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We point out that in models of macroscopic topological defects composed of one or more scalar fields
that interact with standard model fields via scalar-type couplings the back action of ambient matter on the
scalar field(s) produces an environmental dependence of the fundamental constants of nature as well as
spatial variations of the fundamental constants in the vicinity of dense bodies such as Earth due to
the formation of a “bubblelike” defect structure surrounding the dense body. In sufficiently dense
environments, spontaneous symmetry breaking may be inhibited altogether for ϕ2 interactions, potentially
delaying the cosmological production of topological defects to rather late times. We derive bounds on
nontransient variations of the fundamental constants from torsion-pendulum experiments that search for
equivalence-principle-violating forces, experiments comparing the frequencies of ground- and space-based
atomic clocks as well as ground-based clocks at different heights in the recent Tokyo Skytree experiment,
and measurements comparing atomic and molecular transition frequencies in terrestrial and low-density
astrophysical environments. Our results constrain the present-day mass-energy fraction of the Universe due
to a network of infinite domain walls produced shortly after the big bang nucleosynthesis or cosmic
microwave background epochs to be Ωwalls;0 ≪ 10−10 for the symmetron model with a ϕ4 potential and ϕ2

interactions, improving over cosmic microwave background quadrupolar temperature anisotropy bounds
by at least 5 orders of magnitude. Our newly derived bounds on domain walls with ϕ2 interactions via their
effects of nontransient variations of the fundamental constants are significantly more stringent than
previously reported clock- and cavity-based limits on passing domain walls via transient signatures
(regardless of their possible degradation due to previously neglected effects of the strongly repulsive
potential generated by Earth on the passing domain walls) and previous bounds from different types of
nontransient signatures (by about 10 orders of magnitude for wall thicknesses comparable to the size of
Earth), under the same set of assumptions.
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I. INTRODUCTION

Astrophysical and cosmological observations indicate
that about 95% of the matter-energy content of the Universe
is in the form of dark components, the identities and
properties of which remain a mystery [1]. Topological
defects are solitonic configurations of fields that acquire
stability via a nontrivial field topology and may be
produced during a cosmological phase transition associated
with the spontaneous breaking of an underlying symmetry
[2]. Zero-dimensional monopoles are a good candidate to

explain the observed dark matter, while one-dimensional
strings and two-dimensional walls may comprise a sub-
dominant fraction of the dark components [3,4]. The
transverse extent of such topological defects may be
macroscopic. This possibility motivated a number of recent
proposals to search for such macroscopic objects using
networks of terrestrial detectors, such as magnetometers
[5], clocks [6] (see also the earlier work [7]), cavities and
laser interferometers [8–10], and astrophysical networks of
pulsars [11].
Several clock- and cavity-based searches for transient

variations of the fundamental constants induced by the
passage of domain walls have been performed recently
[12–15]. In these papers, the authors assumed that the
domain walls are composed of a scalar field ϕ that interacts
with standard model fields via quadratic-in-ϕ couplings
and reported new limits on such objects that improved over
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other known bounds by as much as 10 orders of magnitude.
In our present work, we point out that a number of
important nontransient signatures in these topological
defect models with ϕ2 interactions have been overlooked
in the previous literature and that, when these nontransient
signatures are taken into account, existing data from differ-
ent types of experiments (most notably torsion-pendulum
experiments) give significantly more stringent bounds than
those reported in Refs. [12–15].
The crucial point that has been overlooked in the earlier

literature concerning models of scalar-field topological
defects with ϕ2 interactions (or even linear-in-ϕ inter-
actions) is that one generally cannot neglect the back action
of ambient matter on the scalar field(s). Indeed, the
terrestrial energy density is approximately 1030 times
greater than the critical energy density of the Universe—
an energy density scale with which topological defects may
a priori be expected to be associated—and so one cannot
necessarily neglect the back action of ambient matter on the
scalar field even when the interaction constant is small.
Similar back-action effects of ambient matter on scalar
fields are known to arise in various scalar-field models with
ϕ2 interactions [16–32], including models of oscillating
scalar dark matter fields with ϕ2 interactions [8,33–37].
In models of scalar-field topological defects with ϕ2

interactions, the back action of ambient matter on the scalar
field(s) produces an environmental dependence of the
fundamental constants as well as spatial variations of the
fundamental constants in thevicinity of a dense body such as
Earth due to the formation of a “bubblelike” defect structure
surrounding the dense body. These effects are most striking
when spontaneous symmetry breaking becomes switched
off altogether in sufficiently dense environments,whichmay
potentially delay the cosmological production of topological
defects to rather late times. Additionally, the potential
generated by a dense body such as Earth can affect the
propagation of a passing topological defect.
In this paper, we derive bounds on nontransient varia-

tions of the fundamental constants arising in models of
scalar-field topological defects with ϕ2 interactions by
using existing data from torsion-pendulum experiments
that search for equivalence-principle-violating forces,
experiments comparing the frequencies of ground- and
space-based atomic clocks as well as ground-based clocks
at different heights, and measurements comparing atomic
and molecular transition frequencies in terrestrial and low-
density astrophysical environments. We find that existing
torsion-pendulum data and recent clock comparison mea-
surements at different heights within Tokyo Skytree as
well as existing laboratory and astrophysical spectroscopy
data place strong constraints on the maximum allowable
mass-energy content stored in a network of “infinite”
domain walls produced shortly after the big bang nucleo-
synthesis (BBN) or cosmic microwave background
(CMB) epochs. Additionally, we point out that these same

torsion-pendulum data and clock comparison measure-
ments at different heights within Tokyo Skytree give
significantly more stringent bounds on domain walls via
the effects of nontransient variations of the fundamental
constants, compared with previous bounds from astro-
physical and laboratory measurements via different types
of nontransient signatures, as well as recent clock- and
cavity-based searches for transient signatures of passing
domain walls. We also discuss phenomenological aspects
of topological defect models with different types of
interactions and models of nontopological solitons.
The structure of our paper is as follows. In Sec. II, we

consider the theory, cosmology, and phenomenology
of macroscopic topological defects composed of scalar
fields that interact with standard model fields via ϕ2

couplings, paying particular attention to the role of back
action of ambient matter on the scalar field. We point out
the emergence of nontransient signatures in this case,
which are associated with environmental dependence
and spatial variations of the fundamental constants,
and derive bounds on these nontransient variations of
the fundamental constants using existing data from
various experiments and measurements. We also derive
bounds on the associated bubblelike defect structures
surrounding Earth and the Sun from the consideration of
their gravitational effects. In Sec. III, we discuss phenom-
enological aspects of terrestrial searches for “dark matter”
networks of topological defects. We demonstrate that
existing torsion-pendulum data give significantly more
stringent bounds on models of domain walls with ϕ2

interactions via nontransient signatures compared with
previously reported limits from clock and cavity experi-
ments that sought for transient signatures, with the recent
clock comparison measurements at different heights within
Tokyo Skytree also probing (via nontransient signatures)
regions of parameter space that were inaccessible to
previous searches for transient signatures. In Sec. IV, we
summarize our findings and discuss our results in a broader
context, including discussion of phenomenological aspects
of topological defect models with different types of inter-
actions and models of nontopological solitons.
Throughout this work, unless explicitly stated otherwise,

we adopt the natural system of units ℏ ¼ c ¼ 1, where ℏ is
the reduced Planck constant and c is the speed of light in
vacuum.

II. MACROSCOPIC TOPOLOGICAL DEFECTS

A. Theory

Topological defects are solitonic configurations of fields
that acquire stability via a nontrivial field topology and
may be produced during a cosmological phase transition
associated with the spontaneous breaking of an underlying
symmetry [2]. For the simplest example, consider a single
real scalar field ϕ with the ϕ4 potential,

YEVGENY V. STADNIK PHYS. REV. D 102, 115016 (2020)

115016-2



VðϕÞ ¼ λ

4
ðϕ2 − ϕ2

0Þ2; ð1Þ

where λ is a dimensionless parameter. The potential in (1)
is invariant under the discrete Z2 symmetry operation
ϕ → −ϕ. The field ϕ may settle in either of the two
energetically equivalent minima at ϕ ¼ �ϕ0, which
are separated by a potential barrier of height λϕ4

0=4; see
Fig. 1(a). In this case, the Z2 symmetry is spontaneously
broken, since the vacuum states associated with these
minima do not exhibit the original symmetry present in
the potential. If there exist two spatially separated regions of
space with topologically distinct vacua, then a domain wall
forms between the two vacua, with the transverse “kink”
profile [38]

ϕðxÞ ¼ ϕ0 tanh ðx=dÞ; ð2Þ
where the transverse size of the wall is set by

d ¼
ffiffiffi
2

λ

r
1

ϕ0

: ð3Þ

The regions on either side of thewall are known as domains,
by analogy with magnetic domains in ferromagnetic
materials.
Domain-wall transverse profiles akin to (2) also arise for

other potentials, such as the Sine-Gordon potential [3].With
more than one scalar field and more complicated potentials,
more complex topological wall structures become possible
[39]. Topological strings and monopoles require more
complicated setups than topological walls. In particular,
the minimal model admitting topological strings involves
the Abelian U(1) gauge group with an associated complex
scalar field ϕ and the following ϕ4-type potential [40,41],

VðϕÞ ¼ λ

�
jϕj2 − ϕ2

0

2

�
2

; ð4Þ

while the minimal model admitting topological monopoles
involves the non-Abelian SU(2) gauge group with an

associated triplet of real scalar fields ϕa, where the index
a ¼ 1, 2, 3, and the following ϕ4-type potential [42,43]:

VðϕaÞ ¼ λ

4
ðϕaϕa − ϕ2

0Þ2: ð5Þ
In our present paper, we focus on the simplest model

admitting topological defects, namely, infinite domain
walls that stretch across the horizon size and arise from
the ϕ4 potential in (1). There is no loss of generality in
focusing on this minimal model, which was also the only
model of topological domain walls explicitly presented in
the theory paper [6] (see thes Supplemental Material in
Ref. [6]1), on which recent clock-based searches for
transient signatures of passing domain walls were predi-
cated. Indeed, the effects of back action of ambient matter
on the scalar field(s) comprising a topological soliton
(including walls, strings, and monopoles) which we study
in our present paper are quite generic. Let us consider the
following quadratic-in-ϕ interactions of the scalar field
with the standard model fields,

Lquad
int ¼

�
ϕ

Λ0
γ

�
2 FμνFμν

4
−
X
f

�
ϕ

Λ0
f

�
2

mff̄f; ð6Þ

where the first term represents the interaction of the
scalar field with the electromagnetic field tensor F, while
the second term represents the interaction of the scalar
field with the standard model fermion fields f, with mf

(a) (b)

FIG. 1. Form of the effective potential (9) in a (a) low-density environment when 2ρX=ðΛ0
XÞ2 ≪ λϕ2

0 and (b) high-density environment
when 2ρX=ðΛ0

XÞ2 ≫ λϕ2
0.

1Let us remark that the single-scalar-field configuration
described in the main text of [6], based on a prescription of a
single real scalar field ϕ, which takes a non-zero value inside the
“defect” object and tends to zero outside of the object, does not
describe a topological defect. Indeed, models of topological
strings and monopoles require at least one complex scalar field or
several real scalar fields, respectively, as well as associated gauge
fields. In the case of wall-like objects, the prescription in [6]
implies that the vacua on either side of the wall “defect” are
topologically equivalent (i.e., the vacua are identical and are not
separated by a potential barrier) and hence this type of wall
“defect” would lack topological stability.
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being the “standard” mass of the fermion and f̄ ¼ f†γ0

being the Dirac adjoint. Note that the choice of signs in (6)
is identical to those used in Ref. [6].
When the ambient-matter fields are associated with

nonrelativistic atoms, we can present Eq. (6) in the conve-
nient form

Lquad
int ¼ −

X
X¼γ;e;N

ρXϕ
2

ðΛ0
XÞ2

; ð7Þ

where ργ ¼ jEj2=2 ≈ −FμνFμν=4 is the Coulomb energy
density of a nonrelativistic nucleus and ρe and ρN are the
electron and nucleon energy densities, respectively. The
effective potential experienced by the scalar field in
the presence of ambient matter therefore reads

VeffðϕÞ ¼ VðϕÞ þ
X

X¼γ;e;N

ρXϕ
2

ðΛ0
XÞ2

ð8Þ

¼ λ

4
ðϕ2 − ϕ2

0Þ2 þ
X

X¼γ;e;N

ρXϕ
2

ðΛ0
XÞ2

: ð9Þ

In a low-density environment when 2ρX=ðΛ0
XÞ2 ≪ λϕ2

0, the
effective potential in (9) has two minima at ϕ ≈�ϕ0 as
shown inFig. 1(a),while in a high-density environmentwhen
2ρX=ðΛ0

XÞ2 ≫ λϕ2
0, the effective potential has only a single

minimum at ϕ ¼ 0 as shown in Fig. 1(b). The inhibition of
spontaneous symmetry breaking in a high-density environ-
ment is a characteristic feature of the symmetron model, in
which the effective potential takes the form (9) andwhich has
been the subject of numerous earlier works [18–22,28–32],
but predominantly in a different context where cosmological
domain walls are presumed absent.
When the dense region of ordinary matter has a finite

size and is surrounded by a large region of low-density
ambient matter, a high density in the dense region is
insufficient by itself to ensure that the scalar field will
attain its minimum near ϕ ¼ 0 inside the dense region. The
characteristic length scale, d0, over which the scalar field
appreciably changes inside the dense region of ordinary
matter must also be small compared to the size of the dense
region. In the case of a spherical dense region of radius R,
we thus require d0 ≪ R. We refer to this case as the “strong
screening” regime, since the scalar-field amplitude inside
the dense region is suppressed compared to its value far
away from the dense region. In the limit when
ρX=ðΛ0

XÞ2 ≫ λϕ2
0, we have d0 ≪ d, where

d0 ≈
Λ0
Xffiffiffiffiffiffiffiffi
2ρX

p : ð10Þ

Otherwise, the scalar-field amplitude inside the dense
region will only deviate slightly from its value far away
from the dense region, and the scalar field will not attain a
minimum near ϕ ¼ 0 inside the dense region. We refer to
this case as the “weak screening” regime, since the scalar-
field amplitude is practically unaffected by the presence of

the dense region. In both the strong screening and weak
screening regimes, the scalar-field profile is deformed in
the vicinity of a dense body, such as Earth, due to the back
action of ambient matter on the scalar field.
To gain an understanding of the domain-wall parameter

values for which the scalar field is strongly or weakly
screened near the surface of and inside Earth, we recall that
themainmass-energy contributions in an electrically neutral
atom containing A nucleons and Z electrons are as follows:

Matom≈AmN þZmeþ
aCZðZ−1Þ

A1=3 þZapþðA−ZÞan:
ð11Þ

The first two terms in (11) correspond to the nucleon and
electron mass energies, respectively. The third term corre-
sponds to the energy associated with the electrostatic
repulsion between protons in a spherical nucleus of uniform
electric-charge density, with the coefficient aC ≈ 0.7 MeV
scaling proportionally to the electromagnetic fine-structure
constant α. The final two terms correspond to the electro-
magnetic energies of the proton and neutron, respectively,
with the coefficientsap ≈þ0.63 MeVandan≈−0.13MeV
derived from the application of the Cottingham formula [44]
to electron-proton scattering [45]. Assuming that the
elemental composition of Earth’s interior is a 1∶1∶1 ratio
of 24Mg16O, 28Si16O2, and 56Fe by number, we find the
fractional mass-energy contributions to Earth’s mass-energy
content from the electromagnetic, electron-mass, and
nucleon-mass components as summarized in Table I.
Furthermore, noting that Earth’s radius is R⊕ ≈ 6400 km
and Earth’s average density is ρ⊕ ≈ 5.5 g=cm3, we find the

TABLE I. Summary of the fractional mass-energy contribu-
tions K0

X due to electromagnetic (X ¼ γ), electron-mass (X ¼ e),
and nucleon-mass (X ¼ N) components in various systems and
analogous fractional mass-energy differences ΔK0

X in various
test-mass pairs. We have assumed that the elemental composition
of Earth’s interior is a 1∶1∶1 ratio of 24Mg16O, 28Si16O2, and 56Fe
by number and that the elemental composition of Earth’s
atmosphere is a 4∶1 ratio of 14N2 and 16O2 by number. We have
assumed that the elemental composition of the interplanetary and
interstellar media is 75% 1H and 25% 4He by mass and have
neglected the effects of stellar nucleosynthesis.

