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The detection of ultralight dark matter through interactions with nucleons, electrons, and photons has
been explored in depth. In this work we propose to use precision muon experiments, specifically muon g-2
and electric dipole moment measurements, to detect ultralight dark matter (DM) that couples predomi-
nantly to muons. We set direct, terrestrial limits on DM-muon interactions using existing g-2 data, and
show that a time-resolved reanalysis of ongoing and upcoming precession experiments will be sensitive to
dark matter signals. Intriguingly, we also find that the current muon g-2 anomaly can be explained by a spin
torque applied to muons from a pseudoscalar dark matter background that induces an oscillating electric
dipole moment for the muon. This explanation may be verified by a time-resolved reanalysis.
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I. INTRODUCTION

Despite the presence of dark matter (DM) and its
gravitational interactions being well established, its particle
nature and nongravitational interactions with the standard
model (SM) are yet to be illuminated. While the elementary
dark matter mass could span many orders of magnitude, the
ultralight dark matter regime, 10−22eV ≤ mdm ≪ eV, has
received much attention recently. These ultralight particles
arise naturally in solutions to tuning problems, e.g., the
axion [1] and the relaxion [2], as well as in the string
landscape. Furthermore, they also have attractive produc-
tion mechanisms—misalignment for scalars [3], inflation-
ary production for vectors [4,5], and parametric resonance
for both [6–10].
Traditional direct detection experiments targeting the

WIMP scale are not sensitive to ultralight DM, so a plethora
of experiments have been performed and proposed in
recent years exploiting the wavelike properties of this
mass regime. Yet these have exclusively tested dark matter
couplings to photons, electrons, and nucleons [11–15].
Meanwhile, the muon g-2 anomaly [16,17] has led to
exploration of theories with dark forces that predominantly
couple to muons and experimental proposals to find them
[18–21]. Similarly, dark matter itself could dominantly
couple to muons. In this work, we study such models and

explore the possibility of precision muon experiments
directly detecting such muophilic dark matter.
Muon g-2 and EDM experiments, such as the measure-

ment done at BNL [16] in 2004, the ongoing work at
Fermilab [22] and J-PARC [23], and the proposed frozen
spin experiments [24,25], are precision efforts to track the
time evolution of muon spins subject to an external
magnetic field. The primary aim of the g-2 experiments
[16,22,23] is the determination of the muon’s magnetic
dipole moment (MDM). However, they are sensitive to any
new physics which sufficiently alters the precession
dynamics of muon spins. For example, the existence of
a muon electric dipole moment (EDM) has been con-
strained in this manner by the BNL experiment [26] and
will be further tested at Fermilab and J-PARC. The frozen
spin proposals are a more sensitive, dedicated search for
this EDM signal. A coherent dark matter background may
couple to muons in these experiments and alter their
precession by applying a spin torque and by possibly
altering their orbital trajectories. This results in a character-
istic DM precession signal which is observable in these
experiments—we thus propose to repurpose muon preces-
sion experiments as dark matter detectors.1
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1During the preparation of this work, we became aware of two
previous studies along these lines. [27] appeared during the final
stages of this work and considers frozen spin techniques in proton
storage rings to search for DM-induced proton spin precession,
while also briefly considering the use of muons. We also became
aware of [28], which places limits on the precession of anti-
protons spins due to DM and which also mentions the possibility
of doing an analogous search with muons.
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DM perturbations to precession may yield a variety of
signals in these experiments depending on the nature of the
DM candidate. Some candidates would have noticeably
altered the form of the precession signal in the existing
analysis of BNL, allowing us to place immediate con-
straints. These limits will become more stringent with
ongoing and future measurements. In addition, some
candidates may leave the form of the signal unchanged
while shifting the precession frequency or amplitude. This
is intriguing, as it provides an effective contribution to the
anomalous muon MDM or the muon EDM which is set by
the local DM density. Such a DM MDM contribution may
indeed explain the observed discrepancy between the BNL
result and the SM prediction [16,17]. Finally, an ultralight
DM perturbation is generally harmonic in time, resulting in
a modulation of the precession signal on timescales set by
the DM mass. The usual g-2 and EDM analysis is typically
blind to this modulation as it averages over precession data
spanning many DM modulation periods. However, the
modulation may be revealed with a time-resolved rean-
alysis of precession data. This provides both a means of
testing the background DM explanation of the muon g-2
anomaly, as well as a new opportunity for ultralight DM
detection.
The rest of this paper is organized as follows. In Sec. II

we provide an overview of muon precession experiments.
In Sec. III we explore muon precession in the presence of a
coherent dark matter field. In Sec. IV we describe the
sensitivity of existing and upcoming muon precession
experiments to characteristic DM signal shapes. In
Sec. V we consider specific DM candidates and project
limits. Concluding remarks are presented in Sec. VI.

II. OVERVIEW OF MUON SPIN PRECESSION
EXPERIMENTS

This section will provide a criminally simplified descrip-
tion of the physics and techniques employed to measure the
precession of muon spins. We discuss only what is
necessary to reveal the implications of these measurements
on DM-muon interactions. For more thorough reviews, see
[29–31].

A. Spin tracking via muon decay

The spin of a muon is imprinted on the angular and
energy distribution of the positrons2 produced by its decay.
This is a consequence of the chiral structure of the weak
interaction. In the muon rest frame, the decay rate to
positrons of energy E emitted into a solid angle dΩ along n̂
depends on the overlap of n̂ with the muon spin S⃗:

dΓ
dEdΩ

¼ Γ0ðEÞð1 −AðEÞŜ · n̂Þ ð1Þ

where the asymmetry factor AðEÞ is positive3 at the
relevant energies. The outgoing positron flux is emitted
predominantly parallel to the muon spin, with the corre-
lation becoming stronger for higher energy positrons [30].
The average spin of an ensemble of muons may thus be
inferred by measuring the distribution of decay positrons.
This technique is employed by the BNL, Fermilab, and J-
PARC g-2 experiments. Two specific observables are
measured in each experiment, a total count and a vertical
count, each of which tracks a particular component of the
muon spin.

1. Total count

In a lab frame the highest energy decay positrons are
those emitted along the muon momentum p⃗, so the lab
frame energy may serve as a proxy for outgoing direction.
As positrons are predominantly emitted parallel to the
muon spin, it follows that more positrons will be produced
at the highest possible energies if the muons’ spin and
momentum are antialigned than if they are aligned. The rate
of positrons emitted over all directions with a lab frame
energy E depends on the overlap of Ŝ and p̂:�

dΓ
dE

�
p⃗
¼ Γ0

0ðEÞð1 − A0ðEÞŜ · p̂Þ ð2Þ

The total count NTðtÞ is the number of positrons emitted
above a carefully chosen energy threshold, which from
Eq. (2) has the form

NTðtÞ ∝ e−t=τμ ½1þ AðS⃗ · p̂Þ� ð3Þ

for an energy-dependent constant A and the dilated muon
lifetime τμ [29]. The time-evolution of NTðtÞ thus records
the evolution of the projection of the muon spin along its
momentum.

2. Vertical count

The second observable is the difference in the number of
positrons emitted with a velocity component parallel and
anti-parallel to the vertical direction, defined as the direc-
tion of the experiment’s large, static magnetic field B̂. From
Eq. (1), this is proportional to Ŝ · B̂ and thus probes the
component of muon spin along the magnetic field. Instead
of a differential count, an analogous quantity may be
measured which is also proportional to the vertical com-
ponent of the spin, such as the average vertical angle of
outgoing positrons [26,32]. We will refer to this

2In this work we will refer exclusively to positive muons and
their decay to positrons, while in practice experiments also
employ negative muons decaying to electrons.

3The sign of AðEÞ is reversed for electrons produced by the
decay of negative muons.
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measurement generically as the “vertical count” ΔNBðtÞ,
which has the form

ΔNBðtÞ ∝ e−t=τμðS⃗ · B̂Þ: ð4Þ

B. Precession signals

All the muon spin precession experiments we consider,
observe decaying muons which are executing cyclotron
orbits in a uniform, static magnetic field B⃗. The muon spin
precesses in B⃗ and any additional EM fields which are
present. The experiments are designed to measure the
intrinsic muon MDM and/or EDM, so we briefly describe
here the expected precession signals in that case. This will
elucidate the specific design and data analysis choices
made in these experiments (see Secs. II C and II D), as well
as introduce the notions needed to derive the DM-induced
precession signals in Sec. V.
In the lab frame, muons are held in circular orbits in a

plane perpendicular to B⃗. They orbit with the cyclotron
frequency ω⃗C, given by the vertical magnetic field B⃗ and
possibly a radial electric field E⃗ [29]:

ω⃗C ¼ −
q
m

�
1

γ
B⃗ −

�
γ

γ2 − 1

�
ðv⃗ × E⃗Þ

�
: ð5Þ

Note that for radial E⃗, ω⃗C is parallel or antiparallel to B⃗. We
ignore for the moment nonradial E⃗ and the possibility of
muons having non-zero momentum along B⃗, which would
cause a deviation from circular orbits.
It is useful to view the evolution of the muon spin in the

rotating muon rest frame (RMRF). This is a noninertial
frame in which the muon is at rest and the velocity of the
lab always points in the same direction, which we take to be
the y-direction. To reach this frame at a particular time t, we
start with a Cartesian lab frame with B⃗ in the z-direction,
rotate so the muon momentum is in the y-direction, and
then boost along ŷ so the muon is at rest. For muons in
circular, cyclotron orbits, the z-axis of the lab frame and
RMRF coincide. The momentum and vertical components
of S⃗ appearing in the decay counts Eq. (3) and Eq. (4) are
respectively the y and z components of spin in the RMRF.
The muon spin S⃗ in the RMRF evolves according to a

precession equation

d
dt

S⃗ ¼ ω⃗a × S⃗ ð6Þ

where we take t to be the lab time. The precession
frequency ω⃗a is given by three distinct contributions:

