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We present a comprehensive analysis of leptonic unitarity triangles, using both current neutrino
oscillation data and projections of next-generation oscillation measurements. Future experiments, sensitive
to the degree of CP violation in the lepton sector, will enable the construction of precise triangles. We show
how unitarity violation could manifest in the triangles and discuss how they serve as unitarity tests. We also
propose the use of Jarlskog factors as a complementary means of probing unitarity. This analysis highlights
the importance of testing the unitarity of the leptonic mixing matrix, an understanding of which is crucial
for deciphering the nature of the neutrino sector.
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I. INTRODUCTION

The discovery of neutrino oscillations confirmed that
lepton flavor and mass eigenstates are distinct. Their
mixing is canonically parameterized by the 3 × 3 unitary
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [1,2],
analogous to the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [3,4] for quarks. A crucial difference between the
leptonic and quark sectors, however, is our knowledge of
the origin of such mixing. The appearance of the known
active neutrinos in SUð2ÞL doublets means the flavor
eigenstates are known. However, the structure of the neutrino
mass terms is unknown, since the Standard Model as
formulated does not contain right-handed singlet fermions,
and therefore does not allow for a renormalizable neutrino-
Higgs Yukawa interaction. The misalignment of the flavor
and mass eigenstates in the lepton sector, i.e., the origin of
the PMNS matrix, therefore remains an open question.
Predictions of neutrino masses, e.g., those involving right-
handed neutrinos, often lead to a nonunitary 3 × 3 leptonic
mixing matrix (LMM), which is a submatrix of a larger
unitary matrix (see e.g., [5–13]). Searches for deviation from
unitarity of the LMM therefore have the potential to directly
probe our fundamental understanding of neutrino masses.
Throughout this work, we refer to a general 3 × 3 LMM as
ULMM and one assumed to be unitary as UPMNS.

UPMNS is parameterized by three angles, θ12, θ13, θ23,
and a phase δCP.

1 The degree to which the combination
of charge C and parity P symmetry, CP, is violated is
proportional to the Jarlskog invariant [14],

JPMNS ≡ c12c213c23s12s13s23 sin δCP; ð1Þ

where sij ¼ sin θij, cij ¼ cos θij. This quantity is relevant to
understanding the baryon asymmetry of the universe:
CP-violation is one of the requirements for such an
asymmetry to exist [15]. Indeed, studies of leptogenesis
leading to baryogenesis have shown that the Dirac phase δCP
that is measured by the Jarlskog invariant can be directly
involved in the generation of an asymmetry [16–23].
Furthering our understanding of the PMNS matrix is there-
fore important for probing fundamental questions.
In the quark sector,many experimental tests of the unitarity

of the mixing matrix have been performed [24], with results
often visualized using unitarity triangles [25–32]. In these,
many measurements meet at a point in the complex plane if
the matrix is unitary. Areas of such triangles are proportional
to the Jarlskog invariant of the CKM matrix.
In the lepton sector, neutrino oscillation experiments

can provide direct tests of LMM unitarity. Assuming
unitarity, several elements of UPMNS have been measured
to Oð10%Þ precision [33–49]. Next-generation experi-
ments will attain Oð1%Þ precision, and importantly, will
begin to measure the degree of CP-violation [50–56]. This
allows for precision tests of LMM unitarity [57,58], as well
as the construction of leptonic unitarity triangles [59–64].
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1If neutrinos are Majorana, two additional phases, which do
not affect oscillations, appear. We disregard them for the
remainder of this work.
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In this work, we present a comprehensive analysis of
leptonic unitarity triangles using current neutrino oscillation
data and projections of future experiments. Our main results
are shown in Fig. 1, where we present six unitarity triangles,
and in Fig. 5, where we show nine Jarlskog factors and the
PMNS Jarlskog invariant. This set of measurements allows
for a complete understanding of the LMM in a compact
form. In our companion paper [65], we discuss how well
these datasets constrain all unitarity conditions of ULMM.
Our results show the importance of separately analyzing
appearance and disappearance data, and demonstrate the
power of future oscillation measurements to constrain
fundamental physics related to the neutrino sector.

II. THE LEPTONIC MIXING MATRIX AND
UNITARITY TRIANGLES

The LMM describing the mixing of leptonic flavor and
mass eigenstates,

ULMM ¼

0
B@

Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

1
CA; ð2Þ

is defined by its appearance in the charged current
interaction. In full generality, ULMM may be a nonunitary
3 × 3 sub-matrix of a largerM × N complex matrix. If only
three generations of leptons exists, ULMM ≡UPMNS. This
mixing leads to neutrino oscillation, the precise measure-
ment of which is the focus of current and future detection
efforts. The primary measurements in oscillation experi-
ments are the appearance and disappearance probabilities,
Pαβ and Pαα (α ≠ β; α; β ∈ e, μ, τ). Distinguishing between
these is important for testing unitarity.
For a 3 × 3 unitary matrix, a set of six triangles may be

defined from the conditions U†U ¼ UU† ¼ I, correspond-
ing to the closure of the products of cross-terms of the
matrix:

FIG. 1. Current and future 95% (dark contours) and 99% (light) credible regions of six leptonic unitarity triangles. Green contours
consist of all current data [33–39]. In red are the analogous contours including also projections of future data from IceCube [48,66],
JUNO [56], DUNE [50–52] and T2HK [55]. Blue contours include subsets of data that measure disappearance probabilities, including
reactor [33,34,56], solar [35] experiments, and DUNE/T2HK νμ → νμ. Orange contours include appearance measurements, e.g., DUNE
& T2HK νμ → νe and IceCube ντ appearance. This demonstrates the complementarity of these measurements in constructing unitarity
triangles. The black triangles point to the best-fit point on the plane. Unitarity of the LMM is assumed. A subset of triangles without
unitarity assumed is shown in Fig. 6.
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X
i

UαiU�
βi ¼ 0;

X
α

UαiU�
αj ¼ 0:

ðα ≠ β; rowsÞ ði ≠ j; columnsÞ ð3Þ

The elements Uαi are complex, so the above conditions can
be shown as closed triangles in complex planes. Unitarity
triangles are constructed by normalizing to one of the three
terms in the sums of Eq. (3), and defining a vertex of the
triangle as ρxy þ iηxy, (x ≠ y),

ρxy þ iηxy ¼
8<
:

−
UxiU�

yi

UxjU�
yj
; rows

− UαxU�
αy

UβxU�
βy
; columns

; ð4Þ

such that a closed triangle has vertices at the origin, (1,0),
and ðρxy; ηxyÞ. There is ambiguity in the choice of the
denominator, and hence ðρxy; ηxyÞ for a given row/column.
We explain our choices below, made in an attempt to cover
measurements of all parameters of UPMNS, and give the full
definitions of ðρxy; ηxyÞ in Appendix A.
We define possible choices of row unitarity triangles as:

