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We put forward the framework of simplified leptoquark models: simple extensions of the Standard
Model that serve as benchmarks to test the interactions of leptons with new colored degrees of freedom
considered, for instance, in leptoquark or grand unification models. As a first application of the scheme,
we analyze the power of precision lepton observables by computing gauge invariant two-loop radiative
corrections to the lepton-photon vertex, generated here by Yukawa interactions between the lepton and new
colored degrees of freedom. The result, detailed in explicit expressions for the involved form factors,
improves on the literature for the higher loop order considered and highlights the existence of regions in the
parameter space of the model where two-loop corrections cannot be neglected.
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I. INTRODUCTION

After more than one decade of LHC data in substantial
agreement with the known properties of physics at the
electroweak scale, the possibility of finding new light
states strongly coupled to the Standard Model (SM)
particles seems certainly unlikely. Observations have
pushed any possible new physics scale well above the
heaviest SM particle, reaching up to the multi-TeV range
that will be fully explored by the next-generation collider
experiments [1–4].
In this context, low energy leptonic observables provide

clean and sensitive benchmarks for the most precise
predictions of the SM and, consequently, are of great
importance for their potential to highlight possible discrep-
ancies between theory and experiment.
While precision lepton physics is being probed in an

array of experiments with an unprecedented accuracy
[5–8], on the theoretical side it is thus mandatory to
determine the relevant higher order corrections. In particu-
lar, the vertex functions for the leptonic transitions
li → lfγ, have been the subject of intense investigation

that led to an analytical determination of the four-loop QED
contribution [9], a numerical computation of the five-loop
one [10] and the calculation of analytical expressions for
the two-loop electroweak corrections [11].
In some cases, interestingly, the improved estimate of the

SM contribution resulted in tensions with the experiments.
The paradigmatic case is that of the longstanding anomaly
in the muon response to a static magnetic field, usually
referred to as the anomalous magnetic moment (AMM)
ðg − 2Þμ. Pending the results of the Fermilab E989 experi-
ments [5], the current world average dominated by the
Brookhaven experiment E821 [12],

aexpμ ¼ ð116592091� 54� 33Þ × 10−11; ð1Þ

confronts the SM prediction

aSMμ ¼ ð116591811� 62Þ × 10−11; ð2Þ

where hadronic effects dominate the uncertainty. The
current discrepancy is therefore

aexpμ − aSMμ ¼ ð278� 88Þ × 10−11; ð3Þ

amounting to a 3.1σ difference.1
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1A recent lattice determination of the SM hadronic vacuum
polarization contribution [13] has put into discussion the sig-
nificance of the reported anomaly. While the consequences of this
computation are still being debated [14], we regard the range
in Eq. (3) as an indication of the sensitivity characterizing the
observable.
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Interestingly, a new determination of the fine structure
constant has revealed a similar anomaly in the electron
sector, where a 2.4σ tension concerns the corresponding
anomalous magnetic moment ðg − 2Þe [6,7]:

aexpe − aSMe ¼ ð−87� 36Þ × 10−14: ð4Þ

It is a puzzling aspect, and a challenging issue at the
model-building level, that the two anomalies have differ-
ent signs. Furthermore, the deviation in the anomalous
magnetic moment of the electron is in magnitude larger
than the muon one, after the me=mμ rescaling is taken into
account [15,16].
Besides AMM, there are other interactions between

leptons and a photon which have the potential to yield
tight bounds on any new physics model contributing to
the full lepton-photon vertex. For instance, sources of CP
violations transcending the SM one are highly constrained
by the observations of the electric dipole moment (EDM) of
the electron, de, through the limit [17]

de < 1.1 × 10−29e · cm: ð5Þ

The same parameters will be challenged by future refine-
ments of the muon EDM dμ [18,19], currently measured in

dμ < 0.9 × 10−19e · cm: ð6Þ

Similarly, sources of lepton flavor violation (LFV) beyond
the neutrino mixing generally trigger the transition μ → eγ,
strongly constrained by the experimental bound [8]

Brðμ → eγÞ < 4.2 × 10−13: ð7Þ

Motivated by the need for improved computations of
precision leptonic observables, in this paper we go
beyond the results in the literature by assessing the
impact of these bounds at a further loop order. To this
purpose we introduce the framework of simplified lep-
toquark models (SLMs): effective SM extensions meant
as a testing ground for more complex models that contain
new colored degrees of freedom coupled to the SM
leptons. In this first analysis we estimate the power of
precision leptonic observable to constrain scenarios
which contain a new scalar field and, at most, an extra
fermionic degree of freedom, both partaking in strong
and electromagnetic interactions. The complementary
case of vector extensions of the SM will instead be
addressed in a forthcoming paper. In the following we
therefore detail the two-loop structure of the effective
llγ vertex up the order Oðαsy2Þ, with y being the
Yukawa coupling of the new scalar field, giving the

explicit expressions of the form factors that determine the
mentioned leptonic observables.
The relevance of our analysis is manifested by the

ubiquity of these colored particles, postulated in many
beyond SM theories and motivated, for instance, by the
B-physics anomalies or unification scenarios [20–34]. In
regard of this, the S1 and R2 classes of leptoquark models
can be straightforwardly studied by using the SLMs. On
the theoretical level, instead, our analysis is influenced
by the seminal work in Ref. [35], followed by the
investigations in Refs. [36–40], which assess the relative
relevance of the one and two-loop contributions. In fact,
on top of the possible presence of logarithmic and mass-
ratio enhancements at next-to-leading order (NLO), the
effects of strong interactions easily top other contributions
present at the same loop order, thereby justifying the
adopted framework.
The paper is structured as follows: in Sec. II we pre-

sent the form factors and the corresponding projectors,
considering both flavor-conserving and flavor-violating
lepton-photon interactions. The scalar SLMs are intro-
duced in Sec. III, where we detail our computational
method and give analytical expressions for the form
factors in three scenarios delineated by different mass
hierarchies. The results obtained are presented in Sec. IV,
whereas in Sec. V we comment on the complementary
bounds due to the Z boson phenomenology. Our work is
summarized in Sec. VI.

II. FORM FACTORS AND PROJECTION
OPERATORS

We begin by detailing the form factors that enter the
analyzed effective vertex, shown in Fig. 1, for the cases
of lepton flavor-violating (li ≠ lf) and lepton flavor-
conserving (li ¼ lf) transitions.

A. Flavor conserving transitions

The matrix element for flavour conserving transitions
l → lγ can be parametrized as follows2

FIG. 1. The effective vertex under scrutiny. The label li;f stand
for the initial and final lepton, respectively.

