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In various extensions of the Standard Model of particle physics, and intriguingly even in the three-
generation Standard Model without neutrino masses, neutrinos are allowed to have very tiny electric
charges. After a review of the theoretical scenarios that allow the emergence of such charges, we discuss the
existing observational limits and we derive new stringent direct upper bounds for the charges of the muon
and tau neutrinos. We also point out a flavor-universal lower bound on neutrino charges which is obtained
from the weak gravity conjecture, that is based on the hypothesis that gravity is the weakest force. We
finally present a new flavor-universal upper bound on neutrino charges based on astrophysical observations
of Magnetars.
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I. INTRODUCTION

The Standard Model (SM) of particle physics has been a
remarkably successful theory in both predictive power and
breadth of applicability. Nevertheless, there is a veritable
cornucopia of evidence to suggest that the SM is incom-
plete and must be extended. In the context of our study,
neutrinos may provide a window to some of these aspects.
In fact, the neutrino sector may be an important participant
in potential solutions to baryon asymmetry in the Universe,
CP violation in nature, and the fermion mass hierarchy.
Moreover, some extensions of the SM may even embody
neutrinos with novel electromagnetic properties through
quantum loop effects, making them complementary probes
for beyond-SM physics (see, e.g., [1,2] and related
references).
In the SM, as it is usually understood, neutrinos are strictly

massless. However, the observation of neutrino flavor oscil-
lations [3–5] suggests that at least two of the neutrinos are
massive. This can be achieved by the introduction of right-
handed neutrinos, and corresponding Dirac and Majorana
mass terms, or through the see-saw framework [6–11].

The issue of a nonzero neutrino electric charge is much
more complicated and interesting (see, e.g., [1,12–15]
and related references). Indeed, even in the SM (with
three generations), their electric charges are not fully
determined just by the mathematical consistency of the
SM as a quantum field theory, viz. the lack of gauge
anomalies and possibly also the mixed gauge-gravitational
anomaly [16–20] (see Sec. II for more details). Thus,
whether neutrinos are electrically charged is entirely an
experimental question. As we review in Sec. II, interest-
ingly, the existence of neutrino charges is related to the
nature of neutrino masses [12,13] (i.e., whether one has
Dirac or Majorana mass terms in the Lagrangian density),
and whether or not electric charges are quantized in nature.
In almost all cases, the dequantization of electric charges is
closely related to the emergence of additional nonanom-
alous Abelian symmetries.
There is no strict upper bound on a possible neutrino

electric charge, as far as purely theoretical considerations
go. Any upper bound is instead motivated by experimental
and observational considerations. The non-neutrality limits
on matter put a strong bound on the electric charge of the
electron-type neutrino. Apart from that, there are also
several limits coming from low energy reactor neutrinos,
beam dump experiments, galactic-extragalactic neutrino
sources, stellar cooling, neutrino star turning mechanism,
and so on. These existing constraints are briefly reviewed in
Secs. III and V. In Sec. IV, we derive new direct bounds
on the charges of νμ and ντ. If neutrinos have a non-
zero electric charge, one can derive a possible theoretical
lower bound on their charge-to-mass ratio from the (strong
form) weak gravity conjecture [21]. We discuss this in
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Sec. VI. In Sec. VII, we demonstrate a new flavor-universal
upper bound on neutrino charges that is deduced from the
observation of neutron stars with very large magnetic fields
(magnetars), where charged neutrinos can be nonperturba-
tively pair produced, thereby contributing to a depletion of
the energy reservoir.

II. NEUTRINO CHARGE IN THE SMAND BEYOND

Let us briefly review and discuss scenarios where
neutrino electric charges may arise naturally. We use the
convention where all the SM fermions are left-chiral. They
are denoted by Qð3; 2Þ; Ucð3̄; 1Þ; Dcð3̄; 1Þ; Lð1; 2Þ, and
Ecð1; 1Þ where the numbers in parentheses denote the
SUð3Þc and SUð2ÞL charges. The Higgs field is denoted
by Hð1; 2Þ.
The hypercharge quantum numbers of the SM fields

must obey the following consistency conditions due to
anomaly cancellation requirements:

