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We construct anomaly-free Uð1Þ1 ×Uð1Þ2 ×… × Uð1Þm gauge extensions of the Standard Model. To
perform this construction, we put together anomaly-free Uð1Þ extensions of one and two families of
fermions. The availability of free parameters that enter linearly in the equations for the fermion charges and
the large number of different classes of extensions may help other model builders interested in their use to
solve problems of particle physics.
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I. INTRODUCTION

Particle physics have problems that can be solved using
gauged Uð1Þm ≡Uð1Þ1 ×Uð1Þ2 ×… × Uð1Þm extensions
of the Standard Model (SM) featuring multiple Z0 bosons
[1]. For m ¼ 1, some examples are dark matter [2–8],
neutrino masses [9–15], and the anomalous magnetic
moment of the muon [16–18]. However, in order to be
well behaved at high energies, a gauge symmetry must be
free of anomalies [19–22]. General solutions to the
anomaly cancellation equations are not always useful
because free parameters may be trapped in complicated
polynomial expressions. However, in composite gauge
theories, there is a subset of fermions that independently
cancel anomalies, and one can use these different subsets to
add free parameters that are easily available because they
enter linearly in the equations for fermion charges.
In this paper, we will construct composite anomaly-free

Uð1Þm gauge extensions of the SM. In Secs. II and III, we
will settle notation and define concepts, in Secs. IVandVwe
will make the construction using one-family and two-
families anomaly-free Uð1Þ extensions as building blocks
in each case, and in Sec. VI wewill present other extensions
that can be made with additional charged Weyl fermions.

II. ANOMALY EQUATIONS

Let ½zlij� denote the charges of the SM fermions under an
Uð1Þm ¼ Uð1Þ1 ×Uð1Þ2 ×… ×Uð1Þm gauge symmetry.
The index i ∈ f1; 2; 3g refers to the three families, l ∈
f1; 2;…; mg to the Uð1Þl subgroup and j ∈
f1; 2; 3; 4; 5; 6g ↦ fN;Q;D; L;U; Eg to the fermion

fields which are in the following representations of the
SM gauge group GSM ≡ SUð3Þ × SUð2Þ ×Uð1ÞY :
Fermion fields SU(3) SU(2) Uð1ÞY
N 1 1 0
Q 3 2 1
D 3̄ 1 2
L 1 2 −3
U 3̄ 1 −4
E 1 1 6

We assumed that right-handed neutrinos exist to generalize
our results and to simplify their exposition. This
assumption does no harm, as we can assign zero charges
under the extended Uð1Þ0s to them so that effectively they
do not exist. Following the conventions of previous work
[23,24], fermions are taken as left-handed fields which can
be done via charge conjugation. We also assume that Uð1Þ
charges are always given for a normalization of the gauge
couplings where all charges are integers with no common
divisor and the biggest charge, in absolute value, is positive.
Often, we will use the notation ½zlij� with the i or l indices
suppressed. If the i index is suppressed, we will be
considering a single family of the SM; if the l index is
suppressed, the Uð1Þ group being considered will be clear
in the context. In this paper, m is always a given natural
number.
With this notation and convention, the hypercharges ½yij�

of the SM fermions, referred from here on with the letter y,
are yi1 ¼ 0, yi2 ¼ 1, yi3 ¼ 2, yi4 ¼ −3, yi5 ¼ −4, and
yi6 ¼ 6 for all i ∈ f1; 2; 3g. We can also present it as a
3-tuple of ½yj�≡ ½0; 1; 2;−3;−4; 6� or in matrix form

½yij� ¼
2
64
yj
yj
yj

3
75 ¼

N Q D L U E2
64
0 1 2 −3 −4 6

0 1 2 −3 −4 6

0 1 2 −3 −4 6

3
75

1st

2nd

3rd:

: ð1Þ
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Without adding new fermions charged under hyper-
charge, a Uð1Þ gauge extension of the SM, GSM ×Uð1Þ,
is anomaly free if the charges ½zij� associated with the
additional Uð1Þ subgroup satisfy the following system of
diophantine equations:

