 92)
5 1
W == () = | - astet-aa |.

93(39% + 149195 - 95)
21/28,8,(9% — 108195 + 95)
93(139% + 29195 + 95) :
—92(9% + 291935 +1389)

V29,9,
Vi), = (V9vi), = 8f+140i08+ 09| 93
%
(51)

There are 12 independent weight 11/2 modular forms of
level 4, and they decompose as 202 @4 @ 4 under Sy,

3 8 494 _ @8
Y<%) b (Y(%)Y(5)> B (192(1119l + 229795 — 192)>’

22\ 93(98 — 220493 — 1199)

2

B /05)
Yy =3/ (Yﬁz wa)i,
9 - 519119‘2‘>
95— 5919,

W__ 1 ey
v == 5 (570,
93(139% + 29795 + 95)
—/3928,(8% — 149195 — 395)
93 (9% + 29193 + 1398)
V39,93(39% + 149193 — 95)

Y= (405),
9
= (95 + 149494 + 98) \5193%'92 (52)
1
V39,93

The linear space of weight 6 modular forms has dimension
13, and it can be decomposed into the direct sum
1610203606303

Y@:(y‘ﬁ)yﬁﬂ) — 9123395933394 95+ 912,

1/
o= (Y@Y@)1/:8%8%(8‘1‘—83)2,

AN

1) (0 91+9;
<6>_( o) (%)) a8 fod | of ( 1+ )
Yy =(Y2Y ) =(98+148%94+9 ,
2 2 47 2 ( 1 1¥2 2) —2\/519%19%

2 —119895+119195-9)2

1 1y (L
Yg?zﬁ(ygz)yff,)) — | —v/2938, (98220193 —1189) |.
V29,93 (11984229193 95)

91-8;

v = (vOyE) —(3+140t0%+93) | 22909

311—\/524’113_1 2Y1 2 1v2 |»
2v/29,93

©_ 1 ( @ (%))

Yy'=; 7 YSYi ),

2V/28,8,(94+93)

5929390
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TABLE II. Summary of modular forms of level N =4 up to
weight 6, the subscript r denotes the transformation property
under the finite metaplectic group S,.

Modular weight k/2 Modular forms Yﬁg)

k=1 ®
g
k=2
Yy
k=3 )
4
k=4 ¥, y®
k=5 ® L0
vy v
k=6 v,y vy
k=1 v v Y<z>
= @)y p@ p@
k=8 vV vy v vy
— 9 9 EA
k=9 vd, vd v
k=10 (5) y5) p5) )
Yy ’Y Yﬁ’l’Yé’n
k=11 @& ) 0 oW
Y YZ, Yyr Yy
k=12

6 6 6 6 6
O, Y0, Y9 Y.yl

We summarize the modular forms of level 4 up to
weight 6 in Table II. If the complex modulus 7 is
stabilized at certain points, it would be invariant under
some modular transformation and some residual modular
flavor symmetry would be preserved [16,25]. It is well-
known that there are only four fixed points g = i,7g;7 =
w,Trs = —w*, 77 = +ico with @ = ¢?7/3 in the funda-
mental domain of SL,(Z) group [16,25]. In the following,
we give the vacuum alignment of half weight modular form

1
Y(Qz)(r) at these fixed points which could be useful to

modular flavor model building [25],

(54)

with Yg = 1.00373, Y¢r = —0.49567 — 0.85852i, Y75 =
—0.49567 4 0.85852i and Y; = 1. The alignments of
higher weight modular forms at fixed points can be easily
obtained from Eq. (54) and the concrete expressions of
higher weight modular forms given above.

IV. MODEL FOR LEPTON MASSES
AND FLAVOR MIXING

As shown in Sec. II, in order to consistently define half-
integral weight modular forms, a multiplier is necessary
and the modular group SL,(Z) should be extended to the
metaplectic group Mp,(Z) which is the double covering of
SL,(Z). As a result, we need to generalize the original
modular invariant supersymmetric theory [1] to metaplectic
modular invariant theory.

A. Metaplectic modular invariant theory

We adopt the framework of the N' =1 global super-
symmetry, the most general form of the action is

S:/d4xd29d29K(cD],(_D],T,%)

+ / d*xd*OW(®,,7) + Hee., (55)

where K(®;,®,,7,7) is the Kéhler potential, W(®,, 7) is
the superpotential, and ®; denotes a set of chiral super-
multiplets. The metaplectic group acts on the modulus =
and the superfield ®@; in a certain way [1,69,70]. Analogous
to [1], we assume the supermultiplet ®; transforms in a
representation p; of the finite metaplectic group Iy with a

weight —k; /2,
B at+b
T jT= ,
4 ct+d

with 7= (r,¢(y.7)) €T,
(56)

@, = ¢ (y.7)p(7)P;

where y = (“%) and ¢(y.7) = e(ct+d)"%, p;(7) is the
unitarity representation matrix of 7, and k; is a generic non-
negative integer. The supermultiplets ®; are not modular
forms, therefore, there is no restriction on the possible value
of k;. We can see that the combination of any two
metaplectic transformations 7, and 7, is also a metaplectic
transformation,

7= 71(727) = (1 72)7,
®; = ¢~ 1 (y1. 120) ™M (12,001 (71)p1 (72) @,

)
= ¢ (r1. 120) "1 (12, T)p1 (7172) 1. (57)

If we are still confined to the original modular group
SL,(Z) instead of Mp,(Z). Then the modular transforma-
tion of matter fields is ®; — J,:Il/Z(y, 7)p(y)®;, the combi-
nation of two half-integral weight modular transformations
would be unequal to a third half-integral weight modular
transformation due to presence of the factor {y, /»(71.72)
which arises because of the identity in Eq. (8a), so that the
modular transformation is not well defined. For this reason,
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it is insufficient to simply change the modular weight to a
rational or real number when discussing modular trans-
formations of rational or real weight, the classical modular
group SL,(Z) should be enhanced to its metaplectic
covering group. The action S is required invariant under
the metaplectic transformation given in Eq. (56). The
Kihler potential K(®;,®,,7,7) is a real gauge-invariant
function of the chiral supermultiplets ®; and their con-
jugates. A minimal choice of Kéhler potential is

K(®;,®,,7,7) = —hA? log(—it + i7)
+ 3 (it i) F@ P (58)
1

where  is a positive constant. K (®;, d,, 1, 7) is invariant
up to a Kéhler transformation under the metaplectic trans-
formation. The superpotential WW(®,, 7) can be expanded in
a power series of the supermultiplets ®;:

W(@p.7) =Y Y g (1)@, ... D . (59)

Invariance of W(®;, r) under the metaplectic transforma-
tion in Eq. (56) entails that the function Y; _; () should be
a modular form of weight ky /2 and level 4N transforming
in the representation py of Iy,

7= (r.¢@.1).
(60)

Yy 0, (re) = (. )py (7)Y, 1, (%),

The modular weight ky /2 and the representation py should
satisfy the conditions

ky =k +-+k,, pyr®p,® --®p;, D1 (61)

where 1 refers to invariant singlet of T'yy.

B. Models based on S,

In this section, we shall construct lepton models based on
the finite metaplectic modular group Iy = S,. In the
representations 1, 1/, 1, 1/, 2, 2/, 3, 3, 3 and 3/, the
generator R = +1 and therefore S, and the homogeneous
finite modular group S, are represented by the same set of
matrices. As a consequence, all the S, modular models
obviously can be reproduced from the metaplectic modular
group S, in particular the successful S, models given in
our previous work [53] can be obtained here. In the
following, we shall explore new models beyond S, and
half-integral weight modular forms would be involved.
The neutrino masses originate from the effective Weinberg
operator or the type-I seesaw mechanism, and both

TABLE III. Transformation properties of the leptonic matter
fields under the finite metaplectic group Iy, and the modular
weight k;/2 assignments for each model. The Higgs fields H,,
and H ; are assigned to be invariant singlet 1 of S, with vanishing
modular weight.

ES E{ ES L NS NS NS H, H,
ModelI 5, 3 1 3 1 1
K/2 32 0 1 0 0
Model 11 S4 2 i 3 3 1 1
k/2 32 0 1 1 0 0
Model I~ 3, 1 i 3 3 1 1
k)2 304 1 32 0 0

scenarios of three right-handed neutrinos and two right-
handed neutrinos are considered in the type-I seesaw
mechanism. No flavon field other than the modulus 7 is
introduced in these models such that 7 is the unique source
of flavor symmetry breaking. The three models would be
presented in the following one by one, the field content and
their transformation properties under S, and weights are
summarized in Table III.