(i) From the Uð1ÞY-½SUð3Þc�2 anomaly,

X3
i¼1

½2YðiÞ
Q þ YðiÞ

Uc þ YðiÞ
Dc � ¼ 0: ð1Þ

(ii) From the Uð1ÞY-½SUð2ÞL�2 anomaly,

X3
i¼1

½3YðiÞ
Q þ YðiÞ

L � ¼ 0: ð2Þ

(iii) From the ½Uð1ÞY �3 anomaly,

X3
i¼1

½2ðYðiÞ
L Þ3 þ ðYðiÞ

EcÞ3 þ 6ðYðiÞ
Q Þ3

þ 3ðYðiÞ
UcÞ3 þ 3ðYðiÞ

DcÞ3� ¼ 0: ð3Þ

(iv) From the Uð1ÞY-½graviton�2 anomaly,

X3
i¼1

½2YðiÞ
L þ YðiÞ

Ec þ 6YðiÞ
Q þ 3YðiÞ

Uc þ 3YðiÞ
Dc � ¼ 0: ð4Þ

The hypercharge quantum numbers must also obey the
following constraints from the gauge invariance of the
Yukawa terms in the Lagrangian density:

(i) From the charged-lepton Yukawa terms,

YðiÞ
L þ YðiÞ

Ec ¼ YH ∀ i: ð5Þ

(ii) From the up-type quark Yukawa terms,

YðiÞ
Q þ YðjÞ

Uc ¼ −YH ∀ fi; jg: ð6Þ

(iii) From the down-type quark Yukawa terms,

YðiÞ
Q þ YðjÞ

Dc ¼ YH ∀ fi; jg: ð7Þ

In the above equations, the superscript indices fi; jg
indicate the generation. YH is the hypercharge of the
Higgs doublet. Note also that the charged-lepton
Yukawa has been taken to be diagonal considering the
SM where neutrinos are massless and there is no mixing in
the lepton sector. On the other hand, the mixing in the quark
sector imposes the relations (6) and (7) between the
quark hypercharges of different generations, that imply
straightforwardly that the quark hypercharges are gener-

ation independent: YðiÞ
Q ¼ YQ, YðiÞ

Uc ¼ YUc ¼ −YH − YQ,

and YðiÞ
Dc ¼ YDc ¼ YH − YQ. Moreover, inserting these

equalities in Eq. (1), one can see that the Uð1ÞY −
½SUð3Þc�2 anomaly cancels automatically and does not
imply any further constraint. Also, the quark contributions
to the mixed gauge-gravitational anomaly cancel and
Eq. (4) yields the simpler relation between lepton hyper-

charges
P

3
i¼1 ½2YðiÞ

L þ YðiÞ
Ec � ¼ 0. Then, using also the

charged-lepton Yukawa constraint (5) and the Uð1ÞY −
½SUð2ÞL�2 anomaly (2), we obtain the relations

YQ ¼ 1

3
YH; ð8Þ

YUc ¼ −
4

3
YH; ð9Þ

YDc ¼ 2

3
YH; ð10Þ

YðiÞ
L ¼ YH − YðiÞ

Ec ∀ i; ð11Þ

X3
i¼1

YðiÞ
Ec ¼ 6YH: ð12Þ

In the case of the one-generation SM, one gets YEc ¼
2YH and consequently, YL ¼ −YH. In this case, all the
hypercharges are given in terms of YH, which result in
quantized hypercharges (i.e., the ratios of all charges are
rational numbers). Moreover, the ½Uð1ÞY �3 anomaly con-
straint (3) is automatically satisfied for any value of YH and
does not imply any further constraint. Setting YH ¼ þ1,
one can recover the conventional values of hypercharges
usually given in standard textbooks,

YSM
Q ¼ 1

3
; YSM

Uc ¼ −
4

3
; YSM

Dc ¼ 2

3
;

YSM
L ¼ −1; YSM

Ec ¼ 2: ð13Þ
Note that since YH is an overall scaling of all hypercharges,
it can always be set to unity by a suitable choice of the
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hypercharge gauge coupling. However, we will keep it as a
free parameter to be as general as possible, as far as
expressions are concerned. In this case, the Gell-Mann-
Nishijima formula gets modified to

Q ¼ YHI3 þ
Y
2
: ð14Þ

The electric charge of the neutrino can now be computed as

QðiÞ
ν ¼ YH −

YðiÞ
Ec

2
: ð15Þ

Thus, we deduce that in the one-generation SM, when
YEc ¼ 2YH in Eqs. (11) and (12), the neutrinos are exactly
neutral,

