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The energy-momentum tensor (EMT) characterizes the response of the vacuum as well as the thermal
medium under the color electromagnetic fields. We define the EMT by means of the gradient-flow
formalism and study its spatial distribution around a static quark in the deconfined phase of SU(3) Yang-
Mills theory on the lattice. Although no significant difference can be seen between the EMT distributions in
the radial and transverse directions except for the sign, the temporal component is substantially different
from the spatial ones near the critical temperature Tc. This is in contrast to the prediction of the leading-
order thermal perturbation theory. The lattice data of the EMT distribution also indicate the thermal
screening at long distance and the perturbative behavior at short distance.
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I. INTRODUCTION

To study complex quantum systems such as the Yang-
Mills (YM) theory, it is customary to introduce test probe(s)
and analyze the response. The Wilson loop is one of such
probes whose measurement in YM theory provides infor-
mation on the static quark-antiquark system that is closely
related to the confinement property in YM vacuum [1].
Thanks to the recent development of the gradient-flow
method [2–4] and its application to the energy-momentum
tensor (EMT) T μνðxÞ [5–8], it became possible to study the
gauge-invariant structure of the flux tube between the quark
and antiquark in the confining phase through the spatial
distribution of EMT under the Wilson loop [9,10].
The purpose of the present paper is to extend the

above idea and to explore the EMT distribution around a
static quark in YM theory. As a first step, we consider the
deconfined phase above the critical temperature Tc of
the SU(3) YM theory in the range of temperature 1.2 ≤
T=Tc ≤ 2.6 and measure the EMT distribution around the
Polyakov loop. The EMT with the gradient flow has been

used to study thermodynamics of YM theory [11–16] and
of QCD [17,18]. However, the observables in these studies
are limited to global quantities such as the pressure, energy
density, entropy density, and the specific heat. On the other
hand, we focus on the local observable in this study and
examine the following questions: (i) How are the energy
density and the stress tensor distributed around the static
quark?, (ii) how are the distributions modified as a function
of temperature?, and (iii) how can one extract parameters
such as the running coupling and the Debye screening mass
from the distributions?
The organization of the present paper is as follows. In

Sec. II, we briefly review the definition of EMT and its
property in the spherical coordinate system. In Sec. III, we
introduce the EMToperator on the lattice and its correlation
with the Polyakov loop operator. In Sec. IV, we discuss the
numerical procedure and lattice setup to analyze the EMT
operator around a static quark on the lattice. Numerical
results and their physical implications are given in Sec. V.
Section VI is devoted to the summary and conclusion. In
Appendix A, we discuss the procedure to make the tree-level
improvement of the correlation between the EMT and the
Polyakov loop on the lattice. In Appendix B, the leading-
order (LO) perturbative analysis of the correlation is pre-
sented using the high temperature effective field theory.

II. EMT AROUND A STATIC CHARGE

The stress tensor σijði; j ¼ 1; 2; 3Þ is related to the
spatial component of the EMT, T ij, as [19]

*yanagihara@kern.phys.sci.osaka-u.ac.jp
†kitazawa@phys.sci.osaka-u.ac.jp
‡yuki@phys.sci.osaka-u.ac.jp
§thatsuda@riken.jp

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 102, 114522 (2020)

2470-0010=2020=102(11)=114522(12) 114522-1 Published by the American Physical Society

https://orcid.org/0000-0003-3766-986X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.114522&domain=pdf&date_stamp=2020-12-30
https://doi.org/10.1103/PhysRevD.102.114522
https://doi.org/10.1103/PhysRevD.102.114522
https://doi.org/10.1103/PhysRevD.102.114522
https://doi.org/10.1103/PhysRevD.102.114522
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


σij ¼ −T ij: ð1Þ

The force per unit area F i acting on a surface with the
normal vector ni is given by the stress tensor as

F i ¼ σijnj ¼ −T ijnj: ð2Þ

The local principal axes nðkÞj and the corresponding
eigenvalues λk of the local stress tensor are obtained by
solving the eigenvalue problem:

T ijn
ðkÞ
j ¼ λkn

ðkÞ
i ðk ¼ 1; 2; 3Þ: ð3Þ

The strength of the force per unit area along nðkÞi is given by
the absolute values of the eigenvalue λk. Neighboring
volume elements separated by a surface with the normal

vector nðkÞi pull (push) each other for λk < 0 (λk > 0) across

the wall. Note that the three principal axes nðkÞi are
orthogonal with one another because σij is a symmetric
tensor.
For a system with a single static source, it is convenient

to use the spherical coordinate system ðr; θ;φÞ with the
radial coordinate r ¼ jxj, and the polar and azimuthal
angles θ and φ. The spherical symmetry allows us to
diagonalize the static EMT in Euclidean spacetime T μνðxÞ
in this coordinate system as

