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In two Higgs doublet models (2HDMs) shaped by some unbroken symmetry, imposing perturbativity
requirements on the quartic couplings can imply that the allowed masses of all the fundamental scalars are
bounded from above. This important property is analyzed in detail for the only two realistic 2HDMs with
an exact symmetry, the case with Z2 symmetry and the case with CP symmetry. It is also noticeable that
one exception arises in each case: when the vacuum is assumed to respect the imposed symmetry, a
decoupling regime can nevertheless appear without violating perturbativity requirements. In both models
with an exact symmetry and no decoupling regime, soft symmetry breaking terms can however lead to a
decoupling regime: the possibility that this regime might be unnatural, since it requires some fine-tuning, is
also analyzed.
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I. INTRODUCTION

Two Higgs doublets models (2HDMs) were introduced
by Lee in [1,2]. One central and appealing motivation was
the possibility that the origin of CP violation is exclusively
spontaneous: with CP invariance at the Lagrangian level,
CP violation can nevertheless arise from the vacuum
configuration. On the other hand, a significant source of
concern for 2HDMs is the presence of scalar flavor
changing neutral couplings (SFCNCs): they are already
present, a priori, at tree level. Safe strategies to forbid or
suppress SFCNC were soon identified, like Glashow and
Weinberg’s natural flavor conservation (NFC) [3] (for
recent discussions on general flavor conserving 2HDM
scenarios, see [4,5]). For 2HDMs shaped by an exact Z2

symmetry [6–12] (not softly broken), this precludes a
spontaneous origin of CP violation: having NFC and
spontaneous CP violation (SCPV) requires more than
two doublets [13,14]. 2HDMs with spontaneous CP
violation have been widely studied in the literature [15–
27]. Recently, a 2HDMwhere all CP violation is originated
by the vacuum, which includes SFCNC of controlled
intensity, and which is viable, was presented in [28].

One important aspect of that model is the fact that the
new scalars are necessarily light: their masses are all below
950 GeV. This kind of property, that the new scalars may
not have arbitrarily large masses, has been noticed and
explored by different authors in the context of some
2HDMs [29–43]. On that respect, it is important that the
scalar potential respects boundedness from below and that
the scattering of scalars at high energies is perturbatively
unitary. The objective of this work is to explore the absence
of such a regime with heavy new scalars (in particular the
bounds on their masses) for the two viable 2HDMs with an
exact symmetry, Z2, or “standard” CP symmetry. In the Z2

symmetric 2HDM, this property has been analyzed to some
extent: it is revisited to stress some similarities with the
second case, the one with standardCP symmetry, where the
question is analyzed in detail here for the first time.
The discussion is organized as follows. Section II starts

with the SM scalar potential and vacuum, which are briefly
revisited, paying special attention to the ingredients that
lead to bounds on the Higgs mass à la Lee-Quigg-Thacker
[44,45]; decoupling and the general 2HDM are then
discussed. The different symmetric 2HDMs are introduced
in Sec. III. Out of them, the only two models which are not
ruled out, the one with CP symmetry and the one with Z2

symmetry, are discussed in detail. In Sec. IV, numerical
analyses of both models are presented, showing in par-
ticular that the masses of the new scalars are constrained to
be below 1 TeV. Since, as mentioned, the introduction of
soft symmetry breaking terms allows the appearance of a
decoupling regime, that question is addressed in Sec. V. It is
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stressed that, from the point of view of the symmetry,
obtaining a decoupling regime is related to a rather
unnatural or fine-tuned scalar potential. The Appendixes
provide further details on different aspects of the previous
sections.

II. MINIMIZATION OF THE POTENTIAL AND
ABSENCE OF DECOUPLING

A. Standard Model

In the Standard Model (SM), the Higgs potential is

VðΦÞ ¼ μ2Φ†Φþ λðΦ†ΦÞ2; ð1Þ

where the scalar Φ is an SUð2ÞL doublet with hypercharge
Y ¼ 1=2; boundedness from below requires λ > 0.
Electroweak symmetry is spontaneously broken (or hid-
den), SUð2ÞL ⊗ Uð1ÞY → Uð1ÞQ with Q ¼ I3 þ Y, if
VðhΦiÞ has a nontrivial minimum for

hΦi ¼ vffiffiffi
2

p
�
0

1

�
: ð2Þ

In order to have an extremum, one needs

d
dv

VðhΦiÞ ¼ vðμ2 þ λv2Þ ¼ 0; ð3Þ

that is, one needs a potential with μ2 ¼ −λv2 < 0. Then, the
mass of the SM Higgs boson, hSM, is m2

hSM
¼ d2

dv2 VðhΦiÞ,
computed at the candidate minimum in Eq. (3),

m2
hSM

¼ μ2 þ 3λv2 ¼ 2λv2 > 0: ð4Þ

In order to achieve the desired spontaneous symmetry
breaking (that is, the correct Fermi constantGF), one chooses
the vacuum expectation value (vev) v ≃ 246 GeV. The
crucial aspect is that both μ2 and, most importantly, mhSM,
are fixed in terms of the vacuum expectation value v and λ
(dimensionless) by means of the minimization condition.
Before the discovery of 2012 [46,47], one line of reasoning
concerning the previous steps could be simply summarized
as: any constraint on λ translates into a constraint on m2

hSM
.

Different theoretical requirements like the stability
(or metastability) of the vacuum, triviality, perturbative

unitarity, were considered in order to provide, precisely,
that kind of constraint [44,45,48–58]. In the SM, among
those constraints, the 2 → 2 scattering of longitudinal
gauge bosons and scalars at high energies depends quite
straightforwardly on the coupling λ: requiring perturbative
unitarity of those scattering processes gives simple bounds
on λ, and, as shown by Lee et al. [44,45] (see also [48]), this
turns into an upper bound on m2

hSM
. Of course, with the

2012 discovery, the situation is reversed for the SM Higgs:
mhSM is measured and λ inferred from it. The idea, however,
remains an interesting possibility for extended scalar
sectors, in particular 2HDMs.

B. Decoupling

Appelquist and Carazzone presented in [59] their cel-
ebrated “decoupling theorem” which states that in a
renormalizable theory, heavy particles with mass M
“decouple” at low energies E ≪ M, that is, an effective
theory involving only light particles is correct to order
E=M. There are situations where the decoupling theorem
does not hold (for an early discussion, see [60]): it is, for
example, well known that in flavor changing neutral
transitions, arising at one loop in the SM, the formal limit
of large top quark mass, mt → ∞, does not suppress such
processes. In this case, the decoupling theorem is circum-
vented because in addition to power counting arguments
associated to propagators, additional mt powers appear in
the couplings of top quarks to longitudinal gauge bosons.
This behavior is usually referred to as nondecoupling.
Interestingly, without regard to the fact that some effects of
mt → ∞ are unsuppressed, if one considers perturbativity
requirements on the Yukawa couplings, this limit is trivially
barred.
In the following, we will refer to nondecoupling or

absence of decoupling of the new scalars (H, A, and H� in
the notation of subsection II C) with respect to the SM
fields, as the fact that all their masses are bounded from
above once different requirements (in particular perturba-
tivity) are considered. The absence of a high-mass regime
also implies that the E=M corrections of the original
decoupling theorem are not arbitrarily suppressed.