Qν ¼ 0; ðone-generation SMÞ: ð16Þ

On the other hand, in the three-generation SM, with
massless neutrinos, the electric charge is not quantized and
not all the neutrinos have to be neutral [14,15]. Indeed,
Eq. (12) leaves freedom for the individual value of each of

the three hypercharges YðiÞ
Ec , that implies a corresponding

freedom for the individual value of each of the three

hypercharges YðiÞ
L through Eq. (11). However, in this case,

we must take into account that the hypercharges are further
constrained by the ½Uð1ÞY �3 anomaly constraint (3), that
gives

X3
i¼1

½ðYðiÞ
EcÞ3 − 6YHðYðiÞ

EcÞ2� þ 48Y3
H ¼ 0: ð17Þ

In order to understand what is the difference with respect to

the one-generation SM, let us write YðiÞ
Ec as

YðiÞ
Ec ¼ 2YHð1þ δðiÞÞ: ð18Þ

Then, Eqs. (12) and (17) yield, respectively, the constraints

X3
i¼1

δðiÞ ¼ 0; ð19Þ

X3
i¼1

ðδðiÞÞ3 ¼ 0: ð20Þ

Therefore, only two of the three δðiÞ’s can be different from
zero and their values must be opposite,

δð1Þ ¼ −δð2Þ and δð3Þ ¼ 0; or ð21Þ

δð2Þ ¼ −δð3Þ and δð1Þ ¼ 0; or ð22Þ

δð3Þ ¼ −δð1Þ and δð2Þ ¼ 0: ð23Þ

As discussed in Refs. [14,15], this dequantization of
the electric charge in the three-generation SM is related
to the existence of the Uð1Þ symmetries corresponding to
the three differences of the generation lepton numbers:
ðLe − LμÞ, ðLμ − LτÞ, and ðLe − LτÞ. Only one of these
three Uð1Þ symmetries can be nonanomalous and the
corresponding lepton number difference can be added to
the hypercharge with an arbitrary coefficient, leading to the
generation of the contributions δðiÞ and the dequantization
of the electric charge. This is a particular example of the
general mechanism of charge dequantization induced by
anomaly-free Uð1Þ symmetries [22].
The electric charges of the neutrinos in the three-

generation SM are given by

QðiÞ
ν ¼ −YHδ

ðiÞ; ðthree-generation SMÞ: ð24Þ
Only two of the three neutrino electric charges can be
nonzero and they have to be opposite, in such a way that the
sum of the neutrino charges vanishes,

X3
i¼1

QðiÞ
ν ¼ 0: ð25Þ

For the other charges, in this case, we get

QðiÞ
e ¼ −QðiÞ

Ec ¼ −YHð1þ δðiÞÞ; ð26Þ

Qu ¼ −QUc ¼ 2

3
YH; ð27Þ

Qd ¼ −QDc ¼ −
1

3
YH: ð28Þ

Therefore, only the lepton charges are dequantized and they

satisfy the relations QðiÞ
e ¼ QðiÞ

ν − YH.
Let us now consider scenarios where the neutrinos have

nonzero masses. The observation of neutrino oscillations
[3–5] and the subsequent extraction of the neutrino mass-
squared differences [5] imply that at least two of the
neutrino mass eigenstates must have nonvanishing masses.
This mass may arise either from Dirac mass terms or
Majorana mass terms added to the SM Lagrangian.
If one introduces Majorana mass terms for the left-chiral

neutrinos through the Weinberg operator, the following
additional consistency conditions must be satisfied:

YðiÞ
L þ YðjÞ

L þ 2YH ¼ 4YH − YðiÞ
Ec − YðjÞ

Ec ¼ 0 ∀ fi; jg:
ð29Þ

This gives YðiÞ
Ec ¼ 2YH ∀ i and, consequently, all the

neutrinos must be neutral [12,14],
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QðiÞ
ν ¼ 0 ∀ i; ðSMwith νMajoranamass termÞ: ð30Þ

Thus, in this case, the charges are again quantized.
Let us now consider the alternative scenario where

neutrinos get their masses from a Dirac mass term in the
Lagrangian. This can be achieved with the addition of three
copies of a singlet [under SUð3Þc and SUð2ÞL] neutrino
Ncð1; 1Þ and the corresponding Dirac mass terms. These
additions modify the ½Uð1ÞY �3 and mixed gauge-gravita-
tional anomaly constraints and induce a new constraint
equation corresponding to the Dirac neutrino Yukawa term,