ðραβ þ iηαβÞð1Þ ¼ Tð1Þ
αβ ¼ −

Uα1U�
β1

Uα3U�
β3

;

ðραβ þ iηαβÞð2Þ ¼ Tð2Þ
αβ ¼ −

Uα2U�
β2

Uα1U�
β1

;

ðραβ þ iηαβÞð3Þ ¼ Tð3Þ
αβ ¼ −

Uα3U�
β3

Uα2U�
β2

; ð5Þ

Tð−mÞ
αβ ¼ ðTðmÞ

αβ Þ−1; ð6Þ

where α; β ∈ ½e; μ; τ�. The column unitarity triangles are
defined as

ðρij þ iηijÞð1Þ ¼ Tð1Þ
ij ¼ −

UμiU�
μj

UeiU�
ej
;

ðρij þ iηijÞð2Þ ¼ Tð2Þ
ij ¼ −

UτiU�
τj

UμiU�
μj
;

ðρij þ iηijÞð3Þ ¼ Tð3Þ
ij ¼ −

UeiU�
ej

UτiU�
τj
; ð7Þ

Tð−mÞ
ij ¼ ðTðmÞ

ij Þ−1; ð8Þ

where i; j ∈ ½1; 2; 3�.
We also define general Jarlskog factors Jαi as

εαβγεijkJαi ¼ ImðUβjUγkU�
βkU

�
γjÞ; ð9Þ

which are related to the areas AT of the possible triangles.
For the row triangles as defined above, we obtain the

following relations between ImðTðmÞ
αβ Þ ¼ �2A

TðmÞ
αβ

and the

Jarlskog factors:

ImðTð1Þ
αβ Þ ¼

Jγ2
jUα3j2jUβ3j2

; ImðTð2Þ
αβ Þ ¼

Jγ3
jUα1j2jUβ1j2

;

ImðTð3Þ
αβ Þ ¼

Jγ1
jUα2j2jUβ2j2

; ð10Þ

where α ≠ β ≠ γ.
Repeating the same analysis for the column triangles as

for the rows, we can derive the following relations between
the triangles and Jarlskog factors:

ImðTð1Þ
ij Þ ¼

Jτk
jUeij2jUejj2

; ImðTð2Þ
ij Þ ¼

Jek
jUμij2jUμjj2

;

ImðTð3Þ
ij Þ ¼

Jμk
jUτij2jUτjj2

; ð11Þ

where i ≠ j ≠ k.
The information contained in the triangles defined in

Eqs. (5), (7), is duplicated by taking the reciprocal triangles
of Eqs. (6), (8), so one need only consider one set. If we do
not assume unitarity when performing the triangle analysis,
we can see that 9 unitarity triangles must be constructed in
order to fully measure all 9 Jarlskog factors once in
combination with all matrix element norms twice.
If we assume unitarity when constructing triangles, we

would find that all J-factors are identical by definition, and
equal to the Jarlskog invariant in the PMNS parametrization.
Thus constructing triangles allows us to measure JPMNS and
products of norms. In this case, to display all the information
contained in the 18 possible triangles, we must pick 6
triangles to cover all 9 normswithminimal redundancy. Any
set of 6 triangles which includes 9 separate norms actually
contains 12 norms, such that there are always three norms
which are measured twice. An example of a set of triangles
which would encapsulate all possible information would be

T ⊃ Tð1Þ
eμ ; T

ð2Þ
eμ ; T

ð3Þ
eμ ; T

ð1Þ
eτ ; T

ð2Þ
eτ ; T

ð3Þ
eτ . With this set, jUeij,

i ¼ 1, 2, 3 would be repeated twice. A more “flavor-
democratic” approach to choosing a set of six triangles,
and the one we use in our analysis, is to choose one triangle
from each row and column:

T ⊃ Tð1Þ
eμ ; T

ð2Þ
eτ ; T

ð3Þ
μτ ; T

ð−1Þ
12 ; Tð−2Þ

13 ; Tð−3Þ
23 : ð12Þ

The full expressions for these triangles are given in
Appendix A in terms of the PMNS parametrization, and
can be obtained in the LMM parametrization from Eqs. (5)
and (8).
In this way, we measure all information in the

LMM matrix under the assumption of unitarity, while
only repeating measurements of jUe3j; jUμ2j and jUτ1j.
This specific set of choices is further motivated by the
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discussion in Sec. IV around Fig. 3 of how to use unitarity
triangles to observe unitarity violation. Given the degree of
nonunitarity allowed by current measurements, which is
then used to construct Fig. 3, it was determined that the
above set of 6 triangles was most instructive for observing
tension between the appearance and disappearance data in
the various ðρ; ηÞ planes.
Other choices of triangles have been made previously

in Refs. [61,63,64]. For the 1-3 triangle, their choice of
ðρ; ηÞ is

ρ13 þ iη13 ¼ −
Ue1U�

e3

Uμ1U�
μ3

: ð13Þ

This choice corresponds to Tð−1Þ
13 as defined above, and is

therefore measuring Jτ2. Note that this definition is the
leptonic equivalent of the d − b CKM triangle that is
commonly shown. When we adopt this definition, our
joint-fit region from current experiments is consistent with
the result of Refs. [63,64], which can be broken down to a
disappearance circle that is centered at (0, 0) and an
appearance region that is more visibly radially oriented.
In order to fully characterize a potentially nonunitary

LMM in a relatively economical yet intuitive fashion, it is
clear that we must account for the fact that assuming
unitarity sets all J-factors equal in the triangles. Thus we
must separately measure all nine possible J-factors. By
showing an appropriate set of 6 unitarity triangles when
assuming unitarity (Fig. 1), 9 J-factors computed without
assuming unitarity, and JPMNS (Fig. 5), we graphically
represent all possible information in the LMM. There is an
added benefit to computing J-factors separately, as they
include information obtained from sterile searches that is
not otherwise visible in the triangle planes.