T γγ0 ðxÞ ¼ diagðT 44ðrÞ; T rrðrÞ; T θθðrÞÞ ð4Þ

where γ; γ0 ¼ 4; r; θ. Because of the spherical symmetry,
the azimuthal component degenerates with the polar
component, T φφðrÞ ¼ T θθðrÞ, so that only independent
components are given in Eq. (4).
In the Abelian case, EMT is given by the Maxwell stress-

energy tensor [19], T Maxwell
μν ¼ FμρFνρ − 1

4
δμνFρσFρσ with

the field strength Fμν. When a static charge is placed at the
origin, the EMT is denoted by

T Maxwell
γγ0 ¼ 1

2
diagð−E⃗2;−E⃗2; E⃗2Þ; ð5Þ

with EiðxÞ being the electric field. The spatial structure
of Eq. (5) is illustrated in Fig. 1 where the neighboring
volume elements around the static electric charge pull
(push) each other along the radial (angular) direction. In a
static system, the force acting on a volume element through
its surface should be balanced. This property is guaranteed
by the momentum conservation ∂iT ij ¼ 0 together with
the Gauss theorem.

III. EMT FOR SU(3) YANG-MILLS THEORY
ON THE LATTICE

A. YM gradient flow

We consider the pure SU(3) YM gauge theory in the
four-dimensional Euclidean space defined by the action,

SYM ¼ 1

4g20

Z
d4xGa

μνðxÞGa
μνðxÞ: ð6Þ

Here g0 is a bare gauge coupling and Ga
μνðxÞ is the field

strength composed of the fundamental gauge field Aa
μðxÞ.

The YM gradient flow evolves the gauge field along the
fictitious fifth dimension t introduced in addition to the
ordinary four Euclidean dimensions x through the flow
equation [2–4],

dAa
μðt; xÞ
dt

¼ −g20
δSYMðtÞ
δAa

μðt; xÞ
: ð7Þ

The flowed YM action SYMðtÞ in the (4þ 1)-dimensional
coordinate is constructed by substituting the flowed
gauge field Aa

μðt; xÞ in Eq. (6) with an initial condition,
Aa
μðt ¼ 0; xÞ ¼ Aa

μðxÞ.
An important feature of the gradient flow for t > 0 is that

any composite operators composed of flowed gauge fields
are UV finite even at the equal spacetime point [4,7]. This is
a consequence of the smoothing of the gauge fields in the
four-dimensional Euclidean space within the range ∼

ffiffiffiffi
2t

p
.

In addition, in the small t limit, composite local operators
are represented by the local operators of the ordinary gauge
theory at t ¼ 0. These properties lead us to the renormal-
ized EMT operator defined with the small t expansion [5]:

T R
μνðxÞ ¼ lim

t→0
T μνðt; xÞ; ð8Þ

T μνðt; xÞ ¼ c1ðtÞUμνðt; xÞ
þ 4c2ðtÞδμν½Eðt; xÞ − hEðt; xÞi0�; ð9Þ

FIG. 1. Stress acting on the infinitely small volume element
under the existence of a single static charge (source). In the case
of the classical electromagnetism, a small volume element at a
distance of r from the charge is pulled along the radial direction
from the neighboring volume elements while it is pushed in the
transverse direction.
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where hEðt; xÞi0 is the vacuum expectation value of Eðt; xÞ.
The dimension-four gauge-invariant operators on the right-
hand side of Eq. (9) are given by [5]

Eðt; xÞ ¼ 1

4
Ga

μνðt; xÞGa
μνðt; xÞ; ð10Þ

Uμνðt; xÞ ¼ Ga
μρðt; xÞGa

νρðt; xÞ − δμνEðt; xÞ; ð11Þ

whereGa
μνðt; xÞ is the field strength composed of the flowed

gauge field. Because of the vacuum subtraction in Eq. (9),
hT R

μνðxÞi0 vanishes. The coefficients c1ðtÞ and c2ðtÞ have
been calculated perturbatively in Refs. [5,8,14] for small t.
We use two-loop perturbative coefficients [8,14] for the
construction of EMT throughout this study.

B. EMT around a static heavy quark

To describe a static quark Q on the lattice, we introduce
the Polyakov loop at the origin, Ωð0Þ. Then the expectation
value of Eq. (9) around Q is given by

hT μνðt; xÞiQ ¼ hT μνðt; xÞTrΩð0Þi
hTrΩð0Þi − hT μνðt; xÞi: ð12Þ

We note that Eq. (12) is well-defined only when the Z3

symmetry in SU(3) YM theory is spontaneously broken: In
the Z3 unbroken phase, both the numerator and denomi-
nator of the first term on the right-hand side vanish exactly.
This is the reason why we focus on the system in the Z3

broken phase above Tc in this paper. In practice, we choose
the state with the Polyakov loop being real among the three
equivalent Z3 states in the deconfined phase.
The renormalized EMT distribution around Q is

obtained after taking the double extrapolation,

hT R
μνðxÞiQ ¼ lim

t→0
lim
a→0

hT μνðt; xÞiQ: ð13Þ

In our actual analysis, we extract the renormalized EMT
distribution by fitting the lattice data with the following
functional form [12,13]:

hT μνðt;xÞiQ¼hT R
μνðxÞiQþbμνðtÞa2þcμνtþdμνt2; ð14Þ

where the contributions from discretization effects (bμν) as
well as the dimension-six and -eight operators (cμν and dμν)
are considered.
To perform the double extrapolation reliably, the smear-

ing radius ρ≡ ffiffiffiffi
2t

p
needs to be larger than the lattice

spacing to suppress the discretization error. At the same
time, ρ should be smaller than half the temporal size 1=2T
with temperature T as well as the distance from the source
(r) to avoid the overlap of operators. Therefore we require

a=2≲ ρ≲min

�
r;