C. General 2HDM

The most general 2HDM scalar potential is

VðΦ1;Φ2Þ ¼ μ211Φ
†
1Φ1 þ μ222Φ

†
2Φ2 þ ðμ212Φ†

1Φ2 þ H:c:Þ
þ λ1ðΦ†

1Φ1Þ2 þ λ2ðΦ†
2Φ2Þ2 þ 2λ3ðΦ†

1Φ1ÞðΦ†
2Φ2Þ þ 2λ4ðΦ†

1Φ2ÞðΦ†
2Φ1Þ

þ ðλ5ðΦ†
1Φ2Þ2 þ H:c:Þ þ ðλ6ðΦ†

1Φ1ÞðΦ†
1Φ2Þ þ λ7ðΦ†

2Φ2ÞðΦ†
1Φ2Þ þ H:c:Þ: ð5Þ

μ211, μ
2
22, and λi, i ¼ 1 to 4, are real, while μ212, λj, j ¼ 5, 6, 7, can be complex.
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Anticipating the more detailed analysis below, the key
point is that in analogy with the SM case, one would expect
that in a 2HDM where dimensionful μ2ij can be traded for
dimensionless λj’s and vacuum expectation values through
the minimization conditions, an important consequence
would follow: if the quartic couplings λj were bounded, and
that would be precisely the case when one requires
perturbativity or perturbatively unitary high energy scatter-
ing, then the masses of all the scalars would be necessarily
bounded from above, that is, a decoupling regime would be
absent. With λj < Oð10Þ for a very rough estimate, new
scalars masses below ∼1 TeV would follow. It should be
noticed that these bounds on the scalar masses have a
somewhat loose nature: the precise values of the largest
scalar masses that are allowed directly depend on the values
used in the requirements imposed on the λj’s. In any case,
large λj’s signal that a description in which those funda-
mental scalars are the relevant degrees of freedom would
not be valid anymore. Of course, having a strongly
interacting scalar sector is not a problem per se, but that
is not the assumption adopted here: we concentrate on the
analysis of the scenarios where the fundamental scalars in
2HDMs are the relevant degrees of freedom. Let us analyze
the question in more detail. A candidate vacuum with the
desired properties for electroweak symmetry breaking has

hΦ1i ¼ eiθ1
�

0

v1=
ffiffiffi
2

p
�
; hΦ2i ¼ eiθ2

�
0

v2=
ffiffiffi
2

p
�
; ð6Þ

characterized by v1, v2, real and positive, and by
θ ¼ θ2 − θ1, the relative phase between hΦ2i and hΦ1i,
which is a potential source of CP violation.1 fv1; v2g
encode the same information as v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21 þ v22
p

(which is of
course chosen to be v ≃ 246 GeV) and tβ ≡ tan β,
β ∈ ½0; π=2�, with cβ ¼ cos β≡ v1=v, sβ ¼ sin β≡ v2=v
(in the following, the compact notation cx ≡ cos x, sx ≡
sin x is used). Consider now Vðv1; v2; θÞ≡ VðhΦ1i; hΦ2iÞ,

Vðv1; v2; θÞ ¼ μ211
v21
2
þ μ222

v22
2
þ Reðμ̄212Þv1v2 þ λ1

v41
4

þ λ2
v24

4
þ ðλ3 þ λ4 þ Reðλ̄5ÞÞ

v21v
2
2

2

þ Reðλ̄6Þ
v31v2
2

þ Reðλ̄7Þ
v1v23
2

; ð7Þ

where the θ dependence is encoded in

μ̄212 ¼ μ212e
iθ; λ̄5 ¼ λ5ei2θ; λ̄6 ¼ λ6eiθ; λ̄7 ¼ λ7eiθ:

ð8Þ

There are three stationarity conditions

∂V
∂v1 ¼

∂V
∂v2 ¼

∂V
∂θ ¼ 0; ð9Þ

which involve, linearly, the four2 dimensionful quantities
fμ211; μ222;Reðμ̄212Þ; Imðμ̄212Þg. It is then clear that not all of
them can be traded for λj’s and fv1; v2; θg and, as a
consequence, one may expect that for values of the
remaining dimensionful quantity much larger than v, large
scalar masses can be obtained (without violating bounds
on the λj’s). Conversely, in 2HDMs, where there is less
parametric freedom than in the general case in Eq. (5), that
is in 2HDMs shaped by some symmetry,3 that possibility
might be absent, and bounds on the masses might be
expected. Symmetric 2HDMs are addressed in the next
section: for the moment, we will just analyze in simple
terms what is necessary to have large masses of the new
scalars in the general 2HDM. Before proceeding with the
discussion, we take a small detour [until Eq. (16)] to fix
notation and introduce the physical fields and the mass
terms. In a Higgs basis fH1; H2g [7,62,63],

�
H1

H2

�
¼ Rβ

�
e−iθ1Φ1

e−iθ2Φ2

�
; with Rβ ¼

�
cβ sβ
−sβ cβ

�
;

RT
β ¼ R−1

β ; ð10Þ

only one combination of Φ1 and Φ2, H1, has a non-
vanishing vacuum expectation value,

hH1i ¼
vffiffiffi
2

p
�
0

1

�
; hH2i ¼

�
0

0

�
: ð11Þ

The usual expansion of the fields around the candidate
vacuum in Eq. (6) is

Φj ¼ eiθj
� φþ

j

vjþρjþiηjffiffi
2

p

�
; H1 ¼

� Gþ

vþH0þiG0ffiffi
2

p

�
;

H2 ¼
� Hþ

R0þiI0ffiffi
2

p

�
: ð12Þ

While the would-be Goldstone bosons G0, G� and the
physical charged scalar H� are readily identified, the
neutral scalars fH0; R0; I0g are not mass eigenstates: their
mass terms read

1

2
ðH0 R0 I0 Þ M2

0

0
B@

H0

R0

I0

1
CA ⊂ VðΦ1;Φ2Þ; ð13Þ

1With no loss of generality, one can set θ1 ¼ 0 in Eq. (6).

2Although Imðμ̄212Þ is absent from Eq. (7), ∂
∂θReðμ̄212Þ ¼

−Imðμ̄212Þ.3Of course, a similar situation is also to be expected in models
with more than two scalar doublets; see [61].
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with the 3 × 3 mass matrixM2
0 real and symmetric. M2

0 is
diagonalized with a 3 × 3 real orthogonal matrix R,

RTM2
0R ¼ diagðm2

h; m
2
H; m

2
AÞ; R−1 ¼ RT; ð14Þ

which defines the physical neutral scalars fh;H;Ag,
0
B@

h

H

A

1
CA ¼ RT

0
B@

H0

R0

I0

1
CA: ð15Þ

h is assumed to be the SM-like Higgs with mh ¼ 125 GeV
(the alignment limit in which its couplings are SM-like
corresponds to R11 → 1).
We can now come back to the discussion of the regime

with large new masses in the general 2HDM. Through
Eq. (9), one can express fμ211; μ222; Imðμ̄212Þg in terms of
Reðμ̄212Þ, λj’s, and fv1; v2; θg,

s2βImðμ̄212Þ ¼ −v2sβcβfs2βImðλ̄5Þ þ c2βImðλ̄6Þ þ s2βImðλ̄7Þg;
ð16Þ

cβμ211 ¼ −sβReðμ̄212Þ

−
v2cβ
4

�
4c2βλ1 þ 4s2β½λ3 þ λ4 þ Reðλ̄5Þ�
þ3s2βReðλ̄6Þ þ 2s2βtβReðλ̄7Þ

�
; ð17Þ

sβμ222 ¼ −cβReðμ̄212Þ

−
v2sβ
4

�
4s2βλ2 þ 4c2β½λ3 þ λ4 þ Reðλ̄5Þ�
þ2c2βt

−1
β Reðλ̄6Þ þ 3s2βReðλ̄7Þ

�
: ð18Þ

Using Eqs. (16)–(18), M2
0 is fully expressed in terms of

Reðμ̄212Þ, λj’s, and fv1; v2; θg. For the argument here, it is
sufficient to consider Tr½M2

