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We present a lattice-QCD determination of the elastic isospin-1/2 S-wave and P-wave Kz scattering
amplitudes as a function of the center-of-mass energy using Liischer’s method. We perform global fits of
K-matrix parametrizations to the finite-volume energy spectra for all irreducible representations with total
momenta up to v/3 2L—"; this includes irreducible representations (irreps) that mix the S- and P-waves. Several
different parametrizations for the energy dependence of the K-matrix are considered. We also determine
the positions of the nearest poles in the scattering amplitudes, which correspond to the broad x resonance in
the S-wave and the narrow K*(892) resonance in the P-wave. Our calculations are performed with
2 41 dynamical clover fermions for two different pion masses of 317.2(2.2) and 175.9(1.8) MeV.
Our preferred S-wave parametrization is based on a conformal map and includes an Adler zero; for the
P-wave, we use a standard pole parametrization including Blatt-Weisskopf barrier factors. The S-wave
Kk-resonance pole positions are found to be [0.86(12) — 0.309(50)i] GeV at the heavier pion mass and
[0.499(55) — 0.379(66)i] GeV atthe lighter pion mass. The P-wave K *-resonance pole positions are found to
be [0.8951(64) — 0.00250(21)i] GeV at the heavier pion mass and [0.8718(82) — 0.0130(11)i] GeV at the
lighter pion mass, which corresponds to couplings of gx-x, = 5.02(26) and gg- g, = 4.99(22), respectively.

DOI: 10.1103/PhysRevD.102.114520

I. INTRODUCTION

As the simplest two-meson system with unequal mass
and carrying strangeness, the Kz system plays an important
role in particle and nuclear physics. A review of the early
history of Kx scattering and the associated resonances can
be found in Ref. [1]. The Kz system also occurs in heavy-
meson weak decay processes that are used to search for
physics beyond the Standard Model [2-6]. This includes
multibody nonleptonic decays such as B — Kzz, in which
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large CP-violating effects have been observed and two-
body resonant substructures are seen [7], and semileptonic
decays such as B — Kz *T¢~, which currently provide
hints for new fundamental physics [8—15].

K scattering has been studied in fixed-target scattering
experiments with charged-kaon beams [16,17] and, at low
energies, through the formation and breakup of electro-
magnetically bound Kz atoms [18,19]. Further detailed
investigations are planned using neutral kaon beams at the
GlueX experiment [20].

The I = 1/2 S-wave scattering amplitude is observed to
be elastic up to approximately 1.3 GeV [16,17]. The results
for the elastic scattering phase shift slowly but monoton-
ically increase and reach 60° at approximately 1.1 GeV. The
rise in the phase shift is likely due to a very wide resonance,
the « [also referred to as K((800) or, more recently,
K{(700)]. However, since the phase shift does not cross
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90°, the existence of the x remains a topic of discussion
[21]; the latest update of the Particle Data Group database
[22] still lists the « as “requires confirmation”. Because the
k is such a wide resonance with total decay width
[Nt = 600 MeV, its description is more involved. The
search for a proper description and explanation for this
elusive resonance is a hot topic in hadronic physics. The
basic idea is to construct a parametrization of the scattering
amplitude and fit it to the experimental data; by analytically
continuing the amplitude into the complex plane, one
searches for a pole attributed to the x resonance. The
experimental data [16,17] have been described by effective
Lagrangians incorporating chiral symmetry [23-37] and
models of meson interactions [38,39]. The x was also
studied in the large N limit of QCD [40,41] and with the
inverse amplitude method [42,43]. The authors of
Refs. [44,45] used Roy-Steiner equations to determine
the pole of the x resonance. Less rigorous but similar
studies using dispersion relations [46,47] are able to
consistently find the x pole. The relations between chiral
perturbation theory and dispersion relations were explored
in Ref. [48]. Fits of various models [49] and Padé
approximants [50] to the experimental data led to similar
results. Furthermore, it was observed that a x resonance is
necessary to explain an enhancement [51,52] in other
production channels in the experiments E791 [53] and
BES [54,55].

In the P-wave, the I = 1/2 Kr scattering amplitude at
energies below the K# threshold is well described by a
simple Breit-Wigner form with a single resonance, the
K*(892),1 as observed in various processes ranging from
kaon beam experiments to 7z decays and D-meson decays
[22]. The total decay width of the K*(892) is approxi-
mately 50.8(0.9) MeV [22] with branching ratios to Kz
being 99.9%, to Ky at the order of 1073, and less than 107>
to Knr.

In lattice QCD, scattering amplitudes can be determined
from finite-volume energy spectra using Liischer’s method
[56-65]. For S-wave Kz scattering, the early lattice QCD
calculations focused on scattering lengths describing low-
energy scattering. The first such calculation, published in
2004, was performed for I = 3/2 only and in the quenched
approximation [66]. This was followed by a calculation in
2006 that included N, =2 + 1 staggered sea quarks but
employed a domain-wall valence action [67]; the authors
determined the 7 = 3/2 S-wave scattering length directly
from the lattice and used chiral symmetry to extract also the
I =1/2 scattering length at several pion masses. The
S-wave scattering lengths have also been determined
from scalar form factors for semileptonic decays [68].
Reference [69] contains the first direct lattice QCD calcu-
lation of the S-wave scattering length for both / = 1/2 and

n the remainder of the text, we will denote the K*(892) in
short as K*.

I =3/2, albeit in the quenched approximation. The Kz
system was also investigated using a staggered action for
both the valence and sea quarks in Refs. [70-73]. Note that
the presence of extra nondegenerate fermion tastes when
using a staggered action introduces complications for the
Liischer method that are not yet fully understood. More
recent dynamic lattice QCD calculations of KzS-wave the
scattering lengths employed valence Wilson fermions with
either Ny =2 [74], Ny =2+ 1 [75] or Ny =2+ 1+1
[76] dynamical Wilson fermions.

Early attempts to investigate the x resonance on the
lattice focused on the energy spectrum and involved
searching for additional energy levels that could be
associated with the resonance. Finite-volume energies were
investigated for the k system in Refs. [77] and [78]. In the
latter reference, the quark-disconnected contributions were
neglected. The authors later found that this leads to the
wrong spectrum [74], as also discussed in Ref. [79] from a
perturbative point of view. In the early 2010s, it became
clear that the x does not behave like the typical resonance
on the lattice. Using unitarized chiral perturbation theory
models, Refs. [80—-85] determined the finite-volume ener-
gies and investigated what can be expected in lattice QCD
calculations.

To date, there have been few fully fledged determina-
tions of the energy dependence of Kz scattering amplitudes
with dynamical lattice QCD. The first such studies focused
on the P-wave in the K* resonance region. In Ref. [86],
N; =2+ 1 staggered quarks were used to determine the
K* phase shift from the rest frame spectra. A similar
calculation with N, =2 Wilson quarks included also
moving frames [87] and determined the scattering phase
shift and the K* width. The authors of Ref. [88] repeated
the calculation for the p and the K* at an almost physical
pion mass on two large N, = 2 gauge ensembles. A more
comprehensive study was published in Refs. [89,90], where
the authors calculated the scattering amplitudes in S-, P-,
and D-waves with ] = 1/2 and I = 3/2 and determined
their resonance content. They employed anisotropic gauge
ensembles with Ny = 2 + 1 Wilson fermions, similarly to
Ref. [91]. Recently, Ref. [92] reported a calculation of
I = 1/2 S- and P-wave scattering amplitudes at an unprec-
edented number of quark masses.

In the following, we present a new detailed analysis of
I =1/2 Knr scattering using lattice QCD. This work
provides further information on the interactions and reso-
nances in this system and also constitutes our first step
toward a future lattice calculation of semileptonic form
factors with Kz final states based on the formalism
developed in Ref. [93]. We simultaneously determine the
energy dependence of both the S-wave and P-wave
scattering amplitudes below the K7 threshold and inves-
tigate several different parametrizations with and without
an Adler zero for the S-wave amplitude. We determine the
pole locations corresponding to the x and K* resonances
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and also present the K*Kz couplings. Our calculation is
performed on two different gauge-field ensembles with
Ny = 2 + 1 dynamical clover fermions; the first has a lattice
size of 323 x 96 with a spacing of @ ~ 0.114 fm and a pion
mass of m, ~ 317 MeV, while the second has a lattice size
of 483 x 96 with a ~ 0.088 fm and m, ~ 176 MeV.

The paper is organized as follows. We begin by over-
viewing the continuum description of elastic Kz scattering
in Sec. II. In Sec. 111, we briefly describe the lattice gauge-
field ensembles, while Sec. IV gives details on the con-
struction of the interpolating operators and correlation
matrices. Our spectrum results are shown in Sec. V, and
the finite-volume methods for the determination of the
scattering amplitudes are discussed in Sec. VI. We present
our results for the energy dependence of the phase shifts and
the pole locations in Sec. VIIL. Our conclusions, including a
comparison with previous work, are given in Sec. VIIL

II. PARAMETRIZATIONS OF THE
SCATTERING AMPLITUDES

In this section, we briefly review the K-matrix formalism
describing 2 — 2 scattering [94] and then discuss the
specific parametrizations we use to describe Kz scattering
with I1(J?) = 1/2(0%) and I(J*) = 1/2(17). In general,
the multichannel scattering matrix can be expressed as

SO (s) = 14 2T (s), (1)

where T'%) is the T-matrix (also known as the scattering
amplitude), which depends on the invariant mass s of the
system, and Z is the partial wave of the scattering process.
From the unitarity of S), one gets

ZT

where we used that, due to time-reversal invariance
of the strong interaction, the 7-matrix is symmetric.
Here, the indices i, j,... label the scattering channels,

and st(;‘z denotes the threshold in channel i. Equivalently,

)

1
_[T@ - T} ) = ImT - sthr v (2)

2it T

{71}, = =0(s - si))5,;. (3)
That means that we can split the real and imaginary
contributions to 7(“)=! in the following way,

(TO, = (KO, —i6(s — si)s,  (4)

where K(%) has to be real and symmetric to ensure unitarity
and time-reversal invariance.

In order to incorporate the correct analytic structure from
the K threshold, we define the phase-space factor p, which
is a diagonal matrix in channel space:

- O CENE-(EE) o

Above, a and b label the two mesons undergoing elastic
scattering in channel i. For example, at scattering energies
above the K7 threshold we have two scattering channels,
i = 0, 1, which correspond to the scattering of Kz and K7,
respectively. However, the K7 channel is not relevant at the
energies we consider here, and our spectra can be described
by purely elastic Kz scattering (i = 0 only). We omit the
channel indices in the remainder of the paper.

Using the phase-space factor, we define the rescaled

K-matrix K¢ through
K — p1/2f((f’)p1/2_ (6)

The elastic scattering phase shift 6, is related to the
scattering amplitude as

1

T®) = ¢i% sin(§,) = ——— 7
e sin(5) cotd, — i )
and to the K-matrix as
A 1
K =tan(6,) and K =—tan(s,). (8)
P

We now proceed to the discussion of the parametrizations
we use for the s dependence. For the P-wave, which is
governed by the narrow K* resonance, we find that a simple
one-pole K-matrix parametrization with Blatt-Weisskopf
barrier factors describes the data well. For the S-wave, we
also consider three additional parametrizations: the effective-
range expansion [95,96], Bugg’s parametrization [97,98]
that accounts for a zero in the scattering amplitude known as
the Adler zero [99-101], and the conformal-map-based
parametrization used in Ref. [50], which also has an
Adler zero.

A. Chung’s parametrization

Chung’s parametrization is a raw K-matrix pole para-
metrization [94] combined with Blatt-Weisskopf barrier
factors [102]. The latter describe a centrifugal barrier effect
in the P-wave but is trivial for S-wave scattering. For both
the S- and P-waves, the K-matrix pole parametrization is

ngamf gfa \/_)7 (9)

—s)p

where a labels the resonances present and

gf,a(\/g) = mf.arf.a(\/g) (10)

with
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Cra(V/s) =12 a PIBG (K. k)T - (11)

Here, the 7, are the resonance couplings, B (k, k,) are the
Blatt-Weisskopf barrier factors (defined further below), and
the parameters F(}’a are related to the widths of the

resonances. Since only the product yfa’al“(}’a appears in
Is,(v/s), we perform our fits in terms of new parameters

4%, defined as
g(z;.a =Vta \/ mbﬂwarg,a' (12)

Inserting Eq. (12) into Eq. (9) gives the final form

7O — Zgg,agg.aBg(zks kq) Bl (k. ky) _ (13)

a (mz,”,a - )
The Blatt-Weisskopf factors are functions of k; the scatter-
ing momentum at the given s; and k,, the scattering
momentum at s = m2. The scattering momentum k is
defined via

\/E:\/m,%+k2+\/m%(+k2, (14)
which gives

k2:s2+(m%—m%5—2s(mi+m%(). (15)
S

The Blatt-Weisskopf factors are equal to B4 (k, k,) =
F,(k)/Fs(k,), where

Fo(k) =1, (16)
2
R =1 (1)

with R , the characteristic range for £ = 1, which we also
take to be a fit parameter. Since we include only one
resonance in each partial wave, we omit the index « in the
following and denote the fit parameters as

mg, g% (for £ =0,1),R,. (18)

B. Effective-range expansion

The effective-range expansion (ERE) to order k*> for
¢ =0 is given by [95,96]

pie=o P (11,
K k<a+2r0k s (19)

where a is the zero-energy scattering length and r
represents the effective range of the interaction. The actual
fit parameters we use are

1 1
CO:Z’ Clziro. (20)

C. Bugg’s parametrization

The author of Ref. [98] performed a fit to FOCUS and
E791 data for the D — Kzz decay [103,104], using a
modified version of the parametrization of Ref. [31] to
accommodate the broad nature of the x resonance. This is a
K-matrix pole parametrization where the width is taken to
have a zero of the form s — 5,4, intended to account for the
prediction from chiral perturbation theory that the 7-matrix
has a zero at s = s4 (the Adler zero), where [50]