1

2T

�
: ð15Þ

The lattice data to be fitted by Eq. (14) should be within this
window. As will be discussed in Sec. IV C, we impose
more stringent conditions for the range of t in our numerical
analysis.

IV. LATTICE SETUP

A. Gauge configurations

Numerical simulations in SU(3) YM theory were per-
formed on the four-dimensional Euclidean lattice with the
Wilson gauge action and the periodic boundary conditions
at four different temperatures: 1.20Tc, 1.44Tc, 2.00Tc, and
2.60Tc. The simulation parameters for each T are summa-
rized in Table I. The inverse coupling β ¼ 6=g20 is related to
the lattice spacing a determined by the reference scale w0

[12,20]. The spatial and temporal lattice sizes, Ns and Nτ,
together with the number of configurations Nconf are also
summarized in Table I. All lattices have the same aspect
ratio Ns=Nτ ¼ 4.
The gauge configurations are generated by the pseudo-

heat-bath method followed by five over-relaxations. Each
measurement is separated by 200 sweeps. Statistical errors
are estimated by the jackknife method with 20 jackknife
bins. We employ the Wilson gauge action for SYMðtÞ in the
flow equation (7) and the clover type representation for
the field strength Gμνðt; xÞ. The numerical solution of the

TABLE I. Simulation parameters for the four temperatures: The
spatial lattice size Ns, the temporal lattice size Nτ, β ¼ 6=g20, the
lattice spacing a. Nconf represents the number of configurations.

T=Tc Ns Nτ β a [fm] Nconf

1.20 40 10 6.336 0.0551 500
48 12 6.467 0.0460 650
56 14 6.581 0.0394 840
64 16 6.682 0.0344 1,000
72 18 6.771 0.0306 1,000

1.44 40 10 6.465 0.0461 500
48 12 6.600 0.0384 650
56 14 6.716 0.0329 840
64 16 6.819 0.0288 1,000
72 18 6.910 0.0256 1,000

2.00 40 10 6.712 0.0331 500
48 12 6.853 0.0275 650
56 14 6.973 0.0236 840
64 16 7.079 0.0207 1,000
72 18 7.173 0.0184 1,000

2.60 40 10 6.914 0.0255 500
48 12 7.058 0.0212 650
56 14 7.182 0.0182 840
64 16 7.290 0.0159 1,000
72 18 7.387 0.0141 1,000
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gradient-flow equation is obtained by the third order
Runge-Kutta method.
In order to suppress the statistical noise, we apply the

multihit procedure in the measurement of the Polyakov
loop by replacing every temporal link by its thermal
average [21]. The choice of the temporal argument x4 of
the EMT in Eq. (12) is arbitrary. Therefore, we average
the EMT over the temporal direction to reduce the stat-
istical error.

B. Discretization effect

The EMT in the spherical coordinate system on the
lattice reads

T
X
x4

hT γγ0 ðt; x; x4ÞiQ

¼ diagðhT 44ðt; rÞiQ; hT rrðt; rÞiQ; hT θθðt; rÞiQÞ: ð16Þ

The behavior of the EMT distribution close to the sourceQ
is affected by the violation of rotational symmetry owing to
lattice discretization. As an example, we show in Fig. 2 the
distribution of −r4hT rrðt=a26.910 ¼ 1.3; rÞiQ as a function
of rT at T=Tc ¼ 1.44, where a6.910 is the lattice spacing of
the finest lattice at this temperature. The figure shows that
the oscillating behavior of the numerical results becomes
more prominent on coarser lattices. In this study, we use the
lattice data only for Nτ ≥ 12 for the continuum extrapo-
lation to suppress the discretization errors. In Appendix A,
we consider an alternative analysis that performs the tree-
level improvement of the numerical results and uses them
for the continuum extrapolation with the Nτ ¼ 10 data. As
discussed there, we confirm that the results in both cases are
the same within the errors.