2We adopt the same conventions for the Dirac algebra and
traces as those used in FORM [41].
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hljMμjli ¼ e · ūðq1 þ q2Þ
�
F1ðtÞγμ −

i
2ml

F2ðtÞσμνqν2

þ 1

ml
F3ðtÞq2μ þ γ5

�
G1ðtÞγμ

−
i

2ml
G2ðtÞσμνqν2 þ

1

ml
G3ðtÞq2μ

��
uðq1Þ;

ð8Þ

where q22 ¼ t and q21 ¼ ðq1 þ q2Þ2 ¼ m2
l. In Eq. (8) F2ðtÞ

and G2ðtÞ are, respectively, the magnetic and the electric
form factor. Within renormalizable theories these quantities
are necessarily finite, being the coefficients of dimension 5
operators. Observations are matched in the soft photon
limit, t → 0, where we recover the AMM al ¼ F2ð0Þ and
the EDM dl ¼ iG2ð0Þ=ð2mlÞ. As for the remaining terms,
F1ðtÞ is the charge form factor, whereas F3ðtÞ vanishes
because of the electromagnetic current conservation.
The expression for the individual form factors can be

obtained through the projection operator

Pμ ¼ ð=q1 þmlÞ
��

f1γμ −
f2
ml

�
q1μ þ

q2μ
2

�
−

f3
ml

q2μ

�

þ γ5

�
g1γμ −

g2
ml

�
q1μ þ

q2μ
2

�
−

g3
ml

q2μ

��

× ð=q1 þ =q2 þmlÞ; ð9Þ

by setting the coefficients fi and gi to satisfy the six
independent conditions Tr½PμMμ�¼Fi and Tr½PμMμ�¼Gi.
In the first two lines of Table I we report the values required
to isolate the expressions of F2ðtÞ and G2ðtÞ used in the
following analysis.

B. Flavor violating transitions

In considering flavor violating amplitudes li → lfγ
we take the final state lepton to have negligible mass, for
the sake of simplicity. The matrix element then acquires
the form

hlfjMμjlii ¼ e · ūfðq1 þ q2Þ
�
F̃1ðtÞγμ −

i
2mli

F̃2ðtÞσμνqν2

þ 1

mli

F̃3ðtÞq2μ þ γ5

�
G̃1ðtÞγμ

−
i

2mli

G̃2ðtÞσμνqν2 þ
1

mli

G̃3ðtÞq2μ
��

uiðq1Þ;

ð10Þ

whereas the generic form of the projector is

Pμ ¼ ð=q1 þmliÞ
��

f1γμ −
f2
ml

�
q1μ þ

q2μ
2

�
−

f3
mli

q2μ

�

þ γ5

�
g1γμ −

g2
mli

�
q1μ þ

q2μ
2

�
−

g3
mli

q2μ

��
ð=q1 þ=q2Þ:

ð11Þ

The form factors relevant for the proposed analyses can be
isolated by using the values of the six fi and gi constants
reported in last lines of Table I.

III. SIMPLIFIED LEPTOQUARK MODELS

As a first example of SLMs we consider extensions of
the SM that contain one scalar field, taken in the (anti-)
fundamental representation of SUð3Þc, and, at most, one
new fermionic degree of freedom to account for gauge
invariance.3 In the spirit of simplified models, the frame-
work disregards the additional degrees of freedom implied
by weak interactions. In fact, whereas complete models that
embed the proposed degree of freedoms need to address
these interactions in full, the proposed scheme is certainly
enough to gauge the dominant contributions of new physics

TABLE I. Values of the fi and gi coefficients, i ¼ 1, 2, 3, used to isolate the indicated form factors from Eq. (8) [or (10)] via Eq. (9) [or
(11)] for lepton flavor conserving (or violating; indicated with a tilde) transitions. In all expressions d stands for the number of spacetime
dimensions.

Form factor f1 f2 f3 g1 g2 g3

F2ðtÞ 2m2
l

ðd−2Þtðt−4m2
lÞ

− 2m2
lð4m2

lþðd−2ÞtÞ
ðd−2Þtðt−4m2

lÞ2
0 0 0 0

G2ðtÞ 0 0 0 0 2m2
l

tðt−4m2
lÞ

0

F̃2ðtÞ m2
li

2ðd−2Þðm2
li
−tÞ2

m2
li
ðm2

li
þtðd−2ÞÞ

2ðd−2Þðm2
li
−tÞ3

m4
li
ðd−1Þ

4ðd−2Þðm2
li
−tÞ3

0 0 0

G̃2ðtÞ 0 0 0 m2
li

2ðd−2Þðm2
li
−tÞ2 −

m2
li
ðm2

li
þtðd−2ÞÞ

2ðd−2Þðm2
li
−tÞ3

m4
li
ðd−1Þ

4ðd−2Þðm2
li
−tÞ3

3For the purposes of our computation, the sign change that
appears in the guu interaction vertex, depending on whether u
transforms according to the fundamental or anti-fundamental
representation of SUð3Þc, is always compensated by the sign in
the corresponding vertex involving Φ. Therefore, assigning u or
Φ to the fundamental representation of SUð3Þc makes no
difference at the level of the considered observables.
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into leptonic precision observables. The Lagrangian at hand
then is

LY ¼ L0ðΦ; uÞ þ ūðPLYLi
þ PRYRi

ÞliΦ† þ l̄fðPLY
†
Rf

þ PRY
†
Lf
ÞuΦ ðþH:c: interactions if i ≠ fÞ; ð12Þ

where L0ðΦ; uÞ contains the kinetic terms of the new
degrees of freedom and li;f are SM charged leptons. The
Uð1ÞQED charges of the new fields are left free but must
obey the charge conservation condition QΦ ¼ −1 −Qu.
The interactions in Eq. (12) allow us to model the

dominant OðαsY2Þ contribution of new physics into the
vertex of Fig. 1, recovering for instance the case of scalar
leptoquark scenarios. In fact, when u is identified with the
(Majorana conjugated) top quark, Eq. (12) results from the
Lagrangian of the S1 ∼ ð3; 1;−1=3Þ or R2 ∼ ð3; 2; 7=6Þ
scalar leptoquark models, after the SM spontaneous sym-
metry breaking. A full embedding of the present model into
these framework is then straightforwardly obtained by
assigning the degrees of freedom considered here to
the appropriate SUð2Þ multiplets, as well as by setting
the corresponding hypercharges to the desired values.
Differently, if u is a new fermionic field, we can explore

a larger set of models bounded only by the requirement that
u be heavier than the involved SM lepton, as imposed by
our methodology. In regard of this, we will focus on three
different scenarios characterized by complementary mass
hierarchies

(i) Scenario I: Mu ≫ MΦ ≫ ml
(ii) Scenario II: MΦ ∼Mu ≫ ml
(iii) Scenario III: MΦ ≫ Mu ≫ ml

which require different subdiagram expansions. In the next
sections we first clarify the meaning of this last statement
by laying out the employed methodology. Afterwards, we
detail the leading order (LO) and NLO contributions to the
form factors F2ð0Þ and G2ð0Þ introduced in Sec. II.