(i) From the ½Uð1ÞY �3 anomaly,

X3
i¼1

½2ðYðiÞ
L Þ3 þ ðYðiÞ

EcÞ3 þ 6ðYðiÞ
Q Þ3

þ 3ðYðiÞ
UcÞ3 þ 3ðYðiÞ

DcÞ3 þ ðYðiÞ
NcÞ3� ¼ 0: ð31Þ

(ii) From the Uð1ÞY-½graviton�2 anomaly,

X3
i¼1

½2YðiÞ
L þ YðiÞ

Ec þ 6YðiÞ
Q þ 3YðiÞ

Uc þ 3YðiÞ
Dc þ YðiÞ

Nc � ¼ 0:

ð32Þ

(iii) From the Dirac neutrino Yukawa terms,

YðiÞ
L þ YðjÞ

Nc ¼ −YH ∀ fi; jg: ð33Þ

In principle, also the charged-lepton Yukawa constraint (5)
should be modified allowing all possible different indices,
but we do not need to do it because Eq. (33) implies

straightforwardly that all YðiÞ
L ’s are equal. Let us also note

that in this case the mixed gauge-gravitational anomaly
constraint (32) is redundant and not necessary, because it is
automatically satisfied for any value of YH using the
Yukawa relations. The new solution of all the constraints is

Yð1Þ
Nc ¼ Yð2Þ

Nc ¼ Yð3Þ
Nc ¼ YNc; ð34Þ

YðiÞ
Q ¼ YH

3
þ YNc

3
∀ i; ð35Þ

YðiÞ
Uc ¼ −

4YH

3
−
YNc

3
∀ i; ð36Þ

YðiÞ
Dc ¼ 2YH

3
−
YNc

3
∀ i; ð37Þ

YðiÞ
L ¼ −YH − YNc ∀ i; ð38Þ

YðiÞ
Ec ¼ 2YH þ YNc ∀ i: ð39Þ

Hence, in this case, all the hypercharges and the corre-
sponding quark and lepton electric charges are generation

independent. They are also not completely determined,
since they depend on the arbitrary hypercharge assignment
for the right-handed neutrino YNc . In this case, the neutrino
charge is given by

QðiÞ
ν ¼ −

YNc

2
∀ i; ðSMwith νDiracmass termÞ: ð40Þ

The other electric charges are given by

Qe ¼ −QEc ¼ −YH −
YNc

2
; ð41Þ

Qu ¼ −QUc ¼ 2

3
YH þ YNc

6
; ð42Þ

Qd ¼ −QDc ¼ −
1

3
YH þ YNc

6
: ð43Þ

We see that in this case the charged lepton, up-type quark,
and down-type quark electric charges are related to Qν by

Qe ¼ −YH þQν; ð44Þ

Qu ¼
2

3
YH −

Qν

3
; ð45Þ

Qd ¼ −
1

3
YH −

Qν

3
: ð46Þ

Thus, in the presence of right-handed neutrinos and Dirac
mass terms for the neutrinos, electric charge is dequantized
and neutrinos can be electrically charged [12]. The charge
dequantization in this case is related to the existence of the
nonanomalous symmetry (B − L) [12,14]. Note that in this
case, neutrinos can be charged even when there is only one
generation of fermions.

III. LABORATORY CONSTRAINTS ON
NEUTRINO CHARGES

A variety of experimental and observational consider-
ations constrain possible neutrino charges. These bounds
come from both terrestrial and astrophysical observations.
In this section, we briefly review the existing laboratory
constraints on the neutrino charges.
The strongest experimental constraint on first-generation

neutrinos is obtained from beta decay n → pþ e− þ ν̄e, in
combination with limits on the non-neutrality of matter.
The neutrality of the matter is usually quantified in terms of
Qmatter ¼ 1

A ½ZðQp þQeÞ þ ðA − ZÞQn�. Here, Z is the
atomic number, N is the neutron number, and A is the
atomic mass number of the element. Qp, Qe, and Qn are
the electric charges of the proton, electron, and neutron,
respectively. Conservation of the electric charge in beta
decay requiresQνe ¼ AðQn−QmatterÞ