C. Double extrapolation

The double extrapolation, Eq. (13) consists of two
steps: (I) the continuum (a → 0) extrapolation and (II)
t → 0 extrapolation. In this subsection, we demonstrate

these procedures by using the lattice data at T=Tc ¼ 1.44 as
an example.
In Fig. 3, we show −hT rrðt; rTÞiQ=T4 at rT ¼ 0.40,

0.48, 0.60 as a function of 1=N2
τ ¼ ðaTÞ2 for four values of

tT2. To obtain the EMT values at a given r and t, we first
perform the linear interpolation of the lattice data along the
r direction and then interpolate along the t direction by the
cubic spline method for each a.
In Fig. 3, fitting results of the data at Nτ ¼ 12–18

according to Eq. (14) at fixed t are shown by the solid lines,
while the results of the continuum limit are shown by
the filled squares on the vertical dotted line at 1=N2

τ ¼ 0.

FIG. 2. Distribution of −r4hT rrðt=a26.910 ¼ 1.3; rÞiQ as func-
tions of rT at T=Tc ¼ 1.44.

(a)

(b)

(c)

FIG. 3. Color open symbols represent −hT rrðt; rTÞiQ=T4 for
various t as functions of 1=N2

τ ¼ a2T2 at T=Tc ¼ 1.44. The
continuum extrapolation for each t is shown by the solid lines,
with the extrapolated results represented by the filled symbols.
Panels (a), (b), and (c) show the results at rT ¼ 0.40, 0.48, 0.60,
respectively.
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We then take the t → 0 extrapolation by fitting the con-
tinuum-extrapolated results for different t with Eq. (14) at
a ¼ 0. This fit has to be carried out within the range of t
satisfying Eq. (15). We employ tT2 ¼ 0.00401 correspond-
ing to t=a2 ¼ 1.3 of the finest lattice data as the lower bound
of the fittingwindow:This choice satisfies Eq. (15) for all the
lattices. The upper bound of the fittingwindow is taken to be
tT2 ¼ 0.015, since the thermodynamic quantities show a
linear behavior below this value [12].
We consider the following three ranges within

0.00401 ≤ tT2 ≤ 0.015 to estimate the systematic uncer-
tainty from the fitting ranges [12]:

range 1∶ 0.00767 ≤ tT2 ≤ 0.0113;

range 2∶ 0.00401 ≤ tT2 ≤ 0.0113;

range 3∶ 0.00767 ≤ tT2 ≤ 0.0150:

Range 1 is the most conservative window, while range 2
(range 3) is the extension of range 1 towards the smaller
(larger) values of t. We employ the result of range 1 as a
central value and use range 2 and range 3 for an estimate
of the systematic error. In the following, all the results after
the double extrapolation contain both the statistical and
systematic errors.
In Fig. 4, the open symbols with statistical errors

represent hT γγ0 ðt; rTÞiQ=T4 at rT ¼ 0.40 (upper) and
0.60 (lower) for each a. The results of the continuum limit
are denoted by the black solid lines with the gray statistical
error band for 0.00401 ≤ tT2 ≤ 0.015. Range 1 is high-
lighted by the yellow band. The figure also shows the fitted
results for ranges 1, 2, and 3 by the dotted lines. The final

results of the t → 0 limit for each range are shown by the
open black symbols around tT2 ¼ 0: They agree with each
other within the statistical errors, which suggests that the
systematic uncertainty from the choice of the fitting range
is not significant.

V. RESULTS OF EMT DISTRIBUTIONS

Before entering into the detailed discussions on the
spatial distribution of EMT, we first show the result of the
stress distribution at T=Tc ¼ 2.60 on a two-dimensional
plane including the static source in Fig. 5. The same result

FIG. 4. Each component of EMT at rT ¼ 0.40 (top) and rT ¼ 0.60 (bottom) as functions of tT2. Color open symbols denote
hT γγ0 ðt; rTÞiQ=T4 for each a as functions of tT2. The black solid line with the gray error band is the continuum-extrapolated result. The
dotted lines show the fitted results of the continuum result with ranges 1, 2, and 3. The black symbols are the results of the t → 0
extrapolation for these fitting ranges.

FIG. 5. Stress distribution around a static quark at the origin at
T=Tc ¼ 2.60. The red and blue arrows are the principal directions
along the radial and transverse directions, respectively. The
length of each arrow represents the square root of the eigenvalue.
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is later shown in Fig. 8 in a different form. In Fig. 5, the red
and blue arrows represent the principal directions of the
stress tensor along the radial and transverse directions,
respectively. The length of each arrow represents the square
root of the eigenvalue corresponding to each principal axis.
This figure is to be compared with Fig. 1 in Ref. [9].

A. Channel dependence

In Fig. 6, we show the dimensionless EMT,
−hT R

44ðrÞiQ=T4, −hT R
rrðrÞiQ=T4, and hT R

θθðrÞiQ=T4, as
functions of the dimensionless length rT. The error bands
include both the statistical and systematic errors, where the
latter is estimated from the three fitting ranges for the t → 0
extrapolation. Since the thermal expectationvalue hT μνðt; xÞi
is subtracted as in Eq. (12), we have hT R

μνðrÞiQ → 0 in the
r → ∞ limit.
We find that −hT R

44ðrÞiQ, −hT R
rrðrÞiQ, and hT R

θθðrÞiQ
are all positive for rT ≲ 1 and decrease rapidly with
increasing r. These signs are the same as those of the
Maxwell stress tensor in Eq. (5). Individual signs physi-
cally mean that a volume element has a positive localized
energy density and receives a pulling (pushing) force
along the longitudinal (transverse) direction; see Figs. 1
and 5.