System K0
γ K0

e K0
N

Earth’s interior 1.9 × 10−3 2.4 × 10−4 1.0
Earth’s atmosphere 9.5 × 10−4 2.7 × 10−4 1.0
Interplanetary and
interstellar media

6.3 × 10−4 4.4 × 10−4 1.0

Test-mass pair ΔK0
γ ΔK0

e ΔK0
N

Be-Ti −1.5 × 10−3 −7.2 × 10−6 þ1.5 × 10−3

Be-Al −9.5 × 10−4 −2.0 × 10−5 þ9.7 × 10−4

Pt-Ti þ2.0 × 10−3 −3.2 × 10−5 −1.9 × 10−3
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regions of domain-wall parameters for which the scalar field
is strongly or weakly screened near the surface of and
inside Earth, as shown in Fig. 2 by the light gray and white
regions, respectively. For simplicity, in the present work, we
neglect Earth’s internal structure and density variations
therein.
For sufficiently strong interactions of the form (6), (7),

the scalar field may even become strongly screened inside
the main components of an experimental apparatus and
thus evade detection altogether. The transition from the
weak screening regime to the strong screening regime in
this case depends on the details of the apparatus, including
the sizes, materials, and geometries of the apparatus
components, as well as the details of the surrounding
shielding and laboratory environment. For the experiments
of interest in our present paper, we shall simply model the
whole apparatus or satellite as a uniform sphere of radius
R ∼ 30 cm and with a density comparable to Earth’s
average density. In this case, the regions of domain-wall

parameters for which the scalar field is strongly screened
inside the apparatus or satellite are shown in Fig. 2 by the
dark gray regions. To probe these dark gray regions,
measurements should generally be performed using appa-
ratus with sufficiently small components and/or systems
with sufficiently low densities.
The scalar field may also be strongly screened by Earth’s

atmosphere, in which case the scalar field would evade
detection by ground-based experiments on Earth. Treating
Earth’s atmosphere as a 4∶1 ratio of 14N2 and 16O2 by
number, with a constant density of ρ ≈ 10−3 g=cm3 and
extending out from Earth’s surface to an altitude of
h ≈ 10 km, we find the regions of domain-wall parameters
for which the scalar field is strongly screened by Earth’s
atmosphere, as shown in Fig. 2 by the blue region. The
density of Earth’s atmosphere decreases rapidlywith increas-
ing height.At an altitude of≈103 km, abovewhich hydrogen
and helium become the main components of Earth’s outer
atmosphere, the particle density is approximately 104 cm−3,

(a) (b)

(c)

FIG. 2. Regions of domain-wall model parameter spaces for the quadratic interactions of a scalar field ϕ with the (a) electromagnetic
field (photon), (b) electron, and (c) nucleons, as defined in (6), in which the scalar field is weakly screened near the surface of and inside
Earth (white region), strongly screened near the surface of and inside Earth (light gray region), strongly screened by Earth’s atmosphere
(blue region), strongly screened inside an apparatus or satellite of size approximately 60 cm and with a density comparable to Earth’s
average density (dark gray region), and where spontaneous symmetry breaking is inhibited altogether by the interplanetary and
interstellar media (black region). The purple and brown lines denote the parameters for which scalar-field domain walls can be
cosmologically produced shortly after the BBN or CMB epochs, respectively.
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and the transition to the strong screening regime by Earth’s
outer atmosphere requires even stronger interactions than for
the transition to the regime of strong screening of the scalar
field inside a satellite. Additionally, for sufficiently strong
interactions, spontaneous symmetry breaking may be inhib-
ited altogether within the Solar System and Galaxy by the
interplanetary and interstellar media, respectively, in which
case ϕ ¼ 0 in all local experiments. The transition to the
interplanetarymediumoccurs at an altitude of approximately
104 km,where theparticle density (whichvarieswith time) is
typically approximately 10 cm−3. The transition from the
interplanetary medium to the interstellar medium occurs at a
distance of approximately 100 AU from the Sun. Since the
average energy density of the interstellarmedium in our local
Galactic neighborhood is comparable to the typical inter-
planetary medium energy density near Earth, for simplicity,
weneglect variations in the densities of the interplanetary and
interstellar media within the Solar System and Galaxy
(unless explicitly stated otherwise). Furthermore, since we
will be restricting our attention to domain-wall transverse
size parameters d less than the size of our Galaxy (approx-
imately 30 kpc across), we shall also neglect the finite size of
ourGalaxy and the surrounding intergalacticmedium (which
has a much lower average energy density than those of the
interplanetary and interstellar media). Assuming that the
elemental composition of the interplanetary and interstellar
media is 75% 1Hand 25% 4He bymass,we find the regions of
domain-wall parameters for which spontaneous symmetry
breaking is inhibited altogether by the interplanetary and
interstellar media, as shown in Fig. 2 by the black region.
In addition to the back-action effects of ambient matter

on the scalar field discussed above, the interactions in
Eq. (6) also cause the scalar field to affect the properties of
ordinary matter via apparent variations of the physical
“constants,” including changes in the strengths of funda-
mental interactions and variations in particle masses.
Comparing the terms in Eq. (6) with the relevant terms
in the standard model Lagrangian,

LSM ⊃ −
FμνFμν

4
−
X
f

qfJμAμ −
X
f

mff̄f; ð12Þ

where qf is the electric charge carried by the fermion f,
Jμ ¼ f̄γμf is the electromagnetic 4-current, and Aμ is the
electromagnetic 4-potential, we see that the interactions in
(6) effectively alter the electromagnetic fine-structure con-
stant α and fermion masses according to

α →
α

1 − ðϕ=Λ0
γÞ2

≈ α

�
1þ

�
ϕ

Λ0
γ

�
2
�
; ð13Þ

mf → mf

�
1þ

�
ϕ

Λ0
f

�
2
�
: ð14Þ

Since the scalar-field profile is deformed in the vicinity
of a dense body, such as Earth, due to the back action of

ordinary matter on the scalar field, and because more
generally the scalar-field amplitude depends on the local
ambient-matter density, the apparent values of the funda-
mental constants will therefore depend on the environment
in which measurements are performed and there will also
be spatial variations of the fundamental constants in the
vicinity of dense bodies. The phenomenology of these
environmental dependencies and spatial variations of the
fundamental constants, caused by the reciprocal effects of
ambient matter and the scalar field on one another, is the
central focus of our present work. Although we focus on
the interactions (6) in our present work, we note that similar
types of reciprocal effects of ambient matter and the scalar
field on one another also arise for other types of interactions
(see Sec. IV).

B. Cosmology

A generic mechanism for the production of topological
defects is the so-called Kibble mechanism [46]. The Kibble
mechanism operates during the cosmological phase tran-
sition epoch during which the underlying symmetry
becomes spontaneously broken and the scalar field devel-
ops a nonzero expectation value. The phase transition
proceeds independently in causally disconnected regions
of Hubble size lH ∼ 1=H, whereH is the Hubble parameter
as a function of time (H ∼ 1=t in a matter- or radiation-
dominated Universe). Inside any given Hubble region,
the scalar-field configuration is correlated up to some
correlation length lcor, which cannot exceed the Hubble
size, lcor ≲ lH. Within a particular correlation volume, the
system settles in one and the same vacuum. The vacuum
states in different correlation volumes are uncorrelated, and
so a topological defect may form at the boundary between
adjacent correlation volumes. On average,Oð1Þ topological
defect is produced per correlation volume of approximately
l3cor, meaning that there should be at least Oð1Þ topological
defects per Hubble volume of approximately l3H.
The interactions (6), (7) provide a natural mechanism to

cosmologically produce topological defects at rather late
times via the Kibble mechanism, distinct from inflationary
production scenarios (see, e.g., Ref. [47]). At early times
when 2ρX=ðΛ0

XÞ2 ≫ λϕ2
0, there is no spontaneous sym-

metry breaking, and the scalar field remains at ϕ ¼ 0.
Then, at the later critical time when 2ρX=ðΛ0

XÞ2 ¼ λϕ2
0, the

cosmological phase transition can commence, and the
scalar field can start to roll toward one of the two new
minima of the effective potential (9). The energy density of
either a nonrelativistic or relativistic component decreases
with time at least as rapidly as ρX ∝ t−3=2, regardless of
whether the Universe is matter or radiation dominated,
and so the transition from the regime 2ρX=ðΛ0

XÞ2 ≫ λϕ2
0

to 2ρX=ðΛ0
XÞ2 ≪ λϕ2

0 occurs within Oð1Þ Hubble time
tH ∼ 1=H. In other words, the phase transition occurs
rather quickly. This phase transition is second order, since
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the scalar field smoothly develops a nonzero expectation
value during the transition, rather than abruptly (first-order
phase transition).
The evolution of a scalar field in an expanding Universe

is governed by the time-dependent differential equation

ϕ̈þ 3HðtÞ _ϕ − ∇2ϕ ¼ −
∂Veff

∂ϕ ; ð15Þ

where ∇ is the spatial gradient operator with respect to
proper (nonexpanding) spatial coordinates. For the scalar
field to roll down from ϕ ¼ 0 to one of the two new minima
at ϕ ¼ �ϕ0 within Oð1Þ Hubble time, the scalar-field
amplitude must change by the amount jδϕj ∼ j _ϕ=Hj ∼ ϕ0

in the same time interval. This “fast-roll” regime requires
jH _ϕj ≪ j∂Veff=∂ϕj ∼ j∇2ϕj during the formation of the
topological defect. For the effective potential (9), this is
equivalent to the requirement d ≪ lH, which corresponds
to the case when the topological defects are well separated
and evolve adiabatically. Otherwise, the scalar field
remains stuck near ϕ ¼ 0 due to “Hubble friction,” and
topological defects do not form. In other words, the
maximum transverse size of a topological defect produced
during a phase transition at time t� is dmax ∼ lHðt�Þ. In
Fig. 2, we show the regions of domain-wall parameters in
the case of interactions (6) for which domain walls are
produced shortly after the BBN (redshift z ∼ 108) or CMB
(z ≈ 103) epochs by the purple and brown lines, respec-
tively. We focus on these two cosmologically interesting
epochs but note that domain walls may also be produced
via the same mechanism at different times.
The subsequent evolution of the network of topological

defects depends on the dynamics of the defect network. We
focus on a network of infinite domain walls arising from the
ϕ4 potential (1). In the limiting case in which the initial
network of domain walls undergoes little or no dynamical
evolution after formation, the total proper area of the walls
simply grows as Awalls ∝ a2 with the scale factor aðtÞ, and
so the average energy density associated with the walls
scales as ρwalls ∝ a2=a3 ∝ a−1. Numerical simulations
[3,48–50], however, show no evidence of such “frustrated”
domain-wall networks but instead reveal that only Oð1Þ
domain walls survive per Hubble volume, with the average
energy density associated with the walls scaling approx-
imately as ρwalls ∝ t−1 (which decreases faster with time
than ρwalls ∝ a−1 in a matter- or radiation-dominated
Universe). Numerical simulations with more complicated
potentials and more complicated types of hybrid wall
networks [51,52] also find no evidence of frustrated wall
networks. The physical explanation for the apparent lack of
frustrated domain-wall networks is that the collisions of
domain walls lead to wall reconnection and annihilation,
thereby “clearing” the volume around the few surviving
domain walls and hence decreasing the energy stored in the
wall network. We note that, in the presence of interactions

(6), (7), the average energy density of the wall network may
decrease even faster than ρwalls ∝ t−1, due to the collisions
of walls with dense bodies of ordinary matter potentially
leading to the loss of wall energy via “pinching off” of parts
of the walls and their subsequent radiation (see Sec. III A).
To determine the relationship between the average

energy density associated with a network of domain walls
and the wall parameters, we note that the energy density
inside a single wall is given by ρinside ∼ ϕ2

0=d
2. The energy

associated with a network of Nwalls walls is hence given by
Ewalls ∼ ρwallsl3H ∼ Nwallsρinsidedl2H. We thus arrive at the
following relation:

ϕ2
0 ∼

ρwallsd
NwallsH

: ð16Þ

The existence of a present-day network of infinite domain
walls would give rise to a quadrupolar temperature
anisotropy in the CMB via the Sachs-Wolfe effect [53],
with an amplitude of ðδT=TÞquad ∼Ωwalls;0 ¼ ρwalls;0=ρc;0
[3], where Ωwalls;0 is the present-day mass-energy fraction
of the Universe due to the wall network and ρc;0 ∼
10−29 g=cm3 is the present-day critical density of the
Universe. From the Planck 2018 temperature power spec-
trum [54], the size of an extra source of quadrupolar
temperature anisotropy is bounded to be ðδT=TÞquad ≲
10−5, and so we have the following bound:

Ωwalls;0 ≲ 10−5: ð17Þ

We stress that the bound (17) is based purely on the
gravitational effects of domain walls of cosmological origin.
Regarding the number of domain walls at the present epoch,
the earliest numerical simulations in Ref. [3] indicated that
Nwalls grows logarithmically in time according to the
empirical relation Nwalls ≈ 1þ 0.2 lnðt=dÞ, which gives
Nwalls;0 ∼Oð10Þ for domain walls with the macroscopic
transverse size parameters of interest in our present work.
The authors of Ref. [3] attribute this apparent logarithmic
growth in time to the self-avoiding random-walk nature of the
wall collisions and subsequent reconnections and annihila-
tions and suggest that the walls adopt a “stacked” formation
over time to avoid collisions with one another. The more
recent numerical simulations in Refs. [48–50], however, do
not provide strong evidence for this logarithmic factor and
indicate that only Oð1Þ walls survive to the present epoch.
We shall make the minimalistic assumption that Nwalls ∼
Oð1Þ at all times, which leads to slightly stronger limits in
Sec. II C than for Nwalls;0 ∼Oð10Þ.