0 ¼
X
i;j

njz3ij; ð2aÞ

0 ¼
X
i;j

njzijy2ij; ð2bÞ

0 ¼
X
i;j

njz2ijyij; ð2cÞ

0 ¼
X
i;j

δgravj njzij; ð2dÞ

0 ¼
X
i;j

δsuð2Þj njzij; ð2eÞ

0 ¼
X
i;j

δsuð3Þj njzij; ð2fÞ

where nj is the number of Weyl fermions in the j multiplet,
and δsj is equal to 1 if multiplet j is charged under s and 0
otherwise, with s ∈ fgrav; suð2Þ; suð3Þg. Using vector
notation, we have ½nj� ¼ ½1; 6; 3; 2; 3; 1�, ½δgravj � ¼
½1; 1; 1; 1; 1; 1�, ½δsuð2Þj � ¼ ½0; 1; 0; 1; 0; 0�, and ½δsuð3Þj � ¼
½0; 1; 1; 0; 1; 0�. More generally, a Uð1Þm ¼ Uð1Þ1 ×
Uð1Þ2 ×… ×Uð1Þm gauge extension of the SM, GSM ×
Uð1Þm, is anomaly free if the charges ½zlij�, ½zl0

ij �, and ½zl00ij �
associated with the subgroups Uð1Þl; Uð1Þl0 , and Uð1Þl00
satisfy (2a)–(2f) and

0 ¼
X
i;j

njzlijz
l0
ij z

l00
ij ð3Þ

for all l;l0;l00 ∈ f1; 2;…; mg. These definitions are suf-
ficient because an GSM × Uð1Þm gauge theory with no
SUð2Þ anomaly [25,26] does not have other global anoma-
lies [27–30]. In this paper, we refer to one-family and two-
families anomaly-free extensions; these are defined in the
same way as a generic anomaly-free Uð1Þm extension but
for a vector ½zj� and a 2-tuple of vectors.
Recently, an atlas with solutions for the anomaly

equations (2a)–(2f) was constructed [31]. Then a general
solution was found for the first two equations [23], and for
this solution, it was given a geometric interpretation [32].
While the present work was being written, the full system
of equations was solved using this geometric method [33].
Other aspects of this system of equations including (3) were
also explored [24,34,35].
Generalizing a notion presented in [24], we say that a

gauge theory is composite if there is a nonempty proper

subset of fermions whose charges independently satisfy the
anomaly equations. In particular, the SM is composite
because each family of fermions is independently anomaly
free. In fact, the only nonempty proper subsets of fermion
fields of the SM whose hypercharge independently satisfies
all anomaly equations are those that make a complete
family. Therefore, without adding new Weyl fermions
charged under hypercharge, all composite Uð1Þm exten-
sions of the SM are made with Uð1Þ extensions that are
one-family or two-families anomaly free. This implication
is easy to prove by contradiction. First, assume that there is
a Uð1Þm extension that does not satisfy the condition, then
there would be a nonempty proper subset of fermions of the
SM such that anomaly equations cancel independently
which is not one or two families, but there is none.

III. FAMILY PERMUTATION

Before presenting the one-family and two-families
anomaly-free extensions that we will use as building
blocks, we will formalize a notion that will help in the
exposition of our results. Given a collection of charges ½zij�
and σ ¼ ðσ1; σ2; σ3; σ4; σ5; σ6Þ ∈ S63 where each σj ∈ S3 is
a permutation of f1; 2; 3g, we define the family permuta-
tion of ½zij� by σ as the new collection,

σ½zij�≡ ½z0ij� ¼ ½zσjðiÞj�: ð4Þ

In words, the family permutation of ½zij� permutes the
charges of each multiplet among the families in an
independent way. With this definition, the family univer-
sality of the hypercharge can be stated precisely as

½yij� ¼ σ½yij� ð5Þ

for all σ ∈ S63. This symmetry suggests redundancy in the
way fermions are partitioned into three families.
Concerning Uð1Þ extensions of the SM, we have the

following proposition: the family permutation of an
anomaly-free Uð1Þ extension is also anomaly free. To be
precise, if ½zij� satisfies the anomaly equations (2a)–(2f),
then σ½zij� also satisfies them for all σ ∈ S63. With the
notation introduced, it is straightforward to verify this
proposition. For example, if the charges ½zij� satisfy the
anomaly equation (2b), then the charges ½z0ij� ¼ σ½zij�
satisfy the same equation since