Figure 6 indicates that the absolute values of the spatial
components jhT R

rrðrÞiQj and jhT R
θθðrÞiQj are degenerated

within the error for all temperatures. On the other hand,
jhT R

44ðrÞiQj is larger than the spatial components especially
at lower temperature. This is in contrast to the degenerate
magnitude of all components in the Maxwell stress, Eq. (5)
and is also different from the leading-order thermal
perturbation theory (Appendix B).

B. Temperature dependence

Shown in Fig. 7 is the temperature dependence of
the spatial distribution of the EMT with respect to the
physical distance r [fm]; (a) −hT R

44ðrÞiQ, (b) −hT R
rrðrÞiQ,

and (c) hT R
θθðrÞiQ. Also, shown in Fig. 7(d) is the

distribution of the trace of the EMT given by

ΔQðrÞ≡ −hT R
μμðrÞiQ

¼ −hT R
44ðrÞ þ T R

rrðrÞ þ 2T R
θθðrÞiQ: ð17Þ

Figure 7 tells us that the EMT distributions have small T
dependence at short distances, r≲ 0.2 fm. On the other
hand, for large distances, sizable T dependence can be seen
despite the growth of the errors at high T.

(a) (b)

(c) (d)

FIG. 6. EMT distribution ð−hT R
44ðrÞiQ;−hT R

rrðrÞiQ; hT R
θθðrÞiQÞ as functions of rT after the double extrapolation: (a) T ¼ 1.20Tc,

(b) T ¼ 1.44Tc, (c) T ¼ 2.00Tc, and (d) T ¼ 2.60Tc.
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To make these features more explicit, we plot the same
results with a dimensionless normalization r4hT R

γγ0 ðrÞiQ as
a function of r in Fig. 8. The figure shows that the T
dependence is suppressed for rT ≲ 0.3 and all results
approach a single line, while the result tends to be more
suppressed for rT ≳ 0.3 compared with this universal
behavior as temperature is raised. This result is reasonable
as the T dependence of r4hT R

γγ0 ðrÞiQ would be suppressed

for r≲ ð2πTÞ−1.

At distance ð2πTÞ−1 ≪ r ≪ Λ−1 with Λ being the
lambda parameter, the behavior of hT R

γγ0 ðrÞiQ should be
described by the perturbation theory in electrostatic QCD
(EQCD). In the leading order of EQCD in this regime, we
have the following ratio (Appendix B):

���� ΔQðrÞ
hT R

44;rr;θθðrÞiQ

���� ¼ 11

2π
αs þOðg3Þ; ð18Þ

(a)

(b)

(c)

(d)

FIG. 7. EMT distribution ð−hT R
44ðrÞiQ;−hT R

rrðrÞiQ;
hT R

θθðrÞiQÞ, andΔQðrÞ as functions of r [fm] at each temperature:
(a) −hT R

44ðrÞiQ, (b) −hT R
rrðrÞiQ, (c) hT R

θθðrÞiQ, and (d) ΔQðrÞ.

(a)

(b)

(c)

(d)

FIG. 8. EMT distribution r4ð−hT R
44ðrÞiQ;−hT R

rrðrÞiQ;
hT R

θθðrÞiQÞ, and r4ΔQðrÞ as functions of r [fm] at each temper-
ature: (a) −r4hT R

44ðrÞiQ, (b) −r4hT R
rrðrÞiQ, (c) r4hT R

θθðrÞiQ,
and (d) r4ΔQðrÞ.
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which is independent of r and T and is given only by a
function of αs.
Shown in Fig. 9 is the r dependence of ΔQðrÞ=

hT R
44;rr;θθðrÞiQ as a function of r at T=Tc ¼ 2.60. From

this result and Eq. (18), we obtain, at r ¼ 0.1 fm, αs ¼
0.221ð17Þ from −ΔQðrÞ=hT R

44ðrÞiQ, αs ¼ 0.286ð24Þ from
−ΔQðrÞ=hT R

rrðrÞiQ, and αs ¼ 0.319ð35Þ from ΔQðrÞ=
hT R

θθðrÞiQ. Although these values are channel dependent,
indicating the existence of non-negligible higher order
contributions, it is notable that they are consistent with
that obtained from the similar analysis of the Polyakov
loop correlations at r ¼ 0.1 fm [22,23]. Higher order αs
corrections and the thermal corrections for the EMT
around a static charge to be compared with our lattice
data is under way [24].
Let us now turn to the long-distance region in Fig. 8.

Owing to the large errors in this region, it is not possible to
extract the thermal screening of the form expð−2mDrÞ
with mD being the Debye screening mass. Nevertheless,
Figs. 8(a)–8(d) indicate that the EMT distributions decrease
faster than 1=r4 at long distances, and the tendency is
stronger at high temperatures. To draw a definite conclu-
sion, however, higher statistical data are necessary.

VI. SUMMARY AND CONCLUDING REMARKS

In the present paper, we have studied, for the first time,
the EMT distribution around a static quark at finite temper-
ature above Tc of the SU(3) YM theory on the lattice. The
YM gradient flow plays crucial roles to define the EMT on
the lattice and to explore its spatial structure.
The main results of this paper can be summarized as

follows.
As shown in Fig. 6, we found no significant difference

between the absolute magnitude of the EMT along the
radial direction and that of the transverse direction for all
temperatures above Tc. This seems to be in accordance with
the leading-order thermal perturbation theory in QCD,
which predicts the same magnitude for all principal
components of the EMT. However, we found a substantial

difference between the EMT distribution in the temporal
direction and that of the spatial directions, especially near
Tc. This indicates that there is indeed a genuine non-
Abelian effect present at finite temperature, so that precise
comparison with the higher-order thermal QCD calculation
would be called for.
As shown in Figs. 7 and 8, all the EMT distributions

have small T dependence at short distances, r≲ 0.2 fm.
Also the EMT distributions decrease faster than 1=r4 at
long distances, and the tendency is stronger at high
temperatures. However, owing to the large statistical errors,
we could not extract the values of the thermal Debye
screening. By using the fact that the EMT distributions are
T independent at short distances, we attempted to extract
the strong coupling constant from the ratios between the
different components of the EMT. The result, αsð0.1 fmÞ≃
0.22–0.32, is consistent with that obtained from the similar
analysis for the QQ̄ free energy at finite T.
We have some important issues to be studied further.

Going beyond the leading-order thermal QCD calculation
for the EMT [24] is necessary to understand the lattice
results presented in this paper. At the same time, increasing
the statistics of lattice data is necessary to extract, e.g.,
the screening mass from the long range part of the EMT
distribution.
There are also several interesting future problems. First

of all, the extension to full QCD is an important next step.
Since the Z3 symmetry is explicitly broken by dynamical
fermions, the present method can be applied directly to a
single static quark Q, a static diquark QQ and QQ̄ both at
low and high temperatures. In particular, the single quark
system in QCD at zero temperature corresponds to a heavy-
light meson [25]. Second, the EMT distributions of the
QQQ system will provide new insight into the flux tube
formation in baryons [26] as well as the “gravitational”
baryon structure [27–31] at zero and nonzero temperatures.
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APPENDIX A: TREE-LEVEL IMPROVEMENT
OF THE LATTICE OBSERVABLES

As shown in Fig. 2, there exists sizable discretization
effect for the EMT distribution on coarse lattices especially

FIG. 9. Ratios ΔQðrÞ=hT R
44;rr;θθðrÞiQ as functions of r at

T=Tc ¼ 2.60.
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for Nτ ¼ 10. In this Appendix, we attempt to reduce such
discretization effects by using the tree-level lattice propa-
gator. A similar idea has been applied to the analysis of the
Polyakov loop correlations in Refs. [22,32].
In calculating the EMT distribution around a static

quark, Eq. (16), we need the expectation values of
Eqs. (10) and (11) at nonzero flow time t. These quantities
are constructed from hGa

μνðt; xÞGa
ρσðt; xÞiQ, where the

temporal coordinate is suppressed for notational simplicity.
In the continuum theory at the tree level, this operator is
calculated to be

hGa
μνðt; xÞGa

ρσðt; xÞiQ
¼ −g2

N2 − 1

2
Gμνðt; xÞGρσðt; xÞ; ðA1Þ

where g is the gauge coupling and N ¼ 3 is the number of
colors, with

Gμνðt; xÞδab ¼
Z

1=T

0

dτhAa
4ðτ; 0ÞGb

μνðt; xÞi: ðA2Þ

By selecting appropriate gauge fixing conditions for the
gauge action and the gradient-flow equation, one obtains
G12ðt; xÞ ¼ G23ðt; xÞ ¼ G31ðt; xÞ ¼ 0 and

Gi4ðt; xÞ ¼ ∂iDðt; xÞ; ðA3Þ

Dðt; xÞ ¼
Z

d3p
ð2πÞ3 e

ip·x e
−tp2

p2
¼ 1

4πjxj erf
� jxjffiffiffiffi

4t
p

�
: ðA4Þ

Next, in lattice gauge theory the propagator correspond-
ing to Eq. (A4) with the Wilson gauge action for the gauge
action and the flow equation reads [33,34]

Dðt; xnÞ ¼
Z

π

−π

d3p
ð2πÞ3 e

ip·xn
e−t

P
ip̂

2
iP

ip̂
2
i
; ðA5Þ

with xn ¼ an ¼ aðnx; ny; nzÞ and p̂i ¼ ð2=aÞ sinðpi=2aÞ.
When the clover-leaf operator for the discretized represen-
tation of Ga