A. Methodology

Loop computations greatly benefit from the presence
of sharp scale hierarchies, which encourage the use of
natural series expansions to simplify the integrations
involved. However, the result of a series expansion and
loop integration is generally sensitive to the order in which
these operations are taken and, consequently, more elabo-
rate methods must be employed to address this issue. The
rules for a correct asymptotic expansion around a large
mass limit have been elaborated in Refs. [42–45] in the
form of an expansion in subdiagrams defined as

FGðq;M;m; ϵÞ⟶M→∞X
σ

FG=σðq;M;m; ϵÞ

· Tqσ ;mσFσðqσ;M;mσ; ϵÞ: ð13Þ

In the formula above, T is the Taylor expansion operator
that acts on the Feynman integral Fσ corresponding to the
subdiagram σ, which depends on the mass mσ and
momentum qσ, while FG=σ is the Feynman integral for
the original diagram G after the subdiagram σ has been
collapsed to a simple vertex. The summation is on all
subdiagrams σ that contain all lines associated with the
large mass M and, also, are one-particle irreducible with
respect to the lines associated to the small mass m.
In the case of the present analysis, applying the above

procedure to the diagrams in Figs. 2 and 3 reduces the
integration of the involved multi-scale Feynman amplitudes
to products of single-scale tadpole diagrams. The latter are
then easily addressed for instance via the MATAD [46]
package for the FORM [41] symbolic manipulation system,
up to the three-loop level in d dimensions. The large-mass
expansion is performed by means of the EXP and Q2E codes
[47,48], prompting the resulting output to MATAD. Other
technicalities, as the reduction of scalar products of loop
momenta belonging to different subdiagrams or external
momenta, are addressed by FORM codes developed in-
house that implement the integration by parts identities
generated through LITERED [49]. We use QGRAF [50] to
produce the involved diagrams. All computations are
performed in the MS renormalization scheme.
Before considering the first of the proposed scenarios,

we want to remark on the interplay between gauge
invariance and ultraviolet divergences that renormalization
establishes. Within a renormalizable theory, the available
counterterms needed for the regularization of the loop
corrections are in 1 to 1 correspondence with the four-
dimensional operators contained in the Lagrangian. The
renormalizability of the theory specified in Eq. (12) then
ensures that form factors other than F1ðtÞ are necessarily
finite quantities.
This is certainly the case at the one-loop level, where the

relevant corrections are finite. On general grounds, how-
ever, we expect that terms proportional to 1=ðd − 4Þ appear
at the two-loop level due to the presence of divergent
subdiagrams. The consistency of the framework requires
these terms to cancel upon the inclusion of the diagrams in
Fig. 2, properly dressed with renormalized couplings and
propagators. In performing our analyses we have explicitly

FIG. 2. The two contributions into the analyzed lepton-lepton-
photon vertex sourced by Eq. (12) at the one-loop level. The blue
fermionic lines are associated to the u field.
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verified these cancellations for a generic choice of the
gauge parameter. The expression obtained for each indi-
vidual amplitude can be found in the ancillary file.

B. Scenario I: Mu ≫ MΦ ≫ ml

We begin our exploration of scalar SLMs with the
scenario where the new fermionic degree of freedom u
is much heavier than the scalar Φ. The expressions for the
analyzed form factors delivered through the detailed
computational strategy are

F I ¼ χF
ml

mu

�
ðNcκ

1L
I þ αsTcκ

2L
I Þ

þm2
Φ

m2
u
ðNcρ

1L
I þ αsTcρ

2L
I Þ

�
; ð14Þ

where the specific form factor label F I and corresponding
coefficient χF are given in Table II. In the expression
above, Nc ¼ 3 is the number of colors in the fundamental
representation and Tc ¼ 4 is half the trace of the unit matrix
in the color adjoint representation. The loop functions are
instead specified by

κ1LI ¼ −
1þ 2Qu

32π2
; ð15Þ

ρ1LI ¼ 1

32π2

�
−3 − 2Qu þ 4ð1þQuÞ ln

mu

mΦ

�
; ð16Þ

κ2LI ¼ −
30þ π2 þ 63Qu

576π3
; ð17Þ

ρ2LI ¼ 1

16π3

�
−
141þ 2π2 þ 90Qu

72
þ 5ð1þQuÞln2

mu

mΦ

− 3
5þ 4Qu

4
ln
mΦ

μ

þ
�
−
3

2
þ 3ð1þQuÞ ln

mΦ

μ

�
ln

mu

mΦ

�
; ð18Þ

which hold in the minimal subtraction scheme.
We observe that the leading one-loop contribution4

vanishes if Qu ¼ −1=2.
Notice also that although the corrections that determine

g-2 and EDM differ already at the one loop level, the
difference is always proportional to the mass of the involved
lepton. In the scenarios we analyze, given the considered
mass hierarchy, such difference is therefore negligible.

FIG. 3. Diagrams sourced at the two-loop level by Eq. (12). In total there are 15 different contributions as the topologies which are not
specular result in two different contributions. Blue lines indicate a propagating u fermion.

4Other terms at the same loop order have a relative suppression
of ðmΦ=muÞ2.
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C. Scenario II: Mu ∼MΦ ≫ ml

In this regime the only mass ratio available is ml=mu ¼
ml=mΦ. Given that observations force ml to be many
orders of magnitude below the remaining masses, we safely
retain only first order terms in the expansions of the form
factors:

F II ¼ χF
ml

mΦ
ðNcκ

1L
II þ αsTcκ

2L
II Þ; ð19Þ

where F II and χF are presented in Table II. For this
scenario we find

κ1LII ¼ 1þ 3Qu

96π2
; ð20Þ

κ2LII ¼ −
1þ 2Qu

384π3

�
5þ 3 ln

mΦ

μ

�
: ð21Þ

We notice that the one-loop contribution identically van-
ishes if Qu ¼ −1=3, barring negligible corrections propor-
tional to further powers of the ml=mu ratio.

D. Scenario III: MΦ ≫ Mu ≫ ml

Finally, referring to Table II, for the case MΦ > Mu we
have

F III ¼ χF
ml

mΦ

�
mu

mΦ
ðNcκ

1L
III þ αsTcκ

2L
III Þ

þ m3
u

m3
Φ
ðNcρ

1L
III þ αsTcρ

2L
III Þ

�
; ð22Þ

where the involved loop functions here are

κ1LIII ¼
−1þ 2Qu

32π2

�
1þ 2 ln

mu

mΦ

�
; ð23Þ

ρ1LIII ¼
1

32π2

�
−3þ 2Qu þ 4ð2Qu − 1Þ ln mu

mΦ

�
; ð24Þ

κ2LIII ¼
1

16π3

�
−
87þ 2π2 − 162Qu

72
þ 2Quln2

mΦ

mu

þ 3
1 − 4Qu

4
ln
mu

μ

þ
�
3 − 16Qu

4
þ 3Qu ln

mu

μ

�
ln
mΦ

mu

�
; ð25Þ

ρ2LIII ¼
1

8π3

�
−
138þπ2−99Qu

72

þ2Quln2
mΦ

mu
þ3ð1−QuÞ ln

mu

μ

þ
�
3

2
ð2−3QuÞ−3ð1−2QuÞ ln

mu

μ

�
ln
mΦ

mu

�
: ð26Þ

We remark that scalar leptoquarks models fall in this
scenario after the u fermion is identified, upon a Majorana
conjugation, with the SM top quark.