Z . The non-neutrality test of
matter [23] using sulfur hexafluoride (SF6) sets a strong
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bound Qmatter ¼ ð−0.1 × 1.1Þ × 10−21e. The independent
measurement of the charge of a free neutron sets a limit of
Qn ¼ ð−0.4� 1.1Þ × 10−21e [1,24]. Both of these in com-
bination then put the strong constraint [1,24]

Qνe ¼ ð−0.6� 3.2Þ × 10−21e: ð47Þ

This bound should also be applicable to the other gen-
eration of neutrinos when neutrino flavor oscillations are
taken into account.
The electric charge of neutrinos was also probed directly

in scattering experiments. From the TEXONO experiment,
low-energy reactor antineutrino scattering with electrons
provide the 90% CL upper bound [25],

jQνe j < 2.1 × 10−12e: ð48Þ

An improved upper bound on Qνe has been obtained [26]
using the most stringent bound on the electron neu-
trino magnetic of the GEMMA Collaboration: μνe < 2.9 ×
10−11 μB at 90% CL [27], where μB is the Bohr magneton.
A comparison of the cross sections of neutrino-electron
scattering due to a neutrino electric charge and a neutrino
magnetic moment leads to the relation

jQνj≲
ffiffiffiffiffiffiffiffi
T th
e

2me

s �
μubν
μB

�
e; ð49Þ

where T th
e is the electron kinetic energy threshold and μubν is

the upper bound for the magnetic moment. Using
T th
e ¼ 2.8 keV, the 90% CL GEMMA limit on μνe implies

the stringent limit

jQνe j ≲ 1.5 × 10−12e: ð50Þ

An updated and similar bound was also obtained recently,
by analyzing combined data from various elastic neutrino-
electron scattering measurements [28], utilizing reactor
neutrinos. In the upgraded phase of GEMMA, it is expected
that one may be able to improve these upper bounds by an
order of magnitude [26].
The recent first measurements of coherent neutrino-

nucleus elastic scattering (CEνNS) in the COHERENT
experiment [29,30] led to the following new constraints on
the neutrino electric charges [31,32]:

Qνe ¼ ð10� 14Þ × 10−8e; ð51Þ

Qνμ ¼ ð−1.5� 5.5Þ × 10−8e: ð52Þ

The bound on Qνe is not competitive with the reactor
bounds (48) and (50), but the bound on Qνμ was the only
existing one obtained from scattering experiments (see the
new bound in the next section). The analyses of the

COHERENT data in Refs. [31,32] constrained also the
transition electric charges, that contribute to the scattering
[33]: at 3σ,

jQνeμ j < 20 × 10−8e; ð53Þ

jQνeτ j < 34 × 10−8e; ð54Þ

jQνμτ j < 25 × 10−8e: ð55Þ

The SLAC electron beam dump experiment provided the
following upper limit on the third-generation neutrino ðντÞ
charge [34]:

jQντ j≲ 3 × 10−4e: ð56Þ

Beam dump experiments utilizing bubble chambers, such
as BEBC [35], have also constrained the charge of ντ from
the elastic scattering ντe− → ντe−. Comparison of the
theoretical expectation, for the scattering cross section
(proportional to Q2

ντ ), with the experimental observation,
provided the upper bound [36]

jQντ j≲ 4 × 10−4e: ð57Þ

IV. NEW UPPER BOUNDS FOR jQνμ j AND jQντ j
We have seen in the previous section that using the

relation (49) one can convert an upper bound for a neutrino
magnetic moment into an upper bound for the electric
charge. In this section, we achieve new direct bounds on
jQνμ j and jQντ j by applying this method to the most
stringent laboratory constraints on the magnetic moments
of the muon and tau neutrino.
Let us first consider the most stringent bound

μνμ < 6.8 × 10−10 μB (90% CL) on the muon neutrino
magnetic moment obtained in the LSND experiment
[37] with neutrino-electron scattering. Considering the
LSND electron energy threshold T th

e ¼ 18 MeV, using
the relation (49) we obtain the following new upper bound
on the electric charge of the muon neutrino:

jQνμ j≲ 2.9 × 10−9e: ð58Þ

This limit is stronger than the previously most stringent
direct limit in Eq. (52).
Let us now consider the most stringent bound

μντ < 3.9 × 10−7 μB (90% CL) on the tau neutrino mag-
netic moment obtained in the DONUT experiment [38]
with ντ − e scattering. From the DONUT electron energy
threshold T th

e ¼ 0.1 GeV, using the relation (49), we obtain

jQντ j≲ 3.9 × 10−6e: ð59Þ
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This bound is much stronger than the previously existing
direct limits in Eqs. (56) and (57).