μνðt; xnÞ is employed, the discretized represen-
tation of Gi4ðt; xnÞ is given by [35]

Glat
i4 ðt; xnÞ ¼

1

2a
ðDðt; xnþîÞ −Dðt; xn−îÞÞ: ðA6Þ

Using Eqs. (A3) and (A6), the tree-level improvements
of Eqs. (10) and (11) denoted by the superscript “imp”may
be written as

hEðt; xnÞiimp
Q ¼ cðt; xnÞhEðt; xnÞiQ; ðA7Þ

hUγγ0 ðt; xnÞiimp
Q ¼ cðt; xnÞhUγγ0 ðt; xnÞiQ; ðA8Þ

where the correction factor cðt; xnÞ is defined by

cðt; xnÞ ¼
1

3

X3
i¼1

�
Gi4ðt; xnÞ
Glat
i4 ðt; xnÞ

�
2

: ðA9Þ

In Eq. (A9), the average over i is taken because generally
the ratio Gi4ðt; xnÞ=Glat

i4 ðt; xnÞ at a lattice site xn depends
on i. However, in our particular choice of discretization,
i.e., the Wilson gauge actions and the clover-leaf operator,
it is easily shown that Gi4ðt; xnÞ=Glat

i4 ðt; xnÞ does not depend
on i. In this special case the average over i in Eq. (A9) is
redundant. When this property is violated, the improvement
of hUγγ0 ðt; xnÞiQ may be replaced by the one that depends
on γ and γ0 in place of Eq. (A8).
There is one more subtle issue about Eq. (A8). At the tree

level, one easily finds that the matrix elements of U44, Urr
and −Uθθ are the same, while the actual lattice data do not
necessarily satisfy such a relation as shown in the main
text. In our tree-level improvement, therefore, we decom-
pose our lattice data into the treelike part and the rest,
hUγγ0 ðt; xnÞiQ ¼ Utl

γγ0 ðt; xnÞ þ δUγγ0 ðt; xnÞ, where the tree-

like part Utl
γγ0 ðt; xnÞ satisfies Utl

44ðt; xnÞ ¼ Utl
rrðt; xnÞ ¼

−Utl
θθðt; xnÞ. Then we apply our tree-level improvement

only to the first term:

hUγγ0 ðt;xnÞiimp
Q ¼ cðt;xnÞUtl

γγ0 ðt;xnÞþδUγγ0 ðt;xnÞ: ðA10Þ

Below, we consider three choices of Utl
γγ0 ðt; xnÞ to estimate

the systematic uncertainty of this procedure: Utl
γγ0 ¼

hU44iQ; hUrriQ, and −hUθθiQ. Corresponding results for
hT R

rrðt; rÞi as example are shown in Figs. 10(b), 10(c),
and 10(d), respectively, together with the case without the
correction, Fig. 10(a). Colored open symbols represent
the data at each Nτ and the gray (yellow) shade is the
continuum result with (without) the data at Nτ ¼ 10.
The figures show that the tree-level improvement sup-
presses the discretization effect at short distances in three
cases, especially for Nτ ¼ 10.
Let us now compare the continuum extrapolation using

the data includingNτ ¼ 10with the tree-level improvement
and that using the data without Nτ ¼ 10 and without the
tree-level improvement. Shown in Fig. 11 is such a
comparison for −hT rrðt;rT¼0.40ÞiQ=T4 at T=Tc¼1.44
as functions of 1=N2

τ . Colored open triangles represent the
data without the tree-level improvement (red) and with the
tree-level improvement for three different prescriptions
(blue, orange, and green). Filled symbols at 1=N2

τ ¼ 0
are the continuum extrapolation: The red squares are
continuum results without Nτ ¼ 10 data discussed in the
main text, while the diamonds are the continuum results
with Nτ ¼ 10 data after the tree-level improvement. Taking
into the uncertainly associated with the different prescrip-
tions for the tree-level improvement, the default results
without Nτ ¼ 10 in the main text are found to be consistent
with the improved results including Nτ ¼ 10.
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APPENDIX B: LEADING-ORDER
PERTURBATIVE ANALYSIS OF EMT

AROUND A STATIC CHARGE

Let us consider the SUðNÞ Yang-Mills system at
high temperature where gð2πTÞ ≪ 1. Then, the effective
theory valid at the length scale of R ≫ ð2πTÞ−1 is the
dimensionally reduced EQCD in three dimensions (see,
e.g., [36–39])

SEQCD¼
Z

d3x

�
1

2
TrG2þTrðDφÞ2þm2

DTrφ
2þδLEQCD

�
:

ðB1Þ

Here ðAi;φÞ ¼ ðAa
i t

a;φataÞ ¼ ðAi; A4Þ=ðg
ffiffiffiffi
T

p Þ, Gij ¼
∂iAj − ∂jAi þ igE½Ai;Aj�, and Diφ ¼ ∂iφþ igE½Ai;φ�

(a)

(b)

(c)

(d)

FIG. 10. Distribution of −r4hT rrðt=a26.910 ¼ 1.3; rÞiQ as func-
tions of rT. (a) Same figure as Fig. 2 shown for a comparison. (b),
(c),(d) Tree-level improved results with Eqs. (A7) and (A10) for
three choices of Utl

γγ0 : (b) Utl
γγ0 ¼ hU44iQ, (c) Utl

γγ0 ¼ hUrriQ,
(d) Utl

γγ0 ¼ hUθθiQ.

