
 

Analytic structure of the lattice Landau gauge gluon and ghost propagators
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Starting from the lattice Landau gauge gluon and ghost propagator data we use a sequence of Padé
approximants, identify the poles and zeros for each approximant and map them into the analytic structure of
the propagators. For the Landau gauge gluon propagator the Padé analysis identifies a pair of complex
conjugate poles and a branch cut along the negative real axis of the Euclidean p2 momenta. For the Landau
gauge ghost propagator the Padé analysis shows a single pole at p2 ¼ 0 and a branch cut also along the
negative real axis of the Euclidean p2 momenta. The method gives precise estimates for the gluon complex
poles that agree well with other estimates found in the literature. For the branch cut the Padé analysis gives,
at least, a rough estimate of the corresponding branch point.
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I. INTRODUCTION AND MOTIVATION

Quantum chromodynamics (QCD) is a non-Abelian
gauge theory associated with the SU(3) color group that
describes the interactions between quarks and gluons [1–3].
Its fundamental quanta have never been observed in an
experiment [4,5]. This negative result suggests that the
single particle states associated with quarks and gluons do
not belong to the Hilbert space of the physical states. Thus,
quarks and gluons can only exist as components of the
physical states, identified as the color singlet states, a
statement that is normally phrased saying that quarks
and gluons are confined particles. Making the bridge
between the underlying quark and gluon dynamics to the
observed particle states is far from trivial and it certainly
requires solving QCD beyond its perturbative solution.
Confinement is not the only hadronic property that calls for
a nonperturbative solution of QCD. In general the under-
standing of hadronic phenomena, as for example the
realization of the chiral symmetry breaking mechanism,
calls for solutions outside the perturbative approach
to QCD.
In a quantum field theory as QCD, the dynamical

information is summarized in its correlation functions.
The quark, the gluon and the ghost propagators are among
the simplest Green’s functions that can be considered and,

together with a finite number of vertices, are the essential
building blocks required to understand hadrons [6]. They
contain information on the physical spectra, on the dyna-
mical properties that experimentally are seen as form
factors and, at finite temperature and/or density, the
correlation functions encode the transport properties.
Furthermore, the propagators are necessary for the com-
putation of the hadronic phase diagram. The two point
correlation functions also contain information on confine-
ment, on the chiral symmetry breaking mechanism and on
the generation of mass scales that are associated with its
fundamental fields. These infrared mass scales regularize
the theory at low energies. The knowledge of the pole
structure of the propagators and the position of their branch
cuts, i.e., of their analytic structure, is relevant to access
many hadronic properties and to the understanding of
nonperturbative phenomena as e.g., confinement and chiral
symmetry breaking at a fundamental level.
Most nonperturbative approaches to quantum field

theory rely on the Euclidean formulation of the theory.
However, if one uses the Euclidean formulation the
observables or quantities that are associated with timelike
momenta are not easily accessible. In general, by doing the
analