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We present a systematic numerical study of θ dependence around θ ¼ 0 in the small-N limit of 2d
CPN−1 models, aimed at clarifying the possible presence of a divergent topological susceptibility in the
continuum limit. We follow a twofold strategy, based on one side on direct simulations for N ¼ 2 and
N ¼ 3 on lattices with correlation lengths up toOð102Þ and, on the other side, on the small-N extrapolation
of results obtained for N up to 9. Based on that, we provide conclusive evidence for a finite topological
susceptibility at N ¼ 3, with a continuum estimate ξ2χ ¼ 0.110ð5Þ. On the other hand, results obtained for
N ¼ 2 are still inconclusive: They are consistent with a logarithmically divergent continuum extrapolation
but do not yet exclude a finite continuum value, ξ2χ ∼ 0.4, with the divergence taking place for N slightly
below 2 in this case. Finally, results obtained for the nonquadratic part of θ dependence, in particular, for
the so-called b2 coefficient, are consistent with a θ dependence, matching that of the dilute instanton gas
approximation at the point where ξ2χ diverges.

DOI: 10.1103/PhysRevD.102.114519

I. INTRODUCTION

The CPN−1 models in two space-time dimensions have
been extensively studied in the literature because they
represent an interesting theoretical laboratory for the study
of gauge theories [1–3]. As a matter of fact, many
intriguing nonperturbative properties, such as confinement,
the existence of field configurations with nontrivial top-
ology, and the related θ dependence, are features that these
models share with 4d Yang-Mills theories.
The Euclidean action of these models, including the

topological term, can be written through a nonpropagating
Abelian field Aμ as

SðθÞ ¼
Z

d2x

�
N
g
D̄μz̄ðxÞDμzðxÞ − iθqðxÞ

�
; ð1Þ

where N is the number of components of the complex
scalar field z, which is subject to the constraint z̄z ¼ 1,
Dμ ¼ ∂μ þ iAμ, and

Q ¼
Z

d2xqðxÞ ¼ 1

2π
ϵμν

Z
d2x∂μAνðxÞ ð2Þ

is the topological charge. The θ-dependent vacuum energy
(density) is defined through the path integral as

EðθÞ ¼ −
logZðθÞ

V
¼ −

1

V
log

Z
½dz̄�½dz�½dA�e−SðθÞ; ð3Þ

and it can be parametrized in terms of the cumulants hQnic
of the topological charge distribution at θ ¼ 0 PðQÞ as

fðθÞ≡ EðθÞ − Eð0Þ ¼ 1

2
χθ2

�
1þ

X∞
n¼1

b2nθ2n
�
; ð4Þ

where the topological susceptibility,

χ ≡ hQ2ic
V

����
θ¼0

¼ hQ2i
V

����
θ¼0

; ð5Þ

parametrizes the leading θ2 term, while the coefficients,

b2n ≡ ð−1Þn 2

ð2nþ 2Þ!
hQ2nþ2ic
hQ2i

����
θ¼0

; ð6Þ

parametrize the nonquadratic part.
One of the most interesting features of theCPN−1 models

is the possibility of performing a systematic expansion of
any observable, including those related to θ dependence, in
the inverse of the number of field components 1=N when
N → ∞ while g is kept fixed [1]; that closely resembles the
1=N expansion of 4d SUðNÞ gauge theories for a large
number of colors. The similarities are nontrivial, since the
relevant scaling quantity turns out to be θ=N in both cases
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[4–7], leading to the prediction that the quantities b̄2n ≡
N2nb2n are finite in the large-N limit: This scaling behavior
has been verified by numerical lattice simulations both for
the CPN−1 [7,8] and for SUðNÞ gauge theories [7,9] up to
the quartic coefficient b2. From a quantitative point of view,
CPN−1 models are more predictive, since the leading term
in the 1=N expansion is known [1,6,7,9] for all coefficients
in the θ expansion of the free energy in Eq. (4) and also
the first subleading term in the case of the topological
susceptibility [10], while in the case of 4d SUðNÞ gauge
theories, one has just phenomenological predictions, based
on the spectrum of pseudoscalar mesons, for the leading
term in the 1=N expansion of the topological susceptibil-
ity [11,12].
Numerical simulations underlined also some differences

between the two theories. Indeed, while in the Yang-Mills
case, the large-N expected scaling practically holds already
for N ≥ 3 [7], this is not quite the case for the CPN−1

models. Indeed, the large-N limit of b2 shows significant
deviations from large-N predictions even for N ∼ 50,
and an agreement with lattice data can be recovered
only by including large higher-order corrections in
1=N; a similar behavior is observed for the topological
susceptibility [8,13].
Another important difference emerges when looking at

the small-N limit. Indeed, while this is predicted and
observed to be regular in the case of 4d SUðNÞ gauge
theories, a singular behavior is expected for 2d CPN−1

approaching N ¼ 2. For instance, one expects a divergence
of the topological susceptibility of the CP1 theory,
which can be justified in the perturbation theory on the
basis of the ultraviolet (UV) divergence of the instanton
size distribution [14–18],

PNðρÞ ∝ ρN−3; ð7Þ

occurring for N ¼ 2. This result has been tested in many
lattice studies, and there seems to be a general consensus
about the singular behavior of χ for N ¼ 2 and about its
origin due to the presence of small instantons; see, e.g.,
Refs. [19–25]. However, there are still many aspects
deserving a more careful investigation.
First of all, as we discuss later on, the actual verification

of the divergent behavior occurring for N ¼ 2 requires one
to perform a continuum limit extrapolation, which is highly
nontrivial, since the divergence is expected to appear as a
logarithm of the UV cutoff, i.e., of the lattice spacing a,
which could be difficult to disentangle from a regular
power-law behavior in a and requires numerical results
spanning over orders of magnitude in terms of the dimen-
sionless correlation length of the system.
The second issue is that a divergent behavior for the

topological susceptibility has been claimed to be observed
also for N ¼ 3 in Ref. [23], where the authors employed a
standard lattice action along with an overlap definition of

the topological charge; however, this is in contradiction
with previous results obtained using a different action
discretization and a geometric lattice definition of Q
[26]: The origin of this discrepancy may be due to the
fact that, according to Eq. (7), also for N ¼ 3, small
instantons are expected to dominate so that also, in this
case, the continuum limit has to be handled with care.
Finally, one would like to understand whether the small-