X
i;j

gjz0ijy
2
ij ¼

X
i;j

gjzσjðiÞjy
2
σjðiÞj ¼ 0; ð6Þ

where I used the fact that the hypercharge is family
universal (5). More generally, if we have an anomaly-free
Uð1Þm extension of the SM with charges ½zlij�, then the
extension associated to σ½zlij� is also anomaly free.
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If all Uð1Þ subgroups of Uð1Þm are family universal, the
proposition presented above is of no interest since σ½zlij� ¼
½zlij� for all σ ∈ S63 and l ∈ f1; 2;…; mg. However, if there
is a Uð1Þk subgroup that is not family universal for some
1 ≤ k ≤ m, then in general σ½zkij� ≠ ½zkij�, and we can obtain
different extensions by doing family permutations. To be
exact, for each anomaly-free Uð1Þm extension, there is a
total of jS63j ¼ 66 ¼ 46656 other anomaly-free extensions.

IV. ONE-FAMILY ANOMALY-FREE
EXTENSIONS

The one-family anomaly-free Uð1Þ extensions of the
SM are

½fjðz⃗Þ� ¼ ½z1; z2; 2z2 − z1;−3z2; z1 − 4z2; 6z2 − z1� ð7Þ

for all z⃗ ¼ ðz1; z2Þ ∈ Z2. Recall our convention for the j
indices, namely, j∈f1;2;3;4;5;6g↦fN;Q;D;L;U;Eg,
and see [31] for details on how to derive this result.
When z1 ¼ 0, the charges are proportional to one family
of hypercharge; when z⃗ ¼ ð1; 0Þ, they are proportional to
the charges associated to Uð1ÞT3R and to Uð1ÞB−L when
z⃗ ¼ ð3; 1Þ.
A surprising fact is that a Uð1Þm gauge theory with the

same fermionic content as one family of the SM and with
charges given by (7) with different parameters for each
Uð1Þ component is anomaly free. Formally, the charges
½zlj � ¼ ½fjðz⃗lÞ�; ½zl0j � ¼ ½fjðz⃗l0 Þ�, and ½zl00

j � ¼ ½fjðz⃗l00 Þ� asso-
ciated with the Uð1Þl, Uð1Þl0 , and Uð1Þl00 subgroups
satisfy

X
j

njzlj z
l0
j z

l00
j ¼

X
j

njfjðz⃗lÞfjðz⃗l0 Þfjðz⃗l00 Þ ¼ 0 ð8Þ

for any z⃗l; z⃗l
0
; z⃗l

00 ∈ Z2, and all l;l0;l00 ∈ f1; 2;…; mg.
This does not seem to be trivial because (7) is found as a
solution to (2a)–(2f) and nothing else.
A consequence of this fact is that a Uð1Þm extension of

the SM with the charges of each subset of fermions that
make a complete family under each Uð1Þ given by a
multiple of (7) satisfies all anomaly equations. To be more
precise, given m ∈ N and σ ∈ S63, a Uð1Þm ¼ Uð1Þ1 ×
Uð1Þ2 ×… ×Uð1Þm extension with the charges associated
with the Uð1Þl subgroup is given by

½zlij�≡ σ½kli fjðz⃗li Þ� ¼ σ

2
64
kl1fjðz⃗l1Þ
kl2fjðz⃗l2Þ
kl3fjðz⃗l3Þ

3
75; ð9Þ

with z⃗l1 ; z⃗
l
2 ; z⃗

l
3 ∈ Z2 and kl1 ; k

l
2 ; k

l
3 ∈ Z for all l ∈

f1; 2;…; mg, is anomaly free. Note that σ does not depend
on l, because otherwise the anomaly equation (3) would
not be satisfied in general. These extensions are composite

because anomalies cancel for subsets of fermions that make
a complete family; for σ ¼ id, the subsets are the actual
families. Finally, these extensions have free parameters that
enter linearly in the formulas for the fermion charges as
stated in the Introduction.