0� (for further details on M2
0,

see Appendix B). In the mass eigenstate basis of Eq. (15),
Tr½M2

0� ¼ m2
h þm2

H þm2
A, while on the other hand,

Tr½M2
0� ¼ −2ðtβ þ t−1β ÞReðμ̄212Þ þ v2

�
2c2βλ1 þ 2s2βλ2 − 2Reðλ̄5Þ
þðs2β − t−1β ÞReðλ̄6Þ þ ðs2β − tβÞReðλ̄7Þ

�
: ð19Þ

Furthermore, the mass of the charged scalar is

m2
H� ¼ −ðtβ þ t−1β ÞReðμ̄212Þ −

v2

2
f2½λ4 þ Reðλ̄5Þ� þ t−1β Reðλ̄6Þ þ tβReðλ̄7Þg: ð20Þ

In Eqs. (19) and (20), one can roughly identify three scenarios where mH, mA, mH� ≫ v without requiring large λj’s,

ðiÞ t−1β ≫ 1 and − t−1β ½Reðμ̄212Þ þ v2Reðλ̄6Þ=2� ≫ v2;

and thus

�
μ211 ≃ −λ1v2

μ222 ≃ −t−1β ½Reðμ̄212Þ þ v2Reðλ̄6Þ=2� ≫ v2

�
⇒ μ222 ≫ jμ211j; ð21Þ

ðiiÞ tβ ≫ 1 and − tβ½Reðμ̄212Þ þ v2Reðλ̄7Þ=2� ≫ v2;

and thus

�
μ211 ≃ −tβ½Reðμ̄212Þ þ v2Reðλ̄7Þ=2� ≫ v2

μ222 ≃ −λ2v2

�
⇒ μ211 ≫ jμ222j; ð22Þ

ðiiiÞ − Reðμ̄212Þ ≫ v2 without regard to β: ð23Þ

In the last case, for tβ ∼ t−1β ∼Oð1Þ, −Reðμ̄212Þ ∼ μ211 ∼ μ222.
This simple analysis can be rephrased in terms of the scalar potential in the Higgs basis of Eq. (10),

VðH1; H2Þ ¼ M2
11H

†
1H1 þM2

22H
†
2H2 þ ðM2

12H
†
1H2 þ H:c:Þ

þ Λ1ðH†
1H1Þ2 þ Λ2ðH2H2Þ2 þ 2Λ3ðH†

1H1ÞðH†
2H2Þ þ 2Λ4ðH†

1H2ÞðH†
2H1Þ

þ ðΛ5ðH†
1H2Þ2 þ H:c:Þ þ ðΛ6ðH†

1H1ÞðH†
1H2Þ þ Λ7ðH†

2H2ÞðH†
1H2Þ þ H:c:Þ: ð24Þ

M2
11, M

2
22, and Λi, i ¼ 1 to 4, are real, while M2

12, Λj, j ¼ 5, 6, 7, can be complex. Equations (19) and (20), expressed in
terms of the parameters in Eq. (24), give

Tr½M2
0� ¼ 2M2

22 þ 2v2½Λ1 þ Λ3 þ Λ4�; ð25Þ
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m2
H� ¼ M2

22 þ v2Λ3: ð26Þ

One can easily read thatM2
22 ≫ v2 is necessary to obtainmH,mA,mH� ≫ v: in the Higgs basis, a mass termM2

22H
†
2H2 with

large M2
22 is necessary, and there is no apparent obstacle for that sinceM

2
22 does not participate in minimization conditions

that relate it to bounded quartic couplings. Of course, since4

M2
22 ¼ s2βμ

2
11 þ c2βμ

2
22 þ s2βReðμ̄212Þ; ð27Þ

one can substitute the stationarity conditions in Eqs. (17) and (18) and obtain

M2
22 ¼ −ðtβ þ t−1β ÞReðμ̄212Þ − v2

� c2βs
2
βðλ1 þ λ2Þ þ ð1 − 2c2βs

2
βÞðλ3 þ λ4 þ Reðλ̄5ÞÞ

þ 1
2
t−1β ðc4β þ 3s4βÞReðλ̄6Þ þ 1

2
tβðs4β þ 3c4βÞReðλ̄7Þ

�
: ð28Þ

This shows that achieving M2
22 ≫ v2 might not be trivial if

there are constraints like μ̄212 ¼ 0, and in fact brings us back
to Eqs. (21)–(23). After these considerations on the general
2HDM, we now turn to 2HDMs with symmetry.

III. 2HDM WITH SYMMETRY

There are two classes of symmetric 2HDMs. In the first
class, invariance under “Higgs family symmetries,”

Φj ↦ UjkΦk; U ∈ Uð2Þ; ð29Þ

leads to three different cases which are as follows:
(i) Z2 symmetry, with Φ1 ↦ −Φ1, Φ2 ↦ Φ2, and

μ212 ¼ 0; λ6 ¼ λ7 ¼ 0: ð30Þ

(ii) Uð1Þ symmetry, with Φ1 ↦ eiτΦ1, Φ2 ↦ Φ2

(τ ≠ 0, π) and

μ212 ¼ 0; λ5 ¼ λ6 ¼ λ7 ¼ 0: ð31Þ

(iii) Full Uð2Þ symmetry with

μ222 ¼ μ211; μ212 ¼ 0; λ2 ¼ λ1; λ4 ¼ λ1 − λ3;

λ5 ¼ λ6 ¼ λ7 ¼ 0: ð32Þ

Following the discussion of the general 2HDM, in all three
cases, with μ212 ¼ 0, the dimensionful μ2ii parameters can be
traded for λj’s and vacuum expectation values, and thus
bounded masses are to be expected. In the Uð1Þ and Uð2Þ
cases, having global continuous symmetries, spontaneous
electroweak symmetry breaking leaves a massless scalar.
Introducing soft symmetry breaking terms μ211 ≠ μ222 and
μ212 ≠ 0 can avoid the appearance of the unwanted massless
scalars and may also open the possibility of having heavier

new scalars. Since the focus in this section is on realistic
2HDMs with an exact symmetry, we do not consider these
Uð1Þ and Uð2Þ invariant cases further.
From the point of view of the scalar sector alone, since

there is no unwanted massless scalar in the Z2 invariant
case, we can have a viable model without the need to
introduce soft symmetry breaking terms: the 2HDM with
Z2 symmetry is discussed in subsection III A below.
The second class of symmetric 2HDMs is given by

symmetry transformations of the generalized CP type [65],

Φj ↦ UjkΦ�
k: ð33Þ

There are, again, three possibilities which are as follows:
(i) Symmetry under the usual CP (also referred to as

CP1),

Φj ↦ Φ�
j with all μ2ij; λj real: ð34Þ

(ii) CP2 symmetry with

�Φ1

Φ2

�
↦

�
0 1

−1 0

��Φ�
1

Φ�
2

�
and

μ222 ¼ μ211; μ212 ¼ 0; λ2 ¼ λ1; λ7 ¼ −λ6:

ð35Þ

(iii) CP3 symmetry with

�Φ1

Φ2

�
↦

�
cτ sτ
−sτ cτ

��Φ�
1

Φ�
2

�
; 0< τ < π=2; and

μ222 ¼ μ211; μ212 ¼ 0; λ2 ¼ λ1;