ω⃗a ¼
1

γ
ω⃗τ þ ω⃗T − ω⃗C: ð7Þ

ω⃗τ is the result of the net torque on the muon spin in the
RFMR, with the factor of γ due to taking the derivative with
respect to lab time in Eq. (6). In this case ω⃗τ is due entirely

to the EM fields E⃗0 and B⃗0 in that frame:

ω⃗τ ¼
egμ
2mμ

B⃗0 þ 2dμE⃗
0 ð8Þ

where mμ, gμ are the muon mass and gyromagnetic, and dμ
is the intrinsic muon EDM. ω⃗T is the Thomas precession,
arising from the accelerated motion of the muon. This may
be computed in terms of the lab frame trajectory v⃗ðtÞ of the
muon [33]:

ω⃗T ¼
�

γ2

γ þ 1

�
dv⃗
dt

× v⃗ ð9Þ

Finally, ω⃗C is the cyclotron frequency Eq. (5), which
appears because the RMRF rotates at ω⃗C relative to the
lab. All of these contributions may be expressed in terms of
the lab frame fields E⃗ and B⃗, which yields

ω⃗a ¼ −
e
mμ

aμB⃗þ e
m
aμ

�
γ

γ þ 1

�
ðB⃗ · v⃗Þv⃗

þ e
mμ

�
aμ −

1

γ2 − 1

�
v⃗ × E⃗ − 2dμðE⃗þ v⃗ × B⃗Þ ð10Þ

where aμ ¼ gμ=2 − 1. Note that the v⃗ · B⃗ term vanishes for
circular orbits. The spin trajectory in the RMRF is uniform,
circular precession with angular velocity ω⃗a, since ω⃗a is
time-independent in that frame.
We take the muon spin to be initially parallel or

antiparallel to the momentum, as is the case in the experi-
ments considered.4 The g-2 experiments are designed so
that the first term in Eq. (10) dominates. And with the
simplifying assumption of vanishing EDM, ω⃗a is in the z-
direction so the spin precesses in the xy-plane. The vertical
component is zero and the momentum component is
harmonic:

Sy ¼ S cos ðωatÞ ð11Þ

Sz ¼ 0 ð12Þ

where the oscillation frequency is the magnitude
ωa ¼ jω⃗aj. For a small but nonzero dμ, ω⃗a is slightly tilted
in the RMRF from the z-direction into the x-direction, by
an angle proportional to dμ. The spin now precesses in a
plane slightly tilted from the xy-plane and has a harmonic

4BNL and Fermilab always have this configuration. J-PARC
will have the ability to rotate the spin before placing the muons
onto cyclotron orbits [34], but for simplicity we focus here on the
parallel configuration.
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vertical component in addition the harmonic momentum
component:

Sy ≈ S cos ðωatÞ ð13Þ

Sz ∝ dμ sin ðωatÞ ð14Þ

Wemay therefore think of the total count Eq. (3) as probing
the precession magnitude jω⃗aj and the vertical count
in Eq. (4) as probing components of ω⃗a which are
perpendicular to B⃗. Note that a nonzero EDM always
increases the magnitude of ωa [see Eq. (10)]. However,
from the total count alone this is indistinguishable from
the muon having zero EDM and an anomalous gyromag-
netic ratio instead [35]. Breaking this degeneracy is a key
motivation for the vertical count [26].
The g-2 experiments allow a simultaneous measure-

ment of aμ and dμ. However, better sensitivity to dμ can be
achieved with a dedicated search. One example is the
frozen spin technique, in which the experiment is designed
so that all of the terms in Eq. (10) cancel except for the dμ
term. Precession is then entirely due to an EDM, and the
expected trajectory is

Sy ≈ S cos ðωatÞ ð15Þ

Sz ≈ S sin ðωatÞ: ð16Þ

Note that the amplitude of the vertical component is no
longer suppressed by de and now ωa ∝ de. A measurement
of the EDM can now be made by determining ωa from the
vertical count.

C. Data analysis

We consider first the analysis of the g-2 experiments. The
anticipated uniform precession of Eq. (13) and Eq. (14)
would yield total and vertical counts in the form of
decaying harmonic oscillations,

NTðtÞ ∝ e−t=τμ ½1þ A cos ðωatþ ϕÞ� ð17Þ

ΔNBðtÞ ∝ e−t=τμdμ sin ðωatþ ϕÞ: ð18Þ

These signals are observed from a succession of muon
bunches, with the number of bunches ranging from 106 to
108 and occurring over the course of years-long exper-
imental run times (see Sec. II D). The time-series of
positron counts for every individual bunch are recorded
and time-stamped with GPS timing [36].
The experiments seek to extract from the ensemble of

single-bunch signals an estimate of ωa and dμ. Since these
quantities are expected to be constant in time, a sensible
technique is to align and sum the signals from each bunch,
creating a stacked signal with a large signal-to-noise ratio

(SNR). The alignment may be readily done with the total
count, which has SNR > 1 even within each bunch [16].
But this cannot be done independently with the vertical
counts, as the expected SM amplitude is much smaller than
the noise. However, as the vertical count oscillation for an
EDM has a fixed phase shift relative to the total count
oscillation (see Eqs. (17) and (18) ), the same alignment
shifts used in the total count may be used to coherently sum
the vertical count [26]. The two resulting stacked signals
may then be fit to deduce ωa and dμ.
Stacking of the vertical counts may also be used in frozen

spin experiments. In that case ωa is small, being propor-
tional to de, and only the leading-order behavior of Eq. (16)
is observed, Sz ≈ Sωat. Alignment is therefore not an issue,
and the vertical counts may be summed and then fit for the
slope ωa, which determines de.

D. Specific g-2 and EDM Experiments

While the BNL, Fermilab, J-PARC, and frozen spin
experiments all follow the general strategy outlined in
Secs. II A and II B, they differ in their detailed implemen-
tation. We outline here the differences which are relevant to
the detection of DM precession. Unless otherwise cited, the
specific values used here are taken from the experimental
documentation [16,22,23,25].

1. BNL

Muons were held on their cyclotron orbits with an
additional electric field E⃗, configured as a Penning trap.
This field is radial in the plane of the orbit, as in Eq. (5), and
yields a vertical restoring force above and below the orbital
plane. To minimize the need to carefully measure E⃗, the
muon momentum is chosen such that the v⃗ × E⃗ term in the
precession frequency ω⃗a in Eq. (10) vanishes. The boost
factor of these muons is known as the magic gamma,
γmagic ≈ 29.3. This also removes any energy-dependence
from ωa, which is now determined only by the magnetic
field. A field B⃗ ≈ 1.7 T was used, which yields a SM
precession period 2π=ωa ≈ 4 μs. Decay positrons were
collected by 24 calorimeters stations located along the
inner radius of the muon orbit.
Muon precession is observed in a succession of muon

bunches. Each bunch produced an oscillatory decay signal
of duration 660 μs, which is roughly ten muon lifetimes at
γmagic and contained about 150 spin precession periods.
Each data run lasted around 5 months, observing roughly
106 bunches and 109 decay positrons in total. There runs
were completed in three consecutive years, from 1999 to
2001, which measured aμ to a precision of 0.5 ppm and
found a 3.7σ discrepancy from the SM prediction
[17,37,38]. Note that this experiment directly measured
ωa in Eq. (10), and a determination of aμ requires an
independent measurement of the muon mass. This was
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taken from measurements of the hyperfine splitting of
muonium performed a few years earlier at LAMPF [39].
Three different observables were used to obtain a vertical

count [26]. The least systematically difficult of these was
the average outgoing angle of decay positrons relative to
the orbital plane, which was measured with a tracking
detector placed in front of one calorimeter station. Fewer
positrons were therefore detected in this count than in the
total count. This allowed a limit to be set on the muon
EDM; jdμj < 1.9 × 10−19 e · cm. Converting this into a
relative precision for measuring the perpendicular, EDM-
induced component of ω⃗a, we have δωEDM=ωa ≈
0.5 × 10−3.

2. Fermilab

The Fermilab measurement is very similar to that of
BNL, seeking to improve primarily by increased statistics.
It employs a Penning trap electric field and uses muons
at γmagic. The static field is slightly smaller, B⃗ ≈ 1.45 T.
Decay positrons are counted with 24 calorimeter stations
along the inner orbit radius. A vertical count is made using
the average positron decay angle, obtained with two
tracking detectors that have significantly increased accep-
tance compared to that of BNL.
The bunch duration and the number of positrons detected

per bunch is similar, however the average bunch cadence is
increased, allowing about 108 bunches and 1011 total
positrons to be observed during a roughly 5 month run.
This is expected to improve the precision on aμ to 0.1 ppm.
aμ will be extracted from ωa using the same LAMPF
muonium measurements as BNL [39]. The enhanced
tracking detection will significantly improve the measure-
ment of the EDM, with an expected limit of jdμj≲ 2 ×
10−21 e · cm or δωEDM=ωa ≈ 0.5 × 10−5.

3. J-PARC

The J-PARC experiment will take a difference approach
than BNL and Fermilab, seeking a measurement of aμ and
the muon EDM with qualitatively different systematics and
experimental challenges. J-PARC employs no electric field,
so ωa is again set only by the magnetic field, in this case
B⃗ ≈ 3 T, while allowing the use of slower muons, γ ≈ 3.
The muons will be held in orbit with a weak radial magnetic
field, which vanishes in the orbital plane and varies along
the vertical direction. Detection for both the total and
vertical count will be done with tracking detectors that
record the spiral trajectory of decay positrons in the static
magnetic field.
The timescales involved in this approach are naturally

shorted, as slower muon have a shorter dilated lifetime.
Each bunch will last around 40 μs, which is roughly 6
muon lifetimes at γ ≈ 3 and contains about 20 spin
precession periods. Each bunch is expected to result in

about 103 detected positrons, with 108 bunches and 1011

positrons observed in total. The final precision is expected
to be similar to that of Fermilab and BNL, 0.5 ppm on aμ
and jdμj≲ 2 × 10−21 e · cm. In addition, J-PARC is plan-
ning to perform new measurements of muonium spectros-
copy using their muon source [40] which may be used to
deduce aμ from the g-2 data.