N divergent behavior regards just the topological suscep-
tibility or also other coefficients in the Taylor expansion of
the free energy in Eq. (4). In asymptotically free theories,
small size instantons are expected to be weakly interacting
so that a possible conjecture [13] is that θ dependence in the
N ¼ 2 limit be described by the dilute instanton gas
approximation (DIGA):

fDIGAðθÞ ¼ χð1 − cos θÞ; ð8Þ

with the divergence appearing just in χ, while the b2n
coefficients are finite and have alternate sign:

bDIGA2n ¼ ð−1Þn 2

ð2nþ 2Þ! : ð9Þ

It is worth stressing that this conjecture would lead, apart
from the global divergent factor in front, to a smooth
behavior in θ ¼ π, unlike what happens at large N, where
fðθÞ is expected to have a cusp in this point. In principle,
this is not in contrast with some recent theoretical results
obtained for the CPN−1 models using ’t Hooft anomaly
matching [27,28]. Indeed, the anomaly matching at θ ¼ π
constrains CPN−1 models with N even to either sponta-
neously break the charge conjugation symmetry [i.e., fðθÞ
has a cusp in θ ¼ π] or to behave as a conformal field
theory (i.e., the dynamically generated mass m≡ 1=ξ
vanishes in θ ¼ π). While the former scenario is expected
to be realized by theories with N > 2, there is much
evidence, both theoretical and numerical, that the CP1

theory is conformal (see, e.g., Refs. [29–32]); thus, no cusp
in θ ¼ π is expected for N ¼ 2. However, the study of the
critical properties of the CP1 model at θ ¼ π points out
that, in this case, χ should be divergent also in the
thermodynamic limit at fixed lattice spacing, suggesting
that DIGA may not be the end of the story for describing θ
dependence for N ¼ 2, and that corrections to it may
survive the continuum limit.
In any case, a near-DIGA small-N behavior of fðθÞ

could explain why, unlike the case of SUðNÞ gauge
theories, large corrections are observed when studying
the large-N limit of CPN−1 models, being that the 1=N
series at large N is not able the capture the peculiar small-N
behavior of the theory. A first evidence of near-DIGA
behavior for the quartic coefficient b2 for N ¼ 2 has been
reported in Ref. [33], where, however, no continuum
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extrapolation for this quantity is reported. As for higher
values of N, no result is known for N < 9.
The goal of the present work is to provide a systematic

study of the small-N θ dependence of CPN−1 models by
lattice simulations, in order to go beyond the present state
of the art. To do so, we have attacked the problem from two
different sides. On one hand, we have performed extensive
numerical simulations for N ¼ 2 and N ¼ 3 considering
dimensionless correlation lengths spanning over 2 orders of
magnitude, namely reaching values of ξ going above 102

and considering various different Ansätze for the con-
tinuum extrapolation in order to fairly assess our systematic
uncertainties on the final results. On the other hand, we
have also considered numerical simulations for larger
values of N, namely N ∈ ½4; 9�, for which the continuum
extrapolation is easier and better defined, then trying to
obtain information on N ¼ 2, 3 by a small-N extrapolation
of these results. We have applied this double-front strategy
to the determination of the topological susceptibility and of
the first coefficients of the θ expansion of fðθÞ, up to
Oðθ6Þ: Consistency of results obtained in the two different
ways provides a solid way to assess the reliability of our
final statements, among which, for instance, the fact that
the topological susceptibility is finite for N ¼ 3.
The paper is organized as follows. In Sec. II, we describe

the lattice setup adopted for discretizing the theory and for
determining the cumulants of the topological charge dis-
tribution, as well as our strategy for taking the continuum
limit of our results. In Sec. III, we present and discuss
our numerical results, and finally, in Sec. IV, we draw our
conclusions.

II. NUMERICAL SETUP

In this section, we briefly discuss various issues related
to the discretization of the model and of its observables, in
particular, those related to topology and to the continuum
extrapolation of the numerical results.

A. Lattice discretization

We discretized the action in Eq. (1) at θ ¼ 0 on a
periodic square lattice of size L using the tree-level
Symanzik-improved lattice discretization [34],

SL ¼ −2NβL
X
x;μ

fc1ℜ½ŪμðxÞz̄ðxþ μ̂ÞzðxÞ�

þc2ℜ½Ūμðxþ μ̂ÞŪμðxÞz̄ðxþ 2μ̂ÞzðxÞ�g; ð10Þ

where c1 ¼ 4=3 and c2 ¼ −1=12 are improvement coef-
ficients, βL ≡ 1=gL is the inverse bare coupling, and UμðxÞ
are the Uð1Þ gauge link variables. The adoption of the
improved action cancels out logarithmic corrections to the
leadingOða2Þ behavior of the discretization errors, where a
is the lattice spacing.

Being CPN−1 models asymptotically free for all values
of N, the continuum limit is approached as βL → ∞.
The a → 0 limit can be traded for that of a diverging
lattice correlation length ξL. Our choice is for the second
moment correlation length ξ, defined in the continuum
theory in terms of the two-point correlation function of
PijðxÞ≡ ziðxÞz̄jðxÞ,

GðxÞ≡ hPijðxÞPijð0Þi − 1

N
; ð11Þ

as

ξ2 ≡ 1R
GðxÞd2x

Z
GðxÞ jxj

2

4
d2x: ð12Þ

To define the lattice length ξL, we adopted the following
definition [35], expressed through the Fourier transform
G̃LðpÞ of GLðxÞ [i.e., the discretization of Eq. (11)],

ξ2L ¼ 1

4sin2ðπ=LÞ
�

G̃Lð0Þ
G̃Lð2π=LÞ

− 1

�
: ð13Þ

B. Discretization of the topological charge

Regarding the topological charge Q, several equivalent
lattice discretizations QL can be adopted, all having the
same continuum limit. However, at finite lattice spacing,
these definitions and their correlations are related to the
continuum by a finite multiplicative renormalization Z
[36,37],

qL ∼ Za2qþOða4Þ; ð14Þ

where q is the topological charge density. We adopted a
geometric definition of the lattice charge [34,38], i.e., a
definition with Z ¼ 1, meaning that it yields always an
integer number for every lattice configuration. Among the
several geometric definitions, we chose one that involves
only the link variables [34],

QU ¼
X
x

qUðxÞ ¼
1

2π

X
x

ℑflog ½Π12ðxÞ�g; ð15Þ

where ΠμνðxÞ≡UμðxÞUνðxþ μ̂ÞŪμðxþ ν̂ÞŪνðxÞ is the
plaquette operator. Despite the fact that Z ¼ 1, renormal-
ization effects are still present, since, in general, QL is
related to the physical charge Q, configuration by con-
figuration, by a relation like

Q ¼ ZðβLÞQL þ η; ð16Þ

where η is a noise with zero average stemming from
fluctuations at the UV scale. For a geometric charge, such
noise appears in the form of the so-called dislocations
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[39,40], i.e., integer valued fluctuations at the scale of the
UV cutoff and proliferating over physical contributions as
the continuum limit is approached. The presence of a
nonzero η gives rise to further additive renormalizations as
one considers cumulants of the topological charge, includ-
ing the topological susceptibility (see Ref. [41] for a
review).
To suppress such noise, a smoothing method, such as

cooling [39,42–47] or the gradient flow [48,49], can be
adopted. The general underlying idea is to perform a
process of minimization of the action, which damps at
first local fluctuations at the UV scale. It has been shown
that various smoothing methods are all numerically equiv-
alent [50,51] and also that the discretization chosen for the
smoothing action does not need to coincide with the one
adopted for the path-integral formulation [51]. Therefore,
for the sake of simplicity and numerical cheapness, we
decided to minimize the standard action [i.e., c1 ¼ 1 and
c2 ¼ 0 in Eq. (10)] using the cooling method, which
consists of a sequence of local steps of action minimization.
Contrary to Refs. [8,13], in this study, we did not adopt

neither simulations at imaginary values of θ in order to
improve the signal-to-noise ratio of cumulants [7,52,53]
nor improved algorithms in order to defeat the critical
slowing down of topological modes [54–57]. This is due to
the relative ease in obtaining precise determinations of the
cumulants of the topological charge for small values of N,
even using standard algorithms, such as heat bath or over-
relaxation. For these reasons, the coefficients b2n are
determined in this study by simply using the definition
given in Eq. (6), with the average taken over the path
integral distribution at θ ¼ 0, where the choice for Q is the
geometrical topological charge in Eq. (15), measured after
a certain number of cooling steps, as discussed later on.