(a)

(b)

(c)

(d)

FIG. 11. Comparison of the different prescriptions in the
continuum extrapolation of −hT rrðt;rT¼0.40ÞiQ=T4 at T=Tc ¼
1.44: (a) tT2 ¼ 0.00401, (b) tT2 ¼ 0.00767, (c) tT2 ¼ 0.0113,
and (d) tT2 ¼ 0.0150.
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with TrðtatbÞ ¼ 1
2
δab. The higher dimensional operators

are denoted by δLEQCD. The effective coupling and the
Debye screening mass in the LO read gE ¼ g

ffiffiffiffi
T

p
and

m2
D ¼ ðN=3ÞðgTÞ2, respectively.
Under the “Feynman static gauge” (∂4A4 ¼ 0 for the

temporal component and the Feynman gauge for the spatial
component Ai) [37,38], the tree-level propagators read

hφað0ÞφbðxÞi ¼ δab
e−mDjxj

4πjxj ; ðB2Þ

hAa
i ð0ÞAb

j ðxÞi ¼ δabδij
1

4πjxj ; ðB3Þ

hAa
i ð0ÞφbðxÞi ¼ 0; ðB4Þ

where a and b are color indices. Moreover, the Polyakov
loop operator ΩðxÞ is written as

ΩðxÞ ¼ Pe−ig
R

1=T

0
dτA4ðx;τÞ ¼ e−igφðxÞ=

ffiffiffi
T

p
: ðB5Þ

The LO contribution to the connected correlation
between the Polyakov loop and the EMT stems from the
two gluon exchange of Oðg2Þ and is diagrammatically
shown in Fig. 12. Since the Polyakov loop operator has
only the scalar component φðxÞ, the terms which survive in
the LO are the connected diagrams with G2

4i, i.e.,

hðGa
i4Þ2ðxÞiQ ¼ hðGa

i4Þ2ðxÞTrΩð0Þic
hTrΩð0Þi ; ðB6Þ

where the suffix c implies the connect correlation.
By expanding ðGa

i4Þ2 and TrΩ up to Oðφ2Þ for fixed
i ¼ 1, 2, 3, we obtain

hðGa
i4Þ2ðxÞiQ ¼ −

1

4N
g2hφað0Þ∂iφ

bðxÞihφbð0Þ∂iφ
aðxÞi

þOðg3Þ

¼ −
N2 − 1

4N
g2
�
∂i

�
e−mDjxj

4πjxj
�	

2

þOðg3Þ

¼ −
CF

8π
αs

x2i ðmDjxj þ 1Þ2
jxj6 e−2mDjxj

þOðg3Þ; ðB7Þ

where αs ¼ g2=4π and CF ¼ ðN2 − 1Þ=2N.

Picking up the contributions of ðGa
4iÞ2ðxÞ in each

component of the EMT, we obtain the following perturba-
tive estimate for r≡ jxj ≫ ð2πTÞ−1 up to Oðg2Þ:

hT 44ðxÞiQ ¼ hT rrðxÞiQ ¼ −hT θθðxÞiQ
¼ −

CF

8π
αs

ðmDrþ 1Þ2
r4

e−2mDr þOðg3Þ: ðB8Þ

The simplest way to show the above relation is to
choose x ¼ ðr; 0; 0Þ, so that T rrðr; 0; 0Þ ¼ T 11ðr; 0; 0Þ and
T θθðr; 0; 0Þ ¼ T 22ðr; 0; 0Þ.
Although one finds that the EMT trace hT μμðxÞiQ

vanishes at Oðg2Þ, one can utilize the following trace
anomaly to evaluate its Oðg4Þ contribution:

T μμ ¼
β

2g
Ga

μνGa
μν; ðB9Þ

where the Yang-Mills beta function reads β ¼
−β0g3 − β1g5 þ � � �, with β0 ¼ ð11=3ÞCA=ð4πÞ2, β1 ¼
ð34=3ÞC2

A=ð4πÞ4, and CA ¼ N. By using the right-hand
side of the formula and following the same procedure as
above, we find

hT μμðxÞiQ ¼ −
11

3

CACF

ð4πÞ2 α
2
s
ðmDrþ 1Þ2

r4
e−2mDr

þOðg5Þ: ðB10Þ

This is indeed Oðg2Þ higher than Eq. (B8).

FIG. 12. Diagram contributing to the leading-order calculation
of the correlation function between the Polyakov loop and the
EMToperator. The vertical line represents the Polyakov loop and
two wavy lines exchanged gluons. The symbol ⊗ corresponds to
the EMT operator.
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