4. Frozen spin EDM experiments

The frozen spin technique is newer than the g-2
approach, and a muon EDM search using these methods
is still conceptual. We follow [34], which studies the
possibility of using slow muons of γ ≈ 1.5 in a compact
storage ring of B ≈ 1 T. An applied, radial electric field is
used to cancel the precession of B, so that ωa ∝ de. With
future, high-intensity muon sources, this search can reach a
sensitivity of jdμj≲ 10−25 e · cm or δωEDM=ωa ≈ 10−9. In
order to estimate the sensitivity to an oscillating DM signal,
we assume that such an experiment takes data over a 3 year
timespan, with each muon bunch having a duration of
about 50 μs.

III. DM PERTURBED PRECESSION

In this section, we consider the evolution of muon spins
in a coherent, nonrelativistic DM background. We follow
the muon spin in the RMRF, defined in Sec. II B. The most
general equation of motion for the spin is a precession
equation with a possibly time-dependent precession fre-
quency:

_S⃗ ¼ ω⃗aðtÞ × S⃗: ð19Þ
In the g-2 experiments at BNL, Fermilab, and J-PARC the
SM prediction for this frequency is constant in time and
given by

ω⃗a ¼ −
e
mμ

aμBẑ ð20Þ

where B is the magnitude of the lab frame magnetic field, as
described in Sec. II B and II D. In the frozen spin proposal
the SM prediction is ω⃗a ¼ 0. Wewill refer to this prediction
in either case as ω⃗sm, the SM precession frequency. DM
interactions may alter ω⃗aðtÞ by either perturbing the muon’s
orbital trajectory or by effecting the torque on the muon
spin in the RMRF. In either case, the small DM perturba-
tions may be linearized and ωaðtÞ may be written as

ω⃗aðtÞ ¼ ωsmẑþ ω⃗dmðtÞ ð21Þ
where ω⃗dmðtÞ is the contribution from DM-muon
interactions.
The DM field value will oscillate at a frequency equal to

the DM particle mass mdm, and so the frequency perturba-
tion ω⃗dmðtÞ will similarly contain oscillatory components.
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We review here the precession trajectories that result from a
perturbation with a single harmonic component of fre-
quency m. Note that for a particular DM candidate, the
frequency m of the perturbation may not be mdm but rather
a multiple of mdm. The direction of ω⃗dmðtÞ plays a
significant role, so we consider separately parallel pertur-
bations for which ω⃗dmðtÞ ¼ ωdmðtÞẑ and perpendicular
perturbations for which ω⃗dmðtÞ · ẑ ¼ 0.

A. Parallel perturbations

If ω⃗dmðtÞ ¼ ωdmðtÞẑ, the precession equation

_S⃗ ¼ ½ωsm þ ωdmðtÞ�ðẑ × S⃗Þ ð22Þ

may be solved exactly. The spin precesses about ẑ with an
instantaneous angular speed ωsm þ ωdmðtÞ. A spin S⃗ which
is initially parallel to the momentum and perpendicular to B⃗
precesses as

SyðtÞ ¼ S cos

�
ωsmtþ

Z
t

0

dt0ωdmðt0Þ
�

ð23Þ

SzðtÞ ¼ 0: ð24Þ

This may be compared to the expected SM precession with
dμ ¼ 0, given in Eqs. (11) and (12). The parallel perturba-
tion results in a pure frequency modulation of the total
count, and does not produce a signal in the vertical count.
For a harmonic perturbation ωdmðtÞ ¼ ωdm cos ðmtþ αÞ,
this has the form

SyðtÞ ¼ S cos
�
ωsmtþ

ωdm

m
½sinðmtþ αÞ − sinðαÞ�

�
ð25Þ

SzðtÞ ¼ 0: ð26Þ

B. Perpendicular perturbations

Next we consider a perturbation to the precession fre-
quency which is perpendicular to ω⃗sm. For concreteness
we take this to lie in the x-direction of the RMRF,
ω⃗dmðtÞ ¼ ωdmðtÞx̂, which corresponds to a precession
frequency perpendicular to both B⃗ and the muon momen-
tum, as in the case of an EDM [see Eq (10)].5

We focus on a quasistatic perturbation, that is ωdmðtÞ
which varies at a characteristic rate m ≪ ωsm. This is
not true in the frozen spin setup, which we consider
separately in Sec. III C. Then the spin executes circular
precession locally in time with a slowly evolving instanta-
neous frequency ωsmẑþ ωdmðtÞx̂. The WKB solution to
Eq. (19) at leading order in m=ωsm and ωdm=ωsm gives:

SyðtÞ ≈ S cos

�
ωsmtþ

1

2

Z
t

0

dt0
ω2
dmðt0Þ
ωsm

�
ð27Þ

SzðtÞ ≈ S
ωdmðtÞ
ωsm

sin

�
ωsmtþ

1

2

Z
t

0

dt0
ω2
dmðt0Þ
ωsm

�
; ð28Þ

for a spin initially parallel to the momentum. This may be
compared to the expected precession with dμ ≠ 0, given in
Eqs. (11) and (12).
The perpendicular perturbation produces a frequency

modulation in the total count which scales as ω2
dm. This is

because the oscillation of the total count is sensitive only
to the magnitude of ω⃗aðtÞ. The perturbation also yields a
nonzero vertical count, which oscillates with a fixed phase
shift relative to the total count and has an amplitude
modulation which is linear in ωdm. This amplitude is
independent of m as it is due to the tilting of ω⃗aðtÞ away
from ẑ, which is set by ωdm alone—taking ωdmðtÞ to be
static in Eq. (28) recovers the tilted precession signal
of Eq. (12).
For a harmonic perturbationωdmðtÞ ¼ ωdm cos ðmtþ αÞ,

the quadratic scaling of Eq. (27) produces both a net
frequency shift and a frequency modulation at frequency
2m. The resulting spin trajectory is

SyðtÞ ≈ S cos ðω̄tþΦ½t�Þ ð29Þ

SzðtÞ ≈ S
ωdm

ωsm
cos ðmtþ αÞ sin ðω̄tþΦ½t�Þ ð30Þ

where∶ ω̄ ¼ ωsm þ 1

4

ω2
dm

ωsm
ð31Þ

Φ½t� ¼ 1

8

ω2
dm

ωsmm
½sinð2mtþ 2αÞ − sinð2αÞ� ð32Þ

C. Resonance and frozen spin

The amplitude of the vertical count in the case of a
perpendicular perturbation scales as ωdm=ωsm, as in
Eq. (30). The suppression by ωsm is due to the following
mechanism. The action of a perpendicular ω⃗dm in the
RMRF is to rotate the spin out of the xy-plane, and this
rotation is either toward theþẑ direction or the −ẑ direction
depending on the polar angle of the spin in the xy-plane.
Specifically, the spin rotates toward the direction of
ω⃗dm × S⃗. But the dominant motion of S⃗ is rotation in the
xy-plane at frequency ωsm, and so the action of ω⃗dm is not
coherent—it raises S⃗ for half of the SM period Tsm and then
lowers it for the next half-period. The maximal vertical
component Sz that may develop is limited by the SM
rotation to be SωdmTsm ∼ Sωdm=ωsm.
This suppression is not fundamental. It is the by-product

of an experimental design optimized for the measurement

5The case of ω⃗dmðtÞ parallel to the momentum (ŷ in the RMRF)
is analogous, with the only change being the value of the relative
phase between the oscillation of Sz and Sy.
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of ωsm itself and can be removed by using a different
approach. There are two natural possibilities for this: the
frozen spin technique and resonance. We discuss the spin
trajectory in each of these cases below, focusing only on the
vertical component Sz as the vertical count is the most
sensitive in these setups. Both techniques can achieve
maximal coherence in the vertical signal, i.e., an oscillation
in Sz with an amplitude ∼S. Indeed, they are conceptually
the same technique as they both involve matching the
frequency ωsm to m, with the distinction being whether this
results in ωsm ≈ 0 or ωsm ≠ 0.

1. Frozen spin

The frozen spin technique was invented for measuring
intrinsic, static EDMs [24], and is thus most sensitive to
static perturbations. In our case, this means modulation
frequencies m such that mtbunch ≪ 1, where tbunch is the
duration of a single muon bunch. This method engineers
ωsm ¼ 0, i.e., it freezes the spin in the xy-plane (see Sec. II
D). Equations (29) and (30) are no longer valid in this
regime, however the trajectory may be readily found as the
total precession frequency in the RMRF varies only in
magnitude, analogous to the parallel perturbation of
Sec. III A. The spin rotates about x̂ with an instantaneous
angular speed ωdmðtÞ ¼ ωdm cosðmtþ αÞ. This yields:

SyðtÞ ¼ S cos

�
ωdm

m
½sinðmtþ αÞ − sinðαÞ�

�
ð33Þ

SzðtÞ ¼ S sin

�
ωdm

m
½sinðmtþ αÞ − sinðαÞ�

�
; ð34Þ

where we have chosen ω⃗dm to be along x̂ and the spin
initially along ŷ, as in Sec. III B.
In the static limit, this yields a vertical signal

SzðtÞ ≈ S sin ½ωdm cosðαÞt�; ½mtbunch ≪ 1� ð35Þ

with no amplitude suppression. Note that this is a uniform
rotation over a single bunch only. For a later bunch the
value of α changes and the rotation frequency may have an
opposite sign. For large m the oscillation of ωdmðtÞ
introduces a new source of decoherence. In this case the
vertical signal is

SzðtÞ ≈ S
ωdm

m
½sin ðmtþ αÞ − sinðαÞ�; ½mtbunch ≫ 1�; ð36Þ

where we have assumed m ≫ ωdm as well, which is true in
the cases we consider. The amplitude is now suppressed by
ωdm=m. This is due to the fact that the spin’s rotation about
x̂ is oscillating between clockwise and counterclockwise
motion at the DM frequency m, and after integrating this
angular speed the vertical displacement of the spin scales as
m−1. This effect is analogous but physically distinct from

that which produces the ωdm=ωsm scaling of Eq. (30). If
mtbunch ≫ 1, the spin is again unable to develop a large
vertical component.