C. Continuum limit at small N

Since ξL ¼ ξ=a diverges as 1=a in the continuum limit,
finite lattice spacing corrections can be expressed as a
function of 1=ξL. Since the adoption of the Symanzik-
improved action in Eq. (10) cancels out logarithmic
corrections to the leading Oða2Þ behavior of lattice arti-
facts, one expects ultraviolet corrections to the lattice
expectation value of a generic observable O to have the
form,

hOilattðξLÞ ¼ hOicont þ cξ−2L þOðξ−4L Þ: ð17Þ

However, when approaching N → 2, one expects, at least
for topological observables, the presence of additional
corrections coming from physical topological fluctuations
of small size: Such physical contributions are neglected in
the discretized theory until the lattice spacing is small
enough, leading to an additional dependence on a, and
hence, on ξL.

An a priori estimate of such effects can be done only
with some assumptions; nevertheless, it can be a useful
guide. For instance, taking the perturbative estimate for the
instanton size distribution reported in Eq. (7) and assuming
that topological fluctuations are dominated by a noninter-
acting gas of small instantons and anti-instantons, one has
that the number of instantons nI and anti-instantons nA are
distributed as two independent Poissonians with equal
mean,

hnIi ¼ hnAi ∝
Z

ρ0

a
PNðρÞdρ ¼

Z
ρ0

a
ρN−3dρ; ð18Þ

where the integral is carried over sizes ranging from the UV
scale, set by the lattice spacing a, up to a certain infrared
length scale ρ0, which is proportional to La. Since, with
these hypotheses,

χ ∝ hðnI − nAÞ2i ¼ 2ðhn2I i − hnIi2Þ ¼ 2hnIi ð19Þ

we have the following predictions:

χ ∝

(
ρN−2
0

−aN−2

N−2 ; if N > 2;

logðρ0a Þ; if N ¼ 2:
ð20Þ

Ultraviolet corrections predicted by Eqs. (20) become
negligible as N grows, and, in particular, one expects them
to disappear for N ≥ 4, where the contribution from small
instantons becomes negligible. On the other hand, the
contribution of small instantons becomes dominant for
N ¼ 2 and 3, where it leads either to a logarithmically
divergent continuum limit forN ¼ 2, or to linear, instead of
quadratic, corrections in the lattice spacing for N ¼ 3.
Notice that, under the assumptions of independent Poisson
distributions for nI and nA, the b2n coefficients are finite
with values as predicted by DIGA in Eq. (9) so that no
further corrections are expected, with respect to Eq. (17), in
their approach to the continuum limit.
Such considerations will be used with caution in the

following. In particular, in order to correctly assess our
systematics on the continuum limit, we will consider the
possible presence of generic power law corrections in the
lattice spacing for N ≤ 4, both for χ and for the other terms
in the θ expansion.

D. Continuum limit and smoothing

Since we adopt a smoothing method in order to remove
field fluctuations at the UV cutoff scale, which are
responsible for unphysical contributions to lattice topo-
logical observables, we need to fix how the amount of
smoothing is changed as one approaches the continuum
limit.
Smoothing algorithms work in general as diffusive

processes, affecting field correlations up to a given
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distance, i.e., up to a given smoothing radius, which is
proportional, in dimensionless lattice units, to the square
root of the amount of smoothing, i.e., to

ffiffiffiffiffiffiffiffiffi
ncool

p
for cooling,

where ncool is the number of cooling steps, or to
ffiffi
t

p
for the

gradient flow, where t is the flow time. It is a standard
procedure to change the amount of smoothing so that the
smoothing radius is kept fixed in physics units: That would
correspond to change ncool proportionally to ξ2L. However,
for a model like the one we are exploring, where small
distance physical contributions are expected to be quite
significant, one should be careful and take care, addition-
ally, of the dependence of continuum results on the physical
smoothing radius, eventually sending it to zero.
An alternative to this difficult double limit procedure is

to take the continuum limit at a fixed number of cooling
steps, ncool, so that the smoothing radius goes to zero
proportionally to a and there is no possibility that physical
contributions at small scales are smoothed away. There are
good reasons to believe that such a procedure works
correctly in the present case.
As we have discussed above, for a geometric charge like

the one used in this study, renormalization effects are
essentially due to dislocations leading to a wrong and/or
ambiguous counting of the topological winding number.
Such dislocations consist of exceptional field fluctuations
living at the lattice spacing scale; hence, it is reasonable to
expect that they will be suppressed by a given and fixed
number of cooling steps ncool, independently of the value of
the lattice spacing a.
Based on such considerations, in the following, we will

consider results obtained by performing the continuum
limit at fixed ncool, then carefully checking the possible
systematics related to this procedure. In particular, we will
show that while results obtained at finite lattice spacing
but at different number of cooling steps usually differ
from each other well beyond their statistical errors, the so
obtained continuum-extrapolated results are not signifi-
cantly dependent on ncool and usually well within statistical
errors.

III. NUMERICAL RESULTS

In Tables I–VII, we summarize the parameters of the
performed simulations, along with the total accumulated
statistics. Configurations were generated using standard
local algorithms, in particular, our elementary Monte Carlo
step consisted in four lattice sweeps of over-relaxation,
followed by a sweep of over-heath-bath; measures were
taken every 10 Monte Carlo steps. We simulated CPN−1

models withN ranging from 2 to 8. For each value ofN, we
simulated several runs at different values of the correlation
length (i.e., at different values of βL); for each ξL, we
measured ξ2χ, b2, and b4 in order to be able to extrapolate
these quantities toward the continuum limit.
As already anticipated, topological freezing is not an issue

at small N: As a matter of fact, standard local updates

allowed a reliable sampling of the topological charge in all
simulations, even for the largest explored values of the
correlations length. In Fig. 1, we show, as an example, the
integrated autocorrelation time τint of Qcool

U
2, in units of

the Monte Carlo step defined above, as a function of ξL for
ξL > 10 and N ¼ 2, 3 and 4; τint was obtained by a binned
bootstrap using the standard procedure described, e.g., in
Ref. [54]. As it can be appreciated, τint is, in all cases, much
smaller than the total collected statistics; indeed, in all our

TABLE I. Simulations summary for N ¼ 2. Statistics are ex-
pressed in millions (M), and every measure is taken after 10
elementary Monte Carlo steps (see the text for further details).