Sp :é(m%( +m,2r+2\/4(m%< —m2)? +m%<m,2,) (21)
The parametrization enables the scattering amplitude to
reproduce the experimental phase shift near the threshold
much better. A model explanation for this form of the
amplitude is discussed in Ref. [39]. We implement this
parametrization by multiplying the K-matrix pole with an
enveloping term of the form s — 54 so that the 7-matrix also
becomes zero as predicted:

2
k(f:()) — [G(z)(S)] (22)
my—s
S—S
Go(s) = G A 23
ols) 0 54— m(z) (23)

D. Conformal map parametrization

The final parametrization we consider for the S-wave is
that of Ref. [50], which involves a power series in a new
variable (s). The regions of analyticity in the complex-s
plane are conformally mapped to the interior of the unit
disk, while the elastic, inelastic, left-hand, and circular cuts
are mapped to the circle |w| = 1. The parametrization also
includes an Adler zero and is given by

K(=0-1 — \2/_15 F(s)ZBna)" (s) (24)

with

1
F(s) = .
S — 57

(25)

The conformal map is defined as
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ofy) = VIO

IRV N
where Ag, = m% —m? and y, = y(so). The constant s
determines the maximum value of s for which the map is
applicable, while the constant a determines the origin of the
expansion. We set /sy equal to the K7 threshold, using

leading-order chiral perturbation theory to express m, in
terms of my and m,:
4 2 _ 02
Voo = mg + TR 27)

We choose a = 1.3 for both ensembles so that the origin of
the expansion is around the middle of the data points. We
found it sufficient to expand to first order in .

III. GAUGE ENSEMBLES AND
SINGLE-MESON ENERGIES

In this work, we utilize two different gauge-field
ensembles, labeled C13 and D6, with parameters given
in Table I. These ensembles use the tadpole-improved tree-
level Symanzik gluon action [105-108] and include 2 + 1
flavors of clover fermions [109,110]. The gauge links in the
fermion action are Stout smeared [111] with a staple weight
of p = 0.125. We use the same clover action also for the
valence quarks. The lattice spacings, a, were determined
using the Y(2S) — Y(1S) splitting [112,113] computed
with improved lattice non-relativistic quantum chromody-
namics [114].

When using Liischer’s method, the pion and kaon
dispersion relations are needed to relate energies to
scattering momenta. To study the dispersion relations on
the lattice, we computed pion and kaon two-point corre-
lation functions projected to different momenta. Fits of the
dispersion relations on the D6 ensemble are shown in
Figs. 1 and 2. We find that the data with |p| < v/3 - 2z/L
are consistent with the relativistic continuum dispersion

TABLE 1. Parameters of the gauge-field ensembles.
Parameters C13 D6

N3 x N, 323 x 96 483 x 96
p 6.1 6.3
am, 4 —0.285 -0.2416
am —-0.245 —-0.205
Csw 1.2493 1.2054

a (fm) 0.11403(77) 0.08766(79)
L (fm) 3.649(25) 4.208(38)
am, 0.18332(29) 0.07816(35)
amg 0.30475(17) 0.22803(15)
m, (MeV) 317.2(2.2) 175.9(1.8)
mg (MeV) 527.4(3.6) 513.3(4.6)
Nconfig 896 328

w dispersion relation

(aE)? = (amy)? + (ap)?®
am, = 0.07815 £ 0.00013
c? =1.0022 & 0.0068

0.07 —

0.06 —

0.05 —

o
R 004
0.03
0.02 —
0.01 —

I
000 001 002 003 004 005 006 007
(ap)?
FIG. 1. Pion dispersion relation for D6 ensemble. The mass of

the 7 and the speed of light determined from the multiple-
momenta simultaneous fit matches the relativistic dispersion
relation with the rest frame 7 mass fit.

K dispersion relation

0.12 — (aE)2 — (amK)z + cz(ap)z
ampg = 0.22801 + 0.00015

01171 1 2 = 0.9950 + 0.0057 .

0.10 —

0.09 —

(ak)?

0.08 —

0.07 —

0.06 —

0.05 —

(ap)®

FIG. 2. Like Fig. 1, but for the kaon.

relation on both ensembles, and we therefore use this form
in the further analysis.

IV. INTERPOLATING OPERATORS AND
CORRELATION MATRIX CONSTRUCTION

To determine the Kz scattering amplitudes, we use
the Liischer method; the first step of such a calculation
is to determine the finite-volume spectra for different
total momenta and irreducible representations. We deter-
mine the spectra in specific momentum frames and
irreducible representations by calculating two-point corre-
lation functions constructed from a set of interpolating
operators.

A. Interpolating operators

We use two types of interpolating operators in this
work. The single-hadron operators, built from local quark-
antiquark bilinears, are constructed as follows:
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K (1, P) = > e T5(t R)yu(t, 3), (28)

X

K (1. P) =) e

'xg(tvi)yt},iu(tvf)v (29)

X

— § elP')CE

X

K (1, P) (1, X)u(t,%). (30)

These operators have manifest isospin I = 1/2; the pro-
jection to irreducible representations of the lattice sym-
metry group is discussed further below. The two-hadron
operators are constructed from products of pseudoscalar z
and K operators with definite individual momenta, com-
bined to I = 1/2 via SU(2) Clebsch-Gordan coefficients,

- o 2 - -
Okx(t, D1, P2) = \/;”+(f’P1)KO(t’ P2)
Lo oo =
- gﬂ' (t’ pl)K (tv pZ)» (31)

where

(1, 5) = Y _ePTd(, F)ysu(r,®),  (32)

X

E elpl x

d(t, %)ysd(1, X)

-t x>y5u<r, 7). (33)
K (0F2) = >_eP (1 Bpsult ). (34
KO(1.52) = Y e 51 Brsd(13). (35)

X

All quark fields in the single-hadron and multihadron
operators are Wuppertal smeared [115] with aw,, = 3.0
and Ny, = 20 on the C13 ensemble and Ny, = 55 on
the D6 ensemble, using APE-smeared gauge links [116]
with apapg = 2.5 and Nppg = 25, 32 for C13, D6 in the
smearing kernel.

Since the finite-volume box in which we perform our
calculation reduces the symmetry with respect to the
infinite volume, we project the operators to the irreducible
representations that respect the symmetry of the lattice:

B dim(A
AP _
P R)Ox,(Rp.P—R
K order(LG ; RE; K 2P P
(36)
3 dim(A)
oph = T R K5H(P). (37)
' order(LG(P))Reg(;(ﬁ) Z s

Above, LG(P) denotes the Little Group on the lattice for

total momentum P (i.e., the subgroup of the cubic group
that remains a symmetry for the given momentum), and
2*(R) are the characters for irrep A, which can be found
for example in Ref. [117]. In the sum over p (with
components being integer multiples of 27z/L), we fix the
magnitudes |p;| = |Rp| = |P| , and
different choices for these magnitudes yield different
operators in the same irrep.