III. DATA ANALYSIS AND METHODOLOGY

We take global neutrino data and recast their joint
measurements onto leptonic triangles. Our goal is not to
do the most precise, comprehensive global fit on mixing
parameters, so we interpret the majority of experimental
results as rate-only measurements. Concretely, we assume a
given experiment measures an oscillation probability Pαβ at
a fixed (L, Eν). This reasonably reproduces the reported
experimental results, so we apply it to T2K [39,67] and
NOvA [37,68] (which are sensitive to δCP), as well as Daya
Bay [34], solar neutrino measurements [35,35,36,69], and
OPERA [38]. For KamLAND, we include a more detailed
analysis that utilizes the measured neutrino spectrum [33].
We also project the inclusion of future data in our

simulations, namely, The Deep Underground Neutrino
Experiment (DUNE) νμ-disappearance and νe-appearance
channels [50,51,70–74], ντ-appearance channel [52], The
Jiangmen Underground Neutrino Observatory (JUNO)
[56,75–79], Tokai-to-Hyper-Kamiokande (T2HK) [55],

and the IceCube Upgrade’s capabilities for measuring ντ
appearance [48,66]. The following subsections detail the
current and future data included. We direct the reader to
Ref. [65], where the current and future data included are
identical to those here, and more details are provided.
Using a given combination of data sets, we construct a

likelihood function depending on a set of oscillation param-
eters. Our fits in Figs. 1–3 depend on six parameters: sin2 θ12,
sin2 θ13, sin2 θ23, δCP, Δm2

21, Δm2
31. We include Gaussian

priors on the mass-squared splittings from respective exper-
imental results when analyzing current data, and use the
Bayesian inference tool PYMULTINEST [80,81] to construct
credible regions in this parameter space. The posterior
distributions are then projected onto (ρxy, ηxy).
Analyzing current data, the maximum-likelihood param-

eters are sin2θ12¼0.308, sin2θ13¼0.0219, sin2θ23¼0.551,
δCP ¼ 200°, consistent2 with global fits [85]. We assume
these to be the true parameters when simulating future
experiments.

A. Current experimental results included

Here we list the current experimental results that we
include in our data analysis, and specify to which param-
eters each experiment is most sensitive. We also show the
results of our data analysis (when unitarity is assumed) of
all of the current data included in measuring the combi-
nation of the parameters δCP and sin2 θ23, validating our
approach.
Mass-squared splittings When mentioned in the follow-

ing list, we allow the mass-squared splittings Δm2
21 and

Δm2
31 to vary independently, allowing the possibility of

bothmass orderings. Based on ourmethods of incorporating
existing measurements, KamLAND, Daya Bay, T2K,
NOvA, andOPERAare sensitive tomass-squared splittings.
For each experiment, we include a Gaussian prior on the
relevant mass-squared splitting from the experimentally
reported 1σ range. The resulting fit region of the two
mass-squared-splittings that we obtain is consistent with
those from more sophisticated global fits [82–85]. While
tensions exist3 between differentmeasurements ofΔm2

21, we
find that the analyses we perform do not changewhether we
also include a measurement of Δm2

21 from solar neutrino
measurements or not [46,69].
Normalization Many of the current (and future) experi-

ments we consider infer a neutrino oscillation probability
by measuring a far-detector-to-near-detector ratio, i.e., they

2Previous versions of our analysis preferred a closer-to-
maximal value of δCP, in line with published global fits prior
to the latest release of data from T2K and NOvA [82–84].

3However, these tensions are smaller with the latest analysis
from Super-Kamiokande and SNO [69], which measure Δm2

21 ¼ð6.11� 1.21Þ × 10−5 eV2. We include this as a prior in our
analysis, even though the KamLAND measurement is signifi-
cantly more powerful.
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measure the neutrino flux times cross sections of one flavor
α at the near detector and one flavor β at the far detector.
The ratio of these two, up to cross section and flux effects,
gives the oscillation probability Pαβ. If the LMM is not
unitary, however, this is not completely true—zero distance
effects lead to Pαα not being 1 at the near detector, but

Pðνα → να;L ¼ 0Þ ¼
�X3

i¼1

jUαij2
�2

: ð14Þ

When performing an analysis that does not assume unitarity,
like those surrounding Figs. 5 and 6, the inferred oscillation
probability of an experiment with a near detector must be
normalized by the factor in Eq. (14). This normalization
factor has the same impact on an analysis as including an
overall systematic normalization uncertainty in an analysis,
so as long as the normalization uncertainty of a given
experiment is larger than the uncertainty on the quantity in
Eq. (14), these effects are unimportant. Normalization
effects are described in much more detail in Ref. [65].
KamLAND The reactor antineutrino experiment

KamLAND measures the oscillation probability Pðν̄e→ν̄eÞ
over a wide range of baseline length L divided by neutrino
energy Eν. Appendix B of Ref. [33] provides measurements
of this oscillation probability for different values of L=Eν.
We use these measurements, which take into account
matter effects, as well as either the standard, three-neutrino
oscillation probability or a modified one to account for
nonunitary mixing, to place constraints on mostly sin2 θ12.
If the matrix is not unitary, KamLAND is mostly sensitive
to the product jUe1j2jUe2j2. A more recent analysis is
Ref. [41], but it does not contain enough information for us
to reasonably reproduce its results using this approach.
Daya Bay For the Daya Bay experiment, we include the

most recent measurement of sin2ð2θ13Þ¼0.0856�0.0029
as a Gaussian prior in our analysis [34]. If the LMM is not
unitary, the oscillation probability at Daya Bay’s far detector
is sensitive to the combination 4jUe3j2ðjUe1j2þjUe2j2Þ.
Since Daya Bay uses a near and far detector, its mea-
surement of sin2 ð2θ13Þ is actually a measurement of
4jUe3j2ðjUe1j2 þ jUe2j2Þ=ðjUe1j2 þ jUe2j2 þ jUe3j2Þ2, as
discussed above.
Solar neutrinos The only solar neutrino experiments we

include results from are the Sudbury Neutrino Experiment
(SNO) and Super-Kamiokande (Super-K). The SNO two-
flavor analysis (sin2 θ13 → 0) yields tan2 θ12 ¼ 0.427þ0.033

−0.029
[35]. More generically, we include the most up-to-date
measurement of the solar charged-current channel from a
combined SNO and Super-K analysis, which reports
jUe2j2ðjUe1j2 þ jUe2j2Þ þ jUe3j4 ¼ 0.2932� 0.0134 [69].
SNO is also sensitive to neutral current scattering, which

observes the effective oscillation probability PNC ¼P
i jUeij2prod:jUeij2det :. To leading order (see Ref. [65] for

more detail), this becomes

PNC ¼ ðjUe1j2 þ jUe2j2ÞðjUe2j2 þ jUμ2j2 þ jUτ2j2Þ2
þ jUe3j2ðjUe3j2 þ jUμ3j2 þ jUτ3j2Þ2: ð15Þ

This measurement is limited by theoretical uncertainties
associated with the Standard Solar Model [36], so we
conservatively assume that SNO measures it at the
25% level.
T2K For the electron-neutrino appearance channels