IV. PRECISION TESTS OF SIMPLIFIED
LEPTOQUARK MODELS

The form factors in the previous sections provide a
straightforward way to match the lepton precision observ-
ables within any scheme of new physics that recovers, in a
limit, the proposed SLMs. In more detail, possible radiative
flavor violating decays can be tested against the known
limits by simply computing

Brðli → lfγÞ ¼
αemmliτli

2
ðjF̃2ð0Þj2 þ jG̃2ð0Þj2Þ; ð27Þ

where αem is the fine structure constant and mli , τli the
mass and lifetime of the initial state lepton, respectively.
The observable plays an important role in scenarios where
new degrees of freedom couple to different SM generations
and strongly constrains, for instance, any simultaneous
explanation of the electron and muon AMM anomalies.
The inclusion of new complex Yukawa couplings in
Eq. (12) furthermore provides additional sources of CP-
violations, which inevitably contribute to the EDM
dl ¼ iG2ð0Þ=2ml. Together with the AMM al ¼ F2ð0Þ,
the mentioned observables offer a way to fully test the
Yukawa sector in Eq. (12) and, more in general, any scalar
leptoquark sector of new physics models.
Pending the release of new data concerning the muon

AMM, in this paper we opt to focus on the impact of
ðg − 2Þμ;e to demonstrate the reach of the proposed frame-
work. We pay particular attention to the identification of
regions in the parameter space where the two-loop con-
tributions are comparable to the LO ones, because of an
enhancement of the former or a suppression of the latter.
For the similarity in the loop structures of the analyzed
form factors, we expect similar effects to manifest also in
the remaining precision observables.

TABLE II. Form factors and corresponding coefficients to be used in Eqs. (14), (19), and (22) for j ¼ I; II; III,
respectively.

F j∶ F2ð0Þ G2ð0Þ F̃2ð0Þ G̃2ð0Þ
χF : yLi

y†Ri
þ y†Li

yRi
yLi

y†Ri
− y†Li

yRi
yLi

y†Rf
þ y†Lf

yRi
yLi

y†Rf
− y†Lf

yRi
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Because of the tight bound posed by the non-observation
of μ → γe transitions, on top of the absence of an efficient
suppression mechanism, we a priori disregard common
explanations of the ðg − 2Þe;μ anomalies. Similarly, the tight
bound on the de forces aligned phases in the Yukawa
couplings for the electron in Eq. (12). The case of the muon
is different as the current limit does not significantly
constrain the corresponding CP phase and, in principle,
generic Yukawa parameters are thus allowed. In regard of
this, the future increment of 2 order of magnitudes in the
sensitivities of the Fermilab and J-PARC experiments
[51,52], or the at-least 3 order improvement proposed with
PSI [53], will exhaustively probe the possible correlations
between large values of dμ and the muon AMM anomaly
that complex Yukawa couplings source [19].
Before detailing our results, we stress that the performed

numerical computations account for the running of SM
couplings, but neglect the renormalization group (RG)
evolution of the new physics interactions. The residual
dependence of form factors on the RG scale μ is addressed
by setting the latter to the value of the intermediate mass
in the scenario under consideration. We have checked that
the implied uncertainty is negligible for the span of the
hierarchy in the masses of the involved colored particles.

A. Scenario I: mu ≫ mΦ ≫ ml

In the first panel of Fig. 4 we show the magnitude of the
two-loop contribution relative to the one-loop correction, as
a function of the intermediate mass mΦ of the scalar field
and the charge Qu of the heavy fermion u. Because the

leading contribution into the one-loop result vanishes for
Qu ¼ −1=2, we observe the presence of a region centered
around this critical value where the NLO cannot be
neglected. The effect broadens as the ratio mu=mΦ is
relaxed and is therefore of interest for the phenomenology
of UV-completed models that contain extra fermions on top
of scalar leptoquarks [54,55].
The mentioned region is plotted again in the right panel

of Fig. 4, where a gray vertical band indicates the region of
parameter space in which the two-loop term exceeds 1=4 of
the corresponding one-loop contribution. The relative size
of the considered corrections depends only on the charge
Qu as the Yukawa structure is common to both the terms.
The threshold has been chosen arbitrarily to highlight the
impact of NLO effects. The dark (light) green and blue
areas show the 1σ (2σ) confidence intervals for the electron
and muon AMMmeasurements, respectively. The contours
are plotted with respect to the charge of the heavy fermion,
Qu, and the lepton-Φ Yukawa coupling Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijYLjjYRj

p
.

For the purpose of the plot we assumed a vanishing relative
phase. We remark that the bound due to μ → eγ searches
prevents a common explanation of the two anomalies
within the present framework.
The impact of the NLO contribution on the AMM of

muon and electron is analyzed once again in Fig. 5. In the
left panel we match the 2σ contours for the electron (green)
and muon (blue) measurements after setting the u charge
to the critical value Qu ¼ −1=2. The lighter areas, which
account for the contribution of the LO only, differ signifi-
cantly from the full NLO solutions indicated by the darker

FIG. 4. Left panel: magnitude of the two-loop correction relative to the one-loop leading order, as a funtion of the scalar mass mϕ and
the u fermion electric chargeQu. Right panel: 1σ and 2σ confidence regions for the (g − 2) anomaly of electron (green) and muon (blue)
evaluated at the NLO as a function of the Yukawa coupling, Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijYLjjYRj

p
, and Qu, assuming mu ¼ 10 TeV and mΦ ¼ 4 TeV. The

gray band centered on Qu ¼ −1=2 signals the region where the two-loop contribution cannot be neglected.
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regions. In the right panel we repeat the exercise for a value
of the charge Qu away from the critical one, finding that
the LO solutions are essentially indistinguishable from the
NLO ones.
As mentioned before, the current bound on the muon

EDM, Eq. (6), leaves space for new complex Yukawa
couplings that would induce a correlation between the
muon EDM and AMM. In fact, the definitions of the
involved form factors show that for complex couplings

aμ ∼ ReYLY
†
R ∼ jYLjjYRj cosðθL − θRÞ;

dμ ∼ ImYLY
†
R ∼ jYLjjYRj sinðθL − θRÞ: ð28Þ

By opportunely redefining the involved phases we then
obtain

aμ ∼ Y2 cosðθcpÞ; dμ ∼ Y2 sinðθcpÞ; ð29Þ

where again Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijYLjjYRj
p

. In Fig. 6 we plot these
quantities as a function of the magnitude and relative
phase of the involved Yukawa couplings, for a critical
(left panel) and noncritical (right panel) Qu charge. In the
former case it is clearly possible to distinguish the effect
of the two-loop contribution, which could be therefore
probed in the forthcoming experiments that target the muon
EDM [51–53].