In the following we will denote the irrep-projected

operators as OQ’P , where the operator index A counts
the different internal structures within a given irrep, as
detailed in Table IL

B. Wick contractions

The correlation matrix C*F(¢) for irreducible represen-

tation A of Little Group LG(f’) is obtained from the
interpolators defined above as

Cﬁbp(tsnk - tsrc) = <02.P<tsnk)0g’P(tsrc)T>v (38)
where £, is the source time and f;, is the sink time. The
correlation matrix elements are expressed in terms of quark
propagators by performing the Wick contractions (i.e., by
performing the path integral over the quark fields in a given
gauge-field configuration). The resulting quark-flow dia-
grams are shown in Fig. 3 (for the case I = 1/2 considered
here). The diagrams in Fig. 3 are obtained from point-to-all
propagators (labeled f), sequential propagators (labeled
seq), and stochastic time-slice-to-all propagators (labeled
st), as in Ref. [118]. One summation over X at the source is
eliminated using translational symmetry. In the following
description of the different types of propagators, we omit
the smearing kernels for brevity, but we note that all
propagators are smeared at source and sink with the
parameters given in Sec. [VA.

The point-to-all propagator for quark flavor g with full
spin-color dilution is given by

- . - b
qu (tsnk’ Xsnks sres xsrc)gﬁ

= > D7 (ke Fomas )iy PO () (39)
x.p.b

where

pli e B) (1,5 )/b;: =5, 55( im(sb yBsp- (40)

The sequential propagator S, follows from the solution
of the lattice Dirac equation with right-hand side given by
(39) restricted to the source time f,, and dressed with a
vertex,
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TABLE II.  List of operators for all irreps that we use. The operators with structures labeled K, K;t, and K;" are quark-antiquark
operators, while the operators with structures labeled Kz are two-meson operators.

2L—”f’ Little group LG  Irrep A Angular momentum content ~ Operator number Operator structure
(0,0,0) 0, Ay, J=0,4,.. 1 Ky

2 Kz with |p,| = |p2| =0

3 Kz with |p\| = [ps| = F

4 Kz with [p1| = [p2] = V23

3 Kz with [p1| = P2 = V33
(0,0,0) 0, T, J =13, 1 Kt

2 Kt

3 Kz with |py| = [pa] =%

4 Kz with 5| = [Pa| = V27

5 Kz with [p,| = [pa| = V33
0,0,1) Cyy Ay J=0,1,... 1 Kit

2 K7

3 Ky

4 Kz with [p;| =0 and |p,| = 2%

5 Kz with |p;| =2 and |p,| =0

6 Kr with |p,| =2 and |p,| = V22

7 Kr with \ﬁﬂ:\/ﬁ%”and |Pa| =2

8 Kr with |ﬁ1\:\/§2{and |i52|=\/§2L—”

9 Kz with |p,| = V322 and |p,| = V2%
0,0,1) Cyy E J=12, 1 Kt

2 K

3 Kr with \1‘51|:\/_2T”and |Pa| =2

4 Kz with |p,| = 2 and |p,| = V222

5 Kz with |p,| = V32 and |p,| = V2%

6 Kr with |p,| = V22 and |p,| = V3%
0,1,1) Cy, A J=0,1,... 1 Kt

2 Kt

3 K¢

4 Kz with [p,| = 0 and |p,| = V2%

5 Kz with [p,| = V22 and |p,| =0

6 Kr with [p;| =2 and |j52|:\/§2L—”

7 Kz with || = |po| = F

8 Kz with [p;| = V32 and |p,| = %

? Kz with [p,| = [p2] = V23
0,1,1) Cy, B J=1.2, 1 Kt

2 K

3 Kr with |p,| = V32 and |p,| = 2

4 K with || = || = V22

5 Kz with [p;| =2 and |p,| = V3%
0,1,1) C,, B, J=12, 1 Kt

2 Ki

3 K with |jy| = [7,] = 2

4

Kz with || = |pa| = V27
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TABLE 1I. (Continued)

ZL—”13 Little group LG  Trrep A Angular momentum content ~ Operator number Operator structure
(1,1,1) Cs, Ay J=0,1,... 1 Kt
2 Kt
3 K¢
4 Kz with [p,| = 0 and [p,| = V3%
5 Kz with |p;| = V322 and |p,| =0
6 Kr with |p,| = 2 and |p,| = V22
7 Kz with |p;| = V2% and |p,| = %
(1,1,1) Cs, E J=1,2, 1 Kt
2 K"
3 Kz with |p;| = 2 and |f)2|:\/§2”
4 Kz with |p,| = V222 and |p,| = 2

Sseq (tsnkv snk’r(p) srcv_'src)g‘lﬂ)

Z D =\a.b'

snkv snk’ src» x)a,a’
xp.b

X Fa’ﬁ’eiﬁ.zsl(tsrcvx; tsrcvxsrc)zl_bﬂ‘ (41)

For the purpose of this calculation, we require only I' = y5
to realize the pseudoscalar pion or kaon interpolators and
q = 1/s for the second inversion of the light/strange Dirac
operator.

In addition, we use time-slice-to-all stochastic propaga-
tors for the sink-to-sink quark propagation in Fig. 3(e).
These follow from solving the Dirac equation with a fully
time-diluted stochastic source

S (tta Xsnks sres xsrc)

— -1 ¥ . ¥)aa
- Z Dl (tsnk’ Xsnk> Lsres x)aa

X.d .o

X ”( ﬁl"C)( ) /17( *IC)( src)g*.

The space-spin-color components of 7(%+) are independent,
Z, x Zy-distributed random numbers with zero mean and
unit variance.

Finally, the all-source-to-all-sink quark propagation in
Figs. 3(d) (lower fermion loop) and 3(f) are realized with
stochastic source-time-slice-to-all propagators from spin-
diluted noise sources based on the one-end trick [119],

S 1 ([mkv Xsnks Lres psrc)gﬂ

- ZDI Lsnks snk’ )ZZ;’?(I"'“];““/})(X)Z:’ (43)
where
AT )Y = 58, 1(F) T, (44)

with components #7(X)* again Z, x Z, noise.

V. SPECTRUM RESULTS

We extracted the energy levels E,’)'ﬁ from the correlation
matrices using the generalized eigenvalue problem [120,121]

sd

Kr

reBC
i
sd | ()

gD 55U

shhid fl

(b)

gwa—»\ S fi
) sTid
1275d\__/

kx| (©) (d)

71’75d—>—<1)
st

Uysd

seqs

SYsu

SYsu

BE

uysd stV

sf,,(]
®

uysd

(e

FIG. 3.
(€) CR ko and ()

CIross

The Wick contractions corresponding to the correlation matrix elements of type (a) Cgz4—g4> (0,6) Cgr_ggr (d) C‘}(ijff‘,(”,
oSk We do not directly compute diagram (c), since it can be obtained as the complex conjugate of diagram (b).