V. ASTROPHYSICAL CONSTRAINTS
ON NEUTRINO CHARGES

Astrophysical observations also place various constraints
on neutrino charges. While some are relatively model
independent, others depend on reasonable assumptions.
In this section, we briefly review the main existing astro-
physical bounds.
SN1987A supernova neutrino measurements can be used

to constrain first-generation neutrino charges [39]. The
basic idea is that galactic and extragalactic magnetic fields
can cause energy dependence in the arrival times of the
charged neutrinos. The SN1987A observations put an
upper bound of

jQνe j≲ 10−15e − 10−17e; ð60Þ

depending on the precise value of the mean magnetic field
encountered during traversal.
A very interesting constraint on neutrino charges may be

obtained by considering their effects on the rotation of
magnetized neutron stars—the neutrino star turning mecha-
nism (νST) [40]. The charged neutrinos produced in the
stellar interior and traveling out of the rotating, magnetized
nuclear matter of the star could potentially slow down its
rotation. Hence, charged neutrinos may prevent the gen-
eration of a rapidly rotating neutron star, or pulsars may be
affected by a frequency shift due to the νST mechanism.
Considering a magnetic field of 1014 G and solving the
Dirac equation with an ansatz for the magnetized nuclear
matter in the neutron star, a strong upper limit of about [40]

jQνj≲ 10−19e ð61Þ

was obtained.
If neutrinos are charged, they could also participate in

plasmon decays. Considering plasmon decay γ� → νν̄ in
the sun, and requiring that the energy loss be lower than the
solar luminosity, imposes constraints on the neutrino
charge. The upper limits obtained from helioseismological
studies are about [24]

jQνj < 6 × 10−14e: ð62Þ

Such nonstandard losses would also delay the ignition of
helium in low-mass red giant cores. From globular-cluster
stars, these considerations put a limit of [24]

jQνj < 2 × 10−14e: ð63Þ

VI. LOWER BOUND ON CHARGE-TO-MASS
RATIO FOR ELECTRICALLY CHARGED

NEUTRINOS

The weak gravity conjecture (WGC) is an assertion
about the relative strength of gravity with respect to gauge
forces in a consistent theory of quantum gravity [21]. It
crudely pronounces that gravity must be the weakest force
in such a theory. More precisely, it states that for a U(1)
gauge theory coupled to gravity there must exist at least one
state with charge q and mass m such that q > m=

ffiffiffi
2

p
in

appropriate units (the units are chosen such that for an
extremal black hole with charge Q and mass M,
M ¼ ffiffiffi

2
p

Q). In the case of electromagnetism, in physical
units, this can be written as

q
e
≥

1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p m
mplanck

; ð64Þ

where mplanck is the reduced Planck mass, with
mplanck ≈ 2.4 × 1018 GeV.
As discussed in [21], the above minimal form of the

conjecture, often called the “electric WGC” does not really
impose any interesting constraints on the particle spectrum
at low energies. Thus, the so-called strong form of the
WGC was proposed which says that the criterion
q > m=

ffiffiffi
2

p
should be satisfied for the lightest charged

particle in the spectrum.
Wewill ask what the strong form of the WGCmay tell us

about electrically charged neutrinos. Assume that the
neutrino mass eigenstates all have nonvanishing masses.
Then, the above considerations give rise to the following
lower bound on the electric charge of the lightest charged
neutrino:

jQνj ≳ 10−28e

�
mν

0.1 eV

�
: ð65Þ

Hence, in contrast to the existing observational and
experimental constraints which furnish an upper bound,
theoretical considerations encouraged by the strong form of
the WGC indicate a lower bound for the neutrino charge.
Note that, there is no formal proof of the WGC, and in fact,
there are considerable debates on whether the strong form
of the WGC has to be satisfied by effective field theories at
low energies; see [41] for a review. Thus, the bound of
Eq. (65) should only be taken as a theoretical guidance and
not as a strict lower bound.