C. Phenomenology

We begin by discussing nontransient signatures that
are independent of the parameter ϕ0 appearing in (1),
(9). First of all, the interactions in (6) allow the emission of
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ϕ particles from hot environments, such as the interiors of
stars. In particular, pairs of ϕ particles can be produced via
the pair annihilation of photons γγ → ϕϕ, electron-positron
annihilation e−eþ → ϕϕ, the Compton-type process
eγ → eϕϕ, and the nucleon bremsstrahlung–type process
NN → NNϕϕ. Constraints on the emission of new par-
ticles from the core of supernova 1987A lead to the
following bounds on the interactions (6) [19]:

Λ0
γ ≳ 3 TeV; ð18Þ

Λ0
e ≳ 400 GeV; ð19Þ

Λ0
N ≳ 15 TeV: ð20Þ

Let us remark that such emission processes require the
effective mass of the ϕ particles to be less than the core
temperature of the supernova Tcore ∼ 30 MeV; other-
wise, the ϕ particles will not be emitted from the
supernova due to the law of conservation of energy.
In a very dense environment, m2

eff ≈ 2ρX=ðΛ0
XÞ2, which

for a supernova core density of ρcore ∼ 3 × 1014 g=cm3

requires Λ0
N ≳ GeV. Additionally, the interactions in (6)

induce quantum forces mediated by the exchange of a
pair of ϕ particles between two bodies. These quantum
forces are constrained by short-range tests of gravity
[55,56], leading to the bound on the nucleon interaction
in (6) [19,31],

Λ0
N > 2 TeV; ð21Þ

with weaker bounds on the electromagnetic and electron
interactions.
We shall now demonstrate, however, that there are

generally much stronger bounds on the interactions (6)
for macroscopic domain walls, produced under the minimal
cosmological assumptions outlined in Sec. II B above,
stemming from different types of nontransient signatures
that depend on the parameter ϕ0 and arise from an
environmental dependence and spatial variations of the
fundamental constants due to the reciprocal effects of
ambient matter and the domain-wall scalar field on one
another. The scalar-field profile is deformed in the vicinity
of a dense body due to the back action of ambient matter on
the scalar field via the interactions (6), (7). The geometrical
features of the scalar-field deformation are determined by
the geometry of the dense body. Around a spherical dense
body, such as Earth, the scalar-field deformation resembles
a spherical bubblelike defect structure. We derive the
scalar-field profile around a homogeneous spherical body
of radius R in Appendix A. In the weak screening regime
when 2ρX=ðΛ0

XÞ2 ≪ λϕ2
0 or d0 ≫ R, where d0 is given by

Eq. (10) in the limiting case when ρX=ðΛ0
XÞ2 ≫ λϕ2

0, the
scalar-field profile outside of the spherical body reads

ϕoutðrÞ≈ϕ0−
ϕ0ρXd2R
4ðΛ0

XÞ2r
exp

�
−
2ðr−RÞ

d

�
for d≪R; ð22Þ

ϕoutðrÞ≈ϕ0−
2ϕ0ρXR3

3ðΛ0
XÞ2r

exp

�
−
2ðr−RÞ

d

�
ford≫R: ð23Þ

On the other hand, in the strong screening regime when
2ρX=ðΛ0

XÞ2 ≫ λϕ2
0 and d0 ≪ R, the scalar-field profile

outside of the spherical body reads in the limiting cases
when d ≪ R or d ≫ R as

ϕoutðrÞ∼
ϕ0d0þϕ0Rð1−R=rÞ

minðd;RÞ for r−R≪minðd;RÞ; ð24Þ

ϕoutðrÞ−ϕ0

∼−
ϕ0R
r

exp

�
−
2ðr− r�Þ

d

�
for r−R≫minðd;RÞ; ð25Þ

where r� − R ∼minðd; RÞ.
The form of the scalar-field profile for a spherical

bubblelike defect structure surrounding a dense spherical
body in the case when the scalar field is strongly screened
near the surface of and inside the dense body is shown in
Fig. 3(a) for d ≫ R; for comparison, in Fig. 3(b), we show
the form of the scalar-field profile of a domain wall in
vacuum, as described by Eq. (2) and arising in the same
scalar-field model. We note that, unlike the domain walls in
(2) that propagate freely in vacuum, the bubblelike defect
structures in Eqs. (22)–(25) are permanently affixed to and
follow the motion of the dense body. In the case when the
scalar field is strongly screened near the surface of and
inside the dense body, the scalar-field bubble described by
Eqs. (24) and (25) starts to form when the size of the dense
protobody exceeds the critical size of approximately d0
during the formation of the dense body. In arriving at
Eqs. (22), (23), (24), and (25), we have assumed that the
dense spherical body is located in a domain with vacuum
value þϕ0 [the overall signs of ϕout in Eqs. (22), (23), (24),
and (25) are reversed if the dense body is located in a
domain with vacuum value −ϕ0] and far away from a wall
boundary joining two domains. Since we expect the
present-day network of infinite domain walls to contain
only Oð1Þ walls (see Sec. II B), the probability for a dense
body such as Earth to be located near a wall boundary at
any given time is extremely small. The deformed scalar-
field profiles around Earth in Eqs. (22), (23), (24), and (25)
lead to a number of interesting nontransient signatures
via the apparent variations of the fundamental constants in
(13) and (14). We elucidate these signatures in Secs. II C 1,
II C 2, and II C 3 below. Additionally, the gravitational
effects of these bubblelike defect structures surrounding
Earth and the Sun lead to another set of bounds, as we
discuss in Sec. II C 4 further below. We summarize our
results in Fig. 4, in which we assume the relation (16) with
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(a) (b)

FIG. 3. Comparison of the forms of the scalar-field profile for (a) a spherical bubblelike defect structure surrounding a dense spherical
body in the case when the scalar field is strongly screened near the surface of and inside the dense body and (b) a domain wall in vacuum,
as described by Eq. (2) and arising in the same scalar-field model.

(a) (b)

(c)

FIG. 4. Constraints on the quadratic interactions of a domain-wall model scalar field ϕ with the (a) electromagnetic field (photon),
(b) electron, and (c) nucleons, as defined in (6), as a function of the domain-wall transverse size parameter d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðλϕ2

0Þ
p

, assuming that
the domain-wall network has a present-day average energy density of ρwalls;0 ∼ 10−5ρc;0 ∼ 10−34 g=cm3 and contains Oð1Þ walls at all
times. The following regions of parameters are excluded by our present work from the consideration of: comparison of Sr optical clocks at
different heights in the Tokyo Skytree experiment (red region), comparison of ground- and space-basedHmicrowave clocks in theGravity
ProbeA (GPA)mission and on board theGalileo satellites (yellow region), Be-Ti andBe-Al torsion pendula in the ground-basedEöt-Wash
experiments (blue region), Pt-Ti torsion pendulum in the space-basedMICROSCOPEmission (green region), comparisons of atomic and
molecular spectra in ground-based laboratory and low-density astrophysical environments (light gray region), and comparison of orbital
position data of the Earth-bound LAGEOS satellite and those of lunar orbiters with lunar laser ranging data, as well as separate analyses of
planetary ephemeris data (cyan region). The region in dark gray corresponds to existing constraints from supernova energy-loss bounds
[19] and short-range tests of gravity [19,31]. The purple and brown lines denote the parameters for which scalar-field domain walls can be
cosmologically produced shortly after the BBN or CMB epochs, respectively. See the main text for more details.
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Nwalls ∼Oð1Þ and the maximum allowable present-day
average energy density ρwalls;0 ∼ 10−5ρc;0 ∼ 10−34 g=cm3;
see Eq. (17). Unless explicitly stated otherwise, we assume
that all the relevant ground-based laboratory apparata are
located within approximately 1 m of Earth’s surface.

1. Torsion pendula

The spherically symmetric scalar-field profiles in
Eqs. (22), (23), (24), and (25), induced by the interactions
(6) and (7), give rise to radially directed spatial gradients in
α and the fermion masses; see Eqs. (13) and (14). By
analogy with the acceleration that a test particle or test mass
experiences in the presence of a spatial gradient in a
potential, spatial gradients in α and the particle masses
give rise to accelerations on test particles and test masses of
mass Mtest:

δatest ¼ −
∇Mtest

Mtest
: ð26Þ

Since themass-energy contributions due to electromagnetic,
electron-mass, and nucleon-mass components generally
differ for test masses of different material compositions,
see Eq. (11), the forces associated with the accelerations in
(26) therefore violate the equivalence principle. Torsion
pendula are extremely sensitive probes of equivalence
principle–violating forces. The Eöt-Wash experiments are
performed in the laboratory usingBe-Ti andBe-Al test-mass
pairs and constrain the differential radial accelerations of
both test-mass pairs at the approximately 10−13 level (and
the differential horizontal accelerations at the approximately
10−16 level) relative to the radial acceleration induced by
Earth’s gravitational field [57,58]. The MICROSCOPE
mission is performed in space at an altitude of h ≈
700 km using the Pt-Ti test-mass pair and constrains the
differential radial acceleration of the test-mass pair at the
approximately 10−14 level relative to the radial acceleration
induced by Earth’s gravitational field [59].
Using Eqs. (13), (14), (16), (22), (23), (24), (25), and

(26) as well as the fractional mass-energy differences of the
electromagnetic, electron-mass, and nucleon-mass contri-
butions to the relevant test-mass pairs in Table I, we derive
bounds on the quadratic interactions of the domain-wall
model scalar field ϕ with the electromagnetic field,
electron, and nucleons in Eq. (6). We present our bounds
as colored regions in Fig. 4 (blue ¼ Eöt-Wash experiments,
green ¼ MICROSCOPE mission). In deriving the Eöt-
Wash bounds, we have treated Earth as a structureless,
featureless sphere, with a pendulum tilt angle of approx-
imately 10−3 radians (mainly due to Earth’s rotation) away
from the normal to Earth’s surface. In the case in which the
scalar field is weakly screened inside Earth (and hence the
principle of linear superposition applies), there may be a
further increase in the sensitivity to Λ0

X for d < R⊕ by up to
a factor of ≈4 from the consideration of the horizontal

forces sourced by nearby laboratory and geographical
features (for details of these features, see Ref. [60] and
Refs. [17–21] therein). On the other hand, in the case in
which the scalar field is strongly screened in the bulk of
Earth, the principle of linear superposition is no longer
guaranteed to hold due to the nonlinear nature of the
governing differential equation [see Eq. (A1)], and a more
detailed analysis is required to elucidate the role of the
nearby geographical and laboratory features. We note that
the MICROSCOPE bounds are the stronger of the two sets
of torsion pendulum–based bounds for the domain-wall
transverse size parameters d≳ h ≈ 700 km due to the
better precision of the MICROSCOPE mission to radially
directed equivalence principle–violating forces. However,
for d ≲ h, the MICROSCOPE bounds degrade rapidly,
since the scalar-field gradient becomes exponentially sup-
pressed at the altitude h ≈ 700 km in this case, while there
is no such suppression for the ground-based Eöt-Wash
experiments; see Eqs. (22)–(25). It is also worth noting that
these same scalar field–induced equivalence principle–
violating forces will also manifest themselves in atom
interferometry experiments that compare the rates of fall
of two different atomic species or isotopes; however,
the precision of current atom interferometry experiments
[61–65] is not yet competitive with torsion-pendulum
experiments.