2. Resonance

The decoherence due tomtbunch ≫ 1may be removed by
a resonance technique, that is by engineering ωsm ¼ m. In
this case, the rotation of the spin in the xy-plane occurs at
the same frequency as the oscillation of ωdmðtÞ, and as a
consequence ω⃗dm × S⃗ does not change sign over the course
of a single muon bunch. The spin will steadily rotate out of
the xy-plane. Near-resonance, ωsm ≈m, the trajectory may
be found by decomposing the harmonic perturbation
ω⃗dm ¼ ωdm cosðmtÞx̂ into two counterrotating perturba-
tions, one clockwise and the other counterclockwise in
the xy-plane. One of these circular components rotates with
S⃗ and dominates the dynamics. Ignoring the other compo-
nent and transforming to a frame rotating at m yields a
frame in which the precession frequency is constant and the
spin trajectory may be easily found. Transforming back to
the RMRF, the vertical component is

Sz ≈
Sωdm sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
dm þ ðm − ωsmÞ2

p sin
�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
dm þ ðm − ωsmÞ2

q �
:

ð37Þ
For m ¼ ωsm, this recovers a form similar to the static, spin
frozen case of Eq. (35). Again the vertical oscillation on-
resonance is uniform over one bunch, however its ampli-
tude will vary and may change sign between bunches. This
is because at the start of a new bunch the spin is initialized
to lie along ŷ, which differs from the position that a spin
from the prior bunch would have if it survived until the start
of the new bunch.

IV. SENSITIVITY

In this section we determine the sensitivity of existing
and upcoming muon precession experiments to the generic
harmonic DM perturbations given in Sec. III. Such a DM
signal may appear in muon precession data in three
distinct ways:

(i) A time-resolved analysis of the ensemble of single-
bunch signals may directly reveal temporal variation
in the muon precession frequency ω⃗aðtÞ.

(ii) Temporal variation of ω⃗aðtÞ may cause the stacked
data to noticeably deviate from the expected har-
monic behavior described in Sec. II B.

(iii) The stacked data may follow the harmonic forms of
Sec. II B within current precession, but the observed
frequency or precession tilt may receive a measur-
able contribution which depends on the local DM
density.

The first of these is the most compelling and provides an
opportunity for DM detection upon reanalysis of existing
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and future muon precession data. The second and third
allow us to set limits on DM-muon interactions using
published, stacked results, while the third may also provide
an explanation of the g-2 anomaly observed at BNL. A
DM-muon interaction may give rise to one or more of these
three signals, depending on the form of the interaction and
the timescale of the perturbation, i.e., the DMmass, relative
to the various experimental timescales outlined in Sec. II D.
We begin with the signals and constraints resulting

from the total electron count, which is applicable to g-2
experiments. We then consider the vertical count, which
applies to both g-2 and future frozen spin experiments,
and which admits a resonant enhancement. Many of the
derivations for the vertical count follow closely an analo-
gous total count derivation, in which case only the final
result is given. These results are applied to specific DM
candidates in Sec. V.

A. Total count

Ultralight DMmay generate a frequency modulation or a
frequency shift in the total count, as in Eqs. (25) and (29).
We may describe both cases as a DM-induced frequency
modulation of amplitude δω and frequency m in the
oscillation of the momentum-component of spin Sy. A
static frequency shift simply corresponds to m ¼ 0. During
the ith muon bunch this has the form

Sy;iðtÞ ¼ S cos

�
ωsmtþ

δω

m
½sinðmtþ αiÞ − sinðαiÞ�

�
ð38Þ

where αi is the phase of the DM oscillation at the start of the
ith bunch. The stacked signal is

hSyi ¼
1

Nb
ΣiSy;i ð39Þ

where Nb ≈ 106–108 is the number of bunches observed
per experimental run. Note that δω is distinct from the DM
contribution to the vector precession frequency ω⃗dm and m
is distinct from the DM particle mass mdm:δω may scale
either linearly or quadratically with the magnitude jω⃗dmj,
and m may be equal to either mdm, a nonzero multiple of
mdm, or it may vanish, depending on the form of the DM-
muon interaction (see Sec. III).

1. Static frequency shift

A DM-induced shift in the precession frequency may be
directly compared with the stacked results of muon
precession experiments and the predicted SM value. The
current discrepancy between theory and experiment makes
this comparison more intriguing. The BNL experiment
has measured ωa with a precision σωa

≈ 0.5 × 10−6ωa and
found a discrepancy Δωa between their measurement and

the SM prediction of Δωa ¼ 3.3σωa
[16]. For a DM can-

didate which generates a frequency shift δω, we may
immediately say the following:

(i) If δω > Δωa þ σωa
, this candidate is disfavored6 by

at least 1-sigma.
(ii) If δω < σωa

, the candidate is unconstrained by this
observable.

(iii) If δω lies within σωa
of Δωa, it provides a 1-sigma

explanation of the discrepancy.
(iv) In the window σωa

< δω < Δωa − σωa
, a candidate

cannot be said to be disfavored nor would it explain
the discrepancy. Such a candidate would provide
a non-negligible contribution to ωa, but additional
physics would be needed to fully explain the
discrepancy.

These criteria are used for the constraints given in Sec. V.
The Fermilab and J-PARC measurements anticipate a
decrease in σωa

by a factor of 4 (see Sec. II D), and of
course may yield a change in Δωa, which will necessitate a
slight update to those limits.

2. Stacked envelope

To what extent is a modulation with m > 0 visible in the
stacked signal? Averaging a collection of near-harmonic
signals with similar frequencies will generically produce
another near-harmonic signal whose frequency is an
average of the individual frequencies and whose amplitude
is given by an envelope that evolves at a rate given by the
frequency spread of the individual signals. This is the
phenomenon of beats. In our case, in the limit of a large
number of bunches and mtrun ≫ 1, the stacked signal hSyi
is given by the average of Eq. (38) over the DM phase α.
Here trun is the duration of a full experimental run, spanning
all of the bunches in the stack. This average may be done
exactly, yielding7

hSyi ≈
S
2π

Z
2π

0

dα cos

�
ωsmtþ

δω

m
½sinðmtþ αÞ − sinðαÞ�

�
ð40Þ

¼ S cos ðωsmtÞJ0
�
2
δω

m

				 sin
�
mt
2

�				
�
; ð41Þ

whereas the expected SM signal is hSyi ¼ S cos ðωsmtÞ.
The envelope in Eq. (41) has the form of an additional

decay of the signal. Such a decay would be noticed if
sufficiently strong, however there is already present in the
data a systematic effect which mimics this—muons

6Such a candidate is not properly excluded, as other new
physics may provide an opposite and finely tuned contribution to
the precession frequency.

7The observed signal contains an additional exponential
envelope due to muon decay, given in Eq. (3). However, it is
sufficient here to consider the average of the oscillatory factor Sy.
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escaping the orbital trap. These muon losses are found
empirically at BNL to be floss ≈ 10% [29]. We estimate that
a stacked envelope will go unnoticed if it decays by no
more than a fraction floss over the span of the stacked
bunch. This bounds the argument of the Bessel-envelope in
Eq. (41) to be ≲floss. For simplicity, we implement this
constraint as yielding an allowable DM candidate if

δω≲ 2floss
tbunch

Max

�
1

2
mtbunch; 1

�
ð42Þ

where tbunch is the bunch duration. If the modulation does
not vary appreciably over a bunch duration, this bounds the
modulation amplitude in the g-2 experiments to be smaller
than ∼10−3ωsm. For larger m this weakens, as the envelope
decay saturates due to the decoherence between the
bunches.

3. Stacked frequency residual

Supposing that Eq. (42) is satisfied, the stacked signal
hSyi takes the form of a harmonic oscillation. The fre-
quency of this oscillation is approximately ωsm, but only in
so far as the discrete average of the bunches approximates
the continuous, single-period average over DM phase of
Eq. (40). Given Eq. (42), the discrete average is well
approximated by

hSyi ≈ S cos

�
ωsmtþ

δω

m
1

Nb
Σi½sinðmtþ αiÞ − sinðαiÞ�

�
:

ð43Þ

This follows from linearizing Eq. (38) in the DM-induced
phase shift.
We will be primarily concerned with the case

mtbunch ≪ 1, where the modulation is approximately static
over a single bunch. Then we have,

hSyi ≈ S cos

��
ωsm þ δω

1

Nb
Σi cosðαiÞ

�
t

�
; ð44Þ

that is, the stacked frequency is simply the average of the
frequencies of each bunch. Note that αi ¼ α0 þmti, where
ti is the starting time of the ith bunch. In most of our regime
of interest, the average time between bunches tiþ1 − ti is
short compared to the modulation period m−1, so the
discrete average in Eq. (44) may be approximated by an
integral

δω

Nb
Σi cosðαiÞ≈

δω

trun

Z
trun

0

dtcosðmtþα0Þ∼
δω

Maxðmtrun;1Þ
;

½ðtiþ1− tiÞm≪ 1�: ð45Þ

where trun is the duration of the entire data-taking run,
encompassing all bunches. If ðtiþ1 − tiÞm≳ 1, the value of

the discrete average of frequencies depends on the uni-
formity of the time interval between bunches. We assume
that the duration of this interval may vary byOð1Þ between
different pairs of bunches, in which case the discrete
average becomes well-approximated by a random-walk,

δω

Nb
Σi cosðαiÞ ≈

δωffiffiffiffiffiffi
Nb

p ; ½ðtiþ1 − tiÞm≳ 1�: ð46Þ

Taking the time interval between bunches to be given on
average by trun=Nb, the full result is

δω

Nb
Σi cosðαiÞ ≈

δω

Min½Maxðmtrun; 1Þ;
ffiffiffiffiffiffi
Nb

p � : ð47Þ

This stacked frequency shift coincides with the static
m ¼ 0 case if mtrun ≪ 1, for which the shift is simply ∼δω
as in Sec. IVA 1. For larger m this is suppressed as the DM
oscillation averages out. The suppressed shift is still con-
strained in the same manner as described in Sec. IVA 1. A
DM candidate is allowed if

δω≲ 4σωa
Min½Maxðmtrun; 1Þ;

ffiffiffiffiffiffi
Nb

p
�: ð48Þ

Note that frequency residual limit in Eq. (48) is generally
less constraining than the envelope limit considered above
in Eq. (42), as the DM averaging effects appear at a much
smaller value of m for the frequency residual than they do
for the envelope decay. Only for m≲ 10−20 eV does the
frequency residual give the stronger limit.