VII. CONSTRAINTS FROM PAIR
PRODUCTION

IN NEUTRON STARS

Magnetars [42–44] are a class of neutron stars that have
extremely large magnetic fields, 1014–1015 G or higher,
and have large mean spin periods, tperiod ∼Oð10Þ sec.
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There is presently overwhelming observational evidence
for such objects [45], with characteristic lifetimes∼104 yrs.
Neutron stars have a magnetospheric region, with a

plasma density, enveloping them. Many models generically
predict the existence of acceleration or vacuum gap regions
in the neutron star magnetosphere, where the plasma
density is very low or vanishing [46–48]. In these vacuum
gap regions, the electrodynamic force-free criteria break
down [49] and residual electric fields are nonvanishing.
This is also strongly substantiated by pulsar observations,
where the vacuum gap regions, and prevalent electric fields
there, are thought to play a prominent role in driving pulsar
radio emissions [46]. For magnetars, the induced average
electric field in the polar vacuum gap regions will be large,
given by [48]

E ≃
1

2
ΩBR ∼ 1014 V=m: ð66Þ

Here,Ω, B, and R are the rotational velocity, magnetic field,
and radius of the neutron star. This electric field in the polar
vacuum gap region is mostly parallel to the magnetic field
there [47,48].
In the presence of such large electric fields, light

particles, such as neutrinos with a tiny electric charge,
may be nonperturbatively pair produced, via the Schwinger
mechanism. For homogeneous fields, where B⃗jjE⃗, the
neutrino pair-production rate per unit volume [50,51] is
given by

Γνν̄ ¼
Q2

νEB
4π2

coth

�
πB
E

�
exp

�
−
πm2

ν

QνE

�
: ð67Þ

This may be derived readily [52] using worldline instanton
techniques [53,54]. Note that for the electric field values
and viable neutrino charges of possible interest, the rate is
highly suppressed whenmν ≳ 1 eV, but we are outside this
regime, because neutrino masses are constrained below this
value. The most robust constraint is the model-independent
bound obtained recently through the measurement of the
end point of the electron spectrum of tritium β-decay in the
KATRIN experiment [55]: mν < 1.1 eV at 90% CL.
Stronger constraints of the order of mν ≲ 0.1 eV have
been obtained from cosmological measurements in
the standard ΛCDM cosmological model. Let us also note
that the mass-squared measurements in neutrino oscilla-
tion experiments imply that, except possibly for one
mass eigenstate that may be massless or very light,
mν ≳ 0.01 eV. Thus, we may expect that the corresponding
neutrino Compton wavelengths are plausibly such that the
field homogeneity assumption in Eq. (67) is satisfied to a
good degree in the vacuum gap region.
The main energy reservoir of a magnetar is the super-

strong electromagnetic field [42–44], which is thought to

drive the persistent luminosities and burst activities. The
pair production of charged neutrinos will sap energy from
this reservoir. This causes a gradual depletion in the
electromagnetic energy stored. Based on the observational
evidence for magnetars, with currently deduced character-
istic lifetimes, we may hence leverage a broad energy-
balance argument to put conservative limits on Qν. This
limit will apply to all neutrino flavors and should be model
independent, depending only on the fact that a particle with
an electric charge will couple to the Uð1ÞQED gauge field.
Similar considerations have already placed interesting
limits on generic milli electrically and magnetically
charged particles that may exist in nature [56,57].
Comparing the average power expended by the

magnetar over its active lifetime, to the average power ex-
pended for nonperturbative neutrino production and power-
ing the persistent luminosity, one gets the approximate
inequality

Z
dV

�
d2Elum:

dtdV
þ d2Eνν̄

dtdV

�
≲ hPMi; ð68Þ

where we have defined

hPMi≡
�
1

T

Z
dV

1

2
ðB2 þ E2Þ

�
Magnetar

: ð69Þ

Here, Erad. and Eνν̄ are the average energies expended in
maintaining the luminosities and Schwinger pair produc-
tion of the lightest νν̄ pairs. T is the average active lifetime
of a typical magnetar.
Now, one has for the pair-production contribution,

d2Eνν̄

dtdV
¼ Γνν̄QνEl: ð70Þ

This includes the average power expended for actual pair
production, as well as for the field to accelerate one of the
neutrinos out to a characteristic distance l.
A rough estimate for the average radiation component

may be taken based on the persistent quiescent x-ray
emissions [45],

hPlum:i≡
�Z

dV
d2Elum:

dtdV

�
∼ 1027 J=s: ð71Þ

This will clearly be an underestimate of the total luminos-
ity, and additions to this estimate will only further
strengthen the bound. Typically, hPlum:i < hPMi.
From Eqs. (66)–(71), we have