Pðνμ → νeÞ and Pðν̄μ → ν̄eÞ measured at T2K, we assume
that the experiment measures this probability for a fixed
energy ET2K ¼ 600 MeV (the mean energy of the J-PARC
beam) at a distance of L ¼ 295 km. We also assume a
constant matter density of ρ ¼ 2.6 g=cm3 along the path of
propagation. While this approach is an oversimplification
and does not include systematic uncertainties from T2K,
we find that it reproduces the results of Refs. [39,40,67]
well. We use the predicted signal and background rates for
the νe and ν̄e appearance presented in Ref. [67], the most
up-to-date results available. T2K also measures νμ and ν̄μ
disappearance. We interpret this measurement as informa-
tion on the quantity 4jUμ3j2ðjUμ1j2 þ jUμ2j2Þ to agree with
the results of Ref. [39]. Matter effects are much smaller in
this channel, so we ignore them. If ULMM is unitary, this
translates effectively into a measurement of sin2 ð2θ23Þ.
We assume T2K measures 4jUμ3j2ðjUμ1j2 þ jUμ2j2Þ ¼
1.00� 0.03. We find that including disappearance infor-
mation in this way reproduces the measurement capa-
bility of the experiment from Refs. [39,40,67] better than
assuming a fixed-length, fixed-energy measurement in this
channel. See Ref. [65] for more details of this analysis, as
well as validation of this approach for T2K.
NOvA Our methodology for NOvA is very similar to

that of T2K: we assume a fixed energy for the electron-
neutrino appearance measurements of ENOvA ¼ 1.9 GeV
and L ¼ 810 km (as well as a constant matter density of
2.84 g=cm3). Expected signal event rates from Ref. [68]
allow us to construct a log-likelihood as we vary oscilla-
tion parameters. Like with T2K, we allow Δm2

31 to vary
within its prior for the NOvA measurements. Since NOvA
prefers a value of sin2 θ23 slightly away from maximal,
we include its disappearance channel measurements in our
fit by assuming it measures 4jUμ3j2ðjUμ1j2 þ jUμ2j2Þ ¼
0.99� 0.02. We find good agreement between our sim-
plified analysis and the results of Ref. [37,68] for all
different oscillation parameters of interest. Again, Ref. [65]
provides details and validation of our NOvA analysis.
OPERA We include the OPERA collaboration’s meas-

urement of tau neutrino appearance via Pðνμ → ντÞ, where
10 ντ signal events were observed with an expected back-
ground of 2.0� 0.4 events. Assuming sin2 ð2θ23Þ ¼ 1

and Δm2
32 ¼ 2.5 × 10−3 eV2, OPERA expected 6.8� 1.4

signal events. We include this information, assuming a
mono-energetic measurement at EOPERA ¼ 17 GeV and
L ¼ 730 km, giving results consistent with those from
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OPERA [38]. Matter effects are included, even though they
are small for ντ appearance oscillation probabilities.
Sterile neutrino searchesWhen unitarity is not assumed,

sterile neutrino searches provide additional constraints
on the unitarity of the LMM. Specifically, we include
results from sterile neutrino searches at experiments in
regions where such new oscillations would have “averaged
out” in the experiment’s detector. This corresponds to
the high Δm2

41 mass-squared splitting region of experi-
mental sensitivities/exclusions and utilizes the zero-
distance effects. Searches for anomalous appearance of
a different neutrino flavor constrain triangle closure infor-
mation, where searches for anomalous disappearance
constrain row normalizations. References [58,65] provide
further explanation of these effects. We do not include
sterile search constraints where mass-squared-splitting
information is utilized because they do not apply to a
generic unitarity violation scenario where we are agnostic
about the mass scale of the violation.
Neutrino appearance searches Experiments that search

for anomalous appearance (such as NOMAD searching
for anomalous νμ → νe or νμ → ντ) are sensitive to these
zero-distance effects, which, if the LMM is not unitarity,
correspond to the nonclosure of a unitarity triangle
—
P

i UαiU�
βi ≠ 0. We include results from KARMEN

[86], NOMAD [87,88], and CHORUS [89] in these
analyses. The LSND [90,91] and MiniBooNE [92] experi-
ments have famously observed an excess of electronlike
events in a νμ beam, which can be interpreted as observing
a nonclosure between the electron and muon rows of
jPi UeiU�

μij2 ≈ 2.6 × 10−3 [92]. We do not include infor-
mation from MiniBooNE and LSND in our analyses due to
the tension between these appearance searches and dis-
appearance searches—Ref. [65] explores this in much more
detail.
Neutrino disappearance searches For muon neutrino

disappearance, we include results from the MINOS=
MINOSþ experiments [93] that constrain the muon row
normalization. In addition, hints for the existence of a sterile
neutrino with a new mass-squared splitting around Δm2

41 ≈
1 eV2 have been observed in a variety of reactor antineutrino
experiments (see Refs. [94–97] for reviews of these), which
could point to the electron rowbeing not properly normalized,
i.e.,
P

i jUeij2 ≠ 1.However, in order to interpret these results
in terms of a constraint on unitarity, we must go to the
averaged-out regime of these experimental sensitivities,
which is limited by the predicted reactor antineutrino fluxes
[77,78]. We therefore do not include these results due to the
uncertainty regarding reactor antineutrino flux predictions.
Fit results To demonstrate the validity of our methods,

Fig. 2 (green) displays the result of our fit (when unitarity is
assumed) to all of the current data discussed above. We
show the fit as a measurement of the parameters δCP and
sin2 θ23, where the other, unseen parameters have been
marginalized. We find that our results are consistent with

more sophisticated global fits [82–84]. Specifically, we
have compared our result against the most recent fit from
Ref. [85] and find that our 1σ and 90% regions are slightly
more conservative than theirs (likely due to the fact that
their fits include all current data where ours contain a
subset) and our 99% regions match very well. Our best-fit
point in this parameter space, (0.55,3.49) is also very close
to that of Ref. [85], (0.57,3.40).

B. Future experiment simulations

In our analyses, we include simulations of the DUNE,
T2HK, IceCube, and JUNO experiments. In this subsec-
tion, we briefly describe how these simulations are included
and some of their details. Figure 2 includes our future
projections in measuring the combination of parameters
sin2 θ23 and δCP in red.
DUNE DUNE will utilize a wide-energy νμ beam, with

energies between roughly 0.5 and 10 GeV, with a baseline
distance of 1300 km. This will allow DUNE to study
both νμ disappearance and νe appearance, and allow for a
powerful measurement of δCP. Reference [52] demon-
strated DUNE’s ability to use its beam to study ντ
appearance as well. We include all three of these channels
in our simulations, assuming seven years of data collection
(equal operation in neutrino and antineutrino modes) with a
1.2 MW beam and 40 kt of far detector fiducial mass.
Our simulation of both νμ disappearance and νe appear-

ance channels follows those developed for Refs. [72–74],
and the analyses are designed to match the official
collaboration sensitivities and expected signal and back-
ground event yields [50,51]. We take the neutrino
fluxes from Ref. [70] and neutrino cross sections from
Ref. [71]. We include energy uncertainty by using