1. Model I: Neutrino masses from Weinberg operator

In this model, the neutrino masses are described by the
Weinberg operator. The left-handed leptons L are assigned

to a triplet 3, the first two generations of right-handed

charged leptons Ef{ and Ef transform as a doublet 3 of S,.
For convenience, we use the subscript “D” to denote the
doublet assignment, i.e., E}, = (EY, E;)T The third right-
handed charged lepton Ef is invariant under S,. Notice that
the three right-handed charged leptons are generally
assumed to transform as singlets of the modular symmetry
to fit the hierarchical charged lepton masses, and they are
assigned to a triplet under modular symmetry in few
models. The modular weights of the lepton superfields
are set to

3

Thus the modular invariant superpotentials for lepton
masses read as follows,

5
2

W, = a(EBLY(;)th ‘f’ﬁ(Ef)LYc(t))lHd

I
+ 7(E§LYg/))1Hd’

9

WI/:A

(LLY?),H H, + % (LLY?),H H,. (63)

With the CG coefficients of S, group in Appendix B, the
charged lepton and neutrino mass matrices read as
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avi) —vapyd vaard gl —vapr)
M= | av) +VapYg, =AY, —Vaary, - pri) | v
Yy, Yy Yy
~29,¥3) 9Y5) ~Y53 ,
M= | @Yy V3gYil+eYs) 975 % (64)
~Y5 975 V301Y5) = Y3

where Y ﬁff,) denotes the nth component of weight w modular multiplets Y ﬁw) . The phases of a, y and g; can be removed by

field redefinition while f and g, are generally complex numbers. Thus this model makes use of three real positive
parameters a, y, g; and two complex parameter /3, g, as well as the complex modulus 7 to describe all the lepton masses and
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix including three charged lepton masses m, , ;, three light neutrino
masses 1, ; 3, three lepton mixing angles 6,,, 63, 0,3, the Dirac CP violation phase d.p and the Majorana CP phases a;;
and a3;. Furthermore, the effective mass my in beta decay, m; in neutrinoless double beta decay and the neutrino mass sum
measured by Planck can be determined, as shown below. Since normal ordering neutrino mass spectrum is slightly favored
over the inverted ordering, we shall be concerned with the normal ordering case in the following. A good agreement
between data and predictions is obtained for the following values of the free parameters:

(t) = 0.09865 + 1.00342i,  |B/a| = 141137,  arg(B/a) = 1.99681x,
y/a=7234910,  |go/qi| = 0.64819,  arg(g/g;) = 0.57182x,

2
Ny

avg = 15.71110 MeV, = 22.95000 meV. (65)

The lepton masses and mixing parameters are determined to be

sin?0,, = 0.31004,  sin?6;; = 0.022368,  sin20,; = 0.56282,  &¢p = 1.6055x,
ay = 01831z, a3 =02359z,  m,/m, =0.00480,  m,/m, = 0.05649,
m; =31.5143 meV,  m, =32.6658 meV,  mj = 59.3347 meV,
my=32.7427 meV,  my; = 28.7321 meV. (66)

It is remarkable that all observables are within the 16 experimental range [71], and we adopt the ratios of the charged lepton
masses from [1]

m,/m, = 0.0048 £ 0.0002, m,/m, = 0.0565 4 0.0045. (67)

Realistic values of charged lepton masses can be achieved by properly choosing the value of the overall scale av,. Note that
the mass hierarchy between electron and muon arises from the cooperation of the @ and f terms in Eq. (63). Here we adopt
the particle data group convention for the mixing angles and CP violation phases [72]. The lepton mixing matrix in the
standard parametrization is written as

-5,
C12€13 S12€13 Sizeocr
_ i6 is
U= | —s12003 = C12513523€"°P 12003 — §12513523€"°F 13523 0, (68)
i6 i6
$12823 — €12813€23€"" —C3893 — §12813C23€"°P €133

where ¢;; = cos 0;;, s;; = sin0;;, 5¢p is the Dirac CP phase, and Q is a diagonal Majorana phase matrix. If all of the three

lj ’ lj ’
neutrinos have nonzero masses, then the phase matrix is given by Q = diag(1, e e’%). If the lightest neutrino is predicted
to be massless, i.e., m; = 0 (see Model III), one of the Majorana neutrino phase is unphysical, and we can parametrize the
phase matrix as Q = diag(1, e, 1), where a,,, a3, or ¢ are called Majorana CP phases. From the predicted values of

115035-11



LIU, YAO, QU, and DING

PHYS. REV. D 102, 115035 (2020)

mixing angles and neutrino masses, one can determine the effective neutrino masses mjy probed by direct kinematic search
in beta decay and the effective mass m; in neutrinoless double beta decay. Note that my is independent of the CP violation

phase and it is defined by

_ 2 a2 2 2 @in 2 2 2
my = \/m1 cos” 0y, cos” 03 + m3 sin” 0, cos” 013 + m5 sin” 0y3.

The latest bound is my < 1.1 €V at 90% confidence level
from KATRIN [73]. Our prediction myz = 32.7427 meV is
far below the future sensitivity of KATRIN. The decay rate
of the neutrinoless double beta decay is proportional to the
square of the effective Majorana mass mg; defined as

Mpp = Imy cos? 6y, cos? B3 + mj sin® 0, cos? B3

+ mj sin? 5! (@1 =2cr)|, (70)
in which all mixing parameters except 6,5 are involved. For
m; = 0, it can be simply written as
mgp = |my sin® 01, cos? 03¢ + my sin? 03¢~ 2%cr | (71)
The current experimental bound from KamLAND-Zen is
mgp < (61-165) meV [74]. The predicted value my; =
28.7321 meV is within the reach of the next generation
high sensitive neutrinoless double beta decay experiments.
The most stringent bound on the neutrino mass sum is
>im; < (120 ~ 600) meV at 95% confidence level from
Plank [75]. In this model, the neutrino mass sum is
predicted to be Y, m; = 123.515 meV which is slightly
larger than the upper limit of Planck. We perform a
comprehensive numerical analysis for this model. The
parameters |f/a|, y/a, |g»/gi| are treated as random
numbers between 0 and 10%, the phases arg(f/a) and
arg(g,/g) freely vary in the range [0, 2z], and the complex
modulus 7 is restricted in the fundamental domain
D = {z|Im(z) > 0,Re(z) <1, |z| > 1}. The overall mass
scales av, and g, v2/A are fixed by the electron masses and
|

(69)

the neutrino mass squared difference Am3,. In order to
estimate the goodness-of-fit of a set of chosen values of the
input parameters, we use a y> function defined in the usual
way for the dimensionless observables m,/m,, m,/m.,
Am3,/Am3,, sin? 0},, sin® 6,3, and sin” 0,3. We require the
predictions for all these observables lie in the experimen-
tally preferred 30 regions, and the neutrino masses
upper bounds ), m; < 600 meV from Plank [75] and
mpg < 165 meV from KamLAND-Zen [74] are imposed.
The correlations among the input parameters and the
observable quantities are displayed in Fig. 1, and the
allowed regions of the free parameters and observables
are listed in Table IV. It is worth noting that arg(f/a) is
very close to O or 7.

2. Model II: Neutrino masses from seesaw mechanism
with three right-handed neutrinos

The neutrino masses arise from type-I seesaw mecha-

nism in this model, and three right-handed neutrinos are

introduced to transform as a triplet 3’ of S,. The left-handed

leptons L are assigned to a triplet 3, the right-handed

charged leptons EY, and Ef are assigned to transform as 2

and 1’ respectively under S,. We take the modular weights
of the lepton superfields to be

C % (o 3 C 5
W, = a(EGLY) Hy + BEGLYS ) Hy + y(ESLYY) Hy,

W, = gi(N‘LYS) H, + go(N°LYP) H,, + A(N°N°Y),,

3
ki /2=1, kEB/2:§, kE§/2:4, kye/2=1. (72)
The superpotentials for lepton masses are given by,
(73)

which lead to the following charged lepton and neutrino mass matrices

—
QIo

aY

>

—
Sio

Me = aY

()

(5)
yYﬁ,l

e aarf - )
) 3 3
1 + \/ZﬂY:,l _\/gﬂY42,4
124

)
—V3pY$,
—\/iaY;%; - ﬂYf; Vg,
(5) (5)
33 rY 32
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FIG. 1. The predicted correlations among the input free parameters, neutrino mixing angles and CP violating phases in the Model

L. The plots displays only the points which reproduce Am3,, Am3, and all the three mixing angles within the 3¢ regions [71]. The
bounds on charged lepton mass in Eq. (67) and the bounds on neutrino masses » _; m; < 600 meV, mpg < 165 meV are required to
be fulfilled.
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uv=| o v - |a
o v
20y, o
Mp = ng.% V3gi Yng +ng§f1)
02733 95

—9
aY

)
Y33

2)
22

2 2
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(74)

The parameters «, y and g; can be taken real since their phases are unphysical, nevertheless the phases of $ and g, can not be
absorbed into lepton fields. The overall scale of the light neutrino mass matrix is the combination g3v2/A, consequently,
this model effectively depends on 9 free real parameters including the real and imaginary parts of 7 at low energy. We get a
good agreement between the model and the data by the parameter choice:
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TABLE IV. The predictions for the allowed ranges of the input parameters and observables in the Model I and Model II.