4. Time-resolved frequency tracking

A DM modulation with m > 0 may be directly revealed
by a time-resolved analysis of muon precession using each
unstacked bunch. There are many specific analysis tech-
niques that one might use, and it is beyond the scope of this
work to assess them in detail. We are concerned instead
with understanding the general sensitivity of the g-2 data to
a DM modulation signal. For simplicity we focus on the
case mtbunch ≲ 1, corresponding to m≲ 10−12 eV for the
BNL and Fermilab experiments, for which the modulated
precession frequency is constant over the duration of one
bunch. The opposite limit, mtbunch ≲ 1, may be probed as
well with an analysis of modulation occurring within each
bunch, however we leave that case to future work.
For mtbunch ≲ 1, one may determine a local precession

frequency ωðtiÞ for each bunch, where ti is the start time of
the ith bunch. This may be done by fitting independently
the oscillations observed in each bunch. The modulated
precession frequencies ωðtiÞ depend on the DM field, so
this is a direct measurement of a possible DM background
interacting with muons. Consider the Fourier spectrum
ω̃ðΩÞ of the time series ωðtiÞ. We denote the frequency of
this spectrum as Ω, to avoid confusion with the precession
frequency itself ωðtiÞ. The zero-mode of this spectrum is
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non-vanishing and corresponds to ωsm. We may normalize
ω̃ as

ω̃ðΩÞ ¼ 1

Nb
ΣiωðtiÞe−iΩti ð49Þ

so the zero-mode is indeed ω̃ð0Þ ≈ ωsm. A DM-induced
modulation of the form of Eq. (38) appears in the spectrum
as a peak of height δω at Ω ¼ m.
This DM signal is detectable provided δω is sufficiently

large relative to the noise in ω̃. The fit which determines
ωðtiÞ differs from the fit done on the stacked data, described
in see Sec. II C, only in the number of counts and thus the
SNR of the individual bunch. The precision of such a fit
scales inversely with the square root of the number of
counts [29], so the noise in ωðtiÞ is white and has an
amplitude σi ∼ σωa

N1=2
b , where σωa

is the precision of the fit
to the stacked signal and Nb is the number of bunches. For
the Fermilab and J-PARC measurement, σωa

≈ 10−7ωsm

and σi ∼ 10−3ωsm. The noise in each frequency bin of ω̃ is
thus σωa

. This is sensible, as the stacked analysis corre-
sponds to measuring the height of the peak in the spectrum
at Ω ¼ 0. The remaining modes Ω > 0 are currently
unused, but may be utilized for a DM search.
The specific frequency modes Ωi to which g-2 data is

sensitive is determined by the specific timing intervals of
the bunches. This is complicated by the fact that the
bunches are not uniformly spaced in time, and a full
analysis requires knowledge of the intervals between each
bunch. This is beyond the scope of the present work. We
seek an estimate of the sensitivity of such an analysis, and
for our purposes we simply take the bunches to be
uniformly spaced by their average spacing, trun=Nb.
Then ω̃ðΩÞ probes modes spaced by t−1run with a maximum
frequency of Nbt−1run. These correspond to DM masses of
10−23 eV and 10−15 eV, respectively. The approximation
of a uniform interval between bunches has little effect on
ω̃ðΩÞ at small Ω, but it sets the value of the maximal
frequency Nbt−1run. In a full analysis, sensitivity will extend
beyond Nbt−1run as some bunches are spaced much closer
together than the average spacing.
The detection reach may then be estimated as follows.

The DM modulation peak has a width δΩ ≈mv2dm ≈
10−6m, due to the finite width of the DM velocity
distribution. If mv2dm < t−1run then the DM oscillation is
coherent over the course of an experimental run, or
equivalently the DM peak in ω̃ lies entirely within a single
frequency bin. The SNR of that bin is SNR ¼ δω=σωa

. If
mv2dm > t−1run then the phase of the DM oscillation will drift
during the course of a run, and the resulting peak in the
spectrum will span several frequency bins. The full SNR is
now properly given by the quadrature-sum of the SNR of
each of those bins, which is SNR ¼ ðmv2dmtrunÞ−1=2δω=σωa

.
The SNR covering both regimes is

SNR ¼ δω

σωa

1

Maxðmv2dmtrun; 1Þ1=2
: ð50Þ

We take the detection reach to be given by SNR > 3. This is
properly the reach only for a predetermined frequency m,
which is of interest in the event that a candidate DM signal
is found in other experiments. Accounting for the look-
elsewhere effect in a search with no preferred modulation
frequency requires taking SNR≳ 15, with the exact thresh-
old depending on the desired confidence. This amounts to a
sensitivity which is about a factor of ∼5 worse than those
shown in Sec. V.

B. Vertical count

A nonzero vertical count is generated only for perpen-
dicular frequency perturbations. We consider here a har-
monic DM signal of frequency m in the non-resonant case,
which in the ith muon bunch is given by (see Sec. III B)

Sz;i ≈ S
ωdm

ωsm
cos ðmtþ αiÞ sin ðω̄tþΦi½t�Þ ð51Þ

where∶ ω̄ ¼ ωsm þ 1

4

ω2
dm

ωsm
ð52Þ

Φi½t� ¼
1

8

ω2
dm

ωsmm
½sinð2mtþ 2αiÞ − sinð2αiÞ� ð53Þ

where αi is the phase of the DM oscillation at the start of the
ith bunch and the stacked signal is

hSzi ¼
1

Nb
ΣiSz;i: ð54Þ

The limits and detection reach in this case are analogous to
those for the total count in Sec. IVA, with the distinction
that in this case it is the amplitude, not the frequency, of
the precession which is observed and the DM oscillation
induces an amplitude modulation in the signal rather than
a frequency modulation. In addition, as demonstrated in
Sec. III, this signal is always accompanied by a static
frequency shift in the total count of amplitude δω ¼
ω2
dm=8ωsm, which is subject to the constraints of

Sec. IVA. That is,

ωdm ≲ ð8σωa
ωsmMin½Maxðmtrun; 1Þ;

ffiffiffiffiffiffi
Nb

p
�Þ1=2: ð55Þ

At its most stringent, this is ωdm ≲ 3 × 10−3ωsm for the g-2
experiments.

1. Stacked amplitude residual

For a perpendicular perturbation which satisfies Eq. (55),
the stacked vertical signal hSzi is well approximated by

hSzi ≈
1

Nb
Σi cos ðmtþ αiÞ · S

ωdm

ωsm
sin ðω̄tÞ: ð56Þ
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We have ignored the frequency modulation, as in this case it
is subdominant to the amplitude modulation. The stacked
amplitude is given by an average over samples of a
sinusoid, analogous to the frequency residual in
Eq. (47). The typical stacked signal is thus

hSzi ≈ S
ωdm

ωsm

1

Maxðmtrun; 1Þ
· sin ðω̄tÞ: ð57Þ

Let σ⊥ be the sensitivity of a static EDM search to the
perpendicular component of precession frequency. For
the existing BNL measurement, σ⊥ ≈ 0.5 × 10−3ωsm (see
Sec. II D). The sensitivity to the amplitude of a vertical
oscillation is σ⊥S=ωsm and the null result of BNL implies
that a DM candidate is allowed only if

ωdm ≲ σ⊥Maxðmtrun; 1Þ ð58Þ

2. Time-resolved amplitude tracking

It is again possible to use a time-resolved analysis of the
unstacked bunches to reveal the modulation induced by a
DM background. As in Sec. IVA 4, we consider here the
general sensitivity in the limit that mtbunch ≲ 1, where the
precession is approximately uniform for the duration of
each bunch.
We employ the same strategy outlined in Sec. IVA 4,

fitting each bunch independently and then considering the
Fourier spectrum of the outcome of those fits. In this case,
the signal is expected to be of the form of Eq. (51) in each
bunch and the quantity of interest is the amplitude
modulation. We may fit each bunch to the form

Sfitz ¼ AS sin ðω̄tþ ϕÞ ð59Þ

for the amplitude A and construct a time series AðtiÞ, where
ti is the start time of the ith bunch. The total count will
oscillate at the same frequency ω̄ and with a fixed phase
shift relative to the vertical count [see Eqs. (29) and (30)].
Thus the frequency and phase in Eq. (59) may be
determined by first fitting the higher-SNR total count,
and the vertical count can be fit for only the amplitude A.
Note that this is again the same procedure currently applied
to the stacked signal, as described in Sec. II C, but now
applied independently to each bunch.
We may consider the Fourier spectrum ÃðΩÞ of AðtiÞ,

normalized as:

ÃðΩÞ ¼ 1

Nb
ΣiAðtiÞe−iΩti : ð60Þ

The DM modulation now appears as a peak of height
ωdm=ωsm at frequency Ω ¼ m. By an analogous argument
to that given in Sec. IVA 4, the noise amplitude in each
frequency bin of ÃðΩÞ is σ⊥=ωsm and the SNR of a DM
modulation is

SNR ¼ ωdm

σ⊥
1

Maxðmv2dmtrun; 1Þ1=2
: ð61Þ

For the upcoming Fermilab and J-PARC experiments,
σ⊥ ≈ 0.5 × 10−5ωsm. We set the threshold SNR for detec-
tion as in Sec. IVA 4.