FIG. 2. Results of our fit to all current data (green) discussed in
Sec. III A and including future projections (red) discussed in
Sec. III B as measurements of (sin2 θ23, δCP) at 1σ, 90%, and
99%. The star indicates the best-fit point of our analysis, as well
as the assumed-true combination of parameters for our future
projections.
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migration matrices, assuming that the energy resolution is
σE ¼ 7% × EνðGeVÞ þ 3.5%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EνðGeVÞ

p
, consistent with

the analyses performed in Refs. [50,51]. We include
all of the different background channels discussed in
Refs. [50,51] for the νμ disappearance and νe appearance
channels—the largest of which are due to neutrino neutral-
current scattering and beam contamination of opposite
sign or different flavor neutrinos. Efficiencies for both
signal identification and background rejection are both
taken to be constant as a function of neutrino energy, where
we normalize our expected signal and background event
rates to those from Ref. [50].
Our simulation for ντ appearance channel follows

Ref. [52]. For a given true neutrino energy Etrue
ν , we

assume that the reconstructed energy follows a Gaussian
distribution with a mean energy bEtrue

ν and an uncertainty
σE ¼ rEtrue

ν , where b ¼ 45% and r ¼ 25% [52]. We
include a 25% systematic normalization uncertainty to
account for uncertainties associated with the ντ charged-
current cross section. We also assume a 30% signal
identification efficiency for all hadronically decaying τ�
events, and that 0.5% of neutral current events will
contribute to backgrounds in this search.
For all channels, we include a correlated systematic

normalization uncertainty on the muon neutrino flux for
each beammode (separate nuisance parameters for neutrino
and antineutrino modes) of 5%. As discussed in Sec. III A,
if we do not assume the unitarity of the LMM and an
experiment has a near detector, the inferred measurement
of an oscillation probability must be normalized by the
appropriate channel, i.e., the normalization of the muon
row of the LMM in this case. DUNE is one such experi-
ment, however, since we include a 5% normalization
uncertainty on the muon neutrino flux, this effect is
negligible in our analyses. This is because the MINOS/
MINOS+ sterile neutrino search constrains this normali-
zation effect to the 2.5% level, so the systematic uncertainty
of 5% covers any impact of this type.
T2HK T2HK is the upcoming successor to T2K, which

will include an upgraded beam and a larger water Čerenkov

detector [55]. Like with T2K and NOvA, T2HK and DUNE
will operate in similar ranges of L=Eν but very different
ranges of L and Eν. This results in matter effects being
much more relevant for DUNE than T2HK, although they
are not negligible and we therefore include them in our
calculations.
We include simulations of both νe appearance and νμ

disappearance for both neutrino and antineutrino modes
(we assume operation in a 1∶3 ratio between ν∶ν̄modes, as
expected by the T2HK collaboration). We assume seven
years of data collection to be more consistent with our
projections for DUNE. References [65,98] provide further
details on this simulation.
IceCube Upgrade The IceCube experiment has per-

formed a number of measurements of oscillation parameters
using its atmospheric neutrino sample [47,48], including
a measurement of ντ appearance that is comparable in
strength to the leading measurement from Super-K, and
even stronger (in terms of measuring the appearance
normalization) as OPERA. Soon, IceCube expects to be
able to measure this appearance at the 10% level, and with
the IceCube Upgrade, such a 10% measurement should be
quickly attainable. We include this measurement in our
future projections, where IceCube is sensitive to the combi-
nation 4jUμ3j2jUτ3j2=ðjUμ1j2 þ jUμ2j2 þ jUμ3j2Þ2.
JUNO JUNO will measure the oscillation of reactor ν̄e of

2–8 MeVat a propagation distance of 53 km. Matter effects
can cause Oð1%Þ level modifications to this oscillation
probability for these energies and propagation distance.
However, they do not impact measurement sensitivity of
the parameters of interest, so we do not include them. This
enables a measurement of the neutrino mass ordering, the
primary science goal for JUNO, as well as of θ12 andΔm2

21.
Our analyses are designed to match the official collabo-

ration sensitivities on sin2 θ12 [56]. For reactor flux
calculation, we follow the strategy in Ref. [75], taking
the fission isotope fractions from Ref. [76], 235U, 239Pu, and
241Pu spectra from Ref. [77], and 238U spectrum from
Ref. [78], and this leads to the following total reactor
neutrino flux:

ΦðEν̄eÞ ¼ 0.60 expð4.367 − 4.577Eν þ 2.1E2
ν − 0.5294E3

ν þ 0.06186E4
ν − 0.002777E5

νÞ
þ 0.27 expð4.757 − 5.392Eν þ 2.563E2

ν − 0.6596E3
ν þ 0.0782E4

ν − 0.003536E5
νÞ

þ 0.07 expð2.611 − 2.284Eν þ 0.9692E2
ν − 0.23679E3

ν þ 0.025E4
ν − 0.001E5

νÞ
þ 0.06 expð2.99 − 2.882Eν þ 1.278E2

ν − 0.3343E3
ν þ 0.03905E4

ν − 0.001754E5
νÞ: ð16Þ

We adopt the inverse beta decay cross sections from
Ref. [79]:

σ ¼ 10−43 cm2peEeE
−0.07056þ0.02018 logEν−0.001953log3Eν
ν ;

Ee ¼ Eν − 1.293 MeV: ð17Þ

For each event, the detected energy, which is smeared with
an energy resolution of 3%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðMeVÞp

[56], is the total
energy of the positron plus its rest mass. We do not consider
detector efficiencies and backgrounds, and only match the
total sample size to the CDR nominal choice, 120k events
(six years). For systematics, we include a correlated flux
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uncertainty of 2%, an uncorrelated flux uncertainty of
0.8%, the spectrum shape uncertainty of 1%, and the
energy scale uncertainty of 1% [56].
Similarly to the case for DUNE, the oscillation probability

that JUNOmeasures depends on what one assumes of a near
detector. Because electron row is well constrained, this
assumption has a negligible impact on our results, so we
perform our analysis assuming there will not be a near
detector.

IV. RESULTS

Figure 1 shows the 95% and 99% credible regions of the
six unitarity triangles with all current data (green contours),
and with the addition of future data (red). These results
assume unitarity of the LMM and therefore the PMNS
parameterization holds. We discuss the implications of
assuming unitarity, and how the results would differ with-
out this assumption in Appendix B.
Figure 1 also shows the projections of future sensitivity

to neutrino disappearance (Pαα, blue contours) and appear-
ance (Pαβ, orange) probabilities separately. This distinction
between the two measurements is crucial, both for under-
standing how the best fit regions arise and for determining
how nonunitarity manifests itself.
The intuitively tractable e-μ triangle (Fig. 1 top-left) can

be expressed in terms of PMNS parameters as,

ρeμ ¼ c212 þ cos δCP

�
s12c12c23
s13s23

�
;