Model 1

Allowed regions

Model 11

Allowed regions

Re(7) +[0.0896, 0.1098] U £[0.4010, 0.5] £[0,0.2225] U £[0.4753,0.4940]
Im(z) [0.8742, 1.0053] 0.8695,0.8809] U [1.0914, 1.2405]
p/a [1.2374,1.6076] U [2.5544,2.9428] [1.3852, 1.4435] U [2.7482,3.2034]
v/a 00010, 0.0026] U [66.7528,79.0210] 0.0014,0.0058] U [44.7506,75.1092]
92/ 91| [0.1666,0.8382] U [1.1610, 3.0341] [1.2744, 3.4046]

arg (B/a)/x +[0,0.0416] U [0.9618, 1.0382] +[0,0.0066] U [0.9610, 1.0390]

arg (g2/ 1)/ 7 [0.5003, 1.4997] [0.6275, 1.3725]

avy/MeV [14.4101, 17.0497] U [156.3050, 272.3930] [18.0171,25.4663] U [146.3430, 163.8290]
(#v2/A)/ meV [16.1850, 63.9988] [1.4910, 24.2315]

m,/ my [0.0046, 0.0050] [0.0046, 0.0050]

mﬂ/m, [0.0520, 0.0610] [0.0520, 0.0610]

sin? 0> [0.2750, 0.3500] [0.2750, 0.3500]

sin? 013 [0.02044, 0.02435] [0.02044, 0.02435]

sin? 03 [0.4330, 0.6090] [0.4852, 0.6090]

dcp/m [0, 2] [0, 2]

/7 [0,0.7342] U [1.2658, 2] [0.1323, 1.8677]

az /x [0, 2] [0, 2]

my/meV [28.2433,197.6680] [4.0761,7.7882] U [70.8918, 164.2230]
m,/meV [29.5226, 197.8550] [9.5139, 11.5998] U [71.4112, 164.4480]
msz/meV [55.8484, 204.4120] [48.3272, 53.1806] U [85.7177, 171.4506]
Zi m;/meV [113.6571, 599.9100] [61.9873,72.1231] U [228.0210, 500.1270]
mﬁ/meV [29.4466, 197.8790] [9.2649, 12.2620] U [71.3987, 163.5672]
mﬂﬂ/meV [25.3964, 164.9999] [0.3956, 3.7663] U [49.6909, 159.7320]

(z) = —0.06501 + 1.22026i,

2
avy = 2023830 Mev, I

y/a = 66.43360,
arg(f/a) = 1.99727x,

|p/a| = 1.43642,
arg(g,/91) = 0.90559x,

= 2.60992 meV. (75)

Accordingly the predictions for the lepton mixing parameters and neutrino masses are given by

Sin2912 = 031001,
ar = 1123577,',
m; = 4.3686 meV,
mz = 9.9010 meV,

§in26,5 = 0.022370,
a3 = 046967[,

which are compatible with the experimental data at 1o level
[71]. Notice that the neutrino masses are hierarchical
normal ordering, the Planck bound ), m; < 120 meV is
satisfied, and mg and mgy are quite tiny. Analogous to what
we have done for Model I, we scan over the parameter
space of the model. The correlations between the input
parameters and observables are shown in Fig. 2, and their
allowed regions are given in Table IV. We notice that the
CP violating phases dcp, ay; and a3; are strongly corre-
lated with each other, and the phase arg(f/«) is also close
to 0 or 7.

sin?6,; = 0.56298,
m,/m, = 0.00480 MeV,
ny = 9.6429 meV,
mgs = 2.9090 meV.

Ocp = 1.5784x,
m,/m, = 0.05649,
m3 = 50.4677 meV,
(76)

|
3. Model III: Neutrino masses from seesaw mechanism
with two right-handed neutrinos

The neutrino masses are described by the minimal
seesaw model with two right-handed neutrinos. We assign
the left-handed leptons L to a triplet 3 of S, only two right-
handed neutrinos are introduced and they are assumed to
transform as a doublet 2’ under S, while the right-handed
charged leptons EY, ES, and Ef transform as singlets 1, 1,
and 1, respectively. We choose the modular weights of
lepton fields are

115035-14



HALF-INTEGRAL WEIGHT MODULAR FORMS AND ...

PHYS. REV. D 102, 115035 (2020)

T T 2-0_ =T T T T ] 20 TT T T T ]

12f - : ] : ]

i 1 15F . " 1.5F ]

L {1 & r 1 r —— -]
_L1F 1= f 1= [ ]
Ol = [ 1% | ]
= | 1 10F = ] Jof % »

L 1% [ 1 = r ]
- 1 I 158 | 1

L ] 0.5 — 0.5 —

0.9fF . r ] : ]
:.|....|....|....|....|,: ] ool by 1 ]
-04  -02 0.0 0.2 0.4 35 1.0 15 2.0 2.5 3.0 3.5
Re (1) 1&/&l
P M L AL I T T T ] 1 T T T 3 XZ
] . ] 150
15 ] 1 0 - e’
] 1> 3 125

L ] 4 o ]
= 1of 13 1 Z102L 4 Moo
& 12 1 £ P

] ] 3 ] 75

o 1 1 107? E

0.5[ 7] 3 50
0-0:' I I I I ! ] 1074 = et == - &
s o 10 TE Y
04  -02 0.0 0.2 0.4 2.0 bt
(03 n
Re(t) 21/
2~0_:|""l"" [T T 2.0 T — e —
[! [ . :
1.5F i 1.5F .

[ [ r

M o F
[ [ [ kK 3
~ M F < - 4
g 1.0:—: s : .gj 1.0:— —_

L 1 L 1 L i

L ! [ ¢ | i

051, | 0.5fF ]

[ [ " [

[ ] [ 1 4 % L E. ]

0.0+ T T T T T T T N T T T T B 0.0 T T N T T O MO & SLAENE ol—— { - PRI R S R R PR
044 048 052 056  0.60 044 048 052 056  0.60 0.0 0.5 1.0 1.5 2.0
sin%6y; sin®6ys ay/m

FIG. 2. The predicted correlations among the input free parameters, neutrino mixing angles and CP violating phases in the Model II.

The same convention as Fig. 1 is adopted.

3

kL/2:1, ch/2:§,

kE§/2 — 3,

The masses of the charged leptons and neutrinos are described by the following superpotential,

W, = a(ESLYY

5
W, = g(N°LYY) H, + ANNYY)),.

4 5 5
)Hy+BESLYS) Hy + y(ESLY)) Hy + 8(ESLY )

3’11)1Hd’

(78)

Notice that the term (N°N°Y g))l is allowed by symmetries of the model but gives a vanishing contribution because of the

antisymmetric CG coefficient for the contraction 2’ ® 2’ — 1. We find the charged lepton and neutrino mass matrices are
given by

ary] ayy) ary)
4 4 4
M, = pYy) pYy) pYy) o
(5) (5) (5) (5) (5) (5)
yY%’I,l + 5Y3/11,1 yY§’1,3 + 5Y3/11,3 7/Yé”l,z +oY 312
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. 32 31 o 4.4 42 4.1
M=l o sy | ML o e | (79)
3 33 ﬁY4,2 \/§Y4,3 ‘Y4,4

The parameters a, 3, and y are taken to be real and positive by rephasing right-handed charged lepton fields without loss of
generality while the phase of § cannot be removed. The light neutrino mass matrix only depends on the complex modulus =
besides the overall mass scale g?v2/A. Hence, this model has 8 real input parameters to describe the 11 observables
including three charged lepton masses, three neutrino masses, three lepton mixing angles and two CP violating phases.
Notice that the modular invariant models typically use 8 independent parameters to describe the lepton sector [1]. We
numerically scan over the parameter space, the parameters a, f3, y, and |§| are treated as random numbers between 0 and 104,
the phase arg(6) freely varies in the range of 0 and 27, and the modulus 7 is limited in the fundamental domain. The best fit
values of the input parameters are determined to be

() = 0.07814 + 1.18349i, f/a = 65.95160, y/a = 752.95700,

gua
= 2203180 meV. (80)

|6]/a = 478.04500, arg(8) = 0.03818x, avy = 1.4124 MeV,

The lepton mixing parameters and neutrino masses are predicted to be
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FIG. 3. The predicted correlations among the input free parameters, neutrino mixing angles and CP violating phases in the Model III.
The same convention as Fig. 1 is adopted.
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TABLE V. The predictions for the allowed ranges of the input
parameters and observables in the Model III.