2. Comparison of clocks at different heights

The spherically symmetric scalar-field profiles in
Eqs. (22), (23), (24), and (25), induced by the interactions
(6) and (7), imply that the apparent values of α and the
fermion masses vary with altitude h, in accordance with
Eqs. (13) and (14). Spectroscopy (clock-based) measure-
ments are very sensitive probes of varying fundamental
constants. The recent Tokyo Skytree experiment compared
two Sr optical clocks separated by a height difference of
Δh ≈ 450 m, with one of the clocks located close to Earth’s
surface, and verified the fractional atomic frequency shift
due to the gravitational potential difference between the
two clocks at the 4 × 10−18 level [66]. The scalar-field
contribution to the fractional frequency shift between the
two Sr optical clocks takes the form

ΔνSr
νSr

≈þ2
Δα
α

þ Δme

me
≈ Δðϕ2Þ

�
2

ðΛ0
γÞ2

þ 1

ðΛ0
eÞ2

�
; ð27Þ

where we have neglected a small relativistic correction
factor of þ0.06 to the α sensitivity coefficient of the Sr
clock transition [67]. To distinguish the effects of the
scalar-field interactions (6) from the usual gravitational
redshift effect, we note that the clock comparison mea-
surements are “referenced” against a combination of laser
ranging and gravimeter measurements, which provide an
independent prediction for the clock frequency shift. First
of all, let us remark that the effect of the ϕ2 interactions on
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the height of the tower via changes in the atomic Bohr
radius aB ¼ 1=ðmeαÞ is common to all of the clock
comparison, laser ranging, and gravimeter measurements,
while the effects of the ϕ2 interactions on the size and
apparent mass of Earth are common to the clock compari-
son and gravimeter measurements (and are practically
irrelevant for the laser ranging measurements).
The effects of the ϕ2 interactions (6) on the time-of-flight

laser ranging measurements via their effects on (i) the time-
keeping element that measures the photon flight time
Δt ¼ 2Δh=c, (ii) the laser frequency and wavelength, and
(iii) the photon propagation speed are generally negligible
compared to the effects on the clock comparison measure-
ments themselves. Regarding (i), the time-of-flight laser
ranging measurements in the Tokyo Skytree experiment
have a relative precision of approximately 10−5, and so the
effects of the ϕ2 interactions on the associated time-keeping
element can be neglected (indeed, the time-keeping element
is practically insensitive to the usual gravitational redshift
effect). Regarding (ii) and (iii), the ϕ2 interactions (6) have
no effect on the speed of light in vacuum and hence have no
associated effect on the time of flight measured in the laser
ranging measurements. The reason is that photons, which
propagate freely through vacuum, have jEj ¼ jBj in terms of
their electric- and magnetic-field components, and so the
relevant coupling ϕ2FμνFμν vanishes, since FμνFμν ¼
2ðjBj2 − jEj2Þ ¼ 0 in this case, while the ϕ2 couplings to
the fermions are irrelevant. The ϕ2 interactions do affect the
laser frequency and wavelength, but this is irrelevant for
time-of-flight measurements in vacuum (though can be
relevant in phase-shift measurements [10]). For photons
traveling through air, the ϕ2 interactions have a small effect
on the photon propagation speed via changes in the
refractive index of air and changes in the laser frequency
[10]. The ϕ2 interactions also have a small effect on the Δh
measurement via laser ranging in the Tokyo Skytree experi-
ment, due to the fact that a small fraction of this measure-
ment is conducted via spirit leveling,with theϕ2 interactions
affecting the lengths of the leveling rods via changes in aB.
The ϕ2 interactions (6) also affect the acceleration

measured by the two gravimeters in the Tokyo Skytree
experiment, according to aðrÞ ¼ −∇UðrÞ − K0

X∇βXðrÞ ¼
−∇U0

effðrÞ, where UðrÞ is the usual gravitational potential,
K0

X is the fractional mass-energy contribution of the
underlying mass-energy component X associated with
the test mass (K0

N ≈ 1, while K0
γ;e ≪ 1), and βXðrÞ are

functions of the interaction type, strength, and range, as
well as details of screening of the scalar field by Earth, and
are related to the functions in Eqs. (22)–(25). In particular,
the functions βX are the same functions that enter the
transition frequency shift between clocks at different
heights, according to Δν=ν¼ΔUþKXΔβX¼ΔUeff , where
KX denotes the relative sensitivity coefficient of a given
clock transition frequency to changes in the fundamental

constant X, defined according to Δν=ν ¼ KXΔX=X.
When KX ≈ K0

X, the effects of the ϕ2 interactions on the
clock comparison and gravimeter measurements are practi-
cally indistinguishable (since Ueff ≈U0

eff in this case),
and so the corresponding effective sensitivity coefficient
KX;eff ¼ KX − K0

X will be suppressed in this case. Most
optical and microwave clocks have KX ≫ K0

X for the ϕ2

interactions with the electromagnetic field and the
electron, giving KX;eff ≈ KX in this case. On the other
hand, for the ϕ2 interaction with nucleons, K0

X ≈þ1, and
so KX;eff ≈ KX − 1.
Altogether, the effective contribution of the ϕ2 inter-

actions (6) to the fractional frequency shift between the two
Sr optical clocks in the Tokyo Skytree experiment, refer-
enced against a combination of laser ranging and gravim-
eter measurements, takes the form

�
ΔνSr
νSr

�
eff

≈þ2
Δα
α

þ Δme

me
−
ΔmN

mN

≈ Δðϕ2Þ
�

2

ðΛ0
γÞ2

þ 1

ðΛ0
eÞ2

−
1

ðΛ0
NÞ2

�
: ð28Þ

Note the appreciable sensitivity to the nucleon interaction
parameter in Eq. (28), which is absent in Eq. (27) but arises
in Eq. (28) due to referencing against the gravimeter
measurements.
Besides ground-based clock comparison measurements,

ground-to-space clock comparison measurements are also
possible. The Gravity Probe A (GPA) mission in the 1970s
compared two hydrogen microwave clocks, with one of the
clocks located on the ground and the other clock located in
space at an altitude of h ≈ 104 km, and verified the frac-
tional atomic frequency shift due to the gravitational
potential difference between the two clocks at the approx-
imately 10−13 level [68–70]. More recent spectroscopy data
from hydrogen microwave clocks onboard the Galileo
satellites in eccentric orbits about Earth at altitudes of h ∼
ð1–2Þ × 104 km demonstrated improved precision at the
approximately 10−14 level [71,72]. In both cases, the scalar-
field contribution to the fractional frequency shift between
two H microwave clocks takes the form

ΔνH
νH

≈þ4
Δα
α

þ 2
Δme

me
−
ΔmN

mN

≈ Δðϕ2Þ
�

4

ðΛ0
γÞ2

þ 2

ðΛ0
eÞ2

−
1

ðΛ0
NÞ2

�
: ð29Þ

In ground-to-space clock comparisons, the clock compari-
son measurements are referenced against a combination of
laser ranging measurements and predominantly the orbital
position data of Earth-bound satellites, such as LAGEOS
and GRACE, which together provide an independent
prediction for the clock frequency shifts. The discussion
concerning the effective sensitivity coefficients KX;eff
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proceeds in a similar fashion as for the Tokyo Skytree
experiment above (the lunar laser ranging measurements
have a relative precision of approximately 10−11, and so the
effects of the ϕ2 interactions on the reference Cs microwave
clock, which functions as the time-keeping element, can be
neglected). The effective contribution of the ϕ2 interactions
(6) to the fractional frequency shift between two H micro-
wave clocks, referenced against a combination of laser
ranging measurements and orbital position data of Earth-
bound satellites, takes the form

�
ΔνH
νH

�
eff

≈þ4
Δα
α

þ 2
Δme

me
− 2

ΔmN

mN

≈ Δðϕ2Þ
�

4

ðΛ0
γÞ2

þ 2

ðΛ0
eÞ2

−
2

ðΛ0
NÞ2

�
: ð30Þ

Note the enhancement in the sensitivity to the nucleon
interaction parameter in Eq. (30), comparedwith in Eq. (29),
due to the effect of the ϕ2 interaction with nucleons on the
measured accelerations of the Earth-bound satellites.
Before proceeding to our results, let us remark that it is

instead possible to compare the ratios of a pair of different
clock transition frequencies, where the two clocks have
different sensitivities to the ϕ2 interactions (6), at different
heights. In this approach, the usual gravitational redshift
effect, which is universal across all clock transition
frequencies, cancels in the frequency ratio measurements,
potentially greatly reducing the systematic uncertainties
associated with independent knowledge of the local gravi-
tational potential. This can be particularly advantageous
when a clean independent prediction for an individual clock
transition frequency shift might be hindered by complex
local geographical features, such as near or on top of a large
mountain or in underground experiments.
Using Eqs. (16), (22), (23), (24), (25), (28), and (30), we

derive bounds on the quadratic interactions of the domain-
wall model scalar field ϕ with the electromagnetic field,
electron, and nucleons in Eq. (6). We present our bounds as
colored regions in Fig. 4 (red ¼ Tokyo Skytree experi-
ment, yellow ¼ Galileo satellites, and Gravity Probe A
mission). In deriving the Tokyo Skytree bounds, we note
that the back-action effects of the tower on the scalar field,
including screening of the scalar field by the tower itself,
can be neglected in the entire relevant parameter space. The
main support structure of the tower is a cylindrical shell
“shin-bashira,” with a height of h ≈ 375 m from the base
of the tower, radius of R ≈ 4 m, shell thickness of
ΔR ≈ 0.5 m, and made of steel-reinforced concrete (den-
sity ρ ≈ 2.5 g=cm3). The upper clock is located ≈12 m
from the tower’s symmetry axis, while the lower clock is
located ≈40 m from the tower’s symmetry axis. We note
that the Tokyo Skytree bounds are the significantly stronger
of the two types of clock-based bounds for the domain-wall
transverse size parameters d≲ Δh ≈ 450 m due to the

much better precision of modern state-of-the-art Sr optical
clocks compared with H microwave clocks. However, for
d≳ Δh, the Tokyo Skytree bounds degrade substantially,
since in this case the scalar-field contribution to Δν=ν
becomes suppressed by the factor of approximately
Δh=R⊕ ∼ 10−4 in the weak screening regime and by the
factor of approximately Δh=min ðd; R⊕Þ ≪ 1 in the strong
screening regime. On the other hand, there are no such
suppression factors for the ground-to-space clock compar-
isons, in which one of the clocks is located at a distance
greater than or approximately equal to R⊕ away from
Earth’s surface, and the two types of clock-based bounds
become comparable in the limit d ≫ Δh. We note that Cs
microwave spectroscopy data from the near-future ACES-
PHARAO mission [73], which will place clocks on board
the International Space Station (h ≈ 400 km), may also be
used in similar types of searches.

3. Comparison of laboratory and astrophysical spectra

In the presence of the interactions (6) and (7), the value
of the domain-wall model scalar field ϕ, and in turn the
apparent values of α and the fermion masses, depends on
the local environment. Near the surface of a sufficiently
dense and small body (i.e., where the strong screening
regime applies), ϕ2

lab ≪ ϕ2
0; see Eq. (24). On the other hand,

in a sufficiently dilute environment far away from the
dense body (where the weak screening regime applies),
ϕ2
astro ≈ ϕ2

0. In this case, Δðϕ2Þ ¼ ϕ2
astro − ϕ2

lab ≈ ϕ2
0, which

corresponds to the maximum allowable difference in ϕ2

and leads to the following variations of the fundamental
constants via (13) and (14):

Δα
α

≈
ϕ2
0

ðΛ0
γÞ2

; ð31Þ

Δmf

mf
≈

ϕ2
0

ðΛ0
fÞ2

: ð32Þ

The comparison of atomic and molecular spectra in ground-
based laboratory and low-density astrophysical environ-
ments provides a powerful probe of such environmentally
dependent fundamental constants. Comparisons of Zn
and Crþ transition frequencies in the laboratory and in
extragalactic quasar absorption gas clouds, where typical
particle densities are approximately 10−3–10−1 cm−3, con-
strain Δα=α≲ 10−6 [74]. Comparisons of NH3 and other
molecular transition frequencies in the laboratory and in
intragalactic cold molecular gas clouds, where typical
particle densities are approximately 103–105 cm−3, con-
strain Δðme=mNÞ=ðme=mNÞ ≲ 3 × 10−8 [75], while com-
parisons of H2 transition frequencies in the laboratory and
in extragalactic quasar absorption gas clouds constrain
Δðme=mNÞ=ðme=mNÞ≲ 10−5 [76,77].
Using Eqs. (16), (31), and (14), as well as the fractional

mass-energy contributions to the interstellar medium’s
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mass-energy content from the electromagnetic, electron-
mass, and nucleon-mass components in Table I, we
derive bounds on the quadratic interactions of the
domain-wall model scalar field ϕ with the electromagnetic
field, electron, and nucleons in Eq. (6). We present our
bounds as the light gray regions in Fig. 4. Note that these
bounds apply to the regions of parameter spaces where
2ρastro;X=ðΛ0

XÞ2 ≲ λϕ2
0; otherwise, ϕ

2
astro ¼ 0 and Δðϕ2Þ ¼

0 due to the inhibition of spontaneous symmetry breaking.
We also mention that it is possible to look for changes in the
fundamental constants that are correlated with differences
in ambient density between different gas clouds.

4. Gravitational effects

We have already discussed bounds on domain walls of
cosmological origin via their gravitational effects; see
Eq. (17). Let us now discuss the bounds from the
gravitational effects of bubblelike defect structures sur-
rounding dense bodies. The spherically symmetric scalar-
field profiles in Eqs. (22), (23), (24), and (25), induced by
the interactions (6) and (7), have a characteristic thickness
of Δr ∼minðd; RÞ extending out from the surface of the
dense body and carry an energy density of ρcore ∼
ðΔϕÞ2=ðΔrÞ2 within this “core region.” When the scalar
field is strongly screened inside the dense body, the change
in the scalar-field amplitude across this core region is given
by ðΔϕÞ2 ∼ ϕ2

0, while when the scalar field is weakly
screened inside the dense body, ðΔϕÞ2 ≪ ϕ2

0. We focus on
the former case, for which

ρcore ∼
ϕ2
0

minðd2; R2Þ ; ð33Þ

and the mass of the bubble within the core region is
given by

Mcore ∼
ϕ2
0R

2

minðd; RÞ : ð34Þ

Using Eq. (16) and assuming the same domain-wall model
parameters as in Fig. 4, we find that the core mass of a
bubble defect surrounding Earth is

Mcore ∼ 109 kg × maxð1; d=R⊕Þ; ð35Þ

while the core mass of a bubble defect surrounding the
Sun is

Mcore ∼ 1013 kg × maxð1; d=R⊙Þ: ð36Þ

In the limiting case when d ≫ several × R, the energy
density associated with the bubble scalar-field configura-
tion in the “tail region,” where R≲ r − R≲ d=2, is

ρtailðrÞ ∼
ϕ2
0R

2

r4
; ð37Þ

and the mass of the bubble within the tail region is

Mtail ∼Mcore; ð38Þ

with the dominant contribution to Mtail coming from the
innermost part of the tail region.
Comparison of the orbital position data of the Earth-

bound LAGEOS satellite and those of lunar orbiters with
independent lunar laser ranging data constrains the mass
of an Earth-bound dark component between the radii
≈2R⊕ and ≈60R⊕ to be Mdark < 4 × 10−9M⊕ [78]. Using
Eqs. (35) and (38), we hence place the following bound on
the domain-wall transverse size parameter:

d ≲ 1014 m: ð39Þ

Planetary ephemeris orbital data constrain the mass of a
Sun-bound dark component between the orbits of Earth and
Saturn to be Mdark ≲ 10−10 M⊙ [79,80]. Using Eqs. (36)
and (38), we therefore place the following bound:

d ≲ 1019 m: ð40Þ

Additionally, planetary ephemeris data pertaining to
the perihelion shift of Mars’s orbit constrain the energy
density of a Sun-bound dark component at the orbital
position of Mars to be ρdark < 1.4 × 10−20 g=cm3 [79,80].
Using Eqs. (16) and (37), and assuming the same domain-
wall model parameters as in Fig. 4, we obtain the following
bound:

d ≲ 1016 m: ð41Þ

Note that, unlike the bounds (39) and (40), which apply to
the regions of parameters d0 ≲ R⊕ and d0 ≲ R⊙, respec-
tively, the bound (41) only applies to the region of
parameters RMars ≲ d0 ≲ R⊙, for which the scalar field is
not strongly screened inside Mars. The bounds in Eqs. (39),
(40), and (41) do not apply, however, in the case in which
spontaneous symmetry breaking is inhibited by the inter-
planetary medium. We present our bounds as the cyan
regions in Fig. 4.