The black circles outlining one of the interpolating fields in each diagram indicate the location of the point-to-all-propagator source.
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S (up(e) = 2(1.10) S ChF (to)uy(1).  (45)

where n labels the eigenpair. Here, ¢, is a reference time slice
whose variation does not affect noticeably the large-
behavior [118]. At large enough values of ¢ and ¢, the
eigenvalues 1"(t, t,) take the form of a single exponential,

Wt 1g) = e Ex"(1=10), (46)

We can make some initial observations by looking at the
effective energies

ln(h t())

Em (f) = In—m20)
a eft() nﬂ.,,([—f—a,t())

(47)

shown in Fig. 4 for four different irreps of three different
Little Groups. Dashed lines indicate the noninteracting

o9
|P| =0, T1, O12345

0.65 — Ill J — 1.46
s
=
0.60 —| IIIIIII —1.35
055— T TTTTTTTTTTT TN 14—
- T 1T} =
N =xxTTETT =|= %
EL 050 e e e e e e ] _l L4113 O
S a5 - 1 +10 =%
ke T T === T E L T T ]
=
0.40 — =======,=:=II_ZZ:_0'9
0.35 — — 0.79
0.30 — — 0.68
1T T T T T T
4 6 8 10 12 14 16 18 20
t/a
_(2m\2
|P| (T) , A1, O123456789
0.475 — —1.07
_:________________________:
0.450 —f. - = T ——— 1ot
= N
=_ TE 5 IIIIIII |
0.425 — = _ — 0.96
I Trzzg.33d 1 =
<& 0400 — = L) o090 @
5} - (D
S 0as— | TUEEEIEEETEEL a0
IS}
0350 -  0.79
B et e e T
0.325 — —0.73
0.300 — — 0.68
I I I I I I I I

energy levels of the Kz system with the pion and kaon
momenta |p;| and |p,| used for the corresponding operator
basis. In the plot for irrep T,, note that the highest three
energy levels are shifted upward relative to the noninteract-
ing energies. These states overlap most strongly (in relative
terms) with the states created by the corresponding multi-
hadron operators. The lowest energy level is an extra energy
level whose occurrence is related to the presence of a narrow
resonance (the K*). This state overlaps most strongly
with the states created by the quark-antiquark operators.
Similarly, on the top-right plot (A = A, |I_"|2 = 0), there is
a downward shift with respect to the noninteracting energies
from which we can expect an attractive interaction and a
positive S-wave scattering phase shift. With the absence
of an extra energy level, one cannot straightforwardly
identify the presence of a resonance in the depicted energy
range.

o9
|P| =0, Ay, O1a345

0.55 —| - 1.24
0.50 -2 T e —1.13
Tx ¥y 5 3 T II ]:
0.45 — :{ =101
e e e e =
e8 gy S TExrxxzxszrseildloos O
3 Lt
0.35 — o079 E£8
030"~ T ew s wswewy (6
0.25 —| — 0.56
1T T T T T T T
4 6 8 10 12 14 16 18 20
t/a
2
|P| = (fﬂ) 3, E, O234
3 _
0.48 —| T L 108
7 ol 71 Frrrttts
0.47 —| I I L 1+ | 106
______ F------- Jt=]-1 -7 ;
& 0.46 — 1 T 104 @
= IR 2
S 045 k3 LTl 1o o
—————— oo s i ks ) e
0.44 — IIIIII . — 0.99
0.43 —| o097

FIG. 4. Sample plots of effective energies [defined in Eq. (47)] from the D6 ensemble. The noninteracting energy levels are indicated
with dashed lines. The results from single-exponential fits are shown as the shaded bands, indicating the £1o energy range

and the fit range.
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Our main results for the energies ENF are obtained
directly from single-exponential fits to the generalized
eigenvalues 1" (¢, 1)) and are given in Table III. Also shown
in the table are the center-of-momentum-frame energies
sPA, which are related to the lattice-frame energy Ej"
through

P.A
Sn =

(Ex™)? = (P). (48)

We have chosen the fit ranges such that the contributions
from higher excited states are negligible compared to
statistical uncertainty. We ensured this by varying the
lower bound of the fit range, f,;,, as shown in Figs. 5
and 6. In each case, the nominal value for 7.;,/a is
chosen such that AEg = E|, —E|,_ ., is consistent

with zero. Ancillary files with the central values of

a\/sf‘A and their covariances for each ensemble are

provided as part of Supplemental Material [122].
|

00

00 Woo
(Mgm,f'm’) = 10 —i\/§W10
11 ivV3w,_
1-1 iv3wy,

where the functions wy,, depend on the scattering mo-
mentum k, the box size L, and the total momentum P,

Z8,(1; (k £)?)

2

ym 226 + 1(kL)r! ’

(52)

Wem = ng(k,L) =

Here, Z’;m(l; (k£)?) is the generalized zeta function and

Y= EP /+/s is the Lorentz boost factor. The matrix MP can
be further simplified by taking into account the symmetries

for a given Little Group LG(IB) and irreducible represen-
tation A [62]. Each irrep in principle contains infinitely
many partial waves, the first few of which are listed in
Table II (since the K and = are both spinless, we have
J =7). However, the contributions from higher partial
waves are increasingly suppressed, and we neglect the
contributions from # > 2 in this work. This then leads to
the following quantization conditions, where we write the
scattering amplitudes 7(®) and 7V in terms of the phase
shifts d, and &;, respectively:

2r
L
cot 50 = W0,

P="2(0,0,0, LG=0, A=A,:

(53)

VI. LUSCHER ANALYSIS

Assuming elasticity and neglecting exponential finite-
volume effects, the energy levels of a two-particle system
with total momentum P in a cubic box with periodic
boundary conditions are given by the solutions of the
Liischer quantization condition

det (1 + iT(1 + iMP)) = 0. (49)

The object in parentheses is a matrix with indices £m, £'m’.
The T-matrix introduced in Sec. II is diagonal,

Tfm.f’m’ = T<f>6ff’5mm'9 (50)

and for a single scattering channel as considered here, 7(%)
denotes the scattering amplitude for partial wave ¢. The
amplitudes 7() depend only on the center-of-mass energy
or, equivalently, the scattering momentum k. The elements

of MP for ¢, ¢ <1 are given by [62]

10 11 1—-1
i\ﬁwm i\/§W11 i\/§w1_1
woo +2wag V3w V3w, , (51)
—V3Bwyp  wog—wy  —Vowr,
—V3wy =Vowy  weg = wy
|
- 2
P:T(O,O,O), LG= Oh’ A:Tlu: COt(Sl =W, (54)
- 2z
PZZ(O,O,I), LG:C41/., A:Al:
(coty —wop) (cotd; —wog —2wng) = 3wi, =0, (55)
- 2z
P:f(o,o,l), LG = Cy,, A=E:
Cotd; = Woo — W, (56)
- 2z
P=T(011),  LG=C, A=A
(cot 8y — woo ) (COt8; — wop + Wag + iV6Wws)
+ 6iw}, =0, (57)
- 2z
P:f(o,l,l), LG = C,,, A=By:
cotd; = wyg + 2wy, (58)
- 27
P:I(O,l,l), LG:C21}, A:B2'
cot8; = woo — Wag — V6 Im[wny)], (59)
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TABLE III.  Results of single-exponential fits to the generalized eigenvalues, for the two different ensembles, the different total
momenta P, and the different irreps A. We set #,/a = 3 on the C13 ensemble and #,/a = 4 on the D6 ensemble. Ancillary files with the

central values of a\/ s,f;’ A and their covariances for each ensemble are provided as part of Supplemental Material [122].