λ5 ¼ λ1 − λ3 − λ4 ∈R; λ6 ¼ λ7 ¼ 0: ð36Þ

While the usual CP in Eq. (34) can be extended to the
fermion sector easily (by requiring the Yukawa coupling
matrices to be real), extending CP2 and CP3 to the fermion
sector is much more involved. As discussed in [66], that is

4See [64] for general expressions relating the parameters in the
scalar potential under changes of bases Φi ↦ UijΦj, U ∈ Uð2Þ.
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not achievable for the CP2 case, which forces the presence
of massless fermions, while in the CP3 case, for τ ¼ π=3 in
Eq. (36), a viable model could, a priori, be constructed.
Unfortunately, if the symmetry is exact, there is no mixing
in the fermion sector, and one needs CP3 soft breaking
terms, μ222 ≠ μ211 and μ212 ≠ 0, to overcome that difficulty.
This soft breaking can still preserve the usual CP [66], and
in that scenario one is led to a particular case of the more
general “usual CP symmetry” scenario. Consequently, we
focus on the 2HDM with usual CP symmetry, which is
discussed in subsection III B.
Summarizing the discussion so far, two 2HDMs with an

exact symmetry, Z2 or CP, are not ruled out in principle.
We analyze them in more detail in the following two
subsections. Although one expects that no decoupling
regime is available for the new scalars, two exceptions
arise, one for each symmetry, in which the new scalar
masses are not bounded.

A. 2HDM with Z2 symmetry

Imposing symmetry under Φ1 ↦ −Φ1, Φ2 ↦ Φ2, the
general 2HDM scalar potential in Eq. (5) is reduced to

VðΦ1;Φ2Þ ¼ μ211Φ
†
1Φ1 þ μ222Φ

†
2Φ2 þ λ1ðΦ†

1Φ1Þ2
þ λ2ðΦ†

2Φ2Þ2 þ 2λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ
þ 2λ4ðΦ†

1Φ2ÞðΦ†
2Φ1Þ þ λ5ðΦ†

1Φ2Þ2
þ λ�5ðΦ†

2Φ1Þ2; ð37Þ

with μ2jj ∈ R, λk ∈ R for k ≠ 5. The stationarity conditions
in Eqs. (16)–(18) become

0 ¼ v2s2βImðλ̄5Þ; ð38Þ

cβμ211 ¼ −cβv2fc2βλ1 þ s2β½λ3 þ λ4 þ Reðλ̄5Þ�g; ð39Þ

sβμ222 ¼ −sβv2fs2βλ2 þ c2β½λ3 þ λ4 þ Reðλ̄5Þ�g: ð40Þ

One should distinguish between the two cases s2β ¼ 0 and
s2β ≠ 0. Furthermore, a rephasing of the fields only
amounts to a rephasing of λ5 and thus, without loss of
generality, one can set Imðλ5Þ ¼ 0 and Reðλ5Þ ¼ λ5. In that
case, Eq. (37) can be written in terms of real parameters: as
is well known, imposing an exact Z2, there is no CP
violation in the 2HDM.

1. Inert 2HDM

For 2v1v2 ¼ v2s2β ¼ 0, that is either sβ ¼ 0 or cβ ¼ 0,
the basis fΦ1;Φ2g and the Higgs basis fH1; H2g coincide:
sβ ¼ 0 or cβ ¼ 0 corresponds to the two possible identi-
fications Φ1 ¼ H1 or Φ1 ¼ H2. This 2HDM, together with
a fermion sector which only couples to the scalar doublet
which acquires a vacuum expectation value (owing to the

Z2 symmetry), is the inert 2HDM [67], which provides,
economically, a dark matter candidate [68–70]. Then,
Eq. (38) is trivially satisfied, while Eqs. (39) and (40) give

For sβ ¼ 0;

�
Eq:ð39Þ ⇒ μ211 ¼ −v2λ1;
Eq:ð40Þ trivially satisfied; arbitrary μ222;

ð41Þ

For cβ ¼ 0;

�
Eq:ð39Þ trivially satisfied; arbitrary μ211;

Eq:ð40Þ ⇒ μ222 ¼ −v2λ2:

ð42Þ
One can now obtain

M2
0 ¼ diagð2λv2; μ2 þ v2½λ3 þ λ4 þ Reðλ̄5Þ�; μ2

þ v2½λ3 þ λ4 − Reðλ̄5Þ�Þ; ð43Þ

with

λ ¼ λ1; μ2 ¼ μ222 for sβ ¼ 0; and λ ¼ λ2;

μ2 ¼ μ211 for cβ ¼ 0: ð44Þ

The charged scalar mass is

m2
H� ¼ μ2 þ v2λ3: ð45Þ

With μ2 ≫ v2, mH, mA, mH� ≫ v is simply achieved, the
most relevant ingredient in the inert 2HDM is the require-
ment of Z2 invariance in the Higgs basis.

2. Z2-2HDM

For 2v1v2 ¼ v2s2β ≠ 0, we have the “Z2-2HDM.” Equa-
tion (38) requires Imðλ̄5Þ ¼ 0, that is, 2θ ¼ − argðλ5Þ½π�; as
mentioned after Eq. (40), one can set Imðλ5Þ ¼ 0 with a
simple rephasing, in which case we simply have sθ ¼ 0.
Then, Eqs. (39) and (40) impose

μ211 ¼ −v2fc2βλ1 þ s2β½λ3 þ λ4 þ λ̄5�g; ð46Þ

μ222 ¼ −v2fs2βλ2 þ c2β½λ3 þ λ4 þ λ̄5�g: ð47Þ

From the mass matrix of the neutral scalars in Appendix B,
one can directly read

m2
h þm2

H ¼ 2v2fλ1c2β þ λ2s2βg; m2
A ¼ −2v2λ̄5; ð48Þ

while the mass of H� is

m2
H� ¼ −v2ðλ4 þ λ̄5Þ: ð49Þ

Attending to Eqs. (48) and (49), it is clear that the scalar
masses in the Z2-2HDM are bounded. We now turn to the
2HDM with CP symmetry.
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B. 2HDM with CP symmetry

Following Eq. (34), the 2HDM scalar potential

VðΦ1;Φ2Þ ¼ μ211Φ
†
1Φ1 þ μ222Φ

†
2Φ2 þ μ212ðΦ†

1Φ2 þΦ†
2Φ1Þ

þ λ1ðΦ†
1Φ1Þ2 þ λ2ðΦ†

2Φ2Þ2 þ 2λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ 2λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ
þ λ5½ðΦ†

1Φ2Þ2 þ ðΦ†
2Φ1Þ2� þ ðλ6Φ†

1Φ1 þ λ7Φ
†
2Φ2ÞðΦ†

1Φ2 þΦ†
2Φ1Þ; ð50Þ

with all μ2ij, λj, real, respects CP invariance, Eq. (34).
The stationarity conditions in Eqs. (16)–(18) become

μ212sθ ¼ −
v2

2
fs2βλ5s2θ þ c2βλ6sθ þ s2βλ7sθg; ð51Þ

μ211 ¼ −tβμ212cθ −
v2

4
f4c2βλ1 þ 4s2β½λ3 þ λ4 þ λ5c2θ� þ 3s2βλ6cθ þ 2s2βtβλ7cθg; ð52Þ

μ222 ¼ −t−1β μ212cθ −
v2

4
f4s2βλ2 þ 4c2β½λ3 þ λ4 þ λ5c2θ� þ 2c2βt

−1
β λ6cθ þ 3s2βλ7cθg: ð53Þ

Attending to Eq. (51), one should now distinguish between
two cases, sθ ¼ 0 and sθ ≠ 0, that we address in turn.