III. DARK MATTER NETWORKS
OF DOMAIN WALLS

A number of recent works have reported on searches for
dark matter networks of domain walls using clock- and
cavity-based techniques [12–15], as well as magnetometry-
based techniques [81], via transient signatures induced by
passing domain walls. In these papers, the authors assume
that such domain-wall networks saturate the local cold dark
matter energy density ρlocalDM ≈ 0.4 GeV=cm3. The authors
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further assume that these domain walls pass through Earth
with a typical speed of vTD ∼ 300 km=s, which is charac-
teristic of objects in our local Galactic region, and with an
average time between encounters of a wall with Earth, T ,
ranging from hours to years. In this case, the relationship
between the average energy density associated with such a
network of domain walls, ρTDN, and the wall parameters is
given by

ϕ2
0 ∼ ρTDNvTDT d: ð42Þ

Such dark matter networks of domain walls cannot be
produced under the minimal cosmological assumptions
outlined in Sec. II B. Specifically, let us mention that a
number of assumptions made in the aforementioned
searches [12–15,81] for these dark matter networks of
domain walls are dubious and unsubstantiated:

(I) The assumption that domain walls saturate the local
cold dark matter abundance is dubious. Indeed, the
present-day energy density associated with domain
walls that stretch across the horizon size is con-
strained to be at least 10 orders of magnitude smaller
than the local cold dark matter energy density from
measurements of the CMB quadrupolar temperature
anisotropy [3,54]; see Eq. (17). The general expect-
ation is that networks of domain walls are “stiff,”
meaning that their energy densities inside and out-
side of galaxies are similar. Reference [5] has
suggested that the energy density associated with
a “flexible” network of domain walls may be
enhanced inside galaxies by orders of magnitude
compared to an average cosmological value. It might
be possible to evade, at least to some extent,
constraints from measurements of the CMB quad-
rupolar temperature anisotropy with such an uncon-
ventionally flexible network of walls.
We point out that one possible mechanism for

producing flexible domain walls arises in models of
domain walls with quadratic-in-ϕ interactions of the
type in (6), but with the signs reversed. In this case,
the adiabatic transverse wall profile coincides with
the kink profile (2), (3), but with the replacement
ϕ0 → ϕ0

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
0 þ 2ρX=½λðΛ0

XÞ2�
p

, which increases
the energy density inside the wall by the factor
ðϕ0

0=ϕ0Þ4. The increase in energy associated with the
domain walls in this case is facilitated by the transfer
of energy between ordinary matter and the domain
walls. Such a mechanism, however, by itself cannot
lead to a network of walls that saturates the galactic
dark matter abundance, since the total energy of
ordinary cold matter in our Galaxy is approximately
five times less than that of galactic dark matter. It
remains an open question as to how a flexible
domain-wall network saturating the galactic dark
matter abundance may arise.

(II) The assumption that the average time between
encounters of a domain wall with Earth lies within
the convenient human timescales from hours to years
is dubious. Numerical simulations in Refs. [3,48–50]
indicate that only Oð1–10Þ macroscopic domain
walls with the potential (1) survive to the present
day. The small number of survivingwalls is due to the
efficient processes of wall reconnection and annihi-
lation when domain walls collide. Numerical simu-
lations with more complicated potentials and more
complicated types of hybrid wall networks [51,52]
also indicate a lack of stability of such networks
against annihilation. Therefore, one would expect an
average time between encounters of awall with Earth
of T ⋙ 1 year, well in excess of the assumptions
made in earlier searches for domain walls.

(III) The assumption that domain walls pass through
Earth with a nonrelativistic speed of vTD ∼
300 km=s is dubious. Domain walls with the po-
tential (1) have large spatial components in the
associated energy-momentum tensor that give sig-
nificant deviations from the nonrelativistic equation
of state, and, furthermore, numerical simulations in
Refs. [3,49,82] indicate that domain walls with the
potential (1) move at semirelativistic speeds. More
complicated hybrid wall networks containing suffi-
ciently massive junctions may become nonrelativ-
istic [51,52], but such wall networks cannot be
realized within the single-scalar-field models as-
sumed in the earlier searches [12–15,81].
Furthermore, the assumption that the velocities of

galactic domain walls follow a quasi–Maxwell-
Boltzmann distribution in accordance with the stan-
dard halo model, as explicitly made by Refs. [13,15]
within single-scalar-field models, is dubious. In
models with a single scalar field, the domain walls
and vacua tend to be collinearly aligned in a stacked
formation. Slanting or oblique alignments of domain
walls and vacua would lead to more frequent wall
collisions and subsequent annihilation. In other
words, within models of a single scalar field, we
would expect domain walls to be traveling in
roughly one and the same direction, rather than in
random directions. The passage of domain walls
from different directions can occur within more
complicated models of domain walls involving more
than one scalar field and more complicated poten-
tials [39].
We also note that Ref. [15]’s claim that its results

apply to topological defects of all dimensionalities is
inconsistent with the authors’ chosen model of a
single real scalar field. As discussed in Sec. II A,
models of topological strings and monopoles require
at least one complex scalar field or several real scalar
fields, respectively, as well as associated gauge
fields.
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(IV) In models of topological defects with the quadratic-
in-ϕ interactions (6), which were considered in the
earlier searches [12–15] (Ref. [15] also considered
the analogous interaction with the electromagnetic
field but with the sign reversed), the unwitting
assumption made that such topological defects pass
in an unperturbed manner through the strongly
repulsive potential generated by Earth (and in some
cases the apparatus itself) appears dubious and
warrants further investigation. We discuss this issue
further in Sec. III A below.

For the sake of direct comparison to the earlier liter-
ature, in this section, we shall proceed under the same
oversimplified assumptions made in the earlier papers
[6,12–15]. Specifically, we assume the relation (42) with
vTD ∼ 300 km=s, T ∼ 1 day–1 year, and the local average
energy density ρlocalTDN ∼ ρlocalDM ≈ 0.4 GeV=cm3. We also
assume the same ϕ4 potential (1) that was considered in
the theory paper [6], on which the recent clock-based
searches for transient signatures of passing domain walls
were predicated, and focus on the same quadratic inter-
actions of the domain-wall model scalar field ϕ with the
standard model fields in (6) that were considered in
Refs. [6,12–15]. We summarize our results based on the
nontransient signatures of the domain-wall model scalar
field investigated in our present paper and compare with the
earlier results from clock- and cavity-based searches for
transient signatures of passing domain walls, in Fig. 5. We
find that our newly derived bounds via effects of non-
transient variations of the fundamental constants are
significantly more stringent than the previously reported
bounds from transient signatures under the same set of
assumptions.

A. Transient signatures

References [12–15] performed clock- and cavity-based
searches for transient variations of the fundamental
constants of the form (13),(14) induced by the passage
of macroscopic domain walls through a network of
detectors. These bounds are shown in Fig. 5 as colored
lines (purple = ground-based laboratory optical clocks,
brown = space-based microwave clocks within the GPS
network). In these searches, it was assumed that the
sought domain wall–induced transient signals are well
separated in time, which necessitates that the signal time
Δt ∼ d=vTD is sufficiently short, Δt ≪ T . The largest
average time between encounters of a wall with Earth
that can be probed in a statistically meaningful way with
such types of searches is limited by the duration of the
experiment Texp, T ≲ Texp.
Comparing with Fig. 2, we see that the purple and brown

curves in Fig. 5 all lie in regions of domain-wall parameter
spaces where the scalar field is strongly screened near the
surface of and inside Earth, and in some cases also in
regions of parameter spaces where the scalar field is

strongly screened inside the apparatus itself (see Fig. 6
for an overlay in the case of the electromagnetic coupling
for T ¼ 1day). Thus, the unwitting assumption made in the
earlier searches [12–15] that domain walls pass in an
unperturbed manner through the strongly repulsive poten-
tial generated by Earth (and in some cases the apparatus
itself) appears dubious. More specifically, there are at least
two possible outcomes for a scalar-field domain wall
incident on a strongly repulsive potential generated by
Earth: (i) part of the domain wall may tunnel through Earth
with a diminished amplitude and/or (ii) part of the domain
wall may envelop Earth and pinch off, forming a bubblelike
defect structure around Earth in the process—this defect
structure, which is distinct from the bubblelike defect
structures discussed in Sec. II C, may be either stable (if
there is insufficient kinetic energy to overcome the poten-
tial barrier inside Earth) or metastable (in which case the
bubble might undergo a number of oscillations before
collapsing and radiating away its energy in the form of ϕ
particles). The outcome may even depend on the properties
of the incident domain wall, such as its initial speed and
transverse size, the interaction strength, as well as the size
and density of the target body.
The investigation of this problem, as well as the

analogous problem concerning the strongly antiscreened
regime for the same types of quadratic-in-ϕ interactions in
(6) but with the signs reversed, warrants numerical simu-
lations, which go beyond the scope of the present work.
These calculations are not only of interest for numerous
terrestrial experiments [6,8–10,12–15] but also for mea-
surements involving networks of pulsars [11]. (Note,
however, that laser interferometry–based searches for
transient signatures of passing domain walls using existing
gravitational-wave detectors such as LIGO and GEO600
[10] are already expected to be able to probe regions of
parameter space that lie deep within the weak screening
regime where back-action effects are negligible; see, e.g.,
the dashed red line in Fig. 6.) Additionally, reanalysis
of the data in Refs. [12–15] is warranted for the strongly
screened and strongly antiscreened regimes. The interaction
of scalar-field topological defects with strongly repulsive or
strongly attractive potentials generated by dense bodies may
also affect the evolution and propagation of topological
defects at very late cosmological times. For example, if parts
of domain walls are pinched off by dense bodies and
subsequently radiate away, then the energy density asso-
ciatedwith the domain-wall networkwould decrease in time
at a faster rate. This possibility also warrants further
investigation. Additionally, we note that in the case of
sufficiently strong interactions, when spontaneous sym-
metry breaking is inhibited altogether within the Solar
System and Galaxy by the interplanetary and interstellar
media, there is no longer topological stability to support the
free propagation of a domain wall through the Solar System
or Galaxy.
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(a) (d)

(b) (e)

(c) (f)

FIG. 5. Constraints on the quadratic interactions of a domain-wall model scalar field ϕ with the (a,d) electromagnetic field (photon),
(b,e) electron, and (c,f) nucleons, as defined in (6), as a function of the domain-wall transverse size parameter d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðλϕ2

0Þ
p

, assuming
that the domain-wall network has a local average energy density of ρlocalTDN ∼ ρlocalDM ≈ 0.4 GeV=cm3 and that domain walls pass through
Earth with a typical speed of vTD ∼ 300 km=s. Subfigures (a,b,c) correspond to an average time between encounters of a wall with Earth
of T ¼ 1day, while subfigures (d,e,f) correspond to an average time between encounters of a wall with Earth of T ¼ 1 year. The
following regions of parameters are excluded by our present work from the consideration of: comparison of Sr optical clocks at different
heights in the Tokyo Skytree experiment (red region), comparison of ground- and space-based H microwave clocks in the Gravity Probe
A (GPA) mission and onboard the Galileo satellites (yellow region), Be-Ti and Be-Al torsion pendula in the ground-based Eöt-Wash
experiments (blue region), and Pt-Ti torsion pendulum in the space-based MICROSCOPE mission (green region). The region in dark
gray corresponds to existing constraints from supernova energy-loss bounds [19] and short-range tests of gravity [19,31]. The purple and
brown lines correspond to previously reported bounds from transient searches using ground-based laboratory optical clocks [12,15] (the
lower values of d were probed in Ref. [12], while the higher values of d were probed in Ref. [15]) and space-based microwave clocks
within the GPS network [13], respectively, without account of screening effects. See the main text for more details.
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Finally, let us briefly remark that if the velocities of
domain walls are taken to be semirelativistic, in accordance
with the results of numerical simulations in Refs. [3,49,82],
instead of the assumption vTD ∼ 300 km=s made in
Refs. [12–15], then bounds from experiments searching
for transient signatures of passing domain walls would be
shifted toward larger transverse wall size parameters, since
the characteristic wall passage time is Δt ∼ d=vTD. On the
other hand, bounds from experiments searching for non-
transient signatures of domain walls would not be shifted in
such a manner. The sensitivity of experiments searching for
either transient or nontransient signatures of domain walls
that depend on ϕ0 would be increased in the case of a larger
value of vTD, in accordance with Eq. (42). Searches for
transient signatures would also benefit from being shifted
up toward larger values of d due to the associated increase
in ϕ0 in this case; see Eq. (42).