B. Scenario II: mΦ ∼mu ≫ ml

When the masses of the new colored states are close in
value, the phenomenology of SLMs depends on the unique
new physics scale mΦ ¼ mu. Collider experiments force a
strong suppression of the ratio ml=mΦ, in a way that the
LO always dominates the mass expansion of the considered
amplitudes and the structure of the form factors simplifies
as shown in Sec. III C.
In this case, we find that the two-loop contribution is

negligible except in a narrow area of the parameter space
centered on Qu ¼ −1=3, where the one-loop contribution
identically vanishes. This is illustrated in the left panel of
Fig. 7, where again we plot the magnitude of the two-loop
contribution relative to the LO one on the considered
parameter space.
As we can see from the right panel of Fig. 7 and Figs. 8, 9,

the results obtained for the Scenario I hold also in the present
case, albeit a different critical value of the charge Qu. We
however remark that, at the critical value Qu ¼ −1=3, the
precision observables probe here the two-loop contribution
alone, rather than a combination of one-loop and two-loop
corrections as in the previous scenario.

C. Scenario III: mΦ ≫ mu ≫ ml

For the scenariomΦ ≫ mu ≫ ml, the relative magnitude
of the two-loop correction is an involved function of the
available mass ratios and of the fermion charge Qu. This is
shown in the left panel of Fig. 10, where we observe that the

FIG. 5. Left panel: 2σ contours for the AMM of electron (green) and muon (blue), as a function of the new lepton Yukawa coupling
Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijYLjjYRj

p
and the mass of the involved scalar field mϕ. The charge of the heavy fermion is set at the critical value Qu ¼ −1=2.

The lighter regions correspond to the prediction of the LO contribution only, whereas the darker region account also for the NLO
result. Right panel: same as the left panel for a noncritical charge Qu ¼ 2=3. The solutions for NLO are indistinguishable from those
of the LO alone.
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NLO is generally indistinguishable from the LO result for
mu ≲ 4 TeV, barring a narrow region around the critical
value Qu ≃ −0.15. For larger values of the fermion mass,
instead, the correction is sizeable and affects the muon and
electron AMM for a wider range of u charges. The effect is
analysed in the right panel of Fig. 10, where we highlight

the charge range yielding sizeable NLO corrections, as
well as in the left panel of Fig. 11 where the NLO
solutions are clearly distinguishable. The result is con-
firmed by the analysis of the correlation between muon
AMM and EDM, shown in the left panel of Fig. 12. Here
we see that a fermion and a scalar states in the few TeV

FIG. 7. Left panel: magnitude of the two-loop correction relative to the one-loop leading order on the considered parameter space.
Right panel: 1σ and 2σ confidence regions for the (g − 2) anomaly of electron (green) and muon (blue) evaluated at the NLO as a
function of the Yukawa coupling, Y, and electric charge of the u fermion,Qu, assumingmu ¼ mΦ ¼ 4 TeV. The gray band centered on
Qu ¼ −1=3 shows the region where the two-loop contribution cannot be neglected.

FIG. 6. Phase and magnitude of the complex Yukawa coupling of the muon that match, in correspondence of the shaded regions, the
measured ðg − 2Þμ 2σ interval. In both the panels, the dotted lines indicate the expected order of magnitude of the muon EDM (e · cm).
Left panel: Qu ¼ −1=2, the LO solutions (lighter area) are clearly distinguishable from the full two-loop contribution (darker).
Right panel: Qu ¼ 2=3, the NLO solutions are indistinguishable from the LO ones.
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range still yield important NLO contributions of phenom-
enological interest.
Differently, once the u fermion is identified with the SM

top quark (or with its Majorana conjugate), the two-loop

contribution becomes clearly subdominant. The case is
shown in right panels of Figs. 11 and 12, where the NLO
solutions inevitably overlap with the LO result on all of the
considered parameter space. Two-loop corrections can then

FIG. 9. Phase and magnitude of the complex Yukawa coupling of the muon that match, in correspondence of the shaded regions, the
measured ðg − 2Þμ 2σ interval. In both the panels, the dotted lines indicate the expected order of magnitude of the muon EDM (e · cm).
Left panel: Qu ¼ −1=3, the solutions are determined by the two-loop contribution alone for a new physics scale of 3 TeV. Right panel:
Qu ¼ 2=3 and the new physics scale is set to 10 TeV. The NLO solutions are indistinguishable from the LO ones.

FIG. 8. Left panel: 2σ contours for the AMM of electron (green) and muon (blue), as a function of the lepton Yukawa coupling
Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijYLjjYRj

p
and the new physics scale. The charge of the heavy fermion is set at the critical valueQu ¼ −1=3, forcing the one-loop

contribution to identically vanish. Right panel: same as the left panel for a charge Qu ¼ 2=3 away form the critical value. The solutions
for NLO are indistinguishable from those of the LO alone.
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be safely neglected, for instance, within the R2 leptoquark
model (u≡ t; Qu ¼ 2=3) as the positive u charge prevents
any NLO enhancement. As for the S1 model, where
Qu ¼ −2=3 (u≡ tc; Qu ¼ −2=3), we find instead that
entering the NLO enhancement region requires values of
the scalar field mass forbidden by collider searches.

V. IMPACT OF PRECISION Z
MEASUREMENTS

On general grounds, accounting for the precision mea-
surements of the Z boson branching ratios requires
the specification of an ultraviolet completion for the
present framework. In fact, the considered new physics

FIG. 11. Left panel: 2σ contours for the AMM of electron (green) and muon (blue), as a function of the lepton Yukawa coupling
Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijYLjjYRj

p
and the fermion mass mu for a critical value of the fermion charge Qu ¼ −1=3. The NLO solutions are clearly

distinguishable from the LO result. Right panel: same as the left panel after identifying the fermion u with the SM top quark. The
solutions for NLO are now indistinguishable from those of the LO alone.

FIG. 10. Left panel: magnitude of the two-loop correction relative to the one-loop leading order on the considered parameter space.
Right panel: 1σ and 2σ confidence regions for the (g − 2) anomaly of electron (green) and muon (blue) evaluated at the NLO as a
function of the Yukawa coupling, Y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijYLjjYRj

p
, and electric charge of the u fermion, Qu, assuming mu ¼ 4 TeV and mϕ ¼ 10 TeV.