V. TWO-FAMILIES ANOMALY-FREE
EXTENSIONS

The two-families anomaly-free Uð1Þ extensions of the
SM are

�
h1jðz⃗; x⃗Þ
h2jðz⃗; x⃗Þ

�
¼

�
fjðz⃗Þ þ gjðx⃗Þ
fjðz⃗Þ − gjðx⃗Þ

�
; ð10Þ

with ½fjðz⃗Þ� defined as in (7) and ½gjðx⃗Þ� parametrized by
four integer parameters depending on z⃗. If z1 ¼ 0, right-
handed neutrinos will form a vectorlike pair with arbitrary
charge, and

gQðx⃗Þ ¼ −ðx21 − x22 − x23 þ 2x24Þ; ð11aÞ

gDðx⃗Þ ¼ 2x1x2; ð11bÞ

gLðx⃗Þ ¼ −ðx21 þ x22 þ x23 − 2x24Þ; ð11cÞ

gUðx⃗Þ ¼ 2x1x4; ð11dÞ

gEðx⃗Þ ¼ 2x1x3 ð11eÞ

for any x⃗ ¼ ðx1; x2; x3; x4Þ ∈ Z4. If z1 ≠ 0, then

gNðx⃗Þ ¼ 2x1ðx22 þ 3x23 − 3x24Þ; ð12aÞ

gQðx⃗Þ ¼ −x21 þ x42 þ 9ðx23 − x24Þ2 − 2x22ðx23 þ x24Þ; ð12bÞ

gDðx⃗Þ ¼ 4x1x2x3; ð12cÞ

gLðx⃗Þ ¼ −x21 − x42 − 9ðx23 − x24Þ2 þ 2x22ðx23 þ x24Þ; ð12dÞ

gUðx⃗Þ ¼ 4x1x2x4; ð12eÞ

gEðx⃗Þ ¼ 2x1ðx22 − 3x23 þ 3x24Þ ð12fÞ

for any x⃗ ¼ ðx1; x2; x3; x4Þ ∈ Z4. Again, recall our
convention for the j indices, j ∈ f1; 2; 3; 4; 5; 6g ↦
fN;Q;D; L;U; Eg, and see [31] for details on how to
derive these results. The first family of solutions is propor-
tional to the charges associated with Uð1ÞLμ−Lτ for z2 ¼
x3 ¼ x4 ¼ 0 and x1 ¼ −x2.
Unfortunately, a Uð1Þ2 gauge theory with the same

fermionic content as two families of the SM and charges
given by (10) with different parameters for eachUð1Þ is not
in general anomaly free. This means that we cannot use
them, without other restrictions, to build Uð1Þm extensions
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as we did in (9). However, a Uð1Þ3 gauge theory with the
charges associated with each Uð1Þ component given by

�
h1jðz⃗1; x⃗Þ
h2jðz⃗1; x⃗Þ

�
;

�
fjðz⃗2Þ
fjðz⃗2Þ

�
; and

�
fjðz⃗3Þ
fjðz⃗3Þ

�
ð13Þ

is anomaly free for all z⃗1; z⃗2; z⃗3 ∈ Z2, and x⃗ ∈ Z4, with the
additional condition that if z11 ¼ 0 then z21 ¼ z31 ¼ 0. The
anomaly equations (3) that are linear with (10) are satisfied
because (8) and h1jðz⃗; x⃗Þ þ h2jðz⃗; x⃗Þ ¼ 2fjðz⃗Þ. But, it
seems that it is not trivial that

X
j

njfjðz⃗2Þðh1jðz⃗1; x⃗Þ2 þ h2jðz⃗1; x⃗Þ2Þ ¼ 0 ð14Þ

for all z⃗1; z⃗2 ∈ Z2, and x⃗ ∈ Z4, with the additional con-
dition that if z11 ¼ 0 then z21 ¼ 0.
Similarly to (9), a consequence of this fact is that a

Uð1Þm extension of the SM with the charges of one family
under each Uð1Þ given by a multiple of (7) and the charges
of the other two families under each Uð1Þ given by a
multiple of one among (13), is anomaly free. To be precise,
given m ∈ N, z⃗ ∈ Z2, x⃗ ∈ Z4, and σ ∈ S63, a Uð1Þ1 ×
Uð1Þ2 ×… ×Uð1Þm extension with charges ½zlij� associ-
ated with the Uð1Þl subgroup given by

σ

2
64

kl1fjðz⃗l1Þ
kl2h1jðz⃗; x⃗Þ
kl2h2jðz⃗; x⃗Þ

3
75 or σ

2
64
kl1fjðz⃗l1Þ
kl2fjðz⃗l2Þ
kl2fjðz⃗l2Þ

3
75; ð15Þ

with kl1 ; k
l
2 ∈ Z and z⃗l1 ; z⃗

l
2 ∈ Z2 for all l ∈ f1; 2;…; mg is

anomaly free. Again, this statement is true if z1 ¼ 0 ⇒
zl21 ¼ 0 for all l ∈ f1; 2;…; mg. Note that σ; z⃗; x⃗ does not
depend on l, because otherwise the cross anomaly equa-
tions (3) would not be satisfied in general.