B. Nontransient signatures

We now derive bounds on nontransient variations of the
fundamental constants, which arise in the same scalar-field
domain-wall model, via the torsion pendulum–based and
clock-based approaches discussed in Secs. II C 1 and II C 2,
respectively. Like the transient searches described in
Sec. III A above, we assume that the domain walls are
well separated, Δt ≪ T , and that Δt ≪ Texp. In this case,
the effects of the domain-wall scalar field are quasinon-
transient on the experimental timescale, since terrestrial
detectors are located very far from a domain wall for the vast
majority of the time. Importantly, the sign of ϕ2 remains
unchanged on either side of a domain wall, meaning that the
sign of these quasinontransient effects remains unchanged
on either side of a wall, and so there is no cancellation
between contributions from different domains. Therefore, if
we neglect the brief transients associated with the passage
of domain walls through Earth (which is justified when
Δt ≪ T and Δt ≪ Texp), then it is possible to utilize our
findings from Sec. II C with minimal modification. In
contrast to transient search methods, searches for quasinon-
transient signatures also retain their sensitivity in the regime
T ≫ Texp, when the average time between encounters of a
wall with Earth greatly exceeds the duration of the experi-
ment, since it is not necessary to be near a passing domain
wall to experience nontransient signatures.
Using Eqs. (13), (14), (22), (23), (24), (25), (26), (28),

(30), and (42), as well as the fractional mass-energy
differences of the electromagnetic, electron-mass, and
nucleon-mass contributions to the relevant test-mass pairs
in Table I, we derive bounds on the quadratic interactions of
the domain-wall model scalar field ϕ with the electromag-
netic field, electron, and nucleons in Eq. (6). We present
our bounds as colored regions in Fig. 5 [red = Tokyo
Skytree experiment (clocks), yellow ¼ Galileo satellites
and Gravity Probe A mission (clocks), blue ¼ Eöt-Wash
experiments (torsion pendula), green ¼ MICROSCOPE
mission (torsion pendulum)]. We see that our newly derived
bounds via effects of nontransient variations of the funda-
mental constants are significantly more stringent than the
previously reported bounds from different types of non-
transient signatures and transient signatures under the same
set of assumptions. In our analysis, we have restricted
ourselves to the values of d satisfying the condition
Δt ≪ Texp, for which the signal is quasinontransient on
the experimental timescale. In the case of the currently
available Tokyo Skytree and MICROSCOPE mission data-
sets, for which Texp ≈ 1 week, it is possible to extend the
respective analyses to the higher values of d in Figs. 5(d),
5(e) and 5(f) by additionally considering the transient
effects associated with the passage of domain walls through
Earth. We do not present bounds of the type discussed in
Sec. II C 3, since in the absence of a concrete mechanism
leading to the enhancement of the domain-wall energy
density inside galaxies by orders of magnitude compared to

FIG. 6. Regions of domain-wall model parameter space for the
quadratic interaction of a scalar field ϕ with the electromagnetic
field (photon), as defined in (6), in which the scalar field is
weakly screened near the surface of and inside Earth (white
region), strongly screened near the surface of and inside Earth
(light gray region), strongly screened by Earth’s atmosphere (blue
region), strongly screened inside an apparatus or satellite of size
approximately 60 cm and with a density comparable to Earth’s
average density (dark gray region), and where spontaneous
symmetry breaking (SSB) is inhibited altogether by the inter-
planetary (IPM) and interstellar media (black region). The purple
and brown lines correspond to previously reported bounds from
transient searches using ground-based laboratory optical clocks
[12,15] (the lower values of d were probed in Ref. [12], while the
higher values of d were probed in Ref. [15]) and space-based
microwave clocks within the GPS network [13], respectively, for
a domain-wall network with a local average energy density of
ρlocalTDN ∼ ρlocalDM ≈ 0.4 GeV=cm3, a typical speed of passage of
domain walls through Earth of vTD ∼ 300 km=s and an average
time between encounters of a wall with Earth of T ¼ 1day, but
without account of screening effects. The dashed red line denotes
the estimated sensitivity of the current ground-based laser
interferometers LIGO and GEO600 to transient signatures of
passing domain walls, based on the rescaling of the estimates for
T ¼ 1 year presented in Ref. [10] to T ¼ 1day.
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an average cosmological value, further assumptions about
the domain-wall energy density in low-density astrophysi-
cal environments are required.
Note the differences in the shapes of some of our bounds

based on effects of nontransient variations of the funda-
mental constants in going from Fig. 4 to Fig. 5, due to the
transition from the weak screening regime to the strong
screening regime. In the weak screening regime, our
bounds generally scale as Λ0

X ∝ d3=4 when d ≪ R⊕ and
as Λ0

X ∝ d1=4 when d ≫ R⊕. On the other hand, in the
strong screening regime, the limits from ground-based
experiments degrade sharply due to the strong screening
of the scalar field near Earth’s surface, and the scaling of the
limits with d takes a more complicated form. Additionally,
we note that, unlike in Fig. 4, there are no analogous
bounds on the bubblelike defect structures surrounding
Earth or the Sun in Fig. 5 from the consideration of their
gravitational effects, partly because the masses of these
bubbles are now diminished by at least a factor of
approximately 10−3 compared to Eqs. (35) and (36) in
Sec. II C 4.
Let us also remark that, in the more realistic case when

the domain-wall network is stiff and hence can only make a
subdominant contribution to the galactic dark matter
abundance, the bounds from the ϕ0-dependent nontransient
signatures considered in our present work would generally
become even more stringent than the previously reported
types of bounds from transient signatures. This is because
the bounds on the parameters Λ0

X from transient signatures
scale as Λ0

X ∝ ρ1=2TDN when the effects of screening of the
scalar field by Earth can be neglected, whereas our bounds
on Λ0

X from the effects of nontransient variations of the
fundamental constants scale as Λ0

X ∝ ρ1=4TDN in the weak
screening regime (and in the strong screening regime
generally scale as Λ0

X ∝ ρ1=2TDN). In Fig. 5, we have assumed
that ρlocalTDN ∼ ρlocalDM ≈ 0.4 GeV=cm3, whereas the maximum
allowable energy density for a stiff domain-wall network is
10 orders of magnitude smaller; see Eq. (17).

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated effects associated
with the back-action of ambient matter on scalar field(s) in
models of macroscopic topological defects composed of
scalar field(s) that interact with standard model fields via
quadratic-in-ϕ couplings. We have shown that in these
models there is an environmental dependence of the
fundamental constants of nature, as well as spatial varia-
tions of the fundamental constants in the vicinity of a dense
body such as Earth due to the formation of a bubblelike
defect structure surrounding the dense body. Making only
minimal cosmological assumptions, we have derived
bounds on such nontransient variations of the fundamental
constants arising in models of scalar-field domain walls
with ϕ2 interactions from torsion-pendulum experiments

that search for equivalence principle–violating forces,
experiments comparing the frequencies of ground- and
space-based atomic clocks as well as ground-based
clocks at different heights, and measurements comparing
atomic and molecular transition frequencies in terrestrial
and low-density astrophysical environments. We have also
derived bounds on the bubblelike defect structures sur-
rounding Earth and the Sun from the consideration of their
gravitational effects on planets and satellites within the
Solar System. These bounds are summarized in Fig. 4. For
the domain-wall transverse size parameters d≳ 700 km,
the most stringent upper bounds on the interaction param-
eters Λ0

X, defined in (6), come from the space-based
MICROSCOPE mission based on the torsion-pendulum
technique. On the other hand, for d ≲ 700 km, the most
stringent upper bounds on Λ0

X come from the ground-based
Eöt-Wash experiments using torsion pendula, with com-
parable bounds on Λ0

X for d ≲ 450 m coming from fre-
quency-comparison measurements using optical atomic
clocks at different heights in the Tokyo Skytree experiment.
Noting that these upper bounds on Λ0

X via effects of
nontransient variations of the fundamental constants scale
as Λ0

X ∝ ρ1=4walls in the weak screening regime (and generally

as Λ0
X ∝ ρ1=2walls in the strong screening regime), where ρwalls

is the average energy density associated with the domain-
wall network, we see that our results in Fig. 4 constrain the
present-day mass-energy fraction of the Universe due to a
network of infinite domain walls produced shortly after the
BBN or CMB epochs to be

Ωwalls;0 ≪ 10−10; ð43Þ

for the symmetron model with the ϕ4 potential (1) and ϕ2

interactions (6), improving over the CMB quadrupolar
temperature anisotropy bounds (17) by at least 5 orders of
magnitude. In arriving at the bound (43), note the important
role of comparisons of atomic and molecular spectra in
ground-based laboratory and low-density astrophysical
environments, which rule out parts of the parameter space
where the scalar field becomes strongly screened inside
conventional apparata (see Fig. 2) and so cannot otherwise
be probed by the specific torsion-pendulum and clock
experiments discussed in our present paper. We likewise
expect very strong constraints on symmetron domain
walls produced at most times proceeding the weak inter-
action freeze-out epoch. The interesting case when domain
walls are produced at the very late times corresponding
to redshifts z≲Oð10Þ, when the Universe is no longer
homogeneous, warrants particular attention in future
investigations.
What are the ideal measurements to search for non-

transient variations of the fundamental constants arising in
models of scalar-field topological defects? For clock
comparison experiments, it is preferable to have one of
the clocks located near Earth’s surface and the other clock
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located in space at an altitude Δh≳ R⊕, in order to
avoid suppression factors of the form approximately
Δh=R⊕ ≪ 1 in the weak screening regime and approx-
imately Δh=min ðd; R⊕Þ ≪ 1 in the strong screening
regime, both of which arise for d ≳ Δh when Δh ≪ R⊕.
It may be possible to further boost the sensitivity of clock-
based measurements to scalar field–induced nontransient
variations of the fundamental constants by using “non-
standard” clocks based on various transitions in highly
charged ions [83,84], nuclei [85], and molecules [86–88],
in which the sensitivity to variations of one or more of the
fundamental constants may be greatly enhanced relative to
the standard types of clocks considered in our present work.
In the case of torsion-pendulum experiments, there is an
exponential loss in sensitivity for the defect transverse size
parameters d≲ h, where h is the altitude of the apparatus.
Ground-based torsion-pendulum experiments performed
close to Earth’s surface, therefore, allow the evasion of
this exponential loss in sensitivity for a broader range of
defect transverse size parameters compared with space-
based experiments. On the other hand, space-based torsion-
pendulum experiments performed at an altitude h ≳ R⊕
avoid a possible suppression factor of the form approx-
imately h=min ðd; R⊕Þ ≪ 1 in the strong screening regime,
providing an advantage over ground-based experiments in
this case. The minimum values of Λ0

X that can be probed
by clock- and torsion-pendulum-based experiments are
ultimately limited by screening of the scalar field inside
the apparatus itself (or by the interplanetary/interstellar
medium). It may be possible to probe smaller values of Λ0

X
than those probeable by the specific torsion-pendulum and
clock experiments considered in our present paper via
experiments that test the equivalence principle on short
distances, such as the Rot-Wash experiment [89], and
experiments using smaller apparatus components; such
experiments may also be used to probe the defect transverse
size parameters d≲ 1 m that are complementary to the
macroscopic transverse size parameters considered in our
present work.
Regarding astrophysical measurements, if the parameter

ϕ0 in the potential (1) or the analogous potentials (4), (5)
remains constant in time (as assumed in our present work),
then astrophysical spectral measurements of the type
considered in our present paper offer a more powerful
probe of the presently considered effects of nontransient
variations of the fundamental constants than astrophysical
probes at earlier cosmological epochs, due to the better
intrinsic precision of astrophysical spectral measurements.
We note that the situation here is markedly different
compared with models of scalar-field dark matter with
the same ϕ2 interactions as in (6), in which variations of the
fundamental constants are linearly correlated with changes
in the dark matter density and hence more sensitive
astrophysical probes can involve intrinsically less precise
measurements at much earlier cosmological epochs, such

as BBN where the effects of varying fundamental constants
are strongly enhanced due to the very large dark matter
density during the BBN epoch [33].
If one departs from minimal cosmological assumptions

and takes at face value the oversimplified model of a dark
matter network of domain walls considered in Refs. [6,12–
15], then our newly derived bounds from effects of non-
transient variations of the fundamental constants in torsion-
pendulum experiments give significantly more stringent
bounds than previously reported clock- and cavity-based
searches for transient signatures of passing domain walls in
Refs. [12–15] under the same set of assumptions, with the
recent clock comparison measurements at different heights
within Tokyo Skytree also probing (via effects of non-
transient variations of the fundamental constants) regions
of parameter space that were inaccessible to previous
searches for transient signatures; see Fig. 5 for a summary.
The possible degradation of the clock- and cavity-based
bounds reported in Refs. [12–15] due to the effects of the
strongly repulsive potential generated by Earth on passing
domain walls (which Refs. [12–15] neglected) would only
further strengthen the importance of our presently derived
bounds from nontransient signatures. We also remark that
the types of nontransient signatures of macroscopic domain
walls and other topological defects considered in our
present paper are quite general. In particular, these non-
transient signatures arise even if the Universe contains only
a single domain, i.e., in the absence of any domain walls of
cosmological origin; in this case, our bounds in Fig. 4 may
even be strengthened further, since the bound in (17) no
longer applies and so ϕ0 can now be significantly larger.
It is worth remembering here that in models of oscillat-

ing scalar-field dark matter with the same ϕ2 interactions
as in (6), existing bounds from clock-based searches for
oscillating variations of the fundamental constants [33,34]
are more stringent for a broad range of dark-matter particle
masses mϕ than bounds from effects of nonoscillating
variations of the fundamental constants that depend on the
amplitude of the oscillating scalar field far away from dense
bodies (also denoted by ϕ0) [36], the latter of which share
similarities with the effects considered in our present work.
This difference in hierarchy compared with models of dark
matter domain-wall networks can be traced back to the
absence of velocity suppression factors in the amplitude of
an oscillating scalar field, which takes the form ϕ2

0 ∼
ρϕ=m2

ϕ ∼ ρϕT2
osc [compare with Eq. (42), which takes the

form ϕ2
0 ∼ ρTDNvTDT d ≪ ρTDNv2TDT

2 for the case of well-
separated topological defects], and provides greater benefit
to searches for oscillating signatures in the weak screening
regime, which is accessible with current clock-based
experiments that are sensitive to long periods of oscillation
up to Tosc ∼ 10 years. In particular, this absence of velocity
suppression factors allows current clock-based experiments
to already probe regions of parameter space that lie deep
within the weak screening regime where oscillating
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signatures benefit from being practically unaffected by
screening effects, whereas the ϕ0-dependent nonoscillating
signatures (which rely on the deformation of the scalar field
around Earth) suffer from the milder deformation of the
scalar field in the weak screening regime. Let us also
remark that there is a difference in terms of the screening
mechanisms between models of scalar-field topological
defects and those of oscillating scalar-field dark matter,
when the scalar fields in both models have the same ϕ2

interactions (6). In the case of, e.g., scalar-field domain
walls with the ϕ4 potential in (1), where there is sponta-
neous symmetry breaking in a sufficiently dense body, the
scalar-field amplitude is exponentially suppressed inside
the body, provided that the dense body is sufficiently large
(but otherwise of finite size); see Sec. A 2. On the other
hand, in models of oscillating scalar-field dark matter with
the usual ϕ2 potential, spontaneous symmetry breaking
does not occur, and so there is only subexponential
suppression of the amplitude of the scalar-field oscillations
near the surface of and inside the dense body.
In our present paper, we have focused on models of

domain walls with the quadratic-in-ϕ interactions (6),
which were also considered in the earlier papers [6,12–15],
including the choice of signs. In the case of domain walls
with quadratic-in-ϕ interactions of the type in (6) but
with the signs reversed, the scalar field becomes anti-
screened (rather than screened) in dense environments and
in the vicinity of dense bodies. For the case in which
2ρX=ðΛ0