1. Real 2HDM

For sθ ¼ 0, Eq. (51) is fulfilled without regard to μ212, λ5,
λ6, and λ7. Then, Eqs. (52) and (53) simply yield Eqs. (17)
and (18) with

μ̄212 ↦ �μ212; λ̄5 ↦ λ5; λ̄6 ↦ �λ6; λ̄7 ↦ �λ7;

ð54Þ

where � corresponds to cθ ¼ �1. It follows from the
discussion of Sec. II C that in this real 2HDM (all
couplings are real and there is no vacuum CP phase),
one can have mH, mA, mH� ≫ v. For a detailed discussion
of this model (and its decoupling regime), see [38,71].

2. SCPV-2HDM

For sθ ≠ 0, we have the “SCPV-2HDM,” which incor-
porates a spontaneous origin for CP violation. The statio-
narity conditions, as anticipated, allow us to trade all μ2ij for
λj’s, v, β, and θ,

μ212 ¼ −
v2

2
½4λ5cβsβcθ þ λ6c2β þ λ7s2β�; ð55Þ

μ211 ¼ −v2½λ1c2β þ ðλ3 þ λ4 − λ5Þs2β þ λ6cβsβcθ�; ð56Þ

μ222 ¼ −v2½λ2s2β þ ðλ3 þ λ4 − λ5Þc2β þ λ7cβsβcθ�: ð57Þ

That is, one can choose a potential in Eq. (50) where μ212,
μ211, and μ222 are given in Eqs. (55)–(57), which depend on

λj (j ¼ 1 to 7), v, β, and θ. The mass of the charged scalar
H� is

m2
H� ¼ v2ðλ5 − λ4Þ; ð58Þ

and, for the neutral scalars, following Appendix B, we have

Tr½M2
0� ¼ m2

h þm2
H þm2

A ¼ v2f2ðλ1c2β þ λ2s2β þ λ5Þ
þ ðλ6 þ λ7Þs2βcθg: ð59Þ

Equations (58) and (59) show that in the SCPV-2HDM, like
in the Z2-2HDM, a decoupling regime is necessarily absent
if perturbativity constraints are respected. Quantitatively,
the most relevant consequence is that the masses of the new
scalars are forced to be, roughly, below 1 TeV, and thus
phenomenologically interesting.
As a closing remark for this section, it is also to be

noticed that the two exceptional cases where bounds on the
masses can be avoided, the inert 2HDM and the real
2HDM, one for each symmetry, appear when the vacuum
also respects the imposed symmetry.

IV. ANALYSIS

As discussed in the previous section, there are two
2HDMs with an exact symmetry which are not ruled out by
basic requirements; under simple perturbativity assump-
tions, they are constrained to have all new scalars relatively
light. In this section, we illustrate some aspects of this result
through a detailed exploration of the parameter space of the
models. For that exploration, the following constraints are
imposed:
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(i) mh ¼ 125 GeV and v ¼ 246 GeV (rather than a
constraint, with appropriate parametrizations of the
models, this simply amounts to an election of
parameter values).

(ii) Agreement with electroweak precision observables,
in particular the oblique parameters S and T [72].

(iii) 2 → 2 high energy scattering is perturbatively uni-
tary (see Appendix A for details).

(iv) Perturbativity, that is, jλjj < 4π; although the high
energy scattering constraint is sufficient, over most
parameter space, to ensure that jλjj < 4π, the con-
straint is nevertheless imposed.

(v) The scalar potential is bounded from below and the
considered vacuum is the global minimum of the
potential.
For the Z2-2HDM, this is guaranteed by the

following analytic requirements:

λ1 > 0; λ2 > 0;
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> −λ3;ffiffiffiffiffiffiffiffiffi

λ1λ2
p

> jλ̄5j − λ3 − λ4; ð60Þ
and
��

m2
H�

v2
þ λ4

�2

− jλ̄5j2
��

m2
H�

v2
þ

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
− λ3

�
> 0:

ð61Þ
For the SCPV-2HDM, there are no simple analytic
requirements as the previous, and the complete
procedure described in [73] is adopted (see also
[74,75]).

Since the focus is only in the scalar sector, constraints that
require the specification of scalar-fermion couplings are not
considered: that is the case, for example, of constraints
from flavor changing transitions or from LHC production
and decay processes,5 One cannot ignore, however, that the
125 GeV scalar is quite “SM-like” [80]: in order to reflect
this, a lower bound is forced on the scalar mixing element
R11 [71,81,82]. On the other hand, no direct limits are
imposed on the masses of the new scalars. For better
readability, the regions in Fig. 1 (from left to right, each
one includes the next) are shown in the plots to follow.
The allowed regions for the masses of the new scalars

in the SCPV-2HDM are shown in Fig. 2 (corresponding
regions in the Z2-2HDM do not differ substantially). These
regions trivially follow the expectations on the absence
of decoupling. Figure 3 shows a different view of these
allowed regions, for different “spherical slices” of

m̄≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þm2
A þm2

H�

q
: notice the diminishing size of

the allowed regions as m̄ increases; the nontrivial shape of
the regions is mainly determined by the oblique parameters
S and T; for m̄ ∼ 900

ffiffiffi
3

p
GeV, there are no allowed regions

anymore.
There is also a puzzling aspect in which these numerical

analyses may play a clarifying role. As discussed in
Sec. III, in the inert and the real 2HDMs, perturbativity
requirements do not conflict with large scalar masses. Since
one could naively expect that the real 2HDM arises in the
limit sθ → 0 of the SCPV-2HDM (and similarly the inert
2HDM in the limit s2β → 0 of the Z2-2HDM), one could
have accordingly expected that the allowed regions extend
to mH, mA, mH� ≫ v in Figs. 2 and 3 in correspondence
with sθ → 0. Why is that not the case?
In the SCPV-2HDM, having assumed sθ ≠ 0, Eqs. (51)

and (55) are equivalent and give μ212 ¼ −v2½4λ5cβsβcθ þ
λ6c2β þ λ7s2β�=2; on the contrary, in the real 2HDM with
sθ ¼ 0, Eq. (51) is trivially satisfied with free μ212. The real
2HDM is not recovered, by construction, in the sθ → 0
limit within the SCPV-2HDM: a simple and clear mani-
festation of this difference appears in the mass matrices of
the neutral scalars (see Appendix B 3),

Real 2HDM∶ M2
0 ¼

0
B@

× × 0

× × 0

0 0 ×

1
CA;

SCPV-2HDM with θ ¼ 0∶ M2
0 ¼

0
B@

× × 0

× × 0

0 0 0

1
CA: ð62Þ

That is, the limit sθ → 0 in the SCPV-2HDM gives
mA → 0, unlike the real 2HDM.
For the Z2-2HDM, an analogous reasoning holds.

Assuming s2β ≠ 0, Eqs. (39) and (40) are equivalent to
Eqs. (46) and (47); however, for sβ ¼ 0, Eq. (40) is trivially
satisfied with free μ222, while Eq. (47) gives μ

2
22 ¼ −v2ðλ3 þ

λ4 þ λ̄5Þ [and similarly for cβ → 0, μ211, and Eqs. (46) and
(46)]. It is then clear that the inert 2HDM is not recovered in
the limit sβ → 0 (cβ → 0): one cannot recover, by con-
struction, a free μ222 (μ211) in the Z2-2HDM. A simple and
clear manifestation of this difference appears again in the
mass matrices of the neutral scalars (see Appendix B 2),

FIG. 1. Allowed regions shown in Figs. 2–4; they corres-
pond to Δχ2 < 3σ (for a 2D χ2 distribution) and mMin ≡
MinðmH; mA; mH�Þ.