2

Fit range & aEbN ay/ sk

Ensemble Lp| A n

C13 0 T, 1 10-20 0.76 0.5189(17) 0.5189(17)
C13 0 Ay 1 9-20 1.14 0.48318(63) 0.48318(63)
C13 1 Ay 1 8-20 0.68 0.53809(74) 0.50099(79)
c13 1 A 2 8-20 0.29 0.5544(10) 0.5184(11)
C13 1 Ay 3 8-20 1.37 0.57660(89) 0.54214(94)
C13 1 E 1 8-20 0.97 0.5547(13) 0.5188(14)
C13 V2 Ay 1 9-20 0.48 0.5809(16) 0.5103(18)
C13 V2 A 2 8-18 0.83 0.5977(16) 0.5292(18)
C13 V2 A, 3 8-18 0.44 0.6242(12) 0.5590(14)
C13 V2 B, 1 8-20 1.12 0.5866(19) 0.5167(21)
C13 V2 B, 2 9-20 0.84 0.6374(12) 0.5737(13)
C13 V2 By 1 9-20 0.90 0.5871(23) 0.5172(26)
C13 V3 Ay 1 7-20 0.81 0.6183(24) 0.5163(29)
C13 V3 Ay 2 7-18 1.18 0.6397(22) 0.5418(26)
C13 V3 Ay 3 7-18 0.42 0.6686(20) 0.5757(23)
C13 V3 E 1 8-20 0.94 0.6189(32) 0.5171(38)
C13 V3 E 2 8-18 1.01 0.6843(13) 0.5938(14)
D6 0 T, 1 11-20 1.54 0.3861(11) 0.3861(11)
D6 0 T, 2 10-18 0.38 0.4244(10) 0.4244(10)
D6 0 A 1 10-20 0.71 0.30162(71) 0.30162(71)
D6 0 Ay 2 10-18 0.22 0.4018(13) 0.4018(13)
D6 1 A, 1 10-20 0.79 0.33657(73) 0.31007(80)
D6 1 Ay 2 10-18 0.96 0.37714(58) 0.35369(62)
D6 1 Ay 3 12-18 1.15 0.4128(18) 0.3915(19)
D6 1 Ay 4 12-18 0.19 0.4350(17) 0.4148(18)
D6 1 E 1 12-20 1.51 0.4072(15) 0.3856(16)
D6 1 E 2 9-18 0.63 0.45134(94) 0.43194(98)
D6 1 E 3 12-16 0.03 0.4694(17) 0.4508(18)
D6 V2 A 1 9-20 0.62 0.36787(82) 0.31789(95)
D6 NG A 2 10-18 1.23 0.41041(82) 0.36629(92)
D6 V2 A 3 10-18 0.75 0.42372(97) 0.3811(11)
D6 V2 Ay 4 9-18 0.77 0.4412(13) 0.4005(15)
D6 V2 B, 1 11-18 0.36 0.41064(76) 0.36655(85)
D6 NG B, 2 9-18 0.54 0.4414(15) 0.4007(16)
D6 V2 B, 1 10-20 0.89 0.4294(14) 0.3874(16)
D6 N B 2 9-18 0.47 0.4775(13) 0.4402(14)
D6 V3 Ay 1 8-20 0.98 0.3966(12) 0.3254(15)
D6 V3 Ay 2 8-18 1.42 0.4397(13) 0.3767(15)
D6 V3 Ay 3 8-18 1.26 0.4497(15) 0.3884(18)
D6 V3 Ay 4 9-18 0.82 0.4659(20) 0.4070(23)
D6 V3 E 1 11-20 0.30 0.4385(14) 0.3753(17)
D6 V3 E 2 11-18 0.38 0.4554(17) 0.3950(19)
D6 V3 E 3 12-18 0.39 0.4726(29) 0.4146(34)
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FIG. 5.
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Sample plots illustrating our tests of the stability of the fitted energies under variations of the lower bound of the fit range, ;.

The left panels show the effective-energy plots for the generalized eigenvalues. The center panels show the fitted energies as a function

of f,,in. On the right, we give the changes in the fitted energies when shifting 7,;, by one lattice step: AEyyq = E|,

AEw = E|,
the Little Group O,,.

)
P:fﬂ(l,l,l), LG=Cs, A=A

(COt(SO — WOO)(_ C0t51 + Woo — 2l\/6W22)
+9w3, =0,

2z
L
C0t51 = Wy + i\/8W22.

P="2(1,1,1), LG =Cs,

A=E:

(61)

min=d E|tmin and

— E|, . .4 for our nominal choice of 7,;,. The results shown here are from the D6 ensemble for the irreps A, and 7'y, of

Note that at nonzero momenta the quantization conditions
in the A, irreps depend on both the S-wave and the P-wave
phase shifts. This mixing between even and odd partial
waves occurs because the reciprocal space of momenta in
the unequal-mass Kz system lacks inversion symmetry
[62]. Traditionally, the Liischer method has often been used
to map individual energy levels on the lattice to individual
phase shift values at the corresponding center-of-mass
energies. However, this is no longer possible in the A;
irreps with partial-wave mixing. Equation (55), for exam-

ple, has the two unknowns 50(k,,i)‘A‘) and &, (k,’j‘A‘), and it
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FIG. 6. Like Fig. 5, but for irreps A; and E of the Little Groups Cy,

does not help to combine Eqgs. (55) and (56) either, because
the solutions of Eq. (56) occur at different values of the

scattering momentum, kEE. Since we want to use all irreps,
we follow a different approach [123], in which we para-
metrize the energy dependence of the phase shifts §, and 6,
using the models discussed in Sec. II, and then perform a
global fit of the model parameters for both the S- and P-
waves to all energy levels by minimizing the following y?

function:
R I_).[data] N ﬁ[model]
2 __ —1 . s
2=Y S (VT )
ﬁ,A,nﬁ/,A’,n’
NP [data] NP [model]
X < s —\/ s > (62)

and Cj,, respectively.