3. Frozen spin

For a frozen spin experiment, we consider an analogous
time-resolved measurement to that of Sec. IV B 2. In the
limit mtbunch ≪ 1, the signal has the form of Eq. (35). ωdm
is generally small, so that this is a signal which grows
linearly in time,

SzðtÞ ≈ Sωdm cosðαÞt: ð62Þ

Simply averaging Sz over each bunch yields a signal S̄zðtiÞ
which oscillates between bunches according to the DM
phase α,

S̄zðtiÞ ≈
S
2
ωdmtbunch cosðαiÞ: ð63Þ

As in Sec. IV B 1, let σ⊥ be the sensitivity of a spin frozen
experiment to a static, perpendicular precession frequency.
From the Fourier spectrum of S̄zðtiÞ=S, the SNR of a DM
modulation peak of frequency m is

SNR ¼ ωdm

σ⊥
1

Maxðmv2dmtrun; 1Þ1=2
; ½mtbunch ≪ 1�; ð64Þ

which follows from an analogous argument to that of
Secs IVA 4 and IV B 2. For larger masses,mtbunch ≫ 1, the
signal follows Eq. (36) and the average over one bunch is
suppressed:

S̄zðtiÞ ≈ −S
ωdm

m
sinðαiÞ; ½mtbunch ≫ 1�: ð65Þ

The SNR covering both regimes is

SNR ¼ ωdm

σ⊥
1

Maxðmv2dmtrun; 1Þ1=2Maxðmtbunch; 1Þ
ð66Þ

and we set the threshold SNR for detection as in
Sec. IVA 4.

4. Resonance

The amplitude of the vertical signal is enhanced if the
DM modulation frequency m matches the SM rotation of
the spin ωsm. For an experiment operating with fixed
external fields and muon momentum, this results in an
extended detection reach for perpendicular perturbations in
a narrow frequency window around m ¼ ωsm. In the
previous and upcoming g-2 experiments, this corresponds
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to m ≈ 10−10 eV. Following Eq. (37), on resonance, the
vertical spin component will grow linearly during each
bunch, as the bunch duration is short compared to the on-
resonance precession frequency of the spin. The angular
spin velocity will vary between bunches according the DM
phase, analogous to the frozen spin signal given in Eq. (62).
Following the time-resolved analysis procedure of Sec. IV
B 3, the near-resonance SNR of this signal is

SNR ¼ ωsmtbunch
2

ωdm

σ⊥
1

Maxðmv2dmtrun; 1Þ1=2
: ð67Þ

This SNR is enhanced by a factor ωsmtbunch ≈ 100 relative
to the nonresonant SNR of Eq. (61). The reach is
thus extended to ωdm=ωsm ≳ 10−8 for the upcoming
Fermilab and J-PARC measurements. From Eq. (37),
the frequency width of this enhancement is given by
jm − ωsmj < 1=tbunch ≈ 10−2ωsm. This is very narrow com-
pared to the range of mdm considered in Sec. V, and so we
refrain from showing this peak in sensitivity in Figs. 3, 4, 5,
and 6.
In addition to yielding a fixed sensitivity peak near m ¼

ωsm in spin precession experiments, resonance may be used
to extend the reach of a future DM search at a variety of
frequencies by tuning ωsm to a desired search window. This
would be useful for follow-up observations in the event that
an ultralight DM signal is observed in other experiments.
The most natural and sensitive setup for such a search is the
proposed frozen spin EDM experiments, which plan to
employ electric fields to tune ωsm and utilize future high-
intensity muon sources (see Sec. II D). Then sensitivity of
such a search matches that of a near-static frozen spin
signal, given in Eq. (64), as the resonant signal follows the
same form as the nonresonant static signal. We show this
reach in Sec. V for all mdm, indicating the peak reach of a
narrow resonant search at the given mdm. In principle a
future search may cover a wide range of mdm by system-
atically varying ωsm, in which case the sensitivity is as
shown in Sec. V. There are important practical challenges to
varying ωsm over a large range, which are beyond the scope
of this work. The results of Sec. V represent the ideal limit
of such an experiment.

V. CANDIDATES

In this section, we explore models of ultralight dark
matter that would produce one of the signals enumerated
in Secs. III and IV. We consider models where the
ultralight boson couples preferentially to muons so as to
avoid strong tension with experiments and limits on
couplings to electrons, photons, and nucleons. In the
absence of a symmetry, the muon coupling will radiatively
generate couplings to other SM particles. In this Sec., we
conservatively project only direct muon constraints and
postpone a discussion of indirect constraints from radia-
tively generated couplings and fine-tuning, which are

severe for models without a shift symmetry or gauge
symmetry, to Appendix.

A. Scalars

1. ϕμ̄μ

The scalar coupling we first consider is

L ⊃ yϕμ̄μ ð68Þ

This operator has already been proposed to explain the
muon g-2 anomaly (see, e.g., [19] and references therein),
albeit through radiative corrections to muon g-2. This limits
y≲ 10−3 for small enough mϕ. Constraints could also be
drawn from contributions to Neff [21,41–44] and the
anomalous cooling of SN1987A due to the significant
number of muons present in the protoneuturon star [44,45].
Finally, this coupling may also result in 5th force con-
straints from neutron stars [46,47]. These, however, suffer
from uncertainties in the muon abundance inside the
neutron star and moreover can be avoided by introducing
a quadratic coupling to nuclei, ϕ2n̄n, which effectively
screens the fifth force. There are also indirect constraints
from couplings introduced at loop level which we discuss
in Appendix.
If this scalar ϕ is DM, it induces an oscillating mass for

the muon

mμ ¼ mSM
μ þ y

ffiffiffiffiffiffiffiffi
2ρϕ
mϕ

s
cos ðmϕtÞ ð69Þ

ωsm depends onmμ through Eq. (10). Expanding in small y,
we get,

ω⃗dm ¼ ω⃗sm
y
mμ

ffiffiffiffiffiffiffiffi
2ρϕ
mϕ

s
cos ðmϕtÞ ð70Þ

This is a parallel perturbation as discussed in Sec. III A.
Constraints and projections for this operator from differ-

ent experiments are plotted in Fig. 1. The red shaded region
corresponds to parameters that predict deviations not
observed in the completed analysis at BNL and is ruled
out at the 2σ level. At the smallest masses, the frequency
shift is static as discussed in Sec. IVA 1. However, the limit
is flat as it is only the change in the effective mass of the
muon between the muonium experiments and the g-2
experiment which is observable here. The boundary of
this region marked in green could explain the anomaly with
50% probability—it happens in the event that the scalar vev
decreases in magnitude from the muonium measurement to
the g-2 measurement, resulting in a lower muon mass. At
scalar masses corresponding to frequencies larger than
1 year−1, the red shaded region corresponds to deviations
in muon g-2 larger in magnitude but in principle different in
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sign over the three different BNL runs. For this reason, the
boundary is green-hatched to indicate the low probability
that the three runs reported the same sign deviation. At
masses larger than ∼10−21 eV, there is noticeable change to
the decay envelope (Sec. IVA 2). At even higher masses,
coherence is lost over a bunch and only stacked frequency
residuals set a limit (Sec. IVA 3). If time stamps of
individual electron events are retained and used for a
time-resolved analysis as described in detail in Sec. IV
A 4, a projected detection reach shown by the blue line is
obtained. Also shown in gray are constraints from the
virtual contribution to the g-2 measurement [19], cooling
from SN1987A adapted from [44,45], and 5th force
constraints from NS mergers adapted from [46,47].

2. ϕ2μ̄μ

In models where ϕ originally satisfies a Z2 symmetry, we
start with a Lagrangian,

L ⊃
1

Λ
ϕ2μ̄μ ð71Þ

Repeating the analysis above, we obtain,

ω⃗dm ¼ ω⃗sm
2ρϕ cos2 ðmϕtÞ

mϕΛmμ
¼ ω⃗sm

ρϕ
mϕΛmμ

ð1þ cos ½2mϕt�Þ

ð72Þ
Note that the constant term in Eq. (72) does not contribute
to the limits, as it is perfectly degenerate with the “intrinsic”

muon mass mμ. The same constraints discussed for the
linear case in Sec. VA 1 may be applied here, and are
shown in Fig. 2. Existing limits on this operator are much
weaker than in the linear Yukawa case—the virtual con-
tribution to muon g-2 is now a two-loop effect and is not
shown, 5th force constraints are not applicable, and the
scalar must be pair-produced in stars to contribute to
cooling.

B. Pseudoscalars

1. ∂αaμ̄γαγ5μ

We start with the axion-muon “wind” coupling,

L ⊃
∂αa
Λ

μ̄γαγ5μ: ð73Þ

In a background axion field a, this interaction generates a
spin torque described in the muon rest frame by the
Hamiltonian term [13]

H ⊃
1

Λ
∇⃗a · S⃗; ð74Þ

where S⃗ is the muon spin, and contributes an amount

ω⃗r ¼
1

Λ
∇⃗a ð75Þ

to the muon’s rest-frame precession frequency. In its rest
frame the muon spin precesses about the direction of the

axion momentum p⃗a, as ∇⃗a ∼ ap⃗a for a plane wave
axion mode.
In Eq. (75), a is the axion field in the muon rest frame

and the gradient is taken with respect to the rest frame
coordinates. In the lab frame, the axion DM background is
nonrelativistic and has the form a ≈ a0 cos ðmatÞ while the
muon is relativistic. Thus in the muon rest frame the axion

FIG. 1. Limits and projections for a scalar DM candidate ϕwith
Yukawa coupling yϕμ̄μ, from current and future muon precession
experiments are displayed. The red shaded region corresponds to
deviations to the stacked analysis that would have already been
seen in the g-2 analysis. The green (dashed) line corresponds to
parameter space that can explain the observed g-2 anomaly with
(12.5%) 50% probability. Shown in blue are projections for a
time-resolved analysis. Shown in gray are constraints from virtual
corrections to muon g-2 [19], SN cooling adapted from [44,45]
and 5th force constraints from NS [46,47]. See Sec. VA 1 for
details.