Model IIT Allowed regions
Re(7) [-0.1808, 0.1808]
Im(z) [1.1666, 1.1921]
Bla [45.8090, 119.7920]
v/a [522.4570, 1373.3900]
é/a [385.5060, 943.9640]
arg(8)/x [0,0.2641] U [1.7359,2]
av,/meV [0.5502, 1.5328]
gzv%/A/meV [21.2934, 22.6938]
m,/m, [0.0046, 0.0050]
my/m; [0.0520, 0.0610]
sin® 0, [0.2750, 0.3500]
sin” 6,5 [0.02044, 0.02435]
sin? 0,5 [0.4510, 0.6076]
Scp/@ [0,0.7786] U [1.2214,2]
¢/n [0.2235, 1.7765]
m; /meV 0

m,/meV [8.5965, 8.5965]
ms3/meV [48.1475, 52.7218]
>im;/meV [56.7440, 61.3183]
my/meV [8.2293, 9.6092]
mgp/meV [1.0896, 4.1691]

sin?6;, = 0.31068,
sin?6,; = 0.55700,
¢ = 0.6735mx,
m,/m; = 0.05652,
m, = 8.5965 meV,
my = 8.8878 meV,

sin?6,; = 0.022368,
Ocp = 1.5178mx,
m,/m, = 0.00480,
m; =0 meV,
my = 50.2797 meV,

my = 3.4150 meV, (81)
which are in the experimentally preferred 1o range [71],
and both effective neutrino masses m; and mgy; are far
below the sensitivity of forthcoming experiments. Notice
that the lightest neutrino is always massless with m; = 0
because only two right-handed neutrinos are introduced.
Consequently, the bound on neutrino mass sum from
Planck is fulfilled. Moreover, the correlations between
the input parameters and observables are shown in
Fig. 3. We find that the mixing angle 6,3 and the Dirac
CP violation phase dc-p and the Majorana phase ¢ are
strongly correlated with each other, and the values of 6.-p
around +£0.5z is preferred. Finally we summarize the
allowed ranges of the input parameters and observables
in the Table V.

V. SUMMARY AND CONCLUSIONS

In the present work, we have extended the modular
invariance approach [1] to include the half-integral weight

modular forms. It is highly nontrivial to generalize integral
weight modular forms to the nonintegral case, and a
multiplier system is generally necessary for the consistency
definition of nonintegral weight modular forms. In order to
discuss the action of the full modular group on the half-
integral modular forms, one should extend the modular
group SL,(Z) to the metaplectic group Mp,(Z) which is
the double covering of SL,(Z). As a result, we need to
generalize the framework of modular invariant theory to the
metaplectic modular invariant theory. Each modular multi-
plet is specified by its modular weight and the trans-
formation under the finite metaplectic group. We show that
the half-integral weight modular forms for the congruence
subgroup I'(4N) can be arranged into irreducible multiplets
of finite metaplectic group I'yy, which is the double
covering of the homogeneous finite modular group I7,.
We have considered the simplest case of level 4N =4 in
the context of metaplectic modular invariance approach.
The half-integral weight modular forms up to weight 6 are
constructed in terms of the Jacobi theta constants, and they
are decomposed into different irreducible multiplets of T';.
It is notable that the odd integral weight modular forms are

in the representations i, i’, 2/, 3, and 3/, the even integral
weight modular forms are in the representations 1, 1/, 2, 3,
and 3', while the modular forms of weight n + 1/2 with n a
generic non-negative integer are in the representations 2, 2,
2,2 4, and 4. 1t is worth noting that in the top-down
approach from string theory, the wave functions of zero
modes and massive modes on the magnetized torus behave
as modular forms of weight 1/2 [2]. It has been shown that
the homogeneous finite modular group I'; 2 7” can naturally
appear in string construction [47,51], and as shown in
Ref. [6], in this case matter fields have fractional modular
weights. However, it is still not known how to generate the
metaplectic finite modular group [,y together with the half-
integral weight modular forms in the top-down construc-
tions. The connections between this bottom-up approach and
the top-down string construction deserve more studies.
We present three typical models based on the finite
metaplectic group Iy =S,. The neutrino masses are
described by the effective Weinberg operator in the
Model I, and neutrino masses arise from type I seesaw
mechanism in Model II and Model III, and three right-
handed neutrinos and two right-handed neutrinos are
introduced in Model II and Model III respectively. The
structure of these models is rather simple, and there are no
additional flavons except the complex modulus z. The half-
integral weight modular forms are involved in either
neutrino Yukawa couplings or charged lepton Yukawa
couplings. Each model is analyzed numerically, the pre-
dictions are in excellent agreement with the experimental
data on neutrino oscillation, beta decay, neutrinoless double
decay and cosmology. Some of these predictions could be
tested at forthcoming experiments. Finally, we perform a
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comprehensive numerical scan over the parameter space
of the three models, some interesting correlations between
free parameters and observables are shown in Figs. 1-3, the
allowed regions of the input parameters and observable
quantities are summarized in Tables IV and V. Our models
use 8 (Model III) or 9 (Model I and Model II) free real
parameters to describe 12 observables, consequently, they
are very predictive. All these models can accommodate the
experimental data very well for certain values of the free
parameters. However, in common with all papers published
in this field so far, it is impossible to dynamically fix the
values of the few input parameters without further theo-
retical input. For example, it has been conjectured that the
modulus 7 could be fixed on the imaginary axis or along the
border of the fundamental domain in modular invariant
N = 1 supergravity theories [23,76]. Since the S, modular
symmetry can describe the lepton sector very well, it is
interesting to apply S, to explain the hierarchical quark
masses and CKM mixing matrix.

In a similar fashion, other rational weight modular forms
can be studied, and one needs to determine the correspond-
ing metaplectic covering group to remove the ambiguity of
multi-valued branches induced by rational powers. It is
very lucky that the rational weight modular forms for the
principal congruence subgroup of level odd N > 5 have
been constructed by mathematicians [60,61], as summa-
rized in Table 1. There are no conceptual and mathematical
obstacles to perform an analysis similar to the present work,
although the group order of the corresponding metaplectic
finite group is large. It is promising that the real weight
modular forms can also be discussed in an analogous
manner [63]. It is fascinating to use the simplest nontrivial
case of real weight modular forms to understand the
standard model flavor puzzle in future.

It is known that the Kéhler potential is not completely
fixed by the modular symmetry [4], nevertheless it could be
strongly constrained in the top-down approach combining
the modular flavor symmetry with traditional flavor sym-
metry [5,6,47,51]. The Kéhler potential is also less con-
strained the metaplectic modular symmetry. We expect that
the Kéhler potential as well as the structure of the model
should also be severely restricted if the metaplectic flavor
symmetry is combined with traditional flavor symmetry.
Moreover, it is well established that the CP transformation
consistent with modular group SL,(Z) is uniquely 7 — —z*
up to modular transformations [46-50], and CP is con-
served if the value of modulus 7 is pure imaginary or at the
border of the fundamental domain. The modular group
SL,(Z) is extended to the metaplectic group Mp,(Z) in
this work. It is interesting to investigate the CP trans-
formation consistent with Mp,(Z), the CP conserved
values of 7 and the implications for modular models. All

these are left for future projects. We conclude that half-
integral weight modular forms as well as more general
rational weight modular forms provide new opportunities
and possibilities for modular model building, and there are
many relevant aspects which deserve studying further.