βL L ξL L=ξL Stat. (M)

0.80 22 1.704(13) 12.9 3.2
0.85 26 2.037(16) 12.8 3.2
0.90 30 2.4764(72) 12.1 20.8
0.95 36 3.0309(28) 12.0 201
1.00 46 3.7726(48) 12.3 130
1.05 58 4.7345(59) 12.3 150
1.10 74 6.0142(91) 12.2 114
1.15 94 7.735(16) 12.3 66.7
1.20 122 9.958(51) 12.4 12.2
1.25 160 13.10(14) 12.2 3.4
1.30 210 17.16(19) 12.2 3.9
1.35 280 22.77(34) 12.3 3.6

1.40 98 29.031(40) 3.4 3.5
198 31.115(55) 6.4 13.5
298 31.32(19) 9.5 6.0
396 31.41(50) 12.6 3.4

1.45 122 38.167(55) 3.2 3.5
240 41.352(89) 5.8 8.7
360 41.48(28) 8.7 4.0
480 42.30(76) 11.3 2.2

1.50 168 51.43(11) 3.3 1.5
336 55.75(21) 6.0 4.5
504 57.26(78) 8.8 1.9
672 56.4(1.5) 11.9 2.0

1.55 214 67.95(21) 3.1 1.5
400 74.97(31) 5.3 3.8
500 74.60(57) 6.7 2.4
600 78.0(1.0) 7.7 1.6
700 76.9(1.7) 9.1 1.2

1.60 260 88.13(34) 3.0 1.1
400 97.92(33) 4.1 3.8
500 98.95(59) 5.1 2.4
600 102.23(94) 5.9 1.6
700 98.6(1.5) 7.1 1.2

1.65 200 89.44(16) 2.2 2.4
306 112.57(63) 2.7 0.77
400 123.54(60) 3.2 1.5
500 129.82(52) 3.9 3.7
600 131.98(80) 4.5 2.5
700 132.1(1.2) 5.3 1.8
1024 131.4(1.5) 7.8 6.3
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simulations, we observed many fluctuations ofQcool
U during

the Monte Carlo evolution. It is interesting to notice that,
contrary towhat happens at largeN [13,54], τint diverges as a
power law in ξL (rather than exponentially) so that the
critical slowing down of the topological charge is a much
milder problem in this case: This is likely due to the presence
of small instantons, which are easier to decorrelate. In Fig. 2,

we show, as an example, the distribution of Qcool
U obtained

for N ¼ 2 and at the largest explored values of ξL and L.
Concerning the choice of the lattice size, we performed

simulations at fixed L=ξL, ensuring that L=ξL ∼ 12–15 for
each run to have finite size effects under control [58]; see
Fig. 3. In those cases, when that was not possible (more
precisely, for high-ξL runs for N ¼ 2), several lattices with
different sizes were simulated, and then the infinite volume
limit was performed by fitting the L dependence of every
observable O to the law,

OðLÞ ¼ O∞ð1 − ae−bL=ξLÞ; ð21Þ

whereO∞ is the desired quantity, and a and b are additional
fit parameters. An example of extrapolation toward the
thermodynamic limit is shown in Fig. 4.

TABLE II. Simulations summary for N ¼ 3.

βL L ξL L=ξL Stat. (M)

0.70 18 1.4797(59) 12.2 3.5
0.75 22 1.8227(76) 12.1 3.5
0.80 28 2.298(10) 12.2 3.5
0.85 36 2.906(14) 12.4 3.5
0.90 46 3.750(31) 12.3 1.5
0.95 58 4.930(23) 11.8 3.5
0.975 68 5.710(29) 11.9 3.2
1.00 80 6.588(25) 12.1 7.8
1.025 92 7.589(28) 12.1 8.3
1.05 106 8.828(32) 12.1 8.3
1.075 122 10.231(37) 11.9 8.8
1.10 146 11.834(39) 12.3 13.5
1.15 200 16.019(55) 12.5 15.5
1.20 264 21.717(71) 12.2 19.4
1.25 374 29.342(82) 12.7 37.8
1.366 720 58.69(19) 12.3 44.9

TABLE III. Simulations summary for N ¼ 4.

βL L ξL L=ξL Stat. (M)

0.70 22 1.7842(59) 12.3 2.8
0.75 30 2.3137(97) 13.0 2.8
0.80 38 3.039(12) 12.5 3.1
0.85 50 4.009(17) 12.5 3.1
0.90 66 5.398(22) 12.2 3.1
0.95 90 7.314(33) 12.3 3.1
1.00 120 9.997(45) 12.0 3.1
1.05 170 13.700(71) 12.4 3.1
1.10 226 18.55(10) 12.2 3.5
1.15 320 25.00(20) 12.8 3.5

TABLE IV. Simulations summary for N ¼ 5.

βL L ξL L=ξL Stat. (M)

0.70 32 2.1263(98) 15.0 3.5
0.75 44 2.830(13) 15.5 4.6
0.80 58 3.882(20) 14.9 3.5
0.85 84 5.270(35) 15.9 3.5
0.90 106 7.149(41) 14.8 3.5
0.95 146 9.849(59) 14.8 3.5
1.00 198 13.40(11) 14.8 2.2
1.05 278 18.117(93) 15.3 7.4
1.10 368 24.77(19) 14.9 3.6

TABLE V. Simulations summary for N ¼ 6.

βL L ξL L=ξL Stat. (M)

0.60 18 1.4035(36) 12.8 2.6
0.65 24 1.8608(53) 12.9 2.6
0.70 32 2.5032(76) 12.8 2.5
0.75 42 3.394(11) 12.4 2.2
0.80 58 4.671(15) 12.4 2.4
0.85 78 6.389(21) 12.2 2.6
0.90 108 8.760(31) 12.3 2.6
0.95 150 11.955(48) 12.5 2.8
1.00 200 16.112(41) 12.4 6.5

TABLE VI. Simulations summary for N ¼ 7.

βL L ξL L=ξL Stat. (M)

0.70 44 2.876(12) 15.3 2.2
0.75 58 3.940(19) 14.7 1.7
0.80 80 5.403(26) 14.8 2.4
0.85 112 7.436(35) 15.1 3.1
0.90 154 10.096(48) 15.3 3.4
0.95 210 13.717(68) 15.3 3.6
1.00 304 18.76(11) 16.2 3.9

TABLE VII. Simulations summary for N ¼ 8.