FIG. 2. Limits and projections for a scalar DM candidate ϕwith

coupling ϕ2

Λ μ̄μ using the same color coding discussed in Fig. 1.
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background is now relativistic and has momentum
p⃗a ≈ γmav⃗, where v⃗ and γ are the velocity and boost factor
respectively of the muon in the lab frame. Then a ≈
a0 cos ðEt0 − p⃗a · x⃗0Þ in the muon rest frame, and

ω⃗r ≈ −
a0
Λ
γmav⃗ sin ðEt0 − p⃗a · x⃗0Þ ¼ −

a0
Λ
γmav⃗ sin ðmdmtÞ

ð76Þ

where primes refer to muon rest frame coordinates and t is
the lab frame time. This gives a perpendicular frequency
perturbation via Eq. (7),

ω⃗dm ≈ −
a0
Λ
mav⃗ sin ðmdmtÞ ¼ −

ffiffiffiffiffiffiffiffiffiffi
2ρdm

p
Λ

v⃗ sin ðmdmtÞ: ð77Þ

This perturbation is perfectly perpendicular as we have
ignored the velocity of the axion DM in the lab frame.
There is, in fact, also a parallel perturbation due to the DM
velocity component along the vertical direction, however
this is suppressed relative to Eq. (77) by at least vdm ≈ 10−3

and we may ignore it.
Direct constraints on this coupling come from virtual

corrections to the measured muon g-2 (this produces a
wrong-sign contribution to muon g-2 and hence does not
explain the anomaly), which gives Λ ≥ 1 TeV for small

enough ma [42]. Constraints could also be drawn from the
anomalous cooling of SN1987A, as discussed in Sec. VA
1, which yields Λ ≥ 108 GeV [44,45].
Constraints and projections for this operator are plotted

in Fig. 3. As explained in Sec. III B, perpendicular pertur-
bations are always accompanied by a static shift in the
precession frequency which is positive definite. The green
line corresponds to the parameter space that explains the
anomaly and the region above marked in red would predict
even larger g − 2 measurements which are disfavored. The
perpendicular perturbations can also be seen in the vertical
count, and the nonobservation of a static EDM rules out the
pink region (see Sec. IV B 1 for more detail). If a time-
resolved analysis is carried out, as outlined in Sec. IV B 2,
the BNL and Fermilab/J-PARC data could be used to
constrain regions above the orange and blue lines respec-
tively. Finally projections for the frozen spin method
described in Sec. IV B 3 are shown in purple. Also shown
are existing limits from virtual contribution to muon g-2,
as well as SN cooling, that effectively rule out a DM
explanation to the g-2 anomaly from this operator.
However, the frozen spin method could be sensitive to
new parameter space.

2. ∂αa2μ̄γαγ5μ

We could instead consider a CP violating operator

L ⊃ ∂α

�
a2

Λ2

�
μ̄γαγ5μ: ð78Þ

This produces a RMRF precession analogous to Eq. (75)

ω⃗r ¼
1

Λ2
∇⃗ða2Þ: ð79Þ

In the lab frame we still have a ≈ a0 cos ðmatÞ, so that

a2 ≈ a20

�
1

2
þ 1

2
cos ð2matÞ

�
: ð80Þ

Only the oscillatory term will contribute to Eq. (79), as it
gets a spacial gradient upon boosting to the RMRF. The
frequency perturbation is

ω⃗dm ≈ −
2ρdm
maΛ

v⃗ sin ð2mdmtÞ ð81Þ

which is analogous to Eq. (77).
Existing limits on Λ now are weaker than in the linear

case. The pseudoscalar must be pair produced inside stars
and it occurs in two loops in vertex corrections to muon g-2.
The same set of constraints as discussed for the linear case
in Sec. V B 1 is applied to this operator and the results are
plotted in Fig. 4.

FIG. 3. Limits and projections for a pseudoscalar DM candidate
a with the wind coupling ∂αa

Λ μ̄γαγ5μ, from current and future
muon precession experiments are displayed. The red (pink)
shaded region corresponds to deviations to the stacked analysis
that would have already been seen in the BNL g-2 (EDM)
analysis. The light green line corresponds to parameter space that
can explain the observed g-2 anomaly. Shown in dark green,
orange, and blue are projections for stacked and time-resolved
analyses of EDM at BNL and Fermilab/J-PARC. Frozen spin
experiments have a projected detection reach shown in dark
(light) purple for a static (resonant) measurement. Shown in gray
are constraints from virtual corrections to g-2 [42] and SN
cooling [44,45] which effectively rule out a DM explanation
to the g-2 anomaly from this operator.
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3. aμ̄σFγ5μ

Finally, let us consider a pseudoscalar coupling only to
muons via the operator

L ⊃ −i
a

2Λ2
μ̄σαβγ5μFαβ ð82Þ

This generates a time dependent electric dipole moment for
the muon given by,

dμ ¼
1

Λ2

ffiffiffiffiffiffiffiffiffiffi
2ρdm

p
ma

cos ðmatÞ ð83Þ

The contribution to the time-dependent precession fre-
quency can be obtained from Eq. (10). Ignoring the electric
field, which is subdominant to v⃗ × B⃗ [26], we have

ωdm ¼ 2dμv⃗ × B⃗ ¼ ðv⃗ × ω⃗smÞ
mμ

eaμΛ2

ffiffiffiffiffiffiffiffiffiffi
2ρdm

p
ma

cos ðmatÞ

ð84Þ

The DM perturbation is perpendicular to ωsm and is
subject to the same limits and projections as considered in
Sec. V B 1. These are shown in Fig. 5. The direct con-
straints on this operator from virtual contributions to muon
g-2 are two-loop suppressed and are not shown. This model
does not possess a shift symmetry and constraints from
radiatively generated couplings are discussed in Appendix.

C. Vectors

1. Lμ −Lτ

We consider an Lμ − Lτ gauge boson as a vector DM
candidate. With gauge coupling gμ−τ, this produces a local
dark electric and magnetic field with magnitudes [48]

Edm ¼
ffiffiffiffiffiffiffiffiffiffi
2ρdm

p
cos ðmdmtþ αÞ ð85Þ

Bdm ¼ vdm
ffiffiffiffiffiffiffiffiffiffi
2ρdm

p
sin ðmdmtþ αÞ: ð86Þ

These fields apply both a spin torque and a force to muons,
and yield a contribution to the RMRF precession frequency
which has the same form as Eq. (10)

ω⃗dm ¼ gμ−τ
mμ

�
aμB⃗dm −

�
aμ −

1

γ2 − 1

�
ðv⃗ × E⃗dmÞ

− aμ

�
γ

γ þ 1

�
ðB⃗dm · v⃗Þv⃗

�
; ð87Þ

where we have ignored any intrinsic muon EDM. It is
helpful to decompose B⃗dm and E⃗dm into components along
the vertical direction Bdm;z, Edm;z, and components in the

plane of the muon orbit B⃗dm;⊥, E⃗dm;⊥. We consider the
effects of each of these four components in turn.

(i) Edm;z contributes to ω⃗dm through the v⃗ × E⃗dm term of
Eq. (87). This term vanishes at BNL and Fermilab
due to the use γmagic (see Sec. II D), but would
otherwise yield

�
ωdm

ωsm

�
Edm;z

≈
gμ−τ
e

1

aμγ2

ffiffiffiffiffiffiffi
ρdm

p
B

≈ 6 × 10−4gμ−τ

�
9

γ2

��
3 T
B

�
: ð88Þ

This is a harmonic, perpendicular perturbation
which may be detected as described in Sec. IV B.
The projected detection reach of upcoming experi-
ments is shown in Fig. 6 for the J-PARC experiment
in blue and frozen spin experiments in purple.

(ii) E⃗dm;⊥ yields a parallel perturbation if γ ≠ γmagic, in
which case its amplitude is of the same order as

FIG. 4. Limits and projections for a pseudoscalar DM candidate
a with coupling ∂α

a2

Λ2 μ̄γαγ5μ using the same color coding
discussed in Fig. 3.

FIG. 5. Limits and projections for a pseudoscalar DM candidate
a with coupling −i a

2Λ2 μ̄σαβγ5μFαβ using the same color coding
discussed in Fig. 3.
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Eq. (88). Since the direction of E⃗dm;⊥ is constant in
the lab frame and ωdm ∼ jv⃗ × E⃗dm;⊥j, the DM
precession frequency now contains a product of
two oscillations, one at frequency mdm and the other
at the cyclotron frequency ωC. This yields two
harmonic components with frequencies ωC �mdm.
ωC is much faster than the frequency ωsm at which S⃗
itself rotates, and so generically both of these
components ωC �mdm are very rapid, which further
suppressed the signal, as in Eq. (25). This suppres-
sion is removed in a narrow frequency interval
around mdm ≈ ωC in which case one of the compo-
nents is nearly static. This signal is not presently
observable in frozen spin experiments and may only
be seen in the J-PARC total count, however even in
this case the signal is to weak to be observed at the
projected sensitivity.

(iii) Bdm;z is a harmonic, parallel perturbation with

�
ωdm

ωsm

�
Bdm;z

≈
gμ−τ
e

ffiffiffiffiffiffiffi
ρdm

p
B

vDM ≈ 10−6gμ−τ

�
3 T
B

�
;

ð89Þ

which is too small to be observed by current
sensitivity.. This is considerably weaker than the
Edm;z effect, as it is suppressed by both vdm and aμ.