The gray band indicates the presence of sizeable NLO contributions.
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contributions to the muon and electron AMM exploit
the simultaneous presence of both chiral couplings in
the Yukawa structure presented in Table II. While this is
automatically the case if the u fermion is identified with
a SM quark, in more general scenarios it is therefore
necessary to opportunely extend the Yukawa sector. A
minimal setup is provided by the following Lagrangian:

L ¼ LSM þ f̄ði=D −mfÞf þ χ̄ði=D −mχÞχ
þ ðDμΦÞ†ðDμΦÞ −m2

ΦΦ†Φþ λRf̄cRlRΦ†

þ λLχ̄
c
Liτ2LLΦ† − k1χ̄Liτ2H†fR

− k2χ̄Riτ2H†fL þ H:c:: ð30Þ

In the above equation H, LL, and lR are the SM Higgs
doublet, lepton doublet, and right handed lepton, respec-
tively. The scalar field Φ and the Dirac fermions χ and f
transform under the SM gauge group as detailed in
Table III. Because the conservation of hypercharge requires

yΦ ¼ yf − 1; yχ ¼ yf −
1

2
;

we identify the u fermion of SLMs with the Majorana
conjugated up component χu of χ. In fact, taking Φ as the
corresponding scalar of SLMs, we correctly recover the
relation among the QED chargesQΦ−Qχu ¼QΦþQu¼−1
implied by Eq. (12).
After the spontaneous symmetry breaking of weak

interactions, the up component of χ and the fermion f
are mixed by new mass contributions quantified in

−L ⊃ ðf̄; χ̄uÞL
�
mf m2

m1 mQ

��
f

χu

�
R

; ð31Þ

where χ ¼ ðχu; χdÞ and m1;2 ¼ k1;2v=
ffiffiffi
2

p
, v ¼ 246 GeV

being the Higgs boson vacuum expectation value. The mass
matrix is diagonalized through a biunitary transformation
involving the mixing matrices UR and UL, defined implic-
itly by

�
f

χu

�
R

¼
�

cosðθRÞ sinðθRÞ
− sinðθRÞ cosðθRÞ

��
ψ1

ψ2

�
R

;

�
f

χu

�
L

¼
�

cosðθLÞ sinðθLÞ
− sinðθLÞ cosðθLÞ

��
ψ1

ψ2

�
L

: ð32Þ

In term of the mass eigenstates ψ1;2, the Lagrangian
consequently admits the following terms

TABLE III. Representation and charges of the considered
degrees of freedom.

Field: SUð3Þc SUð2ÞL qY

Φ 3 1 yΦ
f 3 1 yf
χ 3 2 yQ

FIG. 12. Phase and magnitude of the complex Yukawa coupling of the muon that match, in correspondence of the shaded regions, the
measured ðg − 2Þμ 2σ interval. In both the panels, the dotted lines indicate the expected order of magnitude of the muon EDM (e · cm).
Left panel: a generic scenario with new physics at the TeV scale and for a critical value of Qu ¼ −1=3. The effect of NLO is clearly
sizeable. Right panel: the same as in the left panel after identifying the fermion u with the SM top quark. The two-loop contribution is
negligible.
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L ⊃ ψ̄1½λR cosðθLÞPR − λL sinðθRÞPL�lΦ†

þ ψ̄2½λR sinðθLÞPR þ λL cosðθRÞPL�lΦ† ð33Þ

where PL;R ¼ ð1� γ5Þ=2 are the usual chirality projectors.
We remark that the spontaneous symmetry breaking is
pivotal in recovering the structure of the SLM Lagrangian
in Eq. (12).
With the above expression at hand, we checked the

experimental constraints imposed by the lepton universality
of Z boson decays, finding that the bound mainly affects
the axial current. However, in all the scenarios analyzed, we
find it possible to avoid the constraint without impairing the
AMM solution in a large part of the parameter space, which
favours values of the mixing angles θL ≃ θR.

VI. CONCLUSIONS

The planned and ongoing lepton experiments require an
improvement in the precision of the corresponding theo-
retical predictions, needed to disentangle the possible
effects of new physics. To this purpose, in the present
paper we have investigated the structure of the lepton-
photon vertex within extensions of the standard model that
involve colored degrees of freedom coupled to leptons.
In order to detail the dominant corrections in a manner as

general as possible, we have introduced the simplified
leptoquark models: straightforward extensions of the stan-
dard model where the leptons interact with new colored and
electrically charged degrees of freedom. The framework is
therefore meant to reproduce the main phenomenological
features of complete theories that propose such interactions,
for instance leptoquark or grand unification models.
In this first exploration of simplified leptoquark models

we have considered the effects of an additional colored

scalar particle, coupled to a standard model charged lepton
and either a quark or a new colored fermionic field. With
this simplified setup, which neglects subdominant weak
interactions, we have computed the dominant two-loop
corrections due to the new Yukawa and color interactions
for three scenarios characterized by different mass hier-
archies. The obtained expressions of the involved two-loop
amplitudes constitute a first technical result of the analysis
that improves on the literature for the precision achieved.
With these expressions at hand, we studied the three

scenarios in isolation focusing in particular on the anoma-
lous magnetic moment of the electron and muon, pending
new experimental results regarding the latter. If the colored
fermion involved in the interactions is not a quark of the
Standard Models, we find regions of the parameter space
where the two-loop contribution cannot be neglected. In
fact, on these regions the one-loop corrections progres-
sively vanish as the electric charge of the colored fermion
approaches a critical value, specific of the chosen mass
hierarchy. On the contrary, we find that once the fermion is
identified with a Standard Model quark, the two-loop
contributions can safely be neglected. We argue that similar
enhancements appear also in other leptonic precision
observables because of the similar loop structures of the
involved form factors.

ACKNOWLEDGMENTS

Thisworkwas supportedby theEstonianResearchCouncil
GrantsNo.PRG356,No.PRG803,No.MOBTT86andby the
EU through the European Regional Development Fund CoE
Program No. TK133 “The Dark Side of the Universe”. The
authors thank M. Steinhauser for providing EXP and Q2E, as
well as further guidance to their use.

[1] A. Abada et al. (FCC Collaboration), FCC-hh: The hadron
collider: Future circular collider conceptual design report
volume 3, Eur. Phys. J. Special Topics 228, 755 (2019).

[2] A. Abada et al. (FCC Collaboration), FCC-ee: The lepton
collider: Future circular collider conceptual design report
volume 2, Eur. Phys. J. Special Topics 228, 261 (2019).

[3] A. Abada et al. (FCC Collaboration), HE-LHC: The high-
energy large hadron collider: Future circular collider con-
ceptual design report volume 4, Eur. Phys. J. Special Topics
228, 1109 (2019).

[4] A. Abada et al. (FCC Collaboration), FCC physics oppor-
tunities: Future circular collider conceptual design report
volume 1, Eur. Phys. J. C 79, 474 (2019).

[5] J. Grange et al. (Muon g-2 Collaboration), Muon (g-2)
technical design report, arXiv:1501.06858.

[6] D. Hanneke, S. Fogwell, and G. Gabrielse, New Measure-
ment of the Electron Magnetic Moment and the Fine
Structure Constant, Phys. Rev. Lett. 100, 120801 (2008).

[7] D. Hanneke, S. Hoogerheide, and G. Gabrielse, Cavity
control of a single-electron quantum cyclotron: Measuring
the electron magnetic moment, Phys. Rev. A 83, 052122
(2011).

[8] A. Baldini et al. (MEG Collaboration), Search for the lepton
flavour violating decay μþ → eþγ with the full dataset of the
MEG experiment, Eur. Phys. J. C 76, 434 (2016).

[9] S. Laporta, High-precision calculation of the 4-loop con-
tribution to the electron g-2 in QED, Phys. Lett. B 772, 232
(2017).