In conclusion, new flavor symmetry groups emerge
when one considers the half-integral or more general
rational weight modular forms in the modular invariance
approach. The formalism we present opens up the door to
build modular invariant flavor models with rational weight
modular forms. Although the benchmark models which we
have constructed with half-integral weight modular forms
are no more or less predictive than other models based on
integral weight modular forms with minimal number of free
parameters, they provide new possibilities which are differ-
ent from those of other models leading to new predictions.
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APPENDIX A: MULTIPLIER SYSTEM OF
RATIONAL WEIGHT MODULAR FORMS

As a general principle, when we discuss the general
nonintegral weight » modular forms, it is necessary to
introduce the so-called multiplier system v(y) to ensure the
existence of well-defined automorphy factors j,.(y,7) =
v(y)(ct +d)", namely j,.(y172.7) = j.(v1,727)J,(r2, 7) for
any y1,y, € I', where I'" is a subgroup of SL,(Z). Thus the
definition of the modular form of nonintegral weight r for
the subgroup I" is

flrr) = v(y) (et +d)" f(7),

The multiplier system v(y) heavily depends on I". For
principal congruence subgroup I'(4N), the multiplier sys-
tem is the Kronecker symbol mentioned above, it is used to
define the half-integral weight modular forms for I'(4N).
For other principal congruence subgroup I'(N) of level odd
integer N > 5, a unified construction of multiplier systems
denote by wvy(y) is given in [60], and the corresponding
modular forms are of weight (N —3)/(2N). as already
mentioned in the Sec. II C. Specifically, vy is given by the
following formula

yel. (Al
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1
UN(y) = {exp ( _ozi 351gn(8)1\(’N2—l)

where y = (a b) € I'(N), and ®(y) is a integer valued
d
defined as
) {3 if c=0, (A3
"= atd _ 12sign(c)s(d, |c[) if ¢ #0,
where s(d, |c|) is the Dedekind sum with
[ (hu u
hok) = s H A4
0= (())E) o

for integers i, k(k # 0). Here ((x)) is the sawtooth function
defined by

x—[x-1 ifxez,

. (A5)
0 if xeZ,

()= {
with [x] the floor function. Note that the multiplier system
vy(y) is an N-th root of unity, consequently, vy(y)Y =1
for all y € T(N). In short, vy(y)(ct + d)N=3)/?N is the

automorphy factor for the modular form of weight
(N —3)/(2N) at level odd integer N > 5.

APPENDIX B: GROUP THEORY OF §,

The group S, has 96 elements, and it can be generated by
three generators S, 7 and R obeying the rules:

H
’;cx

5
S

STYP =T*=R*=1,
S, TR=RT.

>l
Il
=

c" = {TR2 T3S2R2 778, ST2

6C) = {TR* T3, T*SR,ST*R

) exp (27:1'%@(;/)) if ¢ #0,

if c =0,
(A2)

|
After we input these multiplication rules in GAP [59], its
group ID can be determined as [96, 67]. Notice that S, is
not a subgroup of S, it is isomorphic to the quotient group
of S, over Zf, ie., S, S‘4/Z§, where Zf = {1,R.R*. R%}
is the center and a normal subgroup of S,. The finite
metaplectic group S, is a quadruple cover of S, or double
cover of S. It is notable that S, is isomorphic to the
semidirect product of T’ with Z,, namely S, = T'xZ,,
where 7" = T7% is the double covering of group A, [44].
Hence, S, = T'xZ, can also be expressed in terms of
another set of generators S, T, and R which satisfy the
following rules:

St= (ST} =713 =1,
R* =1, RSR™1 =8,

ST =TS?,
RTR™' = (ST)?. (B2)

The first two with generators S and T generate the group 77,
the third one with generator R generates the cyclic group
Z4. The last two relations define the semidirect product

“x”. The generators S, T, and R can be expressed in terms
of S, T, and R or vice versa:

{S—TZR, T = (ST)?,
S=T2R3}, T=R,

Therefore, S, can also be regarded as a split extension of 7’
by Z,. Note that Z, here is different from Z¥ mentioned

above. All the elements of S, group can be divided into 16
conjugacy classes:

,ST283, (ST%)*R?, ST*S*R?},
T8)2, T°8T3, T38T%, T°S*TR?, TS*T*R?},
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TABLE VI. Character table of S,, and we give a representative element for each conjugacy class in the second row.

Classes 1C1 1C2 6C2 8C3 1C4 1C2 6C4 6C2 6CX 6Cg/ 6CZ/ 8C6 12C8 12C§ 8C12 8C’12

G 1 R T ST R R T TR TR? TR® TR STR* 5§ SR STR STR
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
i 11 -1 1 -1 -1 =i i —i i 1 1 i - -1 -1
i 11 -1 1 -1 - i —i i —i 1 1 —i A . |
2 2 2 2 -1 2 2 0 0 0 0 2 -1 0 0 -1 -1
2 2 2 2 -1 =2 =2 0 0 0 0 2 - 0 0 1 1
3 2 =2 0 -1 2 =2i 1+4i ~—l+i —-1-i 1-i 0 1 0 0 —i i
5 2 =2 0 -1 2 =2i -1-i 1—-i 1+4i —l1+i 0 1 0 0 —i i
3 2 =2 0 -1 =2i 2 1-i —1-i —l1+4i 1+4i 0 1 0 0 i —i
5 2 =2 0 -1 =2i 2 ~—l1+4i 1+4i 1-i -1—-i 0 1 0 0 i —i
3 33 -1 0 3 3 1 1 1 1 -1 0 -1 -1 0 0
3 33 -1 0 3 3 - -1 -1 -1 -1 0 1 1 0 0
3 33 1 0 -3 -3 i —i i -1 0 —i i 0 0
3 3 3 1 0 -3 -3 i —i i —i -1 0 i —i 0 0
4 4 -4 0 1 4 -4 0 0 0 0 0 -l 0 0 i —i
4 4 -4 0 1 —4i 4 0 0 0 0 0o -1 0 0 i i
6C) = {T°R,T2R3, (ST2)*R, ST25°R, (3T2)*R3,3T25} = (6C,) - R,
8Co = {STR*>, TSR* (ST)*R?, (T S)*R>, T*ST*R*>, T*ST*R?,
T°83T, TS3T?} = (8C5) - R?,
12Cy = {8, SR>, T>ST>, T3S T, T ST?, T>ST*R*, T3S T R?, ST*>S*T, T S T*5°,
TSTR?,ST*$*TR>, T § T*S*R?},
12C, = {SR,SR3, T*ST*R, T3ST R, TST*R, T*ST*R>, T3S T R®,ST*S*T R,
TST>S*R, TSTR3, ST*>S*TR3, TST°S} = (12Cy) - R,
8C1, = {STR,TSR,(ST)?R,(T S)*R, T*ST?R, T*ST*R, T*S*TR>,
TS’T?R*} = (8C5) - R,
8C!, = {STR} TSR3 (ST)*R, (T 8)*R*, T>ST*R*, T*ST*R°,
T*°S’TR.TS*T?R} = (8C3) - R®. (B4)

where kC, denotes a conjugacy class with k elements of order n. Note that some of these conjugacy classes can be
written as the product of the others with R, R%, or R3. There are four one-dimensional irreducible representations 1,1/, i,
and 1/ , six two-dimensional irreducible representations 2,2/, 2, 2 .2, and 2/, four three-dimensional irreducible
representations 3,3’ ,3, and 3’, and two four-dimensional irreducible representations 4,4’. We have summarized the
explicit matrix representations in Table VII. In the representations 1, 1/, 2, 3 and 3/, the generator R = 1 is an identity
matrix, the representation matrices of S and 7" coincide with those of S,. Consequently, S, can not be distinguished from
S, in these representations since they are represented by the same set of matrices. In the representations 1,1,2,3, and

3, the generator R = —1. The character table of S, can be obtained by taking the trace of the representation matrices of
the representative elements, and it is shown in table VI. Moreover, the Kronecker products between all irreducible
representations are given as follows:
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TABLE VII. The representation matrices of the generators S, 7 and R for different irreducible representations of S, in the 7-diagonal
basis.