(iv) B⃗dm;⊥ produces a perpendicular perturbation with an
amplitude of the same order as that of Bdm;z in
Eq. (89). Similar to case of E⃗dm;⊥, this produces

perturbations which oscillate at frequencies ωC �
mdm. In this case, the two components of ω⃗dm rotate
in the RMRF. By an argument analogous to Sec. III
C, the vertical precession amplitude is then generally
suppressed by an additional factor ωsm=ωC ≈ 10−3

which renders these perturbations unobservable with
current sensitivity. This may be avoided in one of
two narrow mass windows, either jωC −mdmj=ωC ≲
10−3 in which case one of the components is slower
then ωsm and the signal follows Eq. (30), or jωC −
mdm − ωsmj=ωdm ≪ 1 which is the resonance re-
gime discussed in Secs. III C and IV B. We do not
plot these cases as they are extremely narrow.

Existing constraints on Lμ − Lτ vector DM are similar to
those of Sec. VA 1 for scalars. It can contribute at one-loop
to muon g-2 [18], can contribute toNeff [21,41,42], and can
lead to anomalous cooling of SN via neutrino annihilation
[21,45,49]. These limits are shown in gray in Fig. 6. In
addition, not pictured in Fig. 6 are strong constraints due to
modifications in solar neutrino oscillations [50] and 5th
force effects in neutron star binaries [46,47], however these
are subject to astrophysical uncertainties as discussed in
Sec. VA 1.

D. Other dark relics

The results presented thus far assume all of DM to be
composed of the ultralight candidate under consideration.
However, subcomponent dark matter may be easily tested
as well—the limits and projections presented here may be
simply rescaled in the coupling plotted on the y-axis, either
linearly or as the square-root of the DM fraction, depending
on the candidate. For this reason we allow the mass range
in our results to extend below the existing limit on fuzzy
DM from dwarf galaxies [51]. In principle, these experi-
ments are also sensitive to background fields that redshift
differently than cold DM, such as dark radiation and dark
energy. We leave a careful study of these candidates for
future work.

VI. CONCLUSION

We have shown that experiments designed to measure
the muon g-2 and EDM are uniquely sensitive to DM
models that interact predominantly with muons. DM-
induced variations in the properties of muons and DM-
applied spin torques and forces on muons leads to
time-dependent variations in the muon precession frequen-
cies which are measured in these experiments. While an
ultralight boson making up Oð1Þ DM was the focus of this
work, subcomponent DM, dark radiation, or even dark
energy could in principle be observed through these
precession experiments.
Existing data from the muon g-2 experiments can be

readily used to draw constraints on DMmodels that provide
a perpendicular perturbation to the precession frequency, as

FIG. 6. Limits and projections for Lμ − Lτ vector DM from
current and future muon precession experiments are displayed.
Projections in blue correspond to time-resolved analyses of g-2
data at the J-PARC experiment. Frozen spin experiments have a
projected detection reach shown in dark (light) purple for a static
(resonant) measurement. Shown in gray are constraints from
virtual corrections to muon g-2 [18] and SN cooling [45,49].
Existing constraints from BNL and projections for Fermilab are
suppressed due to their use of γ ¼ γmagic and are not shown. See
Sec. V C 1 for details.
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these result in a net positive shift of the observed g-2
frequency. These models include the pseudoscalar wind
couplings as well as pseudoscalar EDM-like couplings.
Interestingly, a part of this parameter space also provides a
unique explanation for the observed muon g-2 anomaly,
which is distinct from solutions that invoke radiative
corrections and which typically involve larger couplings
between BSM and SM. This proposition could be tested by
studying timing data of electron counts in existing EDM
measurements at BNL or at the currently running Fermilab
experiment. Dark matter models that contribute parallel
perturbations are unlikely to explain the muon g-2 anomaly,
but could also be tested using timing data. Lastly, vector
DM produces an electric field whose effects are suppressed
at BNL and Fermilab, which employ muons at the magic
momentum. This effect could instead be discerned at the J-
PARC experiment or with a frozen spin measurement,
which uses slower muons. The most powerful detection
opportunity available in the near future is the use of a time-
resolved analysis in the frozen spin experiments proposed
to measure the muon EDM, either in their intended static
mode or repurposed as a resonant search. Such an experi-
ment can detect ultralight DM-muon interactions with
unheralded sensitivity.
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APPENDIX: LOOP LEVEL CONSTRAINTS

In this section, we collect radiatively induced couplings
and discuss constraints from such couplings on the operator
considered as well as possible tunings.

1. ϕμ̄μ

The operators induced at 1-loop by the Yukawa operator
are

L ⊃ yϕ

�
2α

3mμ
FF þ yeyμ

4π
ēeþ ynyμ

4π
n̄n

�

þ y2

mμ
ϕ2

�
yeyμ
4π

ēeþ ynyμ
4π

n̄n

�
ðA1Þ

Here ye is the SM electron Yukawa and yN is the
effective Yukawa of the nucleon. The Yukawa type cou-
plings, to a pair of photons, electrons and nucleons induced
above have limits from stellar cooling, EP tests and also
from atomic clocks if ϕ makes up all of dark matter. These
are shown in Fig. 7. The ϕ2n̄n and ϕ2ēe couplings induce a
mass for the scalar in the presence of large SM number

densities and can prevent the scalar from percolating into
the earth [52]. We estimate that this is negligible if

δm2
ϕ½earth� ∼

y2

mμ

ynyμ
4π

ρrock
mn

∼ 6 × 10−6 eV2 y2 ≤ m2
ϕ ðA2Þ

which is labeled in Fig. 7 as “shielded from ϕ2n̄n”. The
Coleman Weinberg potential generates

L ⊃
y2

4π2
Λ2
UVϕ

2 þ y3

24π2
mμϕ

3 þ y4

24π2
ϕ4 ðA3Þ

The mass term in the CW potential tells us how tuned the
scalar is and in general depends on the UV scale ΛUV. The
quartic coupling generated needs to be small enough in
order for ϕ to redshift like dark matter [11].

λeff ¼
y4

6π2
þ y6

36π4
m2

μ

m2
ϕ

≤ 3 × 10−79
�

mϕ

10−18 eV

�
4

: ðA4Þ

This is plotted as the “Quartic” line in Fig. 7. These curves
together show that the new Yukawa parameter space that
can be probed by muon g-2 experiments is finely tuned and
clever model building has to be performed in order to
explain the absence of additional operators that are severely
constraining.

2. ϕ2μ̄μ

This radiatively generates,

L ⊃
ϕ2

Λ

�
2α

3mμ
FF þ yeyμ

4π
ēeþ ynyμ

4π
n̄n

�
þ ϕ4

16π2
m2

μ

Λ2

ðA5Þ

FIG. 7. Limits from radiatively induced operators on the
Yukawa parameter space of Fig. 1. EP tests (in black) and DD
limits (in brown) from [53] for photon and electron couplings are
shown. Induced ϕn̄n can lead to shielding on earth above the
relevant brown line. ϕ redshifts as DM only below the brown
“Quartic” line.
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Just like the Yukawa case, ϕ2n̄n and ϕ2ēe can prevent
scalar from percolating into the earth. This is given by,

δm2
ϕ½earth� ∼

1

Λ
ynyμ
4π

ρrock
mn

∼ 6 × 10−10 eV2
TeV
Λ

≤ m2
ϕ

ðA6Þ

Requiring small enough quartic gives,

λeff ¼
Λ2
c

16π2Λ2
≤ 3 × 10−79

�
mϕ

10−18 eV

�
4

ðA7Þ

Finally, depending on the details of UV physics, the
EFT is safe only for field values well below the
cutoff scale, i.e., ϕDM ≤ Λ. These constraints are plotted
in Fig. 8.

3. aμ̄σFγ5μ

At one loop, the EDM operator generates

L ⊃
e
4π2

mμ

Λ2
ðaFF̃Þ þ e

4π2
mμ

Λ2
ð∂αaμγαγ5μ̄Þ: ðA8Þ

The first operator leads to Λ≳ 3 TeV as shown in Fig. 9.
The only rigorous limit on the second operator comes from
muon g-2, and this should be subleading.
At 2-loop and 3-loop, the self-interactions are

L ⊃
1

ð4πÞ4
m6

μ

Λ4
a2 þ 1

ð4πÞ6
m8

μ

Λ8
a4: ðA9Þ

This roughly corresponds to tuned masses when,

δma ∼ 0.01 eV

�
TeV
Λ

�
2 ≳ma: ðA10Þ

Constraining the quartic for a to redshift like DM gives,

λa ∼ 10−36
�
TeV
Λ

�
8

≤ 3 × 10−79
�

mϕ

10−18 eV

�
4

: ðA11Þ

These tuning lines are shown in Fig. 9.
Finally, a2n̄n and a2ēe can prevent percolation into the

earth. These radiatively generated couplings are:

L ¼ 1

ð4πÞ2
m3

μa2

Λ4

�
yeyμ
4π

ēeþ ynyμ
4π

n̄n
�

ðA12Þ

which give a correction,

δm2
a½earth� ∼

1

ð4πÞ2
m3

μ

Λ4

ynyμ
4π

ρrock
mn

∼ 3 × 10−23 eV2

�
GeV
Λ

�
4

≤ m2
a: ðA13Þ

But this is subleading and not shown in the plot.

FIG. 9. Limits from radiatively induced operators on the
aμ̄σFγ5μ parameter space of Fig. 5. Supernova limits from the
induced coupling to photons is shown in black. Quartic limits in
brown are similar to Fig. 7. Also shown is the brown line above
which ha2i ≥ Λ where the EFT might not be well defined. The
region below the black tuning line corresponds to natural
parameter space where the coupling is weak enough to accom-
modate light masses naturally.

FIG. 8. Limits from radiatively induced operators on the ϕ2

Λ μ̄μ
parameter space of Fig. 2. Quartic and shielding limits are similar
to Fig. 7. Also shown is the region where hϕ2i ≥ Λ where the
EFT might not be well defined.
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