Z
dV

Q3
νE2Bl
4π2

coth

�
πB
E

�
exp

�
−
πm2

ν

QνE

�
≲ hPMi − hPlum:i:

ð72Þ
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To make estimates, we may try typical ranges for
the magnetar parameters [45,58,59]—B ∈ ½1014; 1016� G,
R ∈ ½10; 15� Km, τperiod ∈ ½3; 10� s, l ∈ ½10; 50� Km, and
T ∈ ½103; 105� yrs. The polar vacuum gap region, over
which pair production of charged neutrinos will be active,
may also be roughly estimated [52], and it comes to be
about Oð0.1Þ Km3. Using these values, numerically solv-
ing Eq. (72), one obtains a flavor-universal bound in the
range

jQνj ≲ 10−11 − 10−12e: ð73Þ

There are astrophysical unknowns and uncertainties
present in the magnetar parameters. The variations due
to these on the Qν bound are nevertheless somewhat
diluted, in many parametric regions, as we see above.
This is because, roughly speaking, in regions where the
exponent in Eq. (67) is Oð1Þ, the left-hand side of Eq. (72)
is ∝ Q3

ν and the consequent variation in the bound on Qν

gets reduced by a cube root. The crude bound in Eq. (73) is
relatively robust in this sense.
This crude bound is solely motivated by the observa-

tional evidence for magnetars, with large magnetic fields
and the observed characteristic lifetimes. Note that this
limit is comparable to the bounds deduced in [26,28,60],
from neutrino-electron scattering and experiments attempt-
ing to measure a neutrino magnetic moment. It nevertheless
is weaker than the interesting limit in [40] represented in
Eq. (61), based on the νST mechanism, and the stellar
cooling bounds of Eqs. (62) and (63). The former bound
from neutron stars was obtained by modeling the propa-
gation of neutrinos out through the magnetized rotating
nuclear media and solving the relevant Dirac equation with
that ansatz.

VIII. SUMMARY AND CONCLUSIONS

The question of a possibly small neutrino charge is an
intriguing one. In the present work, we revisited some
aspects of this problem and pointed out two new direct
bounds from scattering, as well as a lower and an upper
bound that are motivated, respectively, by the weak gravity
conjecture and by the observation of magnetars.
We reviewed the little-known proof that the quantum

field theoretic consistency of the full three-generation
Standard Model with massless neutrinos allows them to
have electric charges, albeit with the restriction that two
neutrinos can have opposite charges, while the third must
be neutral. This is related to the presence of a non-
anomalous Abelian symmetry generated by one of the

three differences of the generation lepton numbers. The
addition of right-handed neutrinos and the corresponding
Dirac mass terms in the Lagrangian, giving neutrinos Dirac
masses, also lead to charge dequantization and nonzero
neutrino charges.
There exist strong experimental and observational con-

straints on the neutrino charges. We reviewed some of these
constraints, pointing out some relations, as well as making
additions to the set. Specifically, we obtained new direct
upper bounds on the electric charges of νμ and ντ from the
most stringent experimental bounds on the corresponding
magnetic moments. We also utilized the weak gravity
conjecture and observational evidence for magnetars to
add to the set of strong constraints already existing in
literature.
For the latter set of constraints, first by leveraging the

hypothesis that gravity is the weakest force (the essence of
the weak gravity conjecture), we were able to motivate a
possible lower bound on a nonzero neutrino charge, if it
exists. Second, the observation of highly magnetic neutron
stars (magnetars) suggested that charged neutrinos must be
nonperturbatively pair produced in certain regions of the
stellar atmosphere. This would contribute to the depletion
of the electromagnetic energy reservoir of the neutron star,
and hence by energetic arguments also place novel upper
bounds on the neutrino charge. The limit thus obtained is
found to be comparable to recent limits derived from
reactor neutrinos, through the analysis of elastic elec-
tron-neutrino cross sections [28]. Limits on neutrino
charges derived from experiments constraining neutrino
magnetic moments are also in a similar ballpark [26,60].
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