5Although in the popular Z2 symmetric 2HDMs of types I, II
(and X,Y, when the lepton sector is also considered), there is
flavor conservation and all Yukawa couplings are fixed in terms
of the quark masses and tan β, that is not the case for other
2HDMs where the Z2 symmetry has a more involved realization
in the fermion sector, and which have controlled SFCNC which
depend on additional parameters [76–79].

MIGUEL NEBOT PHYS. REV. D 102, 115002 (2020)

115002-8



Inert 2HDM∶ M2
0 ¼

0
B@

× 0 0

0 × 0

0 0 ×

1
CA; Z2-2HDM with s2β ¼ 0∶ M2

0 ¼

0
B@

× 0 0

0 0 0

0 0 ×

1
CA: ð63Þ

In this case, the limit s2β → 0 gives mH → 0, unlike the inert 2HDM.

(a) (b) (c)

FIG. 2. Allowed regions for the masses of the new scalars in the SCPV-2HDM (following conventions in Fig. 1).

FIG. 3. Allowed regions for the masses of the new scalars in the SCPV-2HDM (following conventions in Fig. 1), for different spherical

slices in m̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þm2
A þm2

H�

q
; the dashed straight line goes from the origin to the point mH ¼ mA ¼ mH� ¼ m̄=

ffiffiffi
3

p
.

(a) (b)

FIG. 4. mMin vs tβ, s2θ (following conventions in Fig. 1): for t�1
β → ∞ in the Z2-2HDM, mMin ¼ mH → 0; for sθ → 0 in the SCPV-

2HDM, mMin ¼ mA → 0.
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Figure 4 shows mMin ≡MinðmH; mA; mH�Þ with respect
to tβ and s2θ in, respectively, the Z2-2HDM and the SCPV-
2HDM; not only these limits (s2β → 0 and s2θ → 0) cannot
lead to a regimewithmMin ≫ v, but also the largest allowed
masses are only obtained in the opposite regime, s2β → 1

and s2θ → 1.

V. DECOUPLING AND NATURALNESS FOR
SOFTLY BROKEN Z2 OR CP SYMMETRIES

As already mentioned, the introduction of soft symmetry
breaking terms, that is symmetry breaking terms with mass
dimension smaller than 4, possibilitates a regimewheremA,
mH, mH� ≫ v despite perturbativity requirements. In gen-
eral, an important motivation backing the introduction of
soft symmetry breaking terms is the following. Since the
renormalization group evolution of the soft terms (which
are relevant operators) enhances them in the evolution from
higher energy scales down to the electroweak scale, one can
think of them, at low energies, as arising from a scenario
with the symmetry almost exactly realized at high energies.
Concerning decoupling of the new scalars, there is, how-
ever, a puzzling aspect: while in the model with exact
symmetry the masses are bounded, when the symmetry is
softly broken, a completely different qualitative regime can
appear, where arbitrarily large masses are possible. In this
section, it is analyzed that achieving a decoupling regime
through soft symmetry breaking requires some tuning of
the soft parameters; this tuning is not dictated by the
symmetry, and can thus be interpreted as unnatural [83].
Although fine-tuning arguments have been invoked in

wider contexts which include a 2HDM sector (e.g., super-
symmetric extensions of the SM), there is no pretence;
however, that evading the nondecoupling regime through
some fine-tuning constitutes a deep source of concern in the
context of the 2HDMs analyzed here. For a different
approach to the amount of fine-tuning in 2HDMs and
the role of symmetries, see the detailed discussion in [84]
(see also [85]).
One could object to the previous argument that, follow-

ing the discussion on the Higgs basis in Sec. II C, the
regime with bounded masses is simply avoided through a
large mass term for H2 (the scalar doublet which does
not acquire a vacuum expectation value). It would appear
that there is no naturalness or fine-tuning question in that
case. This objection ignores, however, the presence of
symmetry: in a regime with a large mass M2

22 of H2, the
eventual fine-tuning is already encoded in the coefficients
of the scalar potential rewritten in terms of H1 and H2,
including the mass term M2

22H
†
2H2, as discussed at the end

of Sec. II C.

A. Z2-2HDM with soft symmetry breaking

In the Z2-2HDM, the Z2 symmetry is softly broken by
adding the term μ212Φ

†
1Φ2 þ H:c: to VðΦ1;Φ2Þ in Eq. (37).

Instead of the stationarity conditions in Eqs. (38)–(40), we
now have

Imðμ̄212Þ ¼ −v2cβsβImðλ̄5Þ; ð64Þ

cβμ211 ¼ −sβReðμ̄212Þ − cβv2fc2βλ1 þ s2β½λ3 þ λ4 þ Reðλ̄5Þ�g;
ð65Þ

sβμ222 ¼ −cβReðμ̄212Þ − sβv2fs2βλ2 þ c2β½λ3 þ λ4 þ Reðλ̄5Þ�g:
ð66Þ

Then, the mass of the charged scalar H� is

m2
H� ¼ −ðtβ þ t−1β ÞReðμ̄212Þ − v2ðλ4 þ Reðλ̄5ÞÞ; ð67Þ

while, from the mass matrix of the neutral scalars,

Tr½M2
0� ¼ −2ðtβ þ t−1β ÞReðμ̄212Þ

þ 2v2½c2βλ1 þ s2βλ2 − Reðλ̄5Þ�: ð68Þ

Decoupling requires −ðtβ þ t−1β ÞReðμ̄212Þ ≫ v2; then
Eqs. (65) and (66) imply

for tβ ∼Oð1Þ; μ211 ∼ μ222 ∼ −Reðμ̄212Þ ≫ v2; ð69Þ

for t−1β ≫ 1; μ211 ∼ v2; μ222 ≫ v2; ð70Þ

for tβ ≫ 1; μ222 ∼ v2; μ211 ≫ v2: ð71Þ

For tβ ∼Oð1Þ, although Reðμ̄212Þ does not respect the
symmetry, it needs to be tuned to have a magnitude similar
to μ211 and μ

2
22, which do respect the symmetry. On the other

hand, for tβ ≫ 1 or t−1β ≫ 1, the strong hierarchy among
μ211 and μ

2
22 (or equivalently the strong hierarchy among the

vacuum expectation values) is not motivated by the
symmetry and can also be interpreted as fine-tuned.
Furthermore, one can also notice in Eqs. (64)–(66) that
a solution with sβ ¼ 0 or cβ ¼ 0 (in correspondence with
t−1β ≫ 1 or tβ ≫ 1) is only strictly compatible with no
symmetry breaking, μ̄212 ¼ 0, which brings us back to the
inert 2HDM of Sec. (III A 1).