ηeμ ¼ sin δCP

�
s12c12c23
s13s23

�
: ð18Þ

Precise measurements of the disappearance channels Pee
and Pμμ allow for the determination of θ12, θ13, and θ23,
which determine a circle (we discuss why the blue circles
do not close in the following paragraph). Long-baseline
disappearance measurements (Pμμ) are only sensitive to
sin2ð2θ23Þ, leading to an octant degeneracy. This produces
ambiguity in the radii of the circles in the e-μ and e-τ
planes, and results in the structure in the 1–2 plane. Long-
baseline νe-appearance measurements can determine the
value of δCP, and therefore a preferred direction in the ðρ; ηÞ
plane. The definitions of ðρ; ηÞ affect the appearance of
these triangles, but the general features of disappearance
measurements giving ring-type structures and appearance
selecting out a direction are universal (For comparisons to
other choices, see Refs. [61,63,64] and our discussion
above). ντ-appearance measurements, present or projected,
are insufficiently precise to provide further discriminatory
power. In addition, no planned measurement of Pμτ is
actually sensitive to δCP, even with improved precision
[52,53]. Note that the power of τ-appearance measurement
manifests clearly when unitarity is not assumed; see
Ref. [65] for details. In contrast with the CKM fits,
where multiple observables independently measure the

CP-violating phase, in the neutrino sector there is only
one present or near-future observable, Pμe, sensitive to δCP.
From Eq. (18), it is apparent that some knowledge of δCP

is required in order to prefer a direction in the ðρeμ; ηeμÞ
plane, an effect seen in the blue regions throughout all six
panels of Fig. 1. Here, we see the combined measurement
of disappearance channels, specifically driven by the future
DUNE, T2HK, and JUNO experiments, choosing a pre-
ferred direction, i.e., being sensitive to the value of δCP.
This is driven by the νμ=ν̄μ disappearance measurements
from DUNE/T2HK, which are sensitive to the quantities
jUμ1j2 and jUμ2j2 independently at some level. With the
assumed true values of the mixing angles and δCP,

jUμ1j2 ¼ s212c
2
23 þ c212s

2
23s

2
13 þ 2 cos δCPs12c12s13s23c23

≈ 0.083; ð19Þ
jUμ2j2 ¼ c212c

2
23 þ s212s

2
23s

2
13 − 2 cos δCPs12c12s23s23c23

≈ 0.378: ð20Þ

For δCP ≈ 0, 2π, these values approach roughly 0.215
and 0.247, respectively. While this is a minor effect at
DUNE and T2HK, their combination4 can distinguish
between these jUμ2j2 > jUμ1j2 and jUμ1j2 ≈ jUμ2j2 scenar-
ios at ∼99% confidence, leading to the nonclosure of our
blue contours throughout Fig. 1. However, we note here
that this does not imply that these experiments are sensitive
to CP violation, as they are only measuring cos δCP,
a CP-symmetric quantity. Only with νe appearance (or
related channels) can the amount of CP violation in the
lepton sector, i.e., the Jarlskog invariant, be inferred. This is
apparent by the reflective symmetry of each of the blue
contours in Fig. 1 about the ηxy ¼ 0 axis in each panel.
In order to test how unitarity violation would appear in

these triangles, we simulate data with injected nonunitarity,
but analyze it assuming the LMM is unitary. To include
effects of nonunitarity, we adopt a parametrization beyond
PMNS [99–101], which requires 13 parameters, as
described in detail in Appendix B. We inject non-unitarity
by making

P
i UeiU�

μi ¼ 0.01þ 0.04i and
P

αUα2U�
α3 ¼

−0.004þ 0.017i, on the edge of what is allowed by
current data.
Figure 3 shows the constructed triangles in the e-μ and

2–3 planes, where the fit incorrectly assumes the LMM is
unitary. With a joint disappearance and appearance analysis
(red), there is no indication of unitarity violation as the
joint contours appear similar in shape and size to those in

4Changing δCP in this way leads to an effective “tilt” in the
expected number of muon-neutrino events in the DUNE/T2HK
disappearance channels, shifting the relative number of events
below/above the disappearance minimum in the oscillation
probability. While our simulations of T2HK and DUNE include
normalization uncertainties, we do not include a spectral shape
uncertainty which would mask this effect.

ELLIS, KELLY, and LI PHYS. REV. D 102, 115027 (2020)

115027-8



Fig. 1. However, individual channel measurements reveal
tension: disappearance and appearance measurements dis-
agree at over 95% in the 2–3 plane. This demonstrates that
separate analyses of disappearance and appearance mea-
surements can be a powerful probe of unitarity violation in
the lepton sector, and complementary to sterile neutrino
searches [86–97].
Importantly, no tension is present (even at1σ)whenviewed

in terms of measurements of the PMNS parameters even
when disappearance and appearance channels are separate.
We demonstrate this in Fig. 4,wherewe show the same sets of
experiments measuring this simulated data in terms of the
parameters sin2 θ13, sin2 θ23, and δCP. Note that all three of
these measurements intersect. This shows an important
advantage of unitarity triangles as a test of LMM unitarity.
Testing whether certain subsets of data agree on

these planes is one test of unitarity. However, constructing
the triangles assumes the LMM is unitary. To numeri-
cally constrain non-unitarity, one needs to discard this
assumption, and include sterile neutrino searches. This
leads to non-intuitive connections between unitarity tri-
angles and numerical results, e.g., the unitarity violation in
e-μ plane for Fig. 3 will be excluded by future searches at
over 2σ, contrary to what the figure suggests, when sterile
search results are included. In what follows, we develop
another intuitive means of using oscillation measurements
to probe LMM unitarity, accounting for information loss
when triangles are constructed under the assumption of
unitarity. Specifically, we consider the consistency between
measurements of the degree of CP violation in ULMM.

V. JARLSKOG FACTORS AND THE
JARLSKOG INVARIANT

For a unitary LMM, the Jarlskog invariant [Eq. (1)] is a
measure of CP violation and is related to the area of the

unitarity triangles in Fig. 1. By constructing the triangles
as in Eq. (4), the area of each triangle is ðJPMNS=2Þ=
ðjUαij2jUβjj2Þ. As long as δCP is not 0 or π, JPMNS, and
therefore the triangle areas, are nonzero. In general,
Jarlskog Factors Jαi can be calculated by taking the
cofactor of the ðα; iÞ element of the LMM, taking the
complex conjugate of two elements. If the LMM is not
unitary, these nine different cofactors need not be the
same [102].

FIG. 3. Projected 1σ, 95%, and 99% regions with future measurements of (ρeμ, ηeμ) (left) and (ρ23, η23) (right). Similarly to Fig. 1, the
blue contours use disappearance analyses and the orange appearance. The filled-in (open) star indicates the best-fit point from the joint
(appearance only) fit. Data are simulated with a non-unitary LMM, but analyzed assuming it is.