βL L ξL L=ξL Stat. (M)

0.65 36 2.3175(76) 15.5 3.0
0.70 48 3.232(12) 14.8 2.2
0.75 68 4.452(17) 15.3 3.0
0.80 92 6.056(27) 15.2 2.4
0.85 124 8.242(42) 15.0 2.1
0.90 170 11.306(52) 15.0 2.7
0.95 240 15.164(73) 15.8 3.4
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A. Results for ξ2χ , N > 3

First, we consider the case N > 3, for which a finite
continuum limit is surely expected for the topological
susceptibility, with no qualitative differences in the con-
tinuum scaling compared to the large-N case. For this
reason, in order to extrapolate the quantity ξ2χ toward the
continuum limit, we have fitted its dependence on ξL,
according to the Ansatz,

fðxÞ ¼ a0 þ a1x2 þ a2x4; x ¼ 1=ξL: ð22Þ

Only for N ¼ 4, due to its proximity to N ¼ 2 and 3 (see
later discussion), we have also considered the possible

FIG. 1. Behavior of the integrated autocorrelation time τint of
Qcool

U
2, expressed in units of the Monte Carlo updating step

defined in the text, as a function of ξL and N for ξL > 10. The
integrated autocorrelation time was computed through a standard
binned bootstrap analysis on samples obtained after ncool ¼ 50
cooling steps.

FIG. 2. Distribution of the lattice topological charge Qcool
U

during a run with N ¼ 2, β ¼ 1.65, and L ¼ 1024 and measured
after ncool ¼ 50 cooling steps.

FIG. 3. Example of finite size scaling of ξ2χ and b2 as a
function of L=ξL for N ¼ 6 and βL ¼ 0.80 with measures taken
after ncool ¼ 50 cooling steps.

FIG. 4. Examples of extrapolation toward the infinite volume
limit of ξ2χ, b2, and ξL for N ¼ 2 and βL ¼ 1.65, with measures
taken after ncool ¼ 50 cooling steps. Best fits of Eq. (21)
performed with 4 degrees of freedom (d.o.f.) yield, respectively,
χ2=d:o:f: ¼ 1.4, 0.99, 0.6.
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presence of further power law corrections. An example of
continuum extrapolation is depicted, for N ¼ 4, in Fig. 5.
Several sources of systematic errors have been checked:

First, the extrapolation was performed fitting data in several
ranges of ξL to check that the obtained extrapolations were
all consistent with each other and that, as the fit range is
restricted, the Oðx4Þ corrections became negligible.
Second, as anticipated in Sec. II D, we extrapolated the
continuum limit at fixed number of cooling step ncool for
several values of ncool, checking that this procedure does not
introduce significant systematics in continuum-extrapolated
values.
When changing the number of cooling steps, we observe

that, while measures at coarse lattice spacing differ,
the dependence on ncool is less and less visible as the
continuum limit is approached, making the continuum
extrapolation stable as ncool is varied. In Fig. 6, we show
an example of the continuum extrapolation at two different
values of ncool for N ¼ 5, while, in Fig. 7, we show, for the
same case, that any variation in the continuum extrapola-
tion observed when changing ncool is well contained inside
our statistical errors. The final continuum determinations
obtained for ξ2χ are reported in Table VIII.
Some of our results can be compared with previous

literature. For instance, the case N ¼ 4 was studied also in
Ref. [40], reporting a continuumextrapolation ξ2χðN ¼ 4Þ ¼
0.06with an error of the order of 10%, which is in agreement
with our present result ξ2χðN ¼ 4Þ ¼ 0.0595ð12Þ, even if with a larger uncertainty. ForN ¼ 6, one can find a previous

determination in Ref. [23]: Even if no continuum extrapo-
lation is reported there, the result at the smallest explored
lattice spacing, ξ2χðN ¼ 6Þ ≃ 0.037ð6Þ, is consistent with

FIG. 5. Extrapolation toward the continuum limit of ξ2χ for
N ¼ 4 using data in the range ξL > 6 taken after ncool ¼ 50
cooling steps. The solid line represents the best fit obtained using
fit function fðxÞ ¼ a0 þ a1x2 (where x ¼ 1=ξL), while the dashed
line represents the one obtained with fðxÞ ¼ a0 þ a3xc. In the
latter case, the exponent is c ¼ 1.52ð37Þ, and best fits yield,
respectively, χ2=d:o:f: ¼ 2.97=3 and χ2=d:o:f: ¼ 1.34=2. The
diamond point represents our final estimation; see the text for
more details on the assessment of systematic errors.

FIG. 6. Extrapolation toward the continuum limit of ξ2χ for
N ¼ 5 using data in the range ξL > 7. The solid line represents
the best fit obtained using fit function fðxÞ ¼ a0 þ a1x2 (where
x ¼ 1=ξL), with measures taken after ncool ¼ 40 cooling steps,
while the dashed line represents the one obtained with the same
fit function with ncool ¼ 10 cooling steps. The best fits yield,
respectively, χ2=d:o:f: ¼ 1.68=3 and χ2=d:o:f: ¼ 2.25=3. Data
obtained for different numbers of cooling steps have been plotted
slightly shifted to improve readability. The diamond point
represents our final estimation of the continuum limit.

FIG. 7. Example of study of systematic errors on the continuum
extrapolation of ξ2χ for N ¼ 5 and for four different number
of cooling steps ncool. Extrapolations obtained for different
values of ncool are plotted slightly shifted to improve readability.
This extrapolations are all obtained using the fit function
fðxÞ ¼ a0 þ a1x2, where x ¼ 1=ξL. The diamond point repre-
sents our final estimation of the continuum limit.
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our continuum extrapolation, ξ2χðN ¼ 6Þ ¼ 0.0338ð3Þ. In
both cases, the increased accuracy of our determinations is
mostly due to the larger statistics and/or number of simulation
points adopted for the continuum extrapolation.

B. Results for ξ2χ , N = 3

In the N ¼ 3 case, we fit the dependence of ξ2χ on ξL
according to the following function,

gðxÞ ¼ a0 þ a1x2 þ a2x4 þ a3xc; x ¼ 1=ξL; ð23Þ

where we consider both the extrapolations obtained with
fixed c ¼ 1, as suggested by the Ansatz in Eq. (20), and
with c left as a free parameter. In both cases, the Ansatz in
Eq. (23) provides a very good description of our numerical
results, and the x4 corrections turn out to be necessary only
when considering in the fit range correlation lengths as
small as ξL ≲ 5. Moreover, even when c is treated as a free
parameter, its values turn out to be compatible with 1 within
errors, thus, giving further numerical support to the Ansatz
in Eq. (20).
Examples of continuum extrapolations are shown in

Fig. 8, where we also report our final continuum estimate
for N ¼ 3, ξ2χ ¼ 0.110ð5Þ. The quoted error includes all
possible systematics related to the variability of the fit
parameter a when changing the fitting ansatz, the fitting
range (with ξmin varied between 2 and 7), and the number of
cooling steps (with ncool varied between 10 and 50).
Also in this case, a comparison with previous literature is

appropriate and interesting. Early results obtained in
Ref. [26], ξ2χðN ¼ 3Þ ≃ 0.09, were not far from our present
estimate, even if no error was quoted in that case. However,
later results pointed out to a possible wrong scaling of χ
toward the continuum limit and hence, to a possible
divergence of χ even for N ¼ 3 [23]. Our present results
show that ξ2χ is, in fact, finite for N ¼ 3, even if the
continuum limit extrapolation needs special care because of
the small instanton contributions. Since this point was
debated in previous literature, it is important to stress that
our continuum extrapolation for N ¼ 3 is fully confirmed
by the small-N extrapolation based on N > 3 results that
we present in Sec. III D.