Here, [C™!] is the data covariance matrix of the spectrum

~[model]
determined on the lattice, and 1/ sﬁ,\'P is obtained from

the parametrized scattering amplitudes using the Liischer
quantization conditions.” We fit 17 energy levels on the
C13 ensemble and 26 levels on the D6 ensemble, as listed
in Table III. In choosing these energy levels, we have stayed
further below the K7 threshold, approximately 0.95, /sx,,
determined through Eq. (27) in order to safely avoid effects
from the Kp threshold, the K*(1410) resonance, or
rescattering from three particle channels [22]. In practice,

’In Ref. [118], we demonstrated that the results of this
approach are consistent with those from the traditional two-step
approach (when applicable) of first extracting individual phase
shifts followed by a fit of a model to the phase shifts.
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we found it helpful to obtain initial guesses for the P-wave
model parameters using an initial fit to only those irreps
without S-wave contributions, followed by the full fit to all
irreps. The results for the P-wave parameters from the full
fits are consistent with the results from the reduced fits but
are about 10% more precise. Moreover, we performed a
combined fit with a reduced set of irreps (T, A,, and
C4,’s Ay), which, apart from increasing the uncertainty in
some parameters compared to using the full list, has also
proven to worsen the y?/dof minimum to an unacceptable
value. This further justifies the use of data from higher
momentum frames. On each ensemble, we performed four
different full fits that differ in the type of parametrization
used for the S-wave amplitude: Chung’s parametrization
[Eq. (13)], effective-range expansion [Eq. (19)], Bugg’s
parametrization [Eq. (22)], and conformal-map parametri-
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FIG. 7.

zation [Eq. (24)]. The parametrization for the P-wave
amplitude was always of the form given in Eq. (13).
The best-fit parameters and y> values of the full fits are
given in Tables V and VI in the Appendix.

VII. RESULTS FOR THE PHASE SHIFTS AND
POLE POSITIONS

The phase-shift curves obtained from the four different
fits and the two ensembles are presented in Fig. 7. In
addition, we determined the positions of the closest
T-matrix poles in the complex /s plane, which are
associated with the x and K* resonances. The pole positions
are shown in Fig. 8 and are listed in Table I'V. All poles are
located on the second Riemann sheet. In the following, we
discuss our observations separately for the S- and P-waves.
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S- and P-wave phase shift results from both ensembles, labeled here by to their pion masses. The four different plots differ in

the type of parametrization used for the S-wave amplitude. From top-left to right-bottom: Chung’s parametrization [Eq. (13)], effective-
range expansion [Eq. (19)], Bugg’s parametrization [Eq. (22)], and conformal-map parametrization [Eq. (24)]. The parametrization for

the P-wave amplitude was always of the form given in Eq. (13).
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T-matrix pole positions for the S-wave (top) and P-wave (bottom). The plots on the left show the results from the C13

ensemble [m, = 317.2(2.2) MeV], while the plots on the right show the results from the D6 [m, = 175.9(1.8) MeV] ensemble. In each
plot, the four different data points correspond to four different parametrizations of the S-wave amplitude. We can see a better stability of
the S-wave pole position for the parametrizations with an Adler zero.

A. S-wave scattering

The S-wave phase-shift curves from the four different
parametrizations are in reasonable agreement with each
other, given the uncertainties. We observe that the phase
shifts remain below 80° in the energy region considered.
Even though there is little model dependence in the phase-
shift curves for real-valued \/E the positions of the
resulting poles of the scattering amplitude vary widely
between the different parametrizations. Moreover, some of
the parametrizations lead to a much stronger dependence on
the pion mass than others:

(1) The ERE parametrization [Eq. (19)] yields a pole at
[1.11(6) — 0.38(34)i] GeV on the C13 ensemble
and at [0.33(23) — 0.35(22)i] GeV on the D6 en-
semble. This change is significantly larger than
expected from the relatively minor change in the
quark masses. Note that the ERE is meant to
describe the behavior near the threshold and likely
becomes unreliable in the upper range of our energy
region.

(i) The poles for Chung’s K-matrix parametrization
without an Adler zero [Eq. (13)] appear above

TABLE IV. Pole positions the S-wave and P-wave scattering amplitudes on the C13 [m, =317.2(2.2) MeV] and D6

[m, = 175.9(1.8) MeV] ensembles.

S-wave parametrization Ensemble S-wave T-matrix poles (GeV) P-wave T-matrix poles (GeV)
Conformal map Cc13 0.86(12) — 0.309(50)i 0.8951(64) — 0.00250(21)i
D6 0.499(55) — 0.379(66)i 0.8718(82) — 0.0130(11)i
Bugg’s parametrization C13 0.850(65) — 0.315(40)i 0.8951(64) — 0.00250(21)i
D6 0.765(90) — 0.310(28)i 0.8717(82) —0.0133(11)i
Effective-range expansion C13 L.111(62) — 0.38(34)i 0.8951(64) — 0.00248(21)i
D6 0.23(67) — 0.42(37)i 0.8716(82) —0.0131(11)i
Chung’s parametrization C13 1.14(10) — 0.176(89)i 0.8949(64) — 0.00250(21)i
D6 1.37(27) — 0.39(19)i 0.8718(82) — 0.0136(11)i
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30 1.1 GeV—in the region where we do not have data
points to fully constrain the amplitude—with only
607 mild dependence on the quark masses. What may be
= 104 happening is that this fit is sensing the K{(1430)
resonance located not that far away [22].
20 (iii) For the conformal-map-based parametrization
[Eq. (24)] and Bugg’s parametrization [Eq. (22)],
0 which both include an Adler zero, the poles appear
near [0.7 — 0.3i] GeV consistently for the two pion
masses and consistently for the two parametriza-
tions. On the lower-pion-mass ensemble in particu-
150 _3‘153 lar, these parametrizations also yield much smaller
| tm statistical uncertainties for the pole locations.
— 100 In summary, the poles of the S-wave amplitude are
s significantly more stable for parametrizations incorporating
50 an Adler zero. Because the conformal-map parametrization
B describes the data on the lower-pion-mass ensemble (D6)
0 N N : N N better than Bugg’s parametrization, we choose the con-
0.7 0.8 0.9 1.0 formal-map parametrization as our nominal parametrization.
V5 [GeV] In Fig 9, we compare the phase-shift curves from this

parametrization to experimental results from Ref. [17]. We see
FIG. 9. Phase shift results, using the conformal-map  thatthe S-wave phase-shift curves approach the experimental
parametrization for the S-wave and Chung’s parametrization data as the pion mass is lowered toward its physical value.
for the P-wave, compared to experimental results from  The pion mass of the D6 ensemble is nearly physical, and the
Ref. [17]. The fitted parameters with the corresponding cova-  regylting curve is very close to the data. The behavior of the
riances used to produce these plots are included in Supplemental e a5 function of the pion mass seen here is also consistent
Material [122]. with the lattice results in Ref. [92] at a higher pion mass.

1.1
A
= 0
i 1.0
L
S 09+ . b * ¢
] v
7_
< 6
. ¢
X
= \
51 } + $ y +
4 - T T T T T T T T
150 175 200 225 250 275 300 325
m, [MeV]
¢ [92] 4 [86] (88] %  this work
Y [91] ¢ [74]

FIG. 10. Comparison between different lattice-QCD results for the K* mass and its coupling to the Kz channel, plotted as a function of
the pion mass. The references are Wilson ez al. [92], Fu and Fu [86], Bali et al. [88], Brett et al. [91], and Lang et al. [74]. Open symbols
indicate Ny = 2 results, and the filled symbols indicate Ny =2 + 1 results.
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B. P-wave scattering

The results presented in Figs. 7 and 8 and Table IV were
all obtained with Chung’s K-matrix parametrization,
Eq. (13), for the P-wave. While we explored other P-wave
parametrizations that do not include Blatt-Weisskopf
barrier factors, we found little variation (an explicit
comparison can be found for / =1 zz scattering in
Ref. [118], which also showed no significant variation).
Furthermore, the P-wave phase-shift curves and pole
locations do not significantly depend on the choice of
the S-wave parametrization, which confirms that partial-
wave mixing between £ =0 and ¢ =1 is under good
control. We choose the same combination of parametriza-
tions as above (Chung’s parametrization for the P-wave
combined with the conformal map for the S wave) for our
nominal results for the P wave.