FIG. 4. Independent measurements of the parameters sin2 θ13,
sin2 θ23, and δCP by the appearance dataset (orange), disappear-
ance dataset (blue), and their combination (red) when data are
simulated with a nonunitary LMM, but analyzed assuming it is.
The simulated data analyzed here are the same as those analyzed
in Fig. 3.
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The Jarlskog factors are defined as in Eq. (9), such that
the nine jJαij are the same and equal to jJPMNSj when the
matrix is unitary. This condition is necessary, but not
sufficient, for LMM unitarity. Without the unitarity
assumption, six triangles provide information on at most
six different Jαi (recall the discussion of Sec. II). Therefore,
to obtain a full characterization of the potentially nonuni-
tary LMM, six unitarity triangles do not suffice. One
solution is to construct nine triangles corresponding to
the nine Jarlskog factors. However, as there are only six
closure relations [Eq. (3)], this leads to some redundancy.
Therefore, a compact manner of representing all six closure
relations, as well as characterizing the full LMM is to show
six unitarity triangles assuming unitarity, and nine
Jarlskogs without assuming unitarity.
To compare the Jarlskog invariant and Jarlskog factors,

we perform a fit to all current and current plus future data
while (not) assuming unitarity of the LMM to construct
JPMNS (Jαi). When not assuming unitarity, we adopt the
parametrization explained in Appendix B. Figure 5 shows
the result. Our current measurement of JPMNS (bottom row,
purple) is consistent with the results of other more detailed
fits [85]. Each independent Jαi measurement agrees, con-
sistent with the unitary LMM hypothesis. We see that
JPMNS and Jαi are all consistent with zero at 1σ, consistent
with the hypothesis that CP is conserved in the lepton
sector. When we simulate future data (assuming Jαi are all
equal and nonzero), the inclusion of future JUNO, IceCube,
DUNE, and T2HK projections allows us to exclude
JPMNS ¼ 0 at 3σ. Moreover, many of the different Jαi will
disfavor CP-conservation at 3σ. However, certain Jarlskog
Factors, particularly those involving knowledge of jUτij

(especially Jμ3), will remain difficult to measure when
unitarity is not assumed.

VI. CONCLUSIONS

We have presented a comprehensive analysis of leptonic
unitarity triangles using all current and future neutrino
oscillation data. Figure 1 displays how the closure of six
unitarity triangles is/will be constrained. By virtue of the
nature of these measurements, in contrast with the CKM
matrix, intersections of many measurements of PMNS mat-
rix parameters are not possible. Non-unitarity can never-
theless explicitly manifest itself as shown in Fig. 3, though
observation of non-unitarity requires distinguishing between
appearance and disappearance datasets. Figure 5 presents an
alternative and complementary visualization of constraints
on LMM unitarity in terms of Jarlskog factors. The allowed
ranges of the Jαi are consistent with each other and with
nonzero CP violation in the lepton sector. If the LMM was
not unitary, these measurements would yield different Jαi.
The Standard Model demands new physics to explain

the origin of neutrino masses and therefore oscillations.
The impending era of precision experiments will enable
us to further understand the structure of the leptonic
mixing matrix, and constraints on the matrix’s unitarity
serve as a probe of the mechanism of neutrino masses.
Meanwhile, the origin of the baryon asymmetry of the
universe will be better understood through studies of the
degree of CP violation in the lepton sector. Performing
detailed studies of the leptonic unitarity triangles there-
fore bears directly on both of these problems in the
Standard Model.
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APPENDIX A: PARAMETRIZATION
OF THE LMM

The unitarity conditions for the 3 × 3 LMM are

U†U ¼ UU† ¼ I: ðA1Þ

From this, one can write down six real equations, requiring
the normalization of rows and columns of matrix-elements-
squared jUαij2 to be 1:

FIG. 5. Current (purple) and expected future (teal) 1, 2, and 3σ
measurement ranges of the nine independent Jarlskog factors
when not assuming unitarity, Jαi, compared with the allowed
range when assuming unitarity, JPMNS. An inconsistency between
the measured Jαi and JPMNS would imply unitarity violation.
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X
i

jUαij2 ¼ 0;
X
α

jUαij2 ¼ 0:

ðrowsÞ ðcolumnsÞ ðA2Þ

One can also write six complex equations corresponding
to “closures” between two different rows (α and β) or two
different columns (i and j):

X3
i¼1

UαiU�
βi ¼ Uα1U�

β1 þUα2U�
β2 þUα3U�

β3 ¼ 0; α ≠ β

ðrow closureÞ; ðA3Þ

Xτ
α¼e

UαiU�
αj ¼ UeiU�

ej þUμiU�
μj þUτiU�

τj ¼ 0; i ≠ j

ðcolumn closureÞ: ðA4Þ

From these closure relations, one can construct the familiar
unitarity triangles in the ðρ; ηÞ plane by dividing each term
in the closure by one of the sides. For a given row/column,
there are 3 different triangles one could define that are not
related to one another by a simple inversion. The triangles
are defined as in the main text in terms of the LMM matrix
elements.

The chosen set of ðρ; ηÞ used in the main text, under the assumption that the LMM is unitary, can be expressed as5:

ρeμ ¼ c212 þ cos δCP

�
s12c12
s13t23

�
;

ηeμ ¼ sin δCP

�
s12c12
s13t23

�
; ðA5Þ

ρeτ ¼
1

2

�
2s212ðs223 − c223s

2
13Þ − t12s13 sin 2θ23 cos 2θ12 cos δCP

c212s
2
13c

2
23 þ s212s

2
23 − 2Δ cos δCP

�
;

ηeτ ¼ −
1

2

�
t12s13 sin 2θ23 sin δCP

c212s
2
13c

2
23 þ s212s

2
23 − 2Δ cos δCP

�
; ðA6Þ

ρμτ ¼
c213
4

�
sin22θ23ðc212 − s212s

2
13Þ þ 4 cos 2θ23Δ cos δCP

ðc212c223 þ s212s
2
13s

2
23 − 2Δ cos δCPÞðc212s223 þ s212s

2
13c

2
23 þ 2Δ cos δCPÞ

�
;

ημτ ¼ c213
Δ sin δCP

ðc212c223 þ s212s
2
13s

2
23 − 2Δ cos δCPÞðc212s223 þ s212s

2
13c

2
23 þ 2Δ cos δCPÞ

; ðA7Þ

ρ12 ¼
c213
4

�
sin22θ12ðc223 − s213s

2
23Þ þ 4 cos 2θ12Δ cos δCP

ðs212c223 þ c212s
2
13s

2
23 þ 2Δ cos δCPÞðc212c223 þ s212s

2
13s

2
23 − 2Δ cos δCPÞ

�
;

η12 ¼ −c213
Δ sin δCP

ðs212c223 þ c212s
2
13s

2
23 þ 2Δ cos δCPÞðc212c223 þ s212s

2
13s

2
23 − 2Δ cos δCPÞ

; ðA8Þ

ρ13 ¼
1

2

�
2s223ðs212 − s213c

2
12Þ − t23s13 sin 2θ12 cos 2θ23 cos δCP

s212s
2
23 þ c212s

2
13c

2
23 − 2Δ cos δCP

�
;

η13 ¼
1

2

�
t23s13 sin 2θ12 sin δCP

s212s
2
23 þ c212s

2
13c

2
23 − 2Δ cos δCP

�
; ðA9Þ

5A unitary LMM can be written in the usual form in terms of the PMNS rotation angles and CP-violating phase as:

ULMM ¼ UPMNS ¼
 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23
s12s23 − c12s13c23eiδCP −c12s23 − s12s13c23eiδCP c13c23

!
:
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ρ23 ¼ c223

�
1þ t23 cos δCP

t12s13

�
;

η23 ¼ −c223

�
t23 sin δCP
t12s13

�
; ðA10Þ

where 4Δ≡ s13 sin 2θ12 sin 2θ23.