If we have 2 → 3 in the third line of the second collection
in (15) and if z⃗, x⃗ had a dependence on l, then we would
have specified all potential composite Uð1Þm extensions of
the SM. However, as we mentioned previously, the cross
anomaly equations are not satisfied in general this way. It is
possible to find relations between the parameters for the
equations to be satisfied in particular cases, but it is hard to
construct a Uð1Þm extension for generic m ∈ N from them.
In conclusion, (9) and (15) comprise a huge and particu-
larly simple part of all composite anomaly-free Uð1Þm
extensions of the SM.

VI. SOME COMPOSITE EXTENSIONS
WITH NEW FERMIONS

So far, we have presented Uð1Þm extensions of the SM
without additional fermions. A simple way to add new
fermions to these extensions without spoiling anomaly
cancellation is by having them independently anomaly free
for GSM ×Uð1Þm. The minimal case is to add two fermions
which are singlets of SUð3Þ × SUð2Þwith opposite charges
under each Uð1Þ. In this case, the resulting theory will be
vectorlike. In order to be chiral, it is necessary to add at least
five Weyl fermions [24]. In a sense, the simplest example is
to have their Uð1Þ charges equal to kl½9;−8;−7; 5; 1� with
kl ∈ Z for all l ∈ f0; 1; 2;…; mg where I used l ¼ 0 to
refer toUð1ÞY . In these types of constructions, the additional
fermions are independently anomaly free; however, there are
other constructions in which this is not the case, and among
them, there is one such that it is necessary to add only four
Weyl fermions to have a chiral theory.
Any composite anomaly-free extension of the SM ismade

either of one-family (7) or two-families (10) anomaly-free
Uð1Þ extensions because the i index is the only way to
partition the sum of anomaly equations for hypercharge in
pieces that are independently equal to zero. However, if we
break the SM fields in their Weyl components, there are
other ways to do this. The other possibilities are

2
64
6 −4 −4 −4 −4 2 2 2 2 2

6 −4 −4 −4 −3 −3 2 2 2 1 1 1 1 1 1

6 −4 −4 −3 −3 −3 −3 2 1 1 1 1 1 1 1 1 1 1 1 1

3
75; ð16aÞ

�
6 −4 −4 −4 −3 −3 −3 2 2 2 2 2 2 2 1

6 6 −4 −4 −4 −4 −4 −4 −3 −3 −3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�
; ð16bÞ

�
6 −4 −4 −3 −3 −3 −3 −3 2 2 2 2 2 1 1 1 1 1 1 1

6 6 −4 −4 −4 −4 −4 −4 −4 −3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

�
; ð16cÞ

�
6 −4 −4 −3 −3 −3 −3 −3 −3 2 2 2 2 2 2 2 2 2 1 1

6 6 −4 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�
: ð16dÞ
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We regard these structured collections of charges as
matrices with null entries and denote them by ½zkl�. The
order in which the elements of each row are organized does
not have any meaning. These structured collections of
charges are all made with the hypercharges of the 45
chargedWeyl fermions of the SM, but the k and l indices do
not denote family and fermion field as before. These are
partitions of the SM hypercharges such that for each k we
have

0 ¼
X
l

zkl; ð17aÞ

0 ¼
X
l

z3kl: ð17bÞ

These partitions can be used to construct different classes
of composite anomaly-free extensions of the SM by finding
Uð1Þ extensions to the different rows as we did in the
previous sections for the family partition. But these
extensions will not respect the full gauge structure of the
SM because Weyl fermions are not built-in multiplets.
However, we can solve this problem by adding pairs of
Weyl fermions which are vectorlike under Uð1ÞY although
chiral under Uð1ÞY ×Uð1Þ. We will illustrate this con-
struction for (16) which is the partition that needs a smaller
number of additional Weyl fermions. We will consider the
simplest Uð1Þ extension, which is the repetition of a
multiple of hypercharge in the new Uð1Þ which turns
the cross anomaly equations into the cubic.
First, we add to the Standard Model four Weyl fermions