XÞ2 ≪ λϕ2
0, where the weak antiscreening regime

applies, our weak-screening-regime results in Figs. 4 and 5
carry over unchanged, since the form of the scalar-field
deformation in Eqs. (22) and (23) remains unchanged
except for the sign; see Eqs. (A13) and (A14). In the
strong antiscreening regime, however, one expects to
encounter qualitatively different behavior compared with
the strong screening regime. In particular, the strong
antiscreening regime may open up interesting new oppor-
tunities for experiments comparing above-surface clocks
with clocks located either underground (e.g., in a mine with
up to a few kilometers of rock coverage) or underwater
(e.g., in a submarine with up to approximately 10 km of
water coverage), experiments with torsion pendula and
atom interferometers located underground or underwater,
and comparisons of atomic and molecular spectra in
ground-based laboratory and high-density astrophysical
environments (e.g., absorption lines originating from the
surfaces of white dwarfs). Transportable clocks have
recently been used to perform clock comparisons between
above-surface and underground locations [90], while inves-
tigations of the possible dependence of the fundamental
constants on the local gravitational potential using white-
dwarf spectra have been reported in Refs. [91–93]. We note
that in the case of sufficiently strong couplings the apparent
changes in the electromagnetic fine-structure constant and
fermion masses according to Eqs. (13) and (14), but with

the signs of the variations reversed, can formally be
Δα=α < −1 and Δmf=mf < −1. This apparently unphys-
ical behavior signals the breakdown of the applicability of
perturbation theory and a transition to the nonperturbative
regime. Furthermore, in the regime when ðϕ=Λ0

XÞ2 > 1,
one would generally expect higher-dimensional operators
to become important, regardless of the signs entering
Eq. (6). We leave the investigation of these interesting
questions to future work.
Let us now discuss models of topological defects with

other types of interactions. We begin with the linear
interactions of a domain-wall scalar field ϕ with the
standard model fields:

Llin
int ¼ � ϕ

Λγ

FμνFμν

4
∓ X

f

ϕ

Λf
mff̄f; ð44Þ

which lead to apparent variations of the fundamental
constants analogously to (13),(14). For the ϕ4 potential
(1), the effective potential experienced by the scalar field in
the presence of ambient matter reads

VeffðϕÞ ¼
λ

4
ðϕ2 − ϕ2

0Þ2 �
X

X¼γ;e;N

ρXϕ

ΛX
: ð45Þ

In a low-density environment, the effective potential in (45)
has two minima at ϕ ≈�ϕ0 as shown in Fig. 7(a), while in
a high-density environment, the effective potential has only
a single minimum at ϕ≈ ∓ ½ρX=ðλΛXÞ�1=3 for the upper/
lower sign choices in (44) and (45) in the limiting case
when ½ρX=ðλΛXÞ�1=3 ≫ ϕ0 as shown in Fig. 7(b) for the
lower sign choices in (44) and (45). Since the scalar field is
driven away from ϕ ¼ �ϕ0 to larger amplitudes in the
presence of ambient matter, the scalar field therefore
experiences antiscreening irrespective of the sign choices
in (44) and (45), in contrast to the screening effects that
arise for the ϕ2 interactions (6). In the case of the lower sign
choices in (44) and (45), if the couplings are sufficiently
strong, then there will be a transition to the nonperturbative
regime, similarly to the case of ϕ2 interactions of the type in
(6) but with the signs reversed. We note that the underlying
mechanisms generating (anti)screening effects are different
for linear-in-ϕ and quadratic-in-ϕ interactions, since linear-
in-ϕ interactions give rise to a source term in the classical
equation of motion for a scalar field, whereas quadratic-in-
ϕ interactions give rise to a potential term in the classical
equation of motion for a scalar field.
Interestingly, the cosmological production of topological

defects may be inhibited altogether for sufficiently strong
linear-in-ϕ interactions. For the ϕ4 potential (1), in the limit
that tunneling through and thermally induced excitations
over the potential barrier separating the two minima ϕ ≈
�ϕ0 in a low-density environment can be neglected, the
Universe settles in one and the same vacuum state ϕ≈ ∓ ϕ0
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for the upper/lower sign choices in (44) and (45). In other
words, the Universe would contain only a single domain in
this case, with no domain walls present. Nevertheless, even
in the complete absence of topological defects of cosmo-
logical origin, there can still be a rich phenomenology from
the types of nontransient effects of variations of the
fundamental constants considered in our present paper,
though topological defects with linear-in-ϕ interactions are
generally strongly constrained from the consideration of
equivalence-principle-violating forces that are independent
of the parameter ϕ0 [94–96].
Besides scalar-type linear-in-ϕ and quadratic-in-ϕ inter-

actions which induce apparent variations of the fundamen-
tal constants, there are also derivative-type interactions of
pseudoscalar fields that give rise to the precession of
polarised spins [5,97]. These derivative-type interactions
are expected to lead to (anti)screening of the pseudoscalar
field in the presence of spin-polarized matter and in the
vicinity of spin-polarized bodies, similarly to the (anti)
screening of scalar fields in the presence of ordinary matter
(regardless of it being spin polarized or unpolarized) for the
case of scalar-type interactions. Unlike scalar-type inter-
actions which produce isotropic scalar-field profiles around
spherical bodies of ordinary matter, pseudoscalar-type
interactions will lead to anisotropic pseudoscalar-field
profiles around spherical bodies of spin-polarised matter,
since the net spin vector of the spin-polarized body breaks
the isotropy of space. Besides possible (anti)screening
of pseudoscalar fields by spin-polarized components of
apparata, pseudoscalar fields can also be (anti)screened by
the spin-polarized geoelectrons inside Earth, which con-
tains an estimated approximately 1042 spin-polarized geo-
electrons [98,99]. Note that such (anti)screening effects are
distinct from the screening mechanism considered in
Ref. [100], in which pseudoscalar fields that interact
specifically with electrons but are not necessarily related
to topological defects can be screened by magnetic
shielding made of a soft ferromagnetic or ferrimagnetic
material. Regarding the possible effects of derivative-type

interactions on the cosmological production of topological
defects consisting of pseudoscalar fields, such interactions
may be cosmologically relevant if some fraction of fer-
mions in the early Universe was spin-polarized in the
presence of primordial magnetic fields. In this case, the
correlation features of the primordial magnetic fields may
be imprinted into the resulting network of topological
defects.
We now briefly discuss models of topological defects

other than domain walls. In the case of topological strings
and monopoles with the ϕ4-type potentials in (4) and (5),
respectively, and ϕ2-type interactions analogous to (6), our
results for topological domain walls with the ϕ4 potential
(1) and the ϕ2 interactions (6) carry over unchanged,
modulo gauge-field effects. Further work investigating the
role of the gauge fields in the case of topological strings
and monopoles and their phenomenological implications
is warranted. Regarding different possible forms of
potentials, we expect the form of the bubblelike scalar-
field profile (22), (23) in the weak (anti)screening
regime to be quite generic for a wide range of potentials
admitting topological defects, since the linearized forms
of the governing scalar-field differential equations (see
Appendix A 1) generally reduce to a common form,
thereby masking differences in the nonlinear features of
different effective potentials. On the other hand, in the
strong (anti)screening regime, when the nonlinear nature
of the effective potential generally cannot be neglected,
different forms of the scalar-field potential may lead to
different bubblelike scalar-field profile shapes. At the same
time, the form of the scalar-field potential plays an
important role in determining the transverse profile (shape)
of freely propagating topological defects. Nevertheless, we
generally expect that such changes in the shapes of
bubblelike defects surrounding dense bodies and those
of freely propagating defects will be correlated and that
the transverse size parameter d will retain its role as one of
the important parameters determining the sensitivity to Λ0

X.
In our present paper, like in Refs. [12–15], we have

(a) (b)

FIG. 7. Form of the effective potential (45) with the lower sign choice in a (a) low-density environment and (b) high-density
environment.
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considered topological-defect networks containing only a
single type of defect. In principle, a network of topological
defects may contain more than one type of defect. In this
case, nontransient signatures of the types considered in our
present work may exhibit a temporal structure correlated
with transitions between different vacua as topological
defects pass through Earth. It is possible to search for such
signatures arising in models that admit more than one type
of defect by using dedicated search protocols, similar to
those that would be required to search for transient
signatures of a topological-defect network containing
more than one type of defect.
Finally, let us address the possibility of nontopological

solitons. Of particular interest are nontopological monop-
olelike solitons, such as Q-balls [101,102], which are a
good candidate to explain the observed dark matter
[103,104]. Further work investigating the role of non-
transient signatures, of the types considered in our present
work, is warranted for various types of Q-balls, including
Q-balls arising in two-field models [101] and in single-field
models with suitable potentials [102,105]. We expect the
effects of a strongly repulsive or strongly attractive poten-
tial generated by Earth in the presence of ϕ2 interactions
(and possibly other interactions) on the propagation of a
passing nontopological soliton to be important; for exam-
ple, a strongly repulsive potential generated by Earth would
deflect an incident nontopological monopole. We also
generally expect an increased importance of astrophysical
measurements in models of nontopological monopoles
compared with models of topological domain walls.
Indeed, the average energy density associated with a
network of monopole objects scales as ρmonopoles ∝ a−3

with the scale factor, which decreases in time much faster
than the average energy density associated with a network
of domain walls (see Sec. II B). Therefore, the effects of
varying fundamental constants induced by a network of
nontopological monopoles with ϕ2 interactions will be
strongly enhanced during the BBN and CMB epochs due to
the very large energy density of the monopole network in
the early Universe, similarly to models of scalar-field dark
matter with ϕ2 interactions [33]. If the monopole scalar
field(s) is already inhomogeneous during the BBN epoch,
then the scalar-field inhomogeneities would be imprinted
into the resulting spatial distributions of primordial light
elements, in principle offering greater sensitivity to the
underlying scalar-field interactions compared with the case
when the monopole scalar field(s) is homogeneous during
the BBN epoch. We remark that in the limiting case in
which the monopole scalar field(s) is extremely inhomo-
geneous during the BBN epoch, it may be possible to
circumvent BBN constraints, since the primordial elements
in the finite regions of the Universe at the rather small
redshifts z≲Oð10Þ, where primordial elemental abundan-
ces are measured, might not have arisen from regions of the
Universe where monopole objects were located during the

BBN epoch. However, since the number of different
systems from which primordial elemental abundances
are determined is quite large, in this case, it would be
extremely unlikely for even one such monopole to pass
through Earth during our lifetime.
In summary, we have pointed out that previous studies of

macroscopic topological defects, which interact with stan-
dard model fields via scalar-type couplings, overlooked a
number of important effects associated with the back action
of ambient matter on the scalar field(s) comprising the
topological defects. In particular, we have shown that such
back-action effects produce an environmental dependence
of the fundamental constants of nature, as well as spatial
variations of the fundamental constants in the vicinity of
dense bodies such as Earth. We have derived bounds on
such nontransient variations of the fundamental constants
from torsion-pendulum experiments that search for equiv-
alence principle–violating forces, experiments comparing
the frequencies of ground- and space-based atomic clocks,
as well as ground-based clocks at different heights, and
measurements comparing atomic and molecular transition
frequencies in terrestrial and low-density astrophysical
environments. Our newly derived bounds on domain walls
with the ϕ2 interactions in (6) via their effects of non-
transient variations of the fundamental constants are
significantly more stringent than previously reported clock-
and cavity-based limits on passing domain walls via
transient signatures [12–15] (regardless of their possible
degradation due to previously neglected effects of the
strongly repulsive potential generated by Earth on the
passing domain walls) and previous bounds from different
types of nontransient signatures (by about 10 orders of
magnitude for wall thicknesses comparable to the size of
Earth), under the same set of assumptions. We have also
identified a number of interesting new problems for future
investigation. In the case of experiments searching for
transient signatures of domain walls that (may or may not)
pass through Earth, numerical simulations studying the
dynamics of domain walls incident on a strongly repulsive
(or strongly attractive) potential generated by Earth are
especially warranted. These simulations are directly rel-
evant to the previous clock-based searches for transient
signatures in Refs. [12–15], which (unwittingly) probed
regions of parameter space where the scalar field is strongly
screened near the surface of and inside Earth. On the other
hand, laser interferometry–based searches for transient
signatures of passing domain walls using existing gravita-
tional-wave detectors such as LIGO and GEO600 [10] are
already expected to be able to probe regions of parameter
space that lie deep within the weak screening regime where
back-action effects are negligible.
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APPENDIX A: DERIVATION OF SCALAR-FIELD
PROFILE AROUND A SPHERICAL DENSE BODY

Here, we derive the scalar-field profile around a homo-
geneous spherical dense body of radius R, at rest and
surrounded by a vacuum containing no ambient matter, for
the case of the scalar-field potential (1) and interactions (6),
(7). In this case, the time-independent differential equation
for the scalar field reads

d2ϕ
dr2

þ 2

r
dϕ
dr

− λ

�
ϕ2 − ϕ2

0 þ
2ρXðrÞ
λðΛ0

XÞ2
�
ϕðrÞ ¼ 0; ðA1Þ

with the following density profile:

ρXðrÞ ¼
�
ρX; 0 ≤ r < R;

0; r > R:
ðA2Þ

We are not aware of an exact analytical solution to the
nonlinear differential equation (A1). Therefore, we con-
sider in turn two limiting cases of physical importance,
namely, the weak screening regime and the strong screen-
ing regime, which give rise to qualitatively different scalar-
field profiles. We shall assume that the dense spherical
body is located in a domain with vacuum value þϕ0 (the
overall signs of the scalar-field profiles derived below are
reversed if the dense body is located in a domain with
vacuum value −ϕ0) and far away from any possible wall
boundary joining two domains.