[10] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio,
Tenth-Order QED Contribution to the Electron g-2 and

SIMPLIFIED LEPTOQUARK MODELS FOR PRECISION li → lfγ … PHYS. REV. D 102, 115020 (2020)

115020-13

https://doi.org/10.1140/epjst/e2019-900087-0
https://doi.org/10.1140/epjst/e2019-900045-4
https://doi.org/10.1140/epjst/e2019-900088-6
https://doi.org/10.1140/epjst/e2019-900088-6
https://doi.org/10.1140/epjc/s10052-019-6904-3
https://arXiv.org/abs/1501.06858
https://doi.org/10.1103/PhysRevLett.100.120801
https://doi.org/10.1103/PhysRevA.83.052122
https://doi.org/10.1103/PhysRevA.83.052122
https://doi.org/10.1140/epjc/s10052-016-4271-x
https://doi.org/10.1016/j.physletb.2017.06.056
https://doi.org/10.1016/j.physletb.2017.06.056


an Improved Value of the Fine Structure Constant, Phys.
Rev. Lett. 109, 111807 (2012).

[11] A. Czarnecki, B. Krause, and W. J. Marciano, Electroweak
Corrections to the Muon Anomalous Magnetic Moment,
Phys. Rev. Lett. 76, 3267 (1996).

[12] G.W. Bennett et al. (Muon g-2 Collaboration), Final report
of the muon E821 anomalous magnetic moment measure-
ment at BNL, Phys. Rev. D 73, 072003 (2006).

[13] S. Borsanyi et al., Leading-order hadronic vacuum polari-
zation contribution to the muon magnetic momentfrom
lattice QCD, arXiv:2002.12347.

[14] A. Crivellin, M. Hoferichter, C. A. Manzari, and M. Montull,
Hadronic Vacuum Polarization: ðg − 2Þμ Versus Global
Electroweak Fits, Phys. Rev. Lett. 125, 091801 (2020).

[15] H. Davoudiasl and W. J. Marciano, Tale of two anomalies,
Phys. Rev. D 98, 075011 (2018).

[16] A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg,
Combined explanations of (g–2) μ, e and implications for a
large muon edm, Phys. Rev. D 98, 113002 (2018).

[17] V. Andreev et al. (ACME Collaboration), Final report of the
Muon E821 anomalous magnetic moment measurement at
BNL, Nature (London) 562, 355 (2018).

[18] A. Grozin, I. Khriplovich, and A. Rudenko, Upper limits
on electric dipole moments of tau-lepton, heavy quarks, and
W-boson, Nucl. Phys. B821, 285 (2009).

[19] A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg,
Combined explanations of ðg − 2Þμ;e and implications for a
large muon EDM, Phys. Rev. D 98, 113002 (2018).

[20] D. Bečirević, S. Fajfer, N. Košnik, and O. Sumensari,
Leptoquark model to explain the B-physics anomalies,
RK and RD, Phys. Rev. D 94, 115021 (2016).

[21] T. Mandal, S. Mitra, and S. Raz, RDð�Þ motivated S1

leptoquark scenarios: Impact of interference on the exclu-
sion limits from LHC data, Phys. Rev. D 99, 055028 (2019).

[22] I. Doršner, S. Fajfer, A. Greljo, J. Kamenik, and N. Košnik,
Physics of leptoquarks in precision experiments and at
particle colliders, Phys. Rep. 641, 1 (2016).

[23] P. Bandyopadhyay and R. Mandal, Revisiting scalar lep-
toquark at the LHC, Eur. Phys. J. C 78, 491 (2018).

[24] A. Angelescu, D. Bečirević, D. Faroughy, and O. Sumen-
sari, Closing the window on single leptoquark solutions to
the B-physics anomalies, J. High Energy Phys. 10 (2018)
183.

[25] T. Faber, Y. Liu, W. Porod, M. Hudec, M. Malinský, F.
Staub, and H. Kolešová, Collider phenomenology of a
unified leptoquark model, Phys. Rev. D 101, 095024 (2020).

[26] J. Aebischer, A. Crivellin, and C. Greub, QCD improved
matching for semileptonic B decays with leptoquarks, Phys.
Rev. D 99, 055002 (2019).

[27] U. Aydemir, T. Mandal, and S. Mitra, Addressing the RDð�Þ

anomalies with an S1 leptoquark from SOð10Þ grand
unification, Phys. Rev. D 101, 015011 (2020).

[28] O. Popov, M. A. Schmidt, and G. White, R2 as a single
leptoquark solution to RDð�Þ and RKð�Þ , Phys. Rev. D 100,
035028 (2019).

[29] M. Blanke, M. Moscati, and U. Nierste, Interplay of RDð�Þ

and Zll in the scalar leptoquark scenario, Springer Proc.
Phys. 234, 431 (2019).

[30] N. Košnik, D. Bečirević, I. Doršner, S. Fajfer, D. A.
Faroughy, and O. Sumensari, Ultraviolet complete

leptoquark scenario addressing the B physics anomalies,
Springer Proc. Phys. 234, 425 (2019).

[31] A. Crivellin, D. Müller, and F. Saturnino, Flavor phenom-
enology of the leptoquark singlet-triplet model, J. High
Energy Phys. 06 (2020) 020.

[32] C. Borschensky, B. Fuks, A. Kulesza, and D. Schwartländer,
Precision predictions for scalar leptoquark pair-production
at hadron colliders, Phys. Rev. D 101, 115017 (2020).

[33] I. Bigaran and R. R. Volkas, Getting chirality right: Top-
philic scalar leptoquark solution to the ðg − 2Þe;μ puzzle,
Phys. Rev. D 102, 075037 (2020).

[34] P. Arnan, D. Becirevic, F. Mescia, and O. Sumensari,
Probing low energy scalar leptoquarks by the leptonic W
and Z couplings, J. High Energy Phys. 02 (2019) 109.

[35] S. M. Barr and A. Zee, Electric Dipole Moment of the
Electron and of the Neutron, Phys. Rev. Lett. 65, 21 (1990);
Erratum, Phys. Rev. Lett. 65, 2920 (1990).

[36] D. Chang, W.-Y. Keung, and T. C. Yuan, Two loop bosonic
contribution to the electron electric dipole moment, Phys.
Rev. D 43, R14 (1991).

[37] D. Chang, W.-F. Chang, C.-H. Chou, and W.-Y. Keung,
Large two loop contributions to g-2 from a generic pseu-
doscalar boson, Phys. Rev. D 63, 091301 (2001).

[38] A. Arhrib and S. Baek, Two loop Barr-Zee type contribu-
tions to (g-2)(muon) in the MSSM, Phys. Rev. D 65, 075002
(2002).

[39] V. Ilisie, New Barr-Zee contributions to ðg − 2Þμ in two-
Higgs-doublet models, J. High Energy Phys. 04 (2015) 077.