Let us now discuss more in detail the systematics related
to cooling. Figure 8 shows that results obtained for ncool ¼
10 and 50 are significantly different from each other;
nevertheless, as also evident for one particular fit Ansatz
in Fig. 8, their continuum limit shows very little variations,
when compared to statistical errors on the fit parameters.
There is a simple way to understand why results at different
ncool differ so much at finite ξL, while coinciding in the
ξL → ∞ limit. As already discussed in Sec. II D, cooling
acts as a diffusive process which smooths away field
fluctuations (both physical and unphysical) below an
effective radius r ¼ ar̂ðncoolÞ, where the radius in lattice
spacing units, r̂, is a function of ncool only, i.e., independent
of the lattice spacing a. At fixed lattice spacing, different
values of ncool lead to different values of r, and hence, to
different values of the topological susceptibility because a
different amount of physical signal below r is removed:
The effect can be particularly significant for smallN, where
topological fluctuations at small scales are more abundant.
On the other hand, the effect must fade away as a → 0.
If the above picture is correct, results obtained at

different a and different ncool, but such that r ¼
ar̂ðncoolÞ is the same, should coincide: For instance, results
shown in Fig. 8 for ncool ¼ 10 should go onto those at
ncool ¼ 50 if they are shifted along the horizontal axis by a

TABLE VIII. Summary of continuum extrapolations of ξ2χ as a
function of N. The value marked with * is taken from Ref. [13].

N ξ2χ · 103

3 110(5)
4 59.5(1.2)
5 42.90(60)
6 33.80(30)
7 27.10(30)
8 22.40(30)
9* 20.00(15)

FIG. 8. Extrapolation toward the continuum limit of ξ2χ for
N ¼ 3 using data in the range ξL > 6. The dashed and dotted
lines represent, respectively, the best fits obtained for ncool ¼ 50

using fit function gðxÞ ¼ a0 þ a1x2 þ a3xc (where x ¼ 1=ξL)
either leaving c as a free parameter (χ2=d:o:f: ¼ 2.4=6) or with
fixed c ¼ 1 (χ2=d:o:f: ¼ 1.3=5); in the latter case, the free
exponent turns c ¼ 0.85ð14Þ. The solid line, instead, represents
the best fit obtained with c as a free parameter for ncool ¼ 10

cooling steps: In this case, c ¼ 0.98ð18Þ (χ2=d:o:f: ¼ 1.35=5).
The diamond point represents our final estimation of the
continuum limit, which takes into account all systematics related
to the variability in fitting function, fitting range, and the number
of cooling steps.
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constant factor equal to r̂ð10Þ=r̂ð50Þ. Such experiment has
been performed for ncool ¼ 10; 25; 50 in Fig. 9, showing
that it works perfectly: Plotting all data as a function of an
effective variable xeff proportional to r=ξ ¼ r̂ðncoolÞ=ξL,
where r̂ðncoolÞ has been found empirically, data at different
values of ncool collapse perfectly onto each other over the
whole range of explored correlation lengths; a similar
collapse can be obtained also for other values of N.
Therefore, the dependence of ξ2χ on ncool observed at
finite lattice spacing can indeed be simply interpreted in
terms of a global effective rescaling of 1=ξL so that such
dependence naturally fades away when ξL → ∞.
To summarize, our results for N ¼ 3 provide solid

evidence that ξ2χ is indeed finite in the continuum limit
of this theory. On the other hand, that will be further
checked and supported by an independent small-N extrapo-
lation based on N > 3 results only, which is discussed in
Sec. III D and will make the evidence conclusive.

C. Results for ξ2χ , N = 2

For the N ¼ 2 case, two possibilities are open. The
Ansatz based on Eq. (20) could be correct, leading to a
susceptibility which diverges logarithmically in the con-
tinuum limit, i.e., has the following dependence on
x ¼ 1=ξL:

ξ2χðξLÞ ¼ a00 logðx=a01Þ þ a02x
2 þ a03x

4: ð24Þ

On the other hand, corrections to such prediction leading to
a finite ξ2χ cannot be excluded a priori; in this case, one
should consider a dependence on ξL like that used in
Eq. (23) for the N ¼ 3 case; i.e.,

ξ2χðξLÞ ¼ a0 þ a1x2 þ a2x4 þ a3xc; ð25Þ

where c is a positive exponent. We have to say that,
unfortunately, despite the fact that our present results
extend over almost 2 orders of magnitudes in terms of
the correlation length ξL, we are still not able to clearly
distinguish between the two possibilities, in the sense that
both Ansätze, Eqs. (24) and (25), return acceptable values
of the χ2=d:o:f. test, even if marginally better for the
convergent Ansatz.
Let us consider, for instance, the data reported in Fig. 10,

where we consider only results obtained for ξL > 10. In this
range Oðx4Þ, corrections turn out to be unnecessary.
Considering data obtained for ncool ¼ 50, we obtain
χ2=d:o:f: ¼ 7.9=6 for the divergent Ansatz in Eq. (24)
and χ2=d:o:f: ¼ 3.8=5 for the convergent Ansatz in
Eq. (25); in the latter case, we also obtain c ¼ 0.30ð15Þ
and a prediction ξ2χ ¼ 0.43ð12Þ (for ncool ¼ 20, the latter
prediction changes to ξ2χ ¼ 0.42ð11Þ, c ¼ 0.33ð16Þ,
with χ2=d:o:f: ¼ 3.8=5). Notice that, in the case of the

FIG. 9. Results obtained for ξ2χ in the N ¼ 3 model and for
different number of cooling steps, plotted as a function of
an effective variable xeff proportional to r̂ðncoolÞ=ξL ¼ r=ξ.
The perfect collapse of data proves that the dependence of ξ2χ
on ncool can be interpreted in terms of varying effective radius
r ¼ ar̂ðncoolÞ below which, the topological signal is lost, and,
as such, disappears after continuum extrapolation a → 0.
The exact value of xeff has been fixed conventionally to
xeff ¼ ðr̂ðncoolÞ=ξLÞ=r̂ðncool ¼ 50Þ, and we have found empiri-
cally r̂ð25Þ=r̂ð50Þ ≃ 1.1 and r̂ð10Þ=r̂ð50Þ ≃ 1.3.