ψ1, ψ2, ψ3, and ψ4 which are singlets of SUð2Þ × SUð3Þ
and have hypercharges, respectively, equal to 4;−4; 2;−2.
Starting with f6;−4;−4;−4;−4; 2; 2; 2; 2; 2g of (16), we
first append the pair f2;−2g to it. Now, we gather three
−4’s in oneU multiplet and the six 2’s in twoD’s. Then, we
attribute 6 to E, −4 to ψ2, and −2 to ψ4. For concreteness,
the charges of the Standard Model fermions under this new
Uð1Þ can be

½vij� ¼

N Q D L U E2
64
0 0 2 0 −4 6

0 0 2 0 0 0

0 0 0 0 0 0

3
75

1st

2nd

3rd;

; ð18Þ

and the additional chiral set with four Weyl fermions can
have Uð1ÞY ×Uð1Þ charges equal to
Fermions fields Uð1ÞY Uð1Þ
ψ1 4 0
ψ2 −4 −4
ψ3 2 0
ψ4 −2 −2

This composite extension satisfies all anomaly equations
associated with Uð1ÞY ×Uð1Þ by construction and some-
what surprisingly also satisfies the (2e) and (2f) anomaly
cancellation equations associated with SUð3Þ and SUð2Þ,

X
i;j

gjδ
suð2Þ
j uij ¼ 0; ð19Þ

X
i;j

gjδ
suð3Þ
j uij ¼ 3 × ð−4Þ þ 2 × 3 × 2 ¼ 0: ð20Þ

Note that the additional Weyl fermions are vectorlike under
Uð1ÞY but chiral under Uð1ÞY × Uð1Þ.
We can repeat the same construction with f6;−4;−4;

−3;−3;−3;−3; 2; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1g of (16a).
First, we append f4;−4g to it and gather the three −4’s
in one U multiplet, the six −3’s in two L’s, and the twelve
1’s in two Q’s. Then, we attribute the 6 to E, 4 to ψ1, and 2
to ψ3. Again, for concreteness, we can have

½uij� ¼

N Q D L U E2
64

z1 1 0 −3 0 0

−z1 1 0 −3 −4 6

0 0 0 0 0 0

3
75

1st

2nd

3rd

; ð21Þ

and

Fermions fields Uð1ÞY Uð1Þ
ψ1 4 4
ψ2 −4 0
ψ3 2 2
ψ4 −2 0

Note that we added opposite charges z1;−z1 ∈ Z to the
pair of right-handed neutrinos which do not spoil
anomaly cancellations. As for the other extension (18),
the anomaly equations are satisfied for this one, in
particular

X
i;j

gjδ
suð2Þ
j uij ¼ −2 × 2 × 3þ 2 × 1 × 6 ¼ 0; ð22Þ

X
i;j

gjδ
suð3Þ
j uij ¼ −3 × 4 − 2 × 3þ 6 × 1 ¼ 0: ð23Þ

These two composite anomaly-free extensions are par-
ticular cases of the extensions with the charges of the SM
fermions under the additional Uð1Þ given by

½uij� ¼ σðk1½uij� þ k2½vij� þ k3½δi3yj�Þ; ð24Þ

with z1; k1; k2; k3 ∈ Z, σ ∈ S63, and δi3 the usual Kronecker
delta. We also need to add a chiral set with four Weyl
fermions that have Uð1ÞY × Uð1Þ charges given by
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Fermions fields Uð1ÞY Uð1Þ
ψ1 4 4k1
ψ2 −4 −4k2
ψ3 2 2k1
ψ4 −2 −2k2

Note that these extensions are in a sense the simplest possible
with additional charged chiral fermionsbecause they aremade
of multiples of hypercharge which turns the cross anomaly
equations into the cubic that are satisfied by construction. This
implies that we can buildUð1Þm extensions from them as we
did in (9) and (15). A different approach would be to search
other Uð1Þ extensions to the rows of (16a). The same
construction can be done with the other partitions (16b)–
(16d), but for them one needs to add more Weyl fermions.

VII. CONCLUSIONS

In this paper, we built composite anomaly-free Uð1Þm
extensions of the SM. The availability of free parameters in
(9) and (15) that enter linearly in the formulas for the
fermion charges and the large number of different classes of
extensions may help other model builders interested in their
use to solve problems of particle physics.
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