1. Weak screening regime

The weak screening regime applies when the interactions
of the scalar field with ambient matter in (6) and (7) are
sufficiently feeble to ensure that the condition 2ρX=ðΛ0

XÞ2≪
λϕ2

0 is satisfied inside the dense body and/or the dense body
is sufficiently small to prevent the scalar field from attaining
its “true”minimum inside the dense body (since in this case
it would be energetically unfavorable for the scalar field to
appreciably change its amplitude across a region of space
that ismuch smaller than the intrinsicwavelength of the field
inside the dense body—a consequence of the uncertainty

principle). In the weak screening regime, the scalar field is
only slightly perturbed by the dense body, allowing us to
linearize the differential equation (A1) in all of space.
Let us start with the simpler case when the condition

2ρX=ðΛ0
XÞ2 ≪ λϕ2

0 is satisfied inside the dense body.
Outside the dense body, we can linearize the differential
equation (A1) about ϕ¼ϕ0 by approximating ϕ ≈ ϕ0 þ δϕ
in this region to give the linear differential equation

d2ðδϕÞ
dr2

þ 2

r
dðδϕÞ
dr

− 2λϕ2
0δϕðrÞ ≈ 0; ðA3Þ

which has the solution that remains finite as r → ∞,

ϕoutðrÞ ≈ ϕ0 þ
A exp ð−2r=dÞ

r
; ðA4Þ

where d is the same size parameter as in Eq. (3):

d ¼
ffiffiffi
2

λ

r
1

ϕ0

: ðA5Þ

Inside the dense body, we can linearize the differential
equation (A1) about ϕ ¼ ϕ0

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
0 − 2ρX=½λðΛ0

XÞ2�
p

≈
ϕ0f1 − ρXd2=½2ðΛ0

XÞ2�g to give the following differential
equation,

d2ðδϕÞ
dr2

þ 2

r
dðδϕÞ
dr

− 2λðϕ0
0Þ2δϕðrÞ ≈ 0; ðA6Þ

which has the solution that remains finite at r ¼ 0,

ϕinðrÞ ≈ ϕ0
0 þ

B sinh ð2r=d0Þ
r

; ðA7Þ

where the characteristic length scale, d0, over which the
scalar field appreciably changes inside the dense body is
defined analogously to Eq. (A5):

d0 ¼
ffiffiffi
2

λ

r
1

ϕ0
0

≈ d: ðA8Þ

The requirement of continuity of ϕ and dϕ=dr at r ¼ R
fixes the coefficients A and B in Eqs. (A4) and (A7) to be

A¼ðϕ0
0−ϕ0Þdexpð2R=dÞ½2Rcoshð2R=d0Þ−d0sinhð2R=d0Þ�

2½dcoshð2R=d0Þþd0sinhð2R=d0Þ� ;

ðA9Þ

B ¼ ðϕ0 − ϕ0
0Þd0ðdþ 2RÞ

2½d cosh ð2R=d0Þ þ d0 sinh ð2R=d0Þ� : ðA10Þ

Noting that d0 ≈ d and ϕ0 − ϕ0
0 ≈ ϕ0ρXd2=½2ðΛ0

XÞ2�, we
hence arrive at the scalar-field profile outside of the
spherical dense body as given in Eqs. (22) and (23),
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ϕoutðrÞ≈ϕ0−
ϕ0ρXd2R
4ðΛ0

XÞ2r
exp

�
−
2ðr−RÞ

d

�
for d≪R;

ðA11Þ

ϕoutðrÞ ≈ ϕ0 −
2ϕ0ρXR3

3ðΛ0
XÞ2r

exp

�
−
2ðr − RÞ

d

�
for d ≫ R:

ðA12Þ
We thus see that the scalar field is weakly screened in the
vicinity of and inside the dense body in this case.
In the case of the interactions (6) and (7) but with the

signs reversed, the sign of ϕ0 − ϕ0
0 is reversed, and the

scalar-field profile outside of the spherical dense body
instead takes the following form:

ϕoutðrÞ≈ϕ0þ
ϕ0ρXd2R
4ðΛ0

XÞ2r
exp

�
−
2ðr−RÞ

d

�
for d≪R;

ðA13Þ

ϕoutðrÞ ≈ ϕ0 þ
2ϕ0ρXR3

3ðΛ0
XÞ2r

exp

�
−
2ðr − RÞ

d

�
for d ≫ R:

ðA14Þ
In this case, the scalar field is weakly antiscreened in the
vicinity of and inside the dense body. We note that the
forms of the scalar-field profiles in (A11)–(A14), which
arise in the linearized regime, match those in a wide variety
of scalar-field models with linear field equations.
Let us now consider the other case of interest when the

condition 2ρX=ðΛ0
XÞ2 ≪ λϕ2

0 is not satisfied inside the
dense body, but the dense body is sufficiently small to
prevent the scalar field from attaining its true minimum
inside the dense body. In the exterior region, the linearized
scalar-field differential equation (A3) and resulting solution
(A4) remain unchanged:

ϕoutðrÞ ≈ ϕ0 þ
A exp ð−2r=dÞ

r
: ðA15Þ

For the interior region, in the limiting case in which
ρX=ðΛ0

XÞ2 ≫ λϕ2
0, it turns out to be sufficient to formally

linearize the differential equation (A1) about ϕ ¼ 0,

d2ðδϕÞ
dr2

þ 2

r
dðδϕÞ
dr

− λðϕ0
0Þ2δϕðrÞ ≈ 0; ðA16Þ

where ϕ0
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρX=½λðΛ0

XÞ2� − ϕ2
0

p
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρX=½λðΛ0

XÞ2�
p

, and
which has the solution that remains finite at r ¼ 0,

ϕinðrÞ ≈
B sinh ðr=d0Þ

r
; ðA17Þ

where the characteristic length scale, d0, over which the
scalar field appreciably changes inside the dense body is
the same as in Eq. (10):

d0 ¼ 1ffiffiffi
λ

p
ϕ0
0

≈
Λ0
Xffiffiffiffiffiffiffiffi
2ρX

p : ðA18Þ

The requirement of continuity of ϕ and dϕ=dr at r ¼ R
fixes the coefficients A and B in Eqs. (A15) and (A17) to be

A ¼ −
ϕ0d exp ð2R=dÞ½R cosh ðR=d0Þ − d0 sinh ðR=d0Þ�

d cosh ðR=d0Þ þ 2d0 sinh ðR=d0Þ ;

ðA19Þ

B ¼ ϕ0d0ðdþ 2RÞ
d cosh ðR=d0Þ þ 2d0 sinh ðR=d0Þ : ðA20Þ

Noting that d0 ≪ d, we find that the scalar-field profile
outside of the spherical dense body matches that in (A12)
for the limiting case when R ≪ d0 ≪ d. In other words, the
scalar field is only weakly screened in the vicinity of and
inside the dense body, since the dense body is too small to
allow the scalar field to attain its true minimum near ϕ ¼ 0
inside the dense body [even though we have formally
linearized the differential equation (A1) about ϕ ¼ 0 inside
the dense body].

2. Strong screening regime

The strong screening regime applies when the inter-
actions of the scalar field with ambient matter in (6) and (7)
are sufficiently strong to ensure that the condition
2ρX=ðΛ0

XÞ2 ≫ λϕ2
0 is satisfied inside the dense body and

the dense body is sufficiently large to ensure that the scalar
field can attain its true minimum near ϕ ¼ 0 inside the
dense body. In the strong screening regime, the scalar field
is strongly affected by the dense body, necessitating a more
delicate treatment than the treatment of the weak screening
regime in Sec. A 1 above. In particular, the two-region
approximation used, e.g., in Refs. [20,32] is insufficient to
capture the qualitative features of the screening of the scalar
field near the surface of a dense body for d ≪ R. Therefore,
we employ a three-region approximation as outlined below.
We focus on the simplest limiting case in which the
condition ρX=ðΛ0

XÞ2 ≫ λϕ2
0 is satisfied inside the dense

body. In this limiting case, d0 ≪ R and d0 ≪ d, with d0
given by Eq. (A18).
Sufficiently far away from thedensebodywhereϕ ≈ ϕ0—

denoted by “region I”—we can linearize the differential
equation (A1) about ϕ ¼ ϕ0, leading to the same solution as
in (A4) and (A15),

ϕIðrÞ ≈ ϕ0 þ
A exp ð−2r=dÞ

r
; ðA21Þ

where d is given by (A5). Sufficiently deep inside the dense
body where ϕ ≪ ϕ0—denoted by “region III”—we can
linearize the differential equation (A1) about ϕ ¼ 0, leading
to the same solution as in (A17),
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ϕIIIðrÞ ≈
D sinh ðr=d0Þ

r
; ðA22Þ

where d0 is given by (A18). Additionally, there is also a
transition region—denoted by “region II”—that joins
regions I and III. Our aim is to exploit an approximately
linear form of the governing differential equation (A1) in this
transition region. A priori, there are two possibilities for
region II: (i) region II lies inside the dense body in the spatial
domain r� ≤ r ≤ R, in which the scalar-field amplitude lies
in the rangeϕ0=

ffiffiffi
2

p
≤ ϕ≲ ϕ0, or (ii) region II lies outside the

dense body in the spatial domain R ≤ r ≤ r�, in which the
scalar-field amplitude lies in the range 0≲ ϕ ≤ ϕ0=

ffiffiffi
2

p
. It is

straightforward to demonstrate that the requirement of
continuity of ϕ and dϕ=dr at r ¼ R prevents possibility
(i). Therefore, only possibility (ii) is relevant. Linearizing the
differential equation (A1) in region II about ϕ ¼ 0 leads to
the following differential equation,

d2ðδϕÞ
dr2

þ 2

r
dðδϕÞ
dr

þ λϕ2
0δϕðrÞ ≈ 0; ðA23Þ

which has the following solution:

ϕIIðrÞ ≈
B sin ð ffiffiffi

2
p

r=dÞ
r

þ C cos ð ffiffiffi
2

p
r=dÞ

r
: ðA24Þ

Note that there are five unknown parameters (including r�)
in Eqs. (A21), (A22), and (A24), supplemented by five
conditions from the requirement of continuity of ϕ and
dϕ=dr at r ¼ R and r ¼ r�, as well as the requirement that
ϕIðr�Þ ¼ ϕIIðr�Þ ¼ ϕ0=

ffiffiffi
2

p
. The requirement of continuity

of ϕ and dϕ=dr at r ¼ R and r ¼ r� fixes the coefficients A,
B, C, andD in Eqs. (A21), (A22), and (A24) as functions of
the parameter r�:

Aðr�Þ ¼
ϕ0 expð2r�d Þf

ffiffiffi
2

p
d cosðR−r�

d=
ffiffi
2

p Þ½−r� coshðRd0Þ þ d0 sinhðRd0Þ� − sinðR−r�
d=

ffiffi
2

p Þ½d2 coshðRd0Þ þ 2r�d0 sinhðRd0Þ�g
2 sinðR−r�

d=
ffiffi
2

p Þ½−d coshðRd0Þ þ d0 sinhðRd0Þ� þ
ffiffiffi
2

p
cosðR−r�

d=
ffiffi
2

p Þ½d coshðRd0Þ þ 2d0 sinhðRd0Þ�
; ðA25Þ

Bðr�Þ ¼
ϕ0ðdþ 2r�Þ½d cosð

ffiffi
2

p
R

d Þ coshðRd0Þ þ
ffiffiffi
2

p
d0 sinð

ffiffi
2

p
R

d Þ sinhðRd0Þ�
2 sinðR−r�

d=
ffiffi
2

p Þ½−d coshðRd0Þ þ d0 sinhðRd0Þ� þ
ffiffiffi
2

p
cosðR−r�

d=
ffiffi
2

p Þ½d coshðRd0Þ þ 2d0 sinhðRd0Þ�
; ðA26Þ

Cðr�Þ ¼ −
ϕ0ðdþ 2r�Þ½d sinð

ffiffi
2

p
R

d Þ coshðRd0Þ −
ffiffiffi
2

p
d0 cosð

ffiffi
2

p
R

d Þ sinhðRd0Þ�
2 sinðR−r�

d=
ffiffi
2

p Þ½−d coshðRd0Þ þ d0 sinhðRd0Þ� þ
ffiffiffi
2

p
cosðR−r�

d=
ffiffi
2

p Þ½d coshðRd0Þ þ 2d0 sinhðRd0Þ�
; ðA27Þ

Dðr�Þ ¼
ffiffiffi
2

p
ϕ0ðdþ 2r�Þd0

d coshðRd0Þ½
ffiffiffi
2

p
cosðR−r�

d=
ffiffi
2

p Þ − 2 sinðR−r�
d=

ffiffi
2

p Þ� þ 2d0 sinhðRd0Þ½
ffiffiffi
2

p
cosðR−r�

d=
ffiffi
2

p Þ þ sinðR−r�
d=

ffiffi
2

p Þ� : ðA28Þ

We are particularly interested in the form of the
scalar-field profile outside of the spherical dense body.
To proceed, we impose the fifth and final condition
ϕIðr�Þ ¼ ϕIIðr�Þ ¼ ϕ0=

ffiffiffi
2

p
. Let us first consider the sim-

pler case in which d ≫ r� − R. In this case, we find that

ϕIIðrÞ≈
ϕ0d0

R
þϕ0

�
1−

R
r

�
for r−R≪ r�−R; ðA29Þ

ϕIðrÞ≈ϕ0−
ϕ0R
r

exp

�
−
2ðr−r�Þ

d

�
for r−R≫ r�−R;

ðA30Þ

where r� ≈ R=ð1 − 1=
ffiffiffi
2

p Þ ≈ 3.4R. Note that the condition
d ≫ r� − R necessitates d ≫ R. Therefore, in the other
limiting case when d ≪ R, we must have d≲ r� − R. We
note that if d ≪ r� − R, then the scalar field would oscillate

numerous times in region II, corresponding to a non-
ground-state field configuration. Hence, in the case in
which d ≪ R, we must have d ∼ r� − R for the ground-
state field configuration, and we find that

ϕIIðrÞ ∼
ϕ0d0

d
þ ϕ0R

d

�
1 −

R
r

�
for r − R ≪ d; ðA31Þ

ϕIðrÞ−ϕ0∼−
ϕ0R
r

exp

�
−
2ðr−r�Þ

d

�
for r−R≫d: ðA32Þ

For the limiting cases when d ≪ R or d ≫ R, we can
combine Eqs. (A29), (A30), (A31), and (A32) into the
single unified form given in Eqs. (24) and (25),

ϕIIðrÞ∼
ϕ0d0 þϕ0Rð1−R=rÞ

minðd;RÞ for r−R≪minðd;RÞ;

ðA33Þ
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ϕIðrÞ−ϕ0∼−
ϕ0R
r

exp

�
−
2ðr−r�Þ

d

�
for r−R≫minðd;RÞ;

ðA34Þ

where r� − R ∼minðd; RÞ. We thus see that the scalar field
is strongly screened near the surface of and inside the dense
body in this case.
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