FIG. 10. Extrapolation toward the continuum limit of ξ2χ for
N ¼ 2 using data in the range ξL > 10. The solid and dashed
lines represent, respectively, the best fits obtained using fit
functions hðxÞ ¼ a00 logðx=a01Þ þ a02x

2 (where x ¼ 1=ξL) and
gðxÞ ¼ a0 þ a1x2 þ a2x4 þ a3xc, with measure taken after
ncool ¼ 50 cooling steps. The former best fit yields
χ2=d:o:f: ¼ 7.9=6, while, in the latter case, we obtain the
continuum limit a ¼ 0.43ð12Þ and the exponent c ¼ 0.30ð15Þ
(χ2=d:o:f: ¼ 3.8=5). The dotted line, instead, represents again the
best fit obtained using fit function gðxÞ¼a0þa1x2þa2x4þa3xc,
but with measures taken after ncool ¼ 20, which gives a ¼
0.42ð11Þ and c ¼ 0.33ð16Þ (χ2=d:o:f: ¼ 3.8=5).
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convergent fit, the coefficient c is at 2 standard deviations
from zero, which is the boundary where also this fit
becomes divergent: This is consistent with the fact that
the logarithmic fit is marginally acceptable.
The situation does not change appreciably when chang-

ing the fit range, with both Ansätze remaining acceptable,
even if with slightly lower values of the χ2=d:o:f. test in the
case of a finite continuum susceptibility: If the latter
scenario could be assumed a priori, we would conclude
ξ2χ ∼ 0.40ð15Þ for N ¼ 2. However, the fact that no
conclusive answer can be obtained based on our present
data forN ¼ 2 is confirmed by looking at the best fit curves
reported in Fig. 10. The two curve profiles (convergent and
divergent) are hardly distinguishable in the explored range
of ξL and deviate from each other only for much larger
values of ξL. Another independent possibility to discrimi-
nate between these two different behaviors is to use data
obtained for N > 2 and extrapolate them toward N ¼ 2.
This topic is covered in Sec. III D.

D. N → 2 limit of ξ2χ

In this section, we aim at tackling the question about the
small N behavior of the topological susceptibility from
another independent front by extrapolating continuum
results obtained for ξ2χ at N > 2 toward N ¼ 2. A
summary of such results, including all N < 10, is reported
in Table VIII. Using Eq. (7) and assuming noninteracting
instantons, the expected behavior of ξ2χ when approaching
the N → 2 limit is [13]

ξ2χ ∼
1

N − 2
; N > 2: ð26Þ

Therefore, we fitted the N dependence of ξ2χ for N > 2
using the following function:

FðNÞ ¼ a
ðN − N�Þγ : ð27Þ

The best fit is quite good and is shown in Fig. 11; the
corresponding parameters are the following:

a ¼ 0.119ð10Þ;
N� ¼ 1.90ð14Þ;
γ ¼ 0.91ð4Þ;

χ2=d:o:f: ¼ 4.56=4:

This best fit, yielding a central value for N� < 2, techni-
cally supports a finite extrapolation toward N ¼ 2; how-
ever, N ¼ 2 is well within one standard deviation from N�
so that even this approach reveals to be inconclusive, at
least for this issue. As shown in Fig. 12, the error on the
best fit blows up as N → 2 is approached, being that N� is
very close to it, so that this extrapolation turns out

to be compatible with the hypothetical finite value found
from the convergent continuum limit of Sec. III C,
ξ2χ ¼ 0.40ð15Þ, but within quite large uncertainties. As
a matter of fact, a best fit of the same data set with (26), but
fixing N� ¼ 2 yields a perfectly compatible results: a ¼
0.112ð2Þ and γ ¼ 0.89ð1Þ (χ2=d:o:f: ¼ 5.1=5); this best
fit is depicted in Fig. 11 as well. Finally, as a further

FIG. 11. Best fit of the small-N behavior of ξ2χ for N ranging
from 3 to 9. The solid and dashed lines represent, respectively, the
best fits obtained using the fit function (27) with N� ¼ 2 or left as
a free parameter. The best fits yield, respectively, χ2=d:o:f: ¼
5.1=5 and χ2=d:o:f: ¼ 4.56=4.

FIG. 12. Best fit of the small-N behavior of ξ2χ for N ranging
from 3 to 9. The dashed line represents the best fit obtained using
fit function (27) leaving N� as a free parameter, the shadowed
band represents the fit error, and the diamond points represent the
hypothetical finite continuum limit obtained from the convergent
continuum extrapolation of ξ2χ for N ¼ 2.
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consistency check of the solidity of these results, we fitted
our small-N data also in narrower ranges, in particular,
considering only data for N > 3 or for N > 4. Best fits are
shown in Fig. 13. In both cases, N� and γ turned out, again,
to be compatible with 2 and 1, respectively,

N� ¼ 1.77ð31Þ; γ ¼ 0.94ð7Þ; N > 3;

N� ¼ 2.40ð52Þ; γ ¼ 0.82ð10Þ; N > 4:

Moreover, extrapolating these fits toward N ¼ 3, we obtain
values for ξ2χðN ¼ 3Þ which are, in both cases, in perfect
agreement with the continuum limit obtained from direct
N ¼ 3 simulations in Sec. III B. Based on these results, we
conclude that the finiteness of the topological susceptibility
for N ¼ 3 can be definitely assessed.

E. Small-N behavior of the b2n coefficients

In this section, we study the small-N behavior of the b2n
coefficients, in particular, and we aim at checking the
hypothesis that these coefficients are finite in the N → 2
limit and that, in this limit, they approach the DIGA
prediction. With our statistics, we could only obtain reliable
estimations of b2, while already b4 always turned out to be
compatible with zero, after continuum extrapolation, in all
explored cases. Thus, we can presently discuss only the
small-N behavior of b2.

FIG. 13. Best fits of the small-N behavior of ξ2χ considering
just N > 3 or N > 4 data. The dashed lines represent the best fits
obtained using fit function (27) leaving N� as a free parameter,
while the shadowed bands represent the fit errors. Best fits give,
respectively, N� ¼ 1.77ð31Þ (χ2=d:o:f: ¼ 4.3=3) and N� ¼
2.40ð52Þ (χ2=d:o:f: ¼ 3=2). Such extrapolations fully support
the finite results obtained from direct simulations at N ¼ 3, both
qualitatively and quantitatively.

FIG. 14. Extrapolation towards the continuum limit of b2 for
N ¼ 5 using data in the range ξL > 7. The solid and dashed lines
represent the best fits obtained using fit function fðxÞ ¼ a0 þ
a1x2 (where x ¼ 1=ξL) with measures taken, respectively, after
ncool ¼ 10 and ncool ¼ 40 cooling steps. Best fits yield, respec-
tively, χ2=d:o:f: ¼ 2.25=3 and χ2=d:o:f: ¼ 3.24=3. Data obtained
for different numbers of cooling steps have been plotted slightly
shifted to improve readability. The diamond point represents our
final estimation of the continuum limit.

FIG. 15. Extrapolation towards the continuum limit of b2 for
N ¼ 3. The solid and dashed lines represent the best fits obtained
using the fit function gðxÞ ¼ a0 þ a1x2 (where x ¼ 1=ξL) using
measures taken after ncool ¼ 50 cooling steps in the ranges ξL >
8 and ξL > 15. The best fits yield, respectively, a0 ¼ −0.0471ð8Þ
(χ2=d:o:f:¼4.65=5) and a0¼−0.0485ð11Þ (χ2=d:o:f:¼1.06=2).
The dotted line represents instead the best fit obtained using
measures taken after ncool ¼ 20 cooling steps in the range ξL > 8.
The best fit yields a0 ¼ −0.0478ð8Þ with χ2=d:o:f: ¼ 2.85=5.
Data obtained for different numbers of cooling steps have been
plotted slightly shifted to improve readability. The diamond point
represents our final estimation of the continuum limit.