B. SCPV-2HDM with soft symmetry breaking

In the SCPV-2HDM, the CP symmetry is softly broken6

for Imðμ212Þ ≠ 0 in the scalar potential in Eq. (50). This
model [86,87] has been extensively explored (see, for

6Through a field rephasing, one can “move” this symmetry
violation to dimension-4 terms in VðΦ1;Φ2Þ giving also “hard”
rather than “soft” breaking: since the converse “any hard breaking
can be rephased into soft breaking” is not true, we nevertheless
maintain this abuse of language for simplicity.
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example, [88]). Instead of the stationarity conditions in
Eqs. (51)–(53), we now have

Reðμ212Þ ¼ −t−1θ Imðμ212Þ −
v2

2
f2s2βcθλ5 þ c2βλ6 þ s2βλ7g;

ð72Þ

cβμ211 ¼
sβ
sθ

Imðμ212Þ − v2cβfc2βλ1 þ s2β½λ3 þ λ4 − λ5�

þ sβcβcθλ6g; ð73Þ

sβμ222 ¼
cβ
sθ

Imðμ212Þ − v2sβfs2βλ2 þ c2β½λ3 þ λ4 − λ5�

þ sβcβcθλ7g: ð74Þ

Then, the mass of the charged scalar H� is

m2
H� ¼ tβ þ t−1β

sθ
Imðμ212Þ þ v2ðλ5 − λ4Þ; ð75Þ

while, from the mass matrix of the neutral scalars,

Tr½M2
0� ¼ 2

tβ þ t−1β
sθ

Imðμ212Þ þ 2v2½c2βλ1 þ s2βλ2 þ λ5 þ cβsβcθðλ6 þ λ7Þ�: ð76Þ

Decoupling requires
tβþt−1β
sθ

Imðμ212Þ ≫ v2. For sθ ≲ 1, the situation is similar to the Z2-2HDM case: from Eqs. (72) to (74),

sθ ≲ 1; for tβ ∼Oð1Þ; μ211 ∼ μ222 ∼ Reðμ212Þ ∼ Imðμ212Þ ≫ v2; ð77Þ

sθ ≲ 1; for t−1β ≫ 1; μ211 ∼ v2; μ222 ≫ v2; Reðμ212Þ ∼ Imðμ212Þ; ð78Þ

sθ ≲ 1; for tβ ≫ 1; μ222 ∼ v2; μ211 ≫ v2; Reðμ212Þ ∼ Imðμ212Þ: ð79Þ

The same considerations on fine-tuning as in theZ2-2HDM
apply.
For sθ ≪ 1, however, Eqs. (72)–(74) cannot establish in

general if some kind of fine-tuning is necessarily present to
obtain decoupling; it is to be noticed that a solution of these
equations with sθ ¼ 0 is only strictly compatible with no
symmetry breaking, that is, Imðμ212Þ ¼ 0, which brings
back to the real 2HDM of Sec. III B 1.

C. Naturalness

In order to illustrate the previous discussion, one can
introduce simple fine-tuning measures which reflect the
considerations on Eqs. (69) and (77); we adopt

fZ2
¼ v2

Maxðjμ211j; jμ222jÞ
; fSCPV ¼ sθv2

Maxðjμ211j; jμ222jÞ
:

ð80Þ

FIG. 5. Allowed regions for the masses of the new neutral scalars in the Z2-2HDM and the SCPV-2HDM with soft symmetry
breaking for different fine-tuning requirements: darker to lighter regions correspond to fZ2

, fSCPV > 10−1=2, 10−1, 10−3=2, 10−2.
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Smaller values of fZ2
, fSCPV, correspond to larger fine-

tuning. In Fig. 5, the allowed regions of mA vs mH in the
Z2-2HDM and in the SCPV-2HDM are shown for different
requirements on fZ2

and fSCPV, respectively; darker to
lighter regions correspond to fZ2

, fSCPV > 10−1=2, 10−1,
10−3=2, 10−2. One can observe, for example, that masses
larger than 1.5 TeV require fZ2

, fSCPV < 10−3=2 while to
obtain masses larger than 2 TeV fZ2

, fSCPV < 10−2.

VI. CONCLUSIONS

In this work, the possibility that perturbativity require-
ments on the quartic couplings of a 2HDM could imply that
all the new scalars cannot have large masses is analyzed. We
show how a decoupling regime is necessarily absent in the
only two realistic models with an exact symmetry, the
Z2-2HDM and the SCPV-2HDM. Although the origin of
this behavior is common to both cases and rather trivial, only
in the first case the question has been analyzed in detail in the
literature.Numerical analyses illustrate the point and confirm
quantitatively that in these models the new scalars neces-
sarily have masses smaller than 1 TeV. Allowed ranges for
thesemasses are fairly similar in bothmodels. For these exact
symmetries, it is also shown that (i) a decoupling regime is
available for models with one specific vacuum configuration
in each case—the inert and the real 2HDM, and (ii) these
models with a decoupling regime cannot be obtained as a
limiting case of the Z2-2HDM and the SCPV-2HDM. It is
also possible to obtain a decoupling regime thanks to the
introduction of soft symmetry breaking terms: it is finally
argued that this is achieved owing to some tuning of
parameterswhich is not justified by the symmetry, a situation
that might be viewed as unnatural.
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APPENDIX A: PERTURBATIVE UNITARITY

At high energies, 2 → 2 scattering processes in the scalar
sector are controlled by the quartic couplings λj; the

corresponding 2 → 2 tree level scattering matrix S is block
diagonal, since the total hypercharge Y and weak isospin I
are conserved in that limit [29–36] (for a recent one loop
analysis, see [89]). The resulting submatrices S½Y;I� are

S½1;1� ¼
1

8π

0
B@

λ1 λ5
ffiffiffi
2

p
λ6

λ�5 λ2
ffiffiffi
2

p
λ�7ffiffiffi

2
p

λ�6
ffiffiffi
2

p
λ7 λ3 þ λ4

1
CA; ðA1Þ

S½1;0� ¼
1

8π
ðλ3 − λ4Þ; ðA2Þ

S½0;1� ¼
1

8π

0
BBB@

λ1 λ4 λ6 λ�6
λ4 λ2 λ7 λ�7
λ�6 λ�7 λ3 λ�5
λ6 λ7 λ5 λ3

1
CCCA; ðA3Þ

S½0;0� ¼
1

8π

0
BBB@

3λ1 2λ3 þ λ4 3λ6 3λ�6
2λ3 þ λ4 3λ2 3λ7 3λ�7

3λ�6 3λ�7 λ3 þ 2λ4 3λ�5
3λ6 3λ7 3λ5 λ3 þ 2λ4

1
CCCA:

ðA4Þ

Requiring that the different S½Y;I� do not yield probabilities
larger than 1 is the perturbative unitarity requirement; that
is, for values of fλ1; λ2;…; λ7g such that some eigenvalue
of the above matrices is larger than 1, that point in
parameter space is not acceptable.
In the analyses of Secs. IVand V, for the Z2-2HDM, one

has λ6 ¼ λ7 ¼ 0 and the perturbative unitarity requirement
can be reformulated easily in terms of analytic conditions.
For the SCPV-2HDM that is not the case, and the
eigenvalues of S½Y;I� are computed numerically.