S T R
1.1 +1 +1 1
1.1 +i Fi -1
2 1/-1 3 1 0 10
2\V3 1 0 —1 0 1
2 if-1 V3 (1 o (10
2\V3 1 0 -1 0 1
2,2 emt 11 (1o (1 0
VAREE 0 i "o 1
2,2 Lt -1 (10 (r o
VAGER! o i 01
3,3 L0 V2 V2 1 00 1 00
i—(vi 1 ) i<0 i o) (0 1 0)
2\3 1 -1 00 —i 00 1
3.3 S0 V2 V2 1 0 0 1 0 0
i_<¢§ 11 ¢i<0 i 0) —(0 1 0)
2\2 1 -1 00 —i 00 1
4 , 1 V3 1 V3 1 0 0 0 1 000
el 3 -1 V3~ 0 -1 0 0 J0 oo
22| 1 3 -1 —V3 0 0 i 0 0010
V3 -1 /3 1 0 0 0 —i 0 0 0 1
4 /1 V3 1 3 1.0 0 0 1000
et 3 -1 V3 - ;0 -1t oo ;o100
22| 1 V3 -1 —/3 0 0 i O 00 1 0
V3 -1 =3 1 0 0 0 —i 00 0 1

11=1Q1=191'=1, 191=11=11 =1,
1Ii=1rei'=1, 19i=rei=1,
12=12=12=12=2 182=1Q2=12=192=2,
12=1Q2=192=1®2=32 102=12=102=12 =2
12=1Q2=192=12 =3 102=12=102=12=2,
13=1Q3=193=1®3=3 13=13=103=13 =3
13=1Q3=193=1"3=3 103=13=103=13=73,
14=1Q4=14 =14 =2Q2=202=2Q2=232 =4,
14 =14=194=14=2Q2=202=2Q2=22 =4,
2@2=2@2=101'®2 22=101 a2,
12=2@2=22=-103, '=313=2Q@2 =193

22
22=22 =163, 22=2Q2=1¢3
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23=23=203=203=303,
23=2Q3=2Q03=2Q3=204,
23=2Q3=2Q3=2Q3=204.
24=204=202094,

33=3Q3=33=10263073,
3IR3=3R3=-1020¢307.

2@3=203=23=207%3
33=2®3=203=203 =204,
23=2R3=23=23=204
24 =2Q4=202 04,
34=2R4=204=2R4=20303,
14 =2R4=24=2R4=203073,

34=3Q4=34 =34 =2020404,
34 =34 =304=34=202 0404,

44=4Q4 =10l o203030¥ad

44 =10102030303 3.

We list the Clebsch-Gordan coefficients of S, in follow-
ing. All CG coefficients are expressed in the form of @ Q f3,
we use a;(f3;) to denote the component of the left (right)
basis vector a(f). The notations I, IT, ITI, and IV stand
for singlet, doublet, triplet and quartet representations of S,
respectively.

HIRKXI-I,

11 -1
1®i/—>i/
1®l-1
i®i—>1;
i’®i’—>1;

1®1- 1,
1®i—>i,
el -1,
el -1,
i®i'—>1,

n=20 I~ap

33,

33 =3R3=3R3=1020303,
33 =3R3=-102030%

) I®II - II,

12-2,
1®2—>2,
1®2—>2,
1®2-72,
1R2-2,
192-2,
i®2’—>i’,
1®2 -2,
i'®ﬁ—>§’,
i/®i—>i
11®2-2,
192 -2,

12 -2
1®2’—>2/
1®§’—>2/
1®2 -2
12 -2
i®i—>2

i®2—>2’

1'®2 -2
i'®2/—>i
i/®§/—>2/
1'®2 -2
11®2-2

II~mWW<

ﬂ)
b

(BS)
where M@ = (19, MDD =), it is the
same below.

(i) T ® III — 111,
1®3-3, 193 -3
103-3, 103 -3
1'®3-3, 173 -3
13-, 19¥ -3 A
n=0 L oy I~al p,
1®3-3, 13 -3 5
1i®3-3. 193 -3 3
1®3-3. 7193 -3
1®3-3 1133
iv) I IV->1V,
1044
104 -4
n=0 .
i®d4—a 5
y moo (P
@4 -4 5,
IV~a
!
14 -4 Pa
n=1 .
iQd -4
'®4-4
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M NI L @L eIl

221,01, &2

n=1

(vi) II® IT — IV,

(vii) ITQ II - I & II1,

(viii) 1T @ III — I1I; & I11,,

22 1@l

22®2 ->1,01, d 2

2024
224
Q24
2®2 -4

202 -4
22 >4
22 >4
2R®2—4

[\ )}

®2-1,03
22 -193

2025193

202 13
22 ->1,03,
Y2103
Y2103

321, @3,
12 193
202 -1, 3

235303
203 >3 @3
23307
23 5303
2?®3-30%
273 -3@3
2’3533
2R3 -5393%
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L ~of) +ap,
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a1py + af
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—\/§a2ﬁ2
\/§a1ﬁ1

IIT ~

2a. 5
—a1, + V3
—af3 +V3ap,
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V3aifs + arp
V3a15, +
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(ix) IIQIII - IIIV,

23294
23 204
23204
@324
23 -2 4
235204
203204
2735204

23204
l3-204
YR3->204
Ye¥-204
23204
33204
22035204
23204

x) IV IL@IL @IV,

24 202 @4

2452204
24 20204
2?4224

xi) IIT®IV - 116 III; & I11,,

4203 03
R4 520303
245203 P3
2420303

4 20303
Yp4-2030%
24-20303
2420303

II ~ <—0!1,51 + ﬁazﬂ%)
V2a, 8, + oy

Mw(

IV~

—\/gazﬂz )
V2a, 81 + arfs
\/§a1ﬂ3 )

M) (
—a1 By + V2P

11, ~ < a1 pr + arfy >
—a1fs — afs

15— axf, )

( a
—a1 3+ afy

o (alﬂz - mp )
aify + mp,

o ( afs — afs >
a1fp3 + afy

1T~ MM

11, ~

11, ~
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(xii) ITI @ III - 1 & 11 & 111, & II1,,

331,02, 03,03,

3I3i-iem2eled INa1ﬁ1+0;2ﬂ3+a3ﬁ2
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¥IRI-ie2el30d R

30310203603 A
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IRy -19203 @3 —a1 B3 + azf

A7 i/ 2/ A/ 2
) §/®33—>i/€92/€9§/@g wffy = asfis
n—1 A®A—> D23 D I, ~ | —a1 3 — a3f3
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xiv) IVRIV->1, 0L @ I1 @ 111, ® 111, @ 111, & II1,,

n=0 404>l 0l 02,03, 03, 03,03

4®4/—)1,®1®2®3/II @3}@31 @311

44 ->1.01,02, 03, 03,03, ® 3

I ~a1fy — a3 — s + aufpy
L ~a1f5+ axfpy — asfr —aufs
T~ M) <—alﬁ4 —fs tazfhr +aup )
a1fp3 — mfs — azfy + ayfs
a1fs — mfs + azfr — auf
\/§a3ﬁ4 - \/§a4ﬁ3
—V2a, 6, + V2w

V20,4 + V285 + V2, + V24
\@051/31 - \/§a2ﬂ2 —a3fy — ayfs
@B+ axfpy — V3asfs + 3y

a1z = 3mfy + a3fy —3aup,

—\/galﬂz - \/50‘2,51 - 2\/§a3ﬂ3

272, 1 + V634 + /60435

arfs + aafs + a3f + agfr

V2a3 3+ V2,
_\/zalﬂl - \/Eazﬂz

III, ~

I, ~

115~

I, ~

[1] F. Feruglio, Are neutrino masses modular forms?, in From
My Vast Repertoire ...: Guido Altarelli’s Legacy, edited by
A. Levy, S. Forte, and G. Ridolfi (World Scientic Publishing
Co Pte Ltd., Singapore, 2019), pp. 227-266.

[2] S. Kikuchi, T. Kobayashi, S. Takada, T. H. Tatsuishi, and H.
Uchida, Revisiting modular symmetry in magnetized torus
and orbifold compactifications, Phys. Rev. D 102, 105010
(2020).

[3] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada, and H.
Uchida, Modular symmetry by orbifolding magnetized
T? x T?: Realization of double cover of T'y, J. High Energy
Phys. 11 (2020) 101.

[4] M.-C. Chen, S. Ramos-Snchez, and M. Ratz, A note on the
predictions of models with modular flavor symmetries,
Phys. Lett. B 801, 135153 (2020).

[5]1 H.P. Nilles, S. Ramos-Snchez, and P.K. Vaudrevange,
Eclectic flavor groups, J. High Energy Phys. 02 (2020) 045.

[6] H.P. Nilles, S. Ramos-Sanchez, and P. K. Vaudrevange,
Lessons from eclectic flavor symmetries, Nucl. Phys. B957,
115098 (2020).

[7] H. P. Nilles, S. Ramos-Snchez, and P. K. Vaudrevange, Eclec-
tic flavor scheme from ten-dimensional string theory—I. Basic
results, Phys. Lett. B 808, 135615 (2020).

[8] T. Kobayashi, K. Tanaka, and T.H. Tatsuishi, Neutrino
mixing from finite modular groups, Phys. Rev. D 98,
016004 (2018).

[9] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H.
Tatsuishi, and H. Uchida, Finite modular subgroups for
fermion mass matrices and baryon/lepton number violation,
Phys. Lett. B 794, 114 (2019).

[10] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T.
H. Tatsuishi, Modular S5 invariant flavor model in SU(5)
GUT, Prog. Theor. Exp. Phys. (2020) 053B0S.