APPENDIX B: NONUNITARITY
PARAMETRIZATION AND EFFECTS

OF ASSUMING UNITARITY

In this Appendix we give more detail regarding the
ULMM parametrization that is used when unitarity is not
manifestly assumed (as in the PMNS parametrization). We
also show how such assumptions impact the measurements
shown in unitarity triangles like those in Fig. 1.
When we do not assume that the LMM is unitarity, we

assume that the it takes the form

ULMM ¼

0
B@

jUe1j jUe2jeiϕe2 jUe3jeiϕe3

jUμ1j jUμ2j jUμ3j
jUτ1j jUτ2jeiϕτ2 jUτ3jeiϕτ3

1
CA; ðB1Þ

where the 13 free parameters (ignoring the potentially
physical Majorana phases) are necessary to describe
a 3 × 3 complex matrix after accounting for rephasing
of the charged lepton fields. Alternative parametrizations
are commonly adopted in the literature [99–101], all with
the same number of free parameters. We motivate the use
of our parametrization, and discuss maps between this and
others in the literature in Ref. [65]. While the complex
phases inULMM appear on different matrix elements than in
UPMNS, the two parametrizations are related (if ULMM
satisfies the unitarity conditions) by rephasing of the
neutrino fields. For any set of PMNS parameters, an
equivalent set of LMM parameters may be determined
uniquely.
We obtain best-fit values for the 13 LMM parameters by

making use of the observation that the LMM fit must match
the global fit for the PMNS parameters when the LMM is
unitary. Analyzing current data when assuming unitarity
yields the maximum-likelihood values of sin2 θ12 ¼ 0.308,
sin2 θ13 ¼ 0.0219, sin2 θ23 ¼ 0.551, and δCP ¼ 200°.
These four best-fit values may then be used in conjunction
with the 9 constraints applicable to a 3 × 3 unitary matrix to
solve for the 13 LMM elements, yielding

jULMMj ¼

0
B@

0.823 0.549 0.148

0.288 0.615 0.734

0.490 0.555 0.663

1
CA;

ϕe2 ¼ 172°; ϕe3 ¼ 333°;

ϕτ2 ¼ 346°; ϕτ3 ¼ 170°:
ðB2Þ

When we study the nine separate Jarlskog factors Jαi
cf. Fig. 5, we use this set of 13 parameters, projecting
down to relevant combinations for the allowed regions of
different Jαi.
We also use this parameterization to simulate future data

for JUNO IceCube, T2HK, and DUNE assuming ULMM is
not unitary, i.e., U†U ≠ I. In generating the data that are
analyzed for Fig. 3, we modify the input values of ϕe2 and
ϕe3 from those in Eq. (B2) by Δϕe2 ¼ −5.30° and
Δϕe3 ¼ 7.23°. This preserves the unitarity constraint that
the individual rows and columns of ULMM are properly
normalized,

P
i jUαij2 ¼ 1,

P
α jUαij2 ¼ 1, but causes

nonclosure of the triangles in several planes.
One nonclosure is in the e-μ plane, with

P
i UeiU�

μi ¼
0.01þ 0.04i. Sterile neutrino searches that look for zero-
distance neutrino oscillation (as described in Sec. III A) are
sensitive to the absolute value squared of the nonclosure,
and this level is at the upper end of what is currently
allowed by data. In addition, there is also non-closure in the
2-3 plane, with

P
α Uα2U�

α3 ¼ −0.004þ 0.017i. This is
shown in Fig. 3.
1. Triangles when unitarity is not assumed In the results

shown in Figs. 1 and 3, fits to existing/future data were
performed with the PMNS mixing angles as free param-
eters (sin2 θ12, sin2 θ13, sin2 θ23, δCP, and mass-squared
splittings), such that unitarity was explicitly assumed.
Confidence level contours were then constructed by map-
ping these parameters onto those that enter each unitarity
triangle, using the PMNS parameterization. Here we
perform a fit using the parameterization described above,
where the unitarity of ULMM is not guaranteed.
The difference between these two fits is most apparent in

triangles that depend on mixing matrix elements that are
not powerfully measured on their own in experiments, but
can be inferred by other measurements if unitarity is
assumed. Specifically, that is the case for the mixing matrix
elements Uτi. For instance, in the PMNS parameterization,
Uτ3 ¼ cos θ23 cos θ13, which can be constrained fairly well
by atmospheric and reactor experiments. Without unitarity,
the strongest current measurement of Uτ3 in our fit comes
from OPERA’s νμ → ντ appearance, a significantly less
precise measurement.
We show this difference in Fig. 6, focusing on two

different triangle planes, (ρeμ, ηeμ), where the differences
are small, and (ρ23, η23), where the differences are the
largest. All contours shown are 95% (dark contours) and
99% confidence level (light). Here, the purple and green
regions correspond to current data fits, where the purple
(green) region is the result of the fit without (with)
assuming unitarity. Likewise, light blue (unitarity not
assumed) and red (unitarity assumed) regions are from fits
including current and future data. The green and red regions
here correspond with those of the same color shown in the
appropriate panels of Fig. 1. In each of the two panels, the
filled-in star denotes the best-fit point in this parameter
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space obtained by analyzing all current data when unitarity
is assumed (green dataset), where the open star indicates
the best fit point when unitarity is not assumed (purple
dataset).
Most notable here is the difference in the size of allowed

regions between when unitarity is or is not assumed for
(ρ23, η23). As mentioned above, this is largely due to the
uncertainty regarding the magnitude of the elements jUτ2j
and jUτ3j. We also see that the current data prefer a much

larger triangle in this plane if unitarity is not assumed—this
is due to the preference for large jUτ3j from the OPERA
experiment [37]. We also highlight the second island of
allowed parameter space in the future projections of
(ρeμ, ηeμ) when unitarity is not assumed (light blue)—this
comes about because, when unitarity is not assumed, future
experiments cannot definitively determine whether jUμ1j2
is smaller or larger than jUμ2j2.
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