APPENDIX B: MASS MATRICES OF
NEUTRAL SCALARS

In this Appendix, the elements of the mass matrices
of the neutral scalars are shown for the general 2HDM
(including expressions in the Higgs basis), for the
Z2-2HDM and for the SCPV-2HDM, for the Z2-2HDM
with soft symmetry breaking, and for the SCPV-2HDMwith
soft symmetry breaking. In obtaining these mass matrices,
the stationarity conditions are, of course, used; for com-
pleteness, the mass of the charged scalar H� is shown again.
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1. General 2HDM

For the general 2HDM in Sec. II C, the mass matrix of the neutral scalars is given by

½M2
0�11 ¼ v2

�
2λ1c4β þ 2λ2s4β þ ½λ3 þ λ4 þ Reðλ̄5Þ�s22β
þ2ðReðλ̄6Þc2β þ Reðλ̄7Þs2βÞs2β

�
;

½M2
0�12 ¼

v2

2

�
2½−λ1c2β þ λ2s2β�s2β þ ½λ3 þ λ4 þ Reðλ̄5Þ�s4β
þReðλ̄6Þðc2β þ c4βÞ þ 2Reðλ̄7Þsβs3β

�
;

½M2
0�22 ¼ −ðtβ þ t−1β ÞReðμ̄212Þ þ

v2

2

� s22β½λ1 þ λ2 − 2ðλ3 þ λ4 þ Reðλ̄5ÞÞ�
−ðt−1β þ s4βÞReðλ̄6Þ − ðtβ − s4βÞReðλ̄7Þ

�
;

½M2
0�13 ¼ −v2fImðλ̄5Þs2β þ c2βImðλ̄6Þ þ s2βImðλ̄7Þg;

½M2
0�23 ¼ −

v2

2
f2Imðλ̄5Þc2β þ ðImðλ̄7Þ − Imðλ̄6ÞÞs2βg;

½M2
0�33 ¼ −ðtβ þ t−1β ÞReðμ̄212Þ −

v2

2
f4Reðλ̄5Þ þ t−1β Reðλ̄6Þ þ tβReðλ̄7Þg: ðB1Þ

The mass of the charged scalar is

m2
H� ¼ −ðtβ þ t−1β ÞReðμ̄212Þ −

v2

2
f2½λ4 þ Reðλ̄5Þ� þ t−1β Reðλ̄6Þ þ tβReðλ̄7Þg: ðB2Þ

In terms of parameters in the Higgs basis,

½M2
0�11 ¼ 2v2Λ1;

½M2
0�12 ¼ v2ReðΛ6Þ;

½M2
0�22 ¼ M2

22 þ v2fΛ3 þ Λ4 þ ReðΛ5Þg;
½M2

0�13 ¼ −v2ImðΛ6Þ;
½M2

0�23 ¼ −v2ImðΛ5Þ;
½M2

0�33 ¼ M2
22 þ v2fΛ3 þ Λ4 − ReðΛ5Þg; ðB3Þ

and

m2
H� ¼ M2

22 þ v2Λ3: ðB4Þ
The scalar mixing matrix R in Eq. (15) is a general real 3 × 3 orthogonal matrix, which depends on three real parameters.

2. Z2-2HDM

For the Z2-2HDM, the mass matrix of the neutral scalars is given by

½M2
0�11 ¼ 2v2fλ1c4β þ λ2s4β þ 2c2βs

2
βðλ3 þ λ4 þ λ̄5Þg;

½M2
0�12 ¼ v2s2βf−λ1c2β þ λ2s2β þ c2βðλ3 þ λ4 þ λ̄5Þg;

½M2
0�22 ¼ 2v2c2βs

2
βfλ1 þ λ2 − 2ðλ3 þ λ4 þ λ̄5Þg;

½M2
0�13 ¼ 0;

½M2
0�23 ¼ 0;

½M2
0�33 ¼ −2v2λ̄5: ðB5Þ

The mass of the charged scalar is

m2
H� ¼ −v2ðλ4 þ λ̄5Þ: ðB6Þ
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In this case,R is block diagonal: it is customary to introduce α parametrizing the transformation from fρ1; ρ2g in Eq. (12) to
fh;Hg; for example,

�
h

H

�
¼

�
sα cα
−cα sα

��
ρ1

ρ2

�
; ðB7Þ

and then

R ¼

0
B@

sαβ −cαβ 0

cαβ sαβ 0

0 0 1

1
CA; ðB8Þ

which depends on a single parameter combination αþ β, with sαβ ¼ sinðαþ βÞ, cαβ ¼ cosðαþ βÞ.

3. SCPV-2HDM

For the SCPV-2HDM, the mass matrix of the neutral scalars is given by

½M2
0�11 ¼ v2

�
2λ1c4β þ 2λ2s4β þ ½λ3 þ λ4 þ λ5c2θ�s22β
þ2ðλ6c2β þ λ7s2βÞs2βcθ

�
;

½M2
0�12 ¼ v2

� ½−λ1c2β þ λ2s2β þ ðλ3 þ λ4 þ λ5c2θÞc2β�s2β
þ 1

2
½ðλ6 − λ7Þc4β þ ðλ6 þ λ7Þc2β�cθ

�
;

½M2
0�22 ¼ v2

� 1
2
s22β½λ1 þ λ2 − 2ðλ3 þ λ4Þ� þ λ5ð1þ c22βc2θÞ

þðλ7 − λ6Þs2βc2βcθ

�
;

½M2
0�13 ¼ −v2sθf2λ5s2βcθ þ c2βλ6 þ s2βλ7g;

½M2
0�23 ¼ −v2sθf2λ5c2βcθ þ cβsβðλ7 − λ6Þg;

½M2
0�33 ¼ 2v2λ5s2θ: ðB9Þ

The mass of the charged scalar is

m2
H� ¼ v2ðλ5 − λ4Þ: ðB10Þ

4. Z2-2HDM with soft symmetry breaking

For the Z2-2HDM with soft symmetry breaking term in Sec. VA, the mass matrix of the neutral scalars is given by

½M2
0�11 ¼ 2v2fλ1c4β þ λ2s4β þ 2c2βs

2
βðλ3 þ λ4 þ Reðλ̄5ÞÞg;

½M2
0�12 ¼ v2s2βf−λ1c2β þ λ2s2β þ c2βðλ3 þ λ4 þ Reðλ̄5ÞÞg;

½M2
0�22 ¼ −ðtβ þ t−1β ÞReðμ̄212Þ þ 2v2c2βs

2
βfλ1 þ λ2 − 2ðλ3 þ λ4 þ Reðλ̄5ÞÞg;

½M2
0�13 ¼ −v2s2βImðλ̄5Þ;

½M2
0�23 ¼ −v2c2βImðλ̄5Þ;

½M2
0�33 ¼ −ðtβ þ t−1β ÞReðμ̄212Þ − 2v2Reðλ̄5Þ: ðB11Þ

The mass of the charged scalar is

m2
H� ¼ −ðtβ þ t−1β ÞReðμ̄212Þ − v2ðλ4 þ Reðλ̄5ÞÞ: ðB12Þ
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5. SCPV-2HDM with soft symmetry breaking

For the SCPV-2HDM with soft symmetry breaking terms in Sec. V B, the mass matrix of the neutral scalars is given by

½M2
0�11 ¼ v2f2c4βλ1 þ 2s4βλ2 þ s22β½λ3 þ λ4 þ c2θλ5� þ 2s2βcθ½c2βλ6 þ s2βλ7�g; ðB13Þ

½M2
0�12 ¼ v2

�
s2β½−c2βλ1 þ s2βλ2� þ c2βs2β½λ3 þ λ4 þ c2θλ5�
þcθ½cβc3βλ6 þ sβs3βλ7�

�
; ðB14Þ

½M2
0�22 ¼

tβ þ t−1β
sθ

Imðμ212Þ þ
v2

2

� s22β½λ1 þ λ2 − 2ðλ3 þ λ4Þ�
þ2ð1þ c22βc2θÞλ5 − s4βcθ½λ6 − λ7�

�
; ðB15Þ

½M2
0�13 ¼ −v2sθð2s2βcθλ5 þ c2βλ6 þ s2βλ7Þ; ðB16Þ

½M2
0�23 ¼ −v2sθð2c2βcθλ5 − sβcβðλ6 − λ7ÞÞ; ðB17Þ

½M2
0�33 ¼

tβ þ t−1β
sθ

Imðμ212Þ þ 2v2s2θλ5: ðB18Þ

The mass of the charged scalar is

m2
H� ¼ tβ þ t−1β

sθ
Imðμ212Þ þ v2ðλ5 − λ4Þ: ðB19Þ
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