BERNI, BONANNO, and D’ELIA PHYS. REV. D 102, 114519 (2020)

114519-12



As we have discussed in Sec. II C, contrary to what
happens for the topological susceptibility, in this case, we do
not expect a priorimodifications to the standard form of UV
corrections reported in Eq. (17). As a confirmation of this
expectation, a continuum extrapolation performed accord-
ing to the fit function in Eq. (22) turns out toworkwell for all
values of N, including N ¼ 2 and N ¼ 3, with Oðx4Þ
corrections becoming irrelevant and not needed when
restricting the fit range to large enough correlation lengths.
Examples of such extrapolations are reported in Figs. 14–16.
For N ¼ 2 and 3, we have also considered the possible

addition of generic power law corrections to Eq. (22)
proportional to xc, as we have done for ξ2χ; however, this
turned out to be irrelevant in this case, with modifications to
the continuum extrapolation staying within errors. The only
modification, which can be noticed in theN ¼ 2; 3 cases, is
that the approach to the continuum limit is steeper;
however, this is compensated by the larger values of ξL
available from our simulations in these cases.
All continuum extrapolations are reported in Table IX.

Also in this case, the quoted errors include systematics,
which have been assessed by observing the variation of
central fit values when changing the fit function, the fit
range, and the number of cooling steps ncool. Our data for
N ¼ 2 confirm that b2 is finite, with a continuum estimate

b2ðN ¼ 2Þ ¼ −0.070ð4Þ, which is ∼3σ off from the DIGA
prediction bDIGA2 ¼ −1=12 ≃ −0.0833. Results reported in
Ref. [33] point also to b2 ∼ −1=12, even if no continuum
limit is performed in that case. We can try to extrapolate,
based on present results, the value N� of N, for which b2
reaches the DIGA prediction; to that aim, we try to fit our
data according to a critical behavior like

GðNÞ ¼ bDIGA2 þ aðN − N�Þγ: ð28Þ
While we do not have any argument to support such an
Ansatz, it turns out to work quite well: A best fit in the
range [2,9] is reported in Fig. 17 and returns the following
parameters:

a ¼ 0.0345ð18Þ;
N� ¼ 1.94ð6Þ;
γ ¼ 0.352ð25Þ;

χ2=d:o:f: ¼ 1.2=5:

FIG. 17. Small-N behavior of the quartic coefficient b2. The
solid lines represent the best fit obtained using fit function (28).
The best fit yields N� ¼ 1.94ð6Þ with χ2=d:o:f: ¼ 1.2=5. The
black point represents the found interval for N�, for which
b2ðN�Þ ¼ bDIGA2 .

FIG. 16. Extrapolation towards the continuum limit of b2 for
N ¼ 2. The solid and dashed lines represent the best fits obtained
using the fit function gðxÞ ¼ a0 þ a1x2 (where x ¼ 1=ξL)
using measures taken after ncool ¼ 50 cooling steps in the ranges
ξL > 20 and ξL > 30. The best fits yield, respectively,
a0 ¼ −0.0677ð13Þ (χ2=d:o:f: ¼ 6.95=5) and a0 ¼ −0.0700ð17Þ
(χ2=d:o:f: ¼ 2.13=3). The dotted line represents instead the best
fit obtained using measures taken after ncool ¼ 20 cooling steps in
the range ξL > 20. The best fit yields a0 ¼ −0.0670ð16Þ with
χ2=d:o:f: ¼ 4.55=5. Data obtained for different numbers of
cooling steps have been plotted slightly shifted to improve
readability. The diamond point represents our final estimation
of the continuum limit.

TABLE IX. Summary of continuum extrapolations of b2 as a
function of N. The value marked with * is taken from Ref. [13].

N b2 · 103

2 −70.0ð4.0Þ
3 −48.5ð2.5Þ
4 −38.5ð2.5Þ
5 −29.5ð2.5Þ
6 −28.0ð2.0Þ
7 −20.5ð3.5Þ
8 −19.0ð3.0Þ
9* −13.90ð13Þ
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It is interesting to observe that the N� found in this way
from the analysis of b2 is perfectly compatible with the
one found for the critical fit of ξ2χ and still compatible
with N� ¼ 2.

IV. CONCLUSIONS

In this work, we have presented a systematic numerical
study of the peculiar features of the θ dependence around
θ ¼ 0 of the vacuum energy fðθÞ of 2d CPN−1 models in
the small-N limit. To that aim, we have performed
numerical simulations for N ∈ ½2; 8�.
One of the most interesting questions regards the value of

N, if any, at which the topological susceptibility χ diverges:
This is predicted to beN ¼ 2 by perturbative computations of
the instanton size distribution. A second interesting question
regards the fate of the b2n coefficients, which parametrize the
nonquadratic part of θ dependence and which could possibly
approach the values predicted by the dilute instanton gas
approximation at the point where χ diverges, if the theory can
be approximated in this case by a gas of small and non-
interacting instantons and anti-instantons.
Our strategy has been twofold. On one hand, we have

dedicated particular efforts to correctly assess the continuum
limit of ξ2χ for N ¼ 2 and N ¼ 3 from direct simulations of
these theories: To that aim, we have performed simulations
on lattices with correlations lengths ranging from a few units
up to Oð102Þ. On the other hand, we have exploited results
obtained for larger values of N, where the continuum
extrapolation is easier, in order to perform a small-N
extrapolation. Based on this double strategy, we have
obtained consistent and conclusive evidence that the topo-
logical susceptibility is finite for N ¼ 3, providing the
estimate ξ2χ ¼ 0.110ð5Þ. We would like to stress that, since
the convergence of ξ2χ in the continuum limit forN ¼ 3was

debated in previous literature, a double check with two
different and independent methods is important for our final
assessment about this issue.
On the other hand, results for N ¼ 2 are still incon-

clusive: Results obtained directly at N ¼ 2 are consistent
with a logarithmically divergent continuum extrapolation
but do not yet exclude a finite continuum value with
ξ2χ ∼ 0.4, which is even marginally favored from the
point of the χ2=d:o:f: test. A similar picture emerges
from the extrapolation from results obtained for N > 2,
which provides evidence for a critical behavior
ξ2χ ∝ 1=ðN − N�Þγ, with N� ¼ 1.90ð14Þ. Therefore, future
numerical studies are still needed in this case to definitely
settle the issue.
As for the b2 coefficient, we have provided continuum

extrapolations down to N ¼ 2. While there is no compel-
ling reason to expect that the DIGA prediction be valid at
the point where ξ2χ diverges, it is interesting to observe that
our numerical results are consistent with that. For N ¼ 2,
we obtain b2ðN ¼ 2Þ ¼ −0.070ð4Þ, i.e., around 3σ off the
DIGA value bDIGA2 ¼ −1=12 ≃ −0.0833, while an extrapo-
lation from our results at all values of N [see Eq. (28)]
provides evidence for b2 reaching bDIGA2 for N ¼ 1.94ð6Þ,
which is consistent with the valueN�, at which ξ2χ diverges
reported above.
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