[40] T. Abe, J. Hisano, T. Kitahara, and K. Tobioka, Gauge
invariant Barr-Zee type contributions to fermionic EDMs in
the two-Higgs doublet models, J. High Energy Phys. 01
(2014) 106; Erratum, J. High Energy Phys. 04 (2016) 161.

[41] B. Ruijl, T. Ueda, and J. Vermaseren, FORM version 4.2,
arXiv:1707.06453.

[42] V. A. Smirnov, Asymptotic expansions in limits of large
momenta and masses, Commun. Math. Phys. 134, 109
(1990).

[43] V. A. Smirnov, Asymptotic expansions in momenta and
masses and calculation of Feynman diagrams, Mod. Phys.
Lett. A 10, 1485 (1995).

[44] V. A. Smirnov, Applied asymptotic expansions in momenta
and masses, Springer Tracts Mod. Phys. 177, 1 (2002).

[45] J. Fleischer, A. Kotikov, and O. Veretin, Applications of the
large mass expansion, Acta Phys. Pol. B 29, 2611 (1998).

[46] M. Steinhauser, MATAD: A Program package for the
computation of MAssive TADpoles, Comput. Phys. Com-
mun. 134, 335 (2001).

[47] T. Seidensticker, Automatic application of successive
asymptotic expansions of Feynman diagrams, in 6th
International Workshop on New Computing Techniques
in Physics Research: Software Engineering, Artificial In-
telligence Neural Nets, Genetic Algorithms, Symbolic
Algebra, Automatic Calculation (1999), p. 5, arXiv:hep-
ph/9905298.

[48] R. Harlander, T. Seidensticker, and M. Steinhauser, Com-
plete corrections of Order alpha alpha-s to the decay of
the Z boson into bottom quarks, Phys. Lett. B 426, 125
(1998).

[49] R. N. Lee, LiteRed 1.4: A powerful tool for reduction of
multiloop integrals, J. Phys. Conf. Ser. 523, 012059 (2014).

DELLE ROSE, MARZO, and MARZOLA PHYS. REV. D 102, 115020 (2020)

115020-14

https://doi.org/10.1103/PhysRevLett.109.111807
https://doi.org/10.1103/PhysRevLett.109.111807
https://doi.org/10.1103/PhysRevLett.76.3267
https://doi.org/10.1103/PhysRevD.73.072003
https://arXiv.org/abs/2002.12347
https://doi.org/10.1103/PhysRevLett.125.091801
https://doi.org/10.1103/PhysRevD.98.075011
https://doi.org/10.1103/PhysRevD.98.113002
https://doi.org/10.1038/s41586-018-0599-8
https://doi.org/10.1016/j.nuclphysb.2009.06.026
https://doi.org/10.1103/PhysRevD.98.113002
https://doi.org/10.1103/PhysRevD.94.115021
https://doi.org/10.1103/PhysRevD.99.055028
https://doi.org/10.1016/j.physrep.2016.06.001
https://doi.org/10.1140/epjc/s10052-018-5959-x
https://doi.org/10.1007/JHEP10(2018)183
https://doi.org/10.1007/JHEP10(2018)183
https://doi.org/10.1103/PhysRevD.101.095024
https://doi.org/10.1103/PhysRevD.99.055002
https://doi.org/10.1103/PhysRevD.99.055002
https://doi.org/10.1103/PhysRevD.101.015011
https://doi.org/10.1103/PhysRevD.100.035028
https://doi.org/10.1103/PhysRevD.100.035028
https://doi.org/10.1007/978-3-030-29622-3
https://doi.org/10.1007/978-3-030-29622-3
https://doi.org/10.1007/978-3-030-29622-3
https://doi.org/10.1007/JHEP06(2020)020
https://doi.org/10.1007/JHEP06(2020)020
https://doi.org/10.1103/PhysRevD.101.115017
https://doi.org/10.1103/PhysRevD.102.075037
https://doi.org/10.1007/JHEP02(2019)109
https://doi.org/10.1103/PhysRevLett.65.21
https://doi.org/10.1103/PhysRevLett.65.2920
https://doi.org/10.1103/PhysRevD.43.R14
https://doi.org/10.1103/PhysRevD.43.R14
https://doi.org/10.1103/PhysRevD.63.091301
https://doi.org/10.1103/PhysRevD.65.075002
https://doi.org/10.1103/PhysRevD.65.075002
https://doi.org/10.1007/JHEP04(2015)077
https://doi.org/10.1007/JHEP01(2014)106
https://doi.org/10.1007/JHEP01(2014)106
https://arXiv.org/abs/1707.06453
https://doi.org/10.1007/BF02102092
https://doi.org/10.1007/BF02102092
https://doi.org/10.1142/S0217732395001617
https://doi.org/10.1142/S0217732395001617
https://doi.org/10.1007/3-540-44574-9
https://doi.org/10.1016/S0010-4655(00)00204-6
https://doi.org/10.1016/S0010-4655(00)00204-6
https://arXiv.org/abs/hep-ph/9905298
https://arXiv.org/abs/hep-ph/9905298
https://doi.org/10.1016/S0370-2693(98)00220-2
https://doi.org/10.1016/S0370-2693(98)00220-2
https://doi.org/10.1088/1742-6596/523/1/012059


[50] P. Nogueira, Automatic Feynman graph generation, J.
Comput. Phys. 105, 279 (1993).

[51] Y. K. Semertzidis, A sensitive search for a muon electric
dipole moment, Int. J. Mod. Phys. A 16, 690 (2001).

[52] F. J. M. Farley, K. Jungmann, J. P. Miller, W.M. Morse,
Y. F. Orlov, B. L. Roberts, Y. K. Semertzidis, A. Silenko,
and E. J. Stephenson, New Method of Measuring Electric
Dipole Moments in Storage Rings, Phys. Rev. Lett. 93,
052001 (2004).

[53] A. Adelmann, K. Kirch, C. J. G. Onderwater, and T.
Schietinger, Compact storage ring to search for the muon
electric dipole moment, J. Phys. G 37, 085001 (2010).

[54] J. L. Hewett and T. G. Rizzo, Don’t stop thinking about
leptoquarks: Constructing new models, Phys. Rev. D 58,
055005 (1998).

[55] K. Babu, C. F. Kolda, and J. March-Russell, Implications
of a charged current anomaly at HERA, Phys. Lett. B 408,
261 (1997).

SIMPLIFIED LEPTOQUARK MODELS FOR PRECISION li → lfγ … PHYS. REV. D 102, 115020 (2020)

115020-15

https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1006/jcph.1993.1074
https://doi.org/10.1142/S0217751X01007819
https://doi.org/10.1103/PhysRevLett.93.052001
https://doi.org/10.1103/PhysRevLett.93.052001
https://doi.org/10.1088/0954-3899/37/8/085001
https://doi.org/10.1103/PhysRevD.58.055005
https://doi.org/10.1103/PhysRevD.58.055005
https://doi.org/10.1016/S0370-2693(97)00766-1
https://doi.org/10.1016/S0370-2693(97)00766-1