[11] H. Okada and Y. Orikasa, Modular S; symmetric radiative
seesaw model, Phys. Rev. D 100, 115037 (2019).

[12] J.C. Criado and F. Feruglio, Modular invariance faces
precision neutrino data, SciPost Phys. 5, 042 (2018).

[13] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M.
Tanimoto, and T.H. Tatsuishi, Modular A, invariance
and neutrino mixing, J. High Energy Phys. 11 (2018)
196.

[14] E.J. de Anda, S.F. King, and E. Perdomo, SU(5) grand
unified theory with A, modular symmetry, Phys. Rev. D
101, 015028 (2020).

[15] H. Okada and M. Tanimoto, CP violation of quarks in A,
modular invariance, Phys. Lett. B 791, 54 (2019).

[16] P. Novichkov, S. Petcov, and M. Tanimoto, Trimaximal
neutrino mixing from modular a4 invariance with residual
symmetries, Phys. Lett. B 793, 247 (2019).

[17] T. Nomura and H. Okada, A modular A, symmetric model
of dark matter and neutrino, Phys. Lett. B 797, 134799
(2019).

115035-26


https://doi.org/10.1103/PhysRevD.102.105010
https://doi.org/10.1103/PhysRevD.102.105010
https://doi.org/10.1007/JHEP11(2020)101
https://doi.org/10.1007/JHEP11(2020)101
https://doi.org/10.1016/j.physletb.2019.135153
https://doi.org/10.1007/JHEP02(2020)045
https://doi.org/10.1016/j.nuclphysb.2020.115098
https://doi.org/10.1016/j.nuclphysb.2020.115098
https://doi.org/10.1016/j.physletb.2020.135615
https://doi.org/10.1103/PhysRevD.98.016004
https://doi.org/10.1103/PhysRevD.98.016004
https://doi.org/10.1016/j.physletb.2019.05.034
https://doi.org/10.1093/ptep/ptaa055
https://doi.org/10.1103/PhysRevD.100.115037
https://doi.org/10.21468/SciPostPhys.5.5.042
https://doi.org/10.1007/JHEP11(2018)196
https://doi.org/10.1007/JHEP11(2018)196
https://doi.org/10.1103/PhysRevD.101.015028
https://doi.org/10.1103/PhysRevD.101.015028
https://doi.org/10.1016/j.physletb.2019.02.028
https://doi.org/10.1016/j.physletb.2019.04.043
https://doi.org/10.1016/j.physletb.2019.134799
https://doi.org/10.1016/j.physletb.2019.134799

HALF-INTEGRAL WEIGHT MODULAR FORMS AND ...

PHYS. REV. D 102, 115035 (2020)

[18] H. Okada and M. Tanimoto, Towards unification of quark
and lepton flavors in A, modular invariance, arXiv:
1905.13421.

[19] T. Nomura and H. Okada, A two loop induced neutrino
mass model with modular A, symmetry, arXiv:1906.03927.

[20] G.-J. Ding, S.F. King, and X.-G. Liu, Modular A, sym-
metry models of neutrinos and charged leptons, J. High
Energy Phys. 09 (2019) 074.

[21] H. Okada and Y. Orikasa, A radiative seesaw model in
modular A, symmetry, arXiv:1907.13520.

[22] T. Nomura, H. Okada, and O. Popov, A modular A,
symmetric scotogenic model, Phys. Lett. B 803, 135294
(2020).

[23] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H.
Tatsuishi, A4 lepton flavor model and modulus stabilization
from S; modular symmetry, Phys. Rev. D 100, 115045
(2019); Erratum, Phys. Rev. D 101, 039904 (2020)].

[24] T. Asaka, Y. Heo, T. H. Tatsuishi, and T. Yoshida, Modular
A, invariance and leptogenesis, J. High Energy Phys. 01
(2020) 144.

[25] G.-J. Ding, S. F. King, X.-G. Liu, and J.-N. Lu, Modular S,
and A, symmetries and their fixed points: New predictive
examples of lepton mixing, J. High Energy Phys. 12 (2019)
030.

[26] D. Zhang, A modular A4 symmetry realization of two-zero
textures of the Majorana neutrino mass matrix, Nucl. Phys.
B952, 114935 (2020).

[27] T. Nomura, H. Okada, and S. Patra, An inverse seesaw
model with Aj-modular symmetry, arXiv:1912.00379.

[28] X. Wang, Lepton flavor mixing and CP violation in the
minimal type-(I +II) seesaw model with a modular A,
symmetry, Nucl. Phys. B957, 115105 (2020).

[29] T. Kobayashi, T. Nomura, and T. Shimomura, Type II
seesaw models with modular A, symmetry, Phys. Rev. D
102, 035019 (2020).

[30] S.J. King and S.F. King, Fermion mass hierarchies from
modular symmetry, J. High Energy Phys. 09 (2020) 043.

[31] H. Okada and M. Tanimoto, Quark and lepton flavors with
common modulus 7 in A, modular symmetry, arXiv:2005
.00775.

[32] T. Nomura and H. Okada, A linear seesaw model with A,-
modular flavor and local U(1),_, symmetries, arXiv:2007
.04801.

[33] J. Penedo and S. Petcov, Lepton masses and mixing from
modular S; symmetry, Nucl. Phys. B939, 292 (2019).

[34] P. Novichkov, J. Penedo, S. Petcov, and A. Titov, Modular
S; models of lepton masses and mixing, J. High Energy
Phys. 04 (2019) 005.

[35] I. de Medeiros Varzielas, S.F. King, and Y.-L. Zhou,
Multiple modular symmetries as the origin of flavor, Phys.
Rev. D 101, 055033 (2020).

[36] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T.
H. Tatsuishi, New A, lepton flavor model from S; modular
symmetry, J. High Energy Phys. 02 (2020) 097.

[37] S.F. King and Y.-L. Zhou, Trimaximal TM; mixing with
two modular S, groups, Phys. Rev. D 101, 015001 (2020).

[38] J. C. Criado, F. Feruglio, and S.J. King, Modular invariant
models of lepton masses at levels 4 and 5, J. High Energy
Phys. 02 (2020) 001.

[39] X. Wang and S. Zhou, The minimal seesaw model with a
modular S, symmetry, J. High Energy Phys. 05 (2020) 017.

[40] X. Wang, A systematic study of Dirac neutrino mass models
with a modular S, symmetry, Nucl. Phys. B962, 115247
(2021).

[41] P. Novichkov, J. Penedo, S. Petcov, and A. Titov, Modular
As symmetry for flavour model building, J. High Energy
Phys. 04 (2019) 174.

[42] G.-J. Ding, S.F. King, and X.-G. Liu, Neutrino mass and
mixing with As modular symmetry, Phys. Rev. D 100,
115005 (2019).

[43] G.-J. Ding, S.F. King, C.-C. Li, and Y.-L. Zhou, Modular
invariant models of leptons at level 7, J. High Energy Phys.
08 (2020) 164.

[44] J.-N. Lu, X.-G. Liu, and G.-J. Ding, Modular symmetry
origin of texture zeros and quark lepton unification, Phys.
Rev. D 101, 115020 (2020).

[45] G.-J. Ding and F. Feruglio, Testing moduli and flavon
dynamics with neutrino oscillations, J. High Energy Phys.
06 (2020) 134.

[46] P.P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov,
Generalised CP symmetry in modular-invariant models of
flavour, J. High Energy Phys. 07 (2019) 165.

[47] A.Baur, H. P. Nilles, A. Trautner, and P. K. S. Vaudrevange,
Unification of flavor, CP, and modular symmetries, Phys.
Lett. B 795, 7 (2019).

[48] B.S. Acharya, D. Bailin, A. Love, W. A. Sabra, and S.
Thomas, Spontaneous breaking of CP symmetry by orbi-
fold moduli, Phys. Lett. B 357, 387 (1995); Erratum, 407,
451 (1997).

[49] T. Dent, CP violation and modular symmetries, Phys. Rev.
D 64, 056005 (2001).

[50] J. Giedt, CP violation and moduli stabilization in heterotic
models, Mod. Phys. Lett. A 17, 1465 (2002).

[51] A. Baur, H. P. Nilles, A. Trautner, and P. K. Vaudrevange, A
string theory of flavor and CP, Nucl. Phys. B947, 114737
(2019).

[52] X.-G. Liu and G.-J. Ding, Neutrino masses and mixing from
double covering of finite modular groups, J. High Energy
Phys. 08 (2019) 134.

[53] X.-G. Liu, C.-Y. Yao, and G.-J. Ding, Modular invariant
quark and lepton models in double covering of S, modular
group, arXiv:2006.10722.