A comparison of the phase-shift curves for the two
different pion masses with experimental data [17] is shown
in Fig. 9. A clear resonance shape is observed for both pion
masses. In this channel, the resonance width ['g«_ g, =
—2Im(+/sg), where /sy is the location of the pole, depends
strongly on the pion mass due to the large change in
available phase space. We find

I3 — (499 +0.41) MeV, (63)
6. = (26.0+22) MeV, (64)

while the value in nature is 50.8(0.9) MeV [22].
Consequently, even at the close-to-physical pion mass of
the D6 ensemble, the phase shift curve is still noticeably
steeper than in nature. In this situation, it is more appro-
priate to consider the K* Kz coupling gg« g, which can be
obtained from the decay width through
2 3

Ikka K
Ik = —, 65

K*—=Kn 61 Re( \/ER )2 ( )
where k, is the scattering momentum for /s = Re( /).
This gives

9%, = 5.02(26), (66)
IRk, = 4.99(22). (67)

These values are consistent with each other and also
consistent with similar calculations [88,92]. Our results
are slightly below the experimental value of gx-x, =
5.603(4). A comparison of our results for mg- and
gx+xx With previous lattice results is shown in Fig. 10.

VIII. CONCLUSIONS

We have obtained precise results for the I/ = 1/2 S- and
P-wave Kz scattering phase shifts as functions of the
center-of-mass energy up to 1.1 GeV, for quark masses
corresponding to m,~ 176 MeV and m,~ 317 MeV.

We also determined the positions of the closest poles in
the scattering amplitudes, which we identify with the
K{(700) (also referred to as k) and K*(892) resonances.

For the S-wave amplitude, we investigated several differ-
ent parametrizations proposed in the literature, some includ-
ing an Adler zero and some without it. All parametrizations
considered, including the effective-range expansion that is
similar to the widely used LASS parametrization [17],
describe the phase shifts well for real /s in the energy
region considered. However, we found that the pole posi-
tions are stable only for those parametrizations that include
an Adler zero. Using a conformal-map-based parametriza-
tion with an Adler zero, we found the poles in the S-wave
scattering amplitude at [0.86(12) — 0.309(50)i] GeV for
m, ~ 317 MeV and [0.499(55) — 0.379(66)i] GeV for
m, ~ 176 MeV. Despite the unphysical pion masses and
the lack of continuum extrapolations, these results are
consistent with the k pole position extracted from experi-
ments as reported by the Particle Data Group [22].

Earlier lattice calculations at a heavier pion mass of m, ~
390 MeV performed by the Hadron Spectrum Collaboration
[89,90] found the x as a bound state. More recently, the same
collaboration reported results for a wider range of pion
masses down to approximately 200 MeV [92]. Investigating
alarge number of parametrizations, the authors did not find a
sufficiently unique result to report numerically. For the
parametrizations inspired by unitarized chiral perturbation
theory, they did, however, find a k pole with a real part near
the Kz threshold and a large imaginary part. This is
consistent with our findings for parametrizations that
include the Adler zero.

In the vector channel, our results for the K* mass and
width have high statistical precision. Since the K* width
depends strongly on the pion mass through kinematic
effects, it is more appropriate to consider the K*Kx
coupling. Our results for this coupling and for the K*
mass are compared with previous lattice results
[74,86,88,89,91,92] in Fig. 10. Note that the calculations
were performed with different numbers of flavors, different
gluon and fermion discretizations, and different procedures
to set the lattice scale; none of the calculations included a
continuum extrapolation. Keeping in mind these caveats,
we note that our results for both gg+x, and mg- agree well
with previous calculations, except for the higher mass
obtained by Fu and Fu using a staggered fermion action
[86]. Apart from this outlier, the results for mg- show only
very mild quark-mass dependence, while gg-x, has no
discernible quark-mass dependence, similar to g,,, [118].
Furthermore, the results from N = 2+1 and N = 2
ensembles appear to follow common straight lines.

The calculations performed here can also be used in
future lattice determinations of 1 — 2 transition matrix
elements of external currents with the same Kz states. The
scattering amplitudes are needed to map the finite-volume
matrix elements to infinite-volume matrix elements via the
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formalism of Ref. [93], as has already been done for zy* —
mr [124,125]. Such a calculation will be particularly
important for rare B — Kz "¢~ decays [8-15,126].
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APPENDIX: FIT PARAMETERS OF
SCATTERING AMPLITUDES

The fit parameters for the scattering amplitudes are
presented in Tables V and VI

TABLE V. Fitresults for the K-matrix parameters from the C13
ensemble with m, =~ 317 MeV. The type of parametrization for
the P-wave is always the same (Chung’s parametrization), while
the parametrization for the S-wave changes and is given in the
leftmost column. Here, a denotes the lattice spacing.

y?/dof
0.764

S-wave parametrization Fit parameters

¢da = 0.0682 + 0.0025
(mya)? = 0.2676 + 0.0012
Ria™' =0+ 170
Bya® = 0.174 £ 0.030
Bia® = —0.05+0.15

¢Ya = 0.0683 £ 0.0025
(mya)* = 0.2677 £+ 0.0012
Ria™' =0+17
Gla=45+86
(mga)* =2.1+3.6

¢Ya = 0.0680 £ 0.0025
(mya)?* = 0.2677 £ 0.0012
Ria'=1+70
cpa = 0.248 +0.039
cla>=-334+25

¢0a = 0.0684 + 0.0025
(mya)? = 0.2676 + 0.0012
Ria™' =0+20
a =0.44+0.10
(moa)? = 0.448 + 0.081

Conformal map

Bugg’s parametrization 0.761

Effective-range expansion 0.773

Chung’s parametrization 0.753

TABLE VI. Like Table V, but for the D6 ensemble with
m, ~ 176 MeV.

S-wave parametrization Fit parameters y?/dof
Conformal map ¢Ya =0.0894 +0.0037  0.958

(mya)? = 0.15046 + 0.00086
Ria'=0+23
Bya® = 0.086 +0.011
Bya* = 0.106 & 0.025

gYa = 0.0904 £ 0.0037 1.44
(mya)® = 0.15045 + 0.00086
Ria™' = 04280
GYa =20+310
(mpa)> =5+88

Bugg’s parametrization

Effective-range expansion  g{a = 0.0898 + 0.0037 0.926
(mya)* = 0.15040 =+ 0.00086
Ria'=114£97
coa = 0.173 £0.030
cja’> =-074+20
Chung’s parametrization ¢Ya = 0.0915 £ 0.0037 0.875

(mya)* = 0.15048 + 0.00086
Ria'=154+70
gga =049+0.15
(mga)* = 0.36 £0.12
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