[54] P. Novichkov, J. Penedo, and S. Petcov, Double cover of
modular S, for flavour model building, arXiv:2006.03058.

[55] H. Cohen and F. Stromberg, Modular Forms, Vol. 179
(American Mathematical Society, Providence, 2017).

[56] F. Stromberg, Weil representations associated with finite
quadratic modules, Math. Z. 275, 509 (2013).

[57] G. Shimura, Modular forms of half integral weight, in
Modular Functions of One Variable I (Springer, New York,
1973), pp. 57-74.

[58] J. H. Bruinier and O. Stein, The Weil representation and
Hecke operators for vector valued modular forms, Math. Z.
264, 249 (2010).

[59] The GAP Group, GAP—Groups, Algorithms, and Program-
ming, Version 4.10.2, 2020, https://www.gap-system.org.

[60] T. Ibukiyama, Modular forms of rational weights and modular
varieties, in Abhandlungen aus dem Mathematischen Seminar

115035-27


https://arXiv.org/abs/1905.13421
https://arXiv.org/abs/1905.13421
https://arXiv.org/abs/1906.03927
https://doi.org/10.1007/JHEP09(2019)074
https://doi.org/10.1007/JHEP09(2019)074
https://arXiv.org/abs/1907.13520
https://doi.org/10.1016/j.physletb.2020.135294
https://doi.org/10.1016/j.physletb.2020.135294
https://doi.org/10.1103/PhysRevD.100.115045
https://doi.org/10.1103/PhysRevD.100.115045
https://doi.org/10.1103/PhysRevD.101.039904
https://doi.org/10.1007/JHEP01(2020)144
https://doi.org/10.1007/JHEP01(2020)144
https://doi.org/10.1007/JHEP12(2019)030
https://doi.org/10.1007/JHEP12(2019)030
https://doi.org/10.1016/j.nuclphysb.2020.114935
https://doi.org/10.1016/j.nuclphysb.2020.114935
https://arXiv.org/abs/1912.00379
https://doi.org/10.1016/j.nuclphysb.2020.115105
https://doi.org/10.1103/PhysRevD.102.035019
https://doi.org/10.1103/PhysRevD.102.035019
https://doi.org/10.1007/JHEP09(2020)043
https://arXiv.org/abs/2005.00775
https://arXiv.org/abs/2005.00775
https://arXiv.org/abs/2007.04801
https://arXiv.org/abs/2007.04801
https://doi.org/10.1016/j.nuclphysb.2018.12.016
https://doi.org/10.1007/JHEP04(2019)005
https://doi.org/10.1007/JHEP04(2019)005
https://doi.org/10.1103/PhysRevD.101.055033
https://doi.org/10.1103/PhysRevD.101.055033
https://doi.org/10.1007/JHEP02(2020)097
https://doi.org/10.1103/PhysRevD.101.015001
https://doi.org/10.1007/JHEP02(2020)001
https://doi.org/10.1007/JHEP02(2020)001
https://doi.org/10.1007/JHEP05(2020)017
https://doi.org/10.1016/j.nuclphysb.2020.115247
https://doi.org/10.1016/j.nuclphysb.2020.115247
https://doi.org/10.1007/JHEP04(2019)174
https://doi.org/10.1007/JHEP04(2019)174
https://doi.org/10.1103/PhysRevD.100.115005
https://doi.org/10.1103/PhysRevD.100.115005
https://doi.org/10.1007/JHEP08(2020)164
https://doi.org/10.1007/JHEP08(2020)164
https://doi.org/10.1103/PhysRevD.101.115020
https://doi.org/10.1103/PhysRevD.101.115020
https://doi.org/10.1007/JHEP06(2020)134
https://doi.org/10.1007/JHEP06(2020)134
https://doi.org/10.1007/JHEP07(2019)165
https://doi.org/10.1016/j.physletb.2019.03.066
https://doi.org/10.1016/j.physletb.2019.03.066
https://doi.org/10.1016/0370-2693(95)00945-H
https://doi.org/10.1016/S0370-2693(97)00912-X
https://doi.org/10.1016/S0370-2693(97)00912-X
https://doi.org/10.1103/PhysRevD.64.056005
https://doi.org/10.1103/PhysRevD.64.056005
https://doi.org/10.1142/S0217732302007879
https://doi.org/10.1016/j.nuclphysb.2019.114737
https://doi.org/10.1016/j.nuclphysb.2019.114737
https://doi.org/10.1007/JHEP08(2019)134
https://doi.org/10.1007/JHEP08(2019)134
https://arXiv.org/abs/2006.10722
https://arXiv.org/abs/2006.03058
https://doi.org/10.1007/s00209-013-1145-x
https://doi.org/10.1007/s00209-008-0460-0
https://doi.org/10.1007/s00209-008-0460-0
https://www.gap-system.org
https://www.gap-system.org
https://www.gap-system.org

LIU, YAO, QU, and DING

PHYS. REV. D 102, 115035 (2020)

der Universitit Hamburg (Springer, New York, 2000), Vol. 70,
p. 315.

[61] T. Ibukiyama, Graded rings of modular forms of rational
weights, Res. Number Theory 6, 8 (2020).

[62] R. Bruggeman, Y. Choie, and N. Diamantis, Holomorphic
Automorphic Forms and Cohomology, Vol. 253 (American
Mathematical Society, Providence, 2018).

[63] H. Aoki et al., On Jacobi forms of real weights and indices,
Osaka J. Math. 54, 569 (2017).

[64] Y. 1. Manin, Modular forms of real weights and generalised
dedekind symbols, Res. Math. Sci. 5, 2 (2018).

[65] G. Shimura, On modular forms of half integral weight, Ann.
Math. (N. Y.) 97, 440 (1973).

[66] U.N.D. Modulformen and H. Gewichts, Ueber den Zu-
sammenhang Zwischen Jacobiformen und Modulformen
Halbganzen Gewichts (Universitt Bonn Mathematisches
Institut, Bonn, 1984).

[67] D.Z. Valery Gritsenko, N.-P. Skoruppa, and D. Zagier,
Theta blocks arXiv:1907.00188.

[68] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark,
NIST Handbook of Mathematical Functions Hardback
and CD-ROM (Cambridge University Press, Cambridge,
England, 2010).

[69] S. Ferrara, D. Lust, A. D. Shapere, and S. Theisen, Modular
invariance in supersymmetric field theories, Phys. Lett. B
225, 363 (1989).

[70] S. Ferrara, D. Lust, and S. Theisen, Target space modular
invariance and low-energy couplings in orbifold compacti-
fications, Phys. Lett. B 233, 147 (1989).

[71] 1. Esteban, M. Gonzalez-Garcia, A. Hernandez-Cabezudo,
M. Maltoni, and T. Schwetz, Global analysis of three-
flavour neutrino oscillations: Synergies and tensions in the
determination of 6,3, §cp, and the mass ordering, J. High
Energy Phys. 01 (2019) 106.

[72] M. Tanabashi er al. (Particle Data Group Collaboration),
Review of particle physics, Phys. Rev. D 98, 030001
(2018).

[73] M. Aker et al. (KATRIN Collaboration), Improved Upper
Limit on the Neutrino Mass from a Direct Kinematic
Method by KATRIN, Phys. Rev. Lett. 123, 221802
(2019).

[74] A. Gando et al. (KamLAND-Zen Collaboration), Search for
Majorana Neutrinos near the Inverted Mass Hierarchy
Region with KamLAND-Zen, Phys. Rev. Lett. 117,
082503 (2016); Phys. Rev. Lett. 117, 109903(A) 2016).

[75] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020).

[76] M. Cvetic, A. Font, L. E. Ibanez, D. Lust, and F. Quevedo,
Target space duality, supersymmetry breaking and the
stability of classical string vacua, Nucl. Phys. B361, 194
(1991).

115035-28


https://doi.org/10.1007/s40993-019-0183-9
https://doi.org/10.1007/s40687-018-0120-x
https://doi.org/10.2307/1970831
https://doi.org/10.2307/1970831
https://arXiv.org/abs/1907.00188
https://doi.org/10.1016/0370-2693(89)90583-2
https://doi.org/10.1016/0370-2693(89)90583-2
https://doi.org/10.1016/0370-2693(89)90631-X
https://doi.org/10.1007/JHEP01(2019)106
https://doi.org/10.1007/JHEP01(2019)106
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.123.221802
https://doi.org/10.1103/PhysRevLett.123.221802
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.109903
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1016/0550-3213(91)90622-5
https://doi.org/10.1016/0550-3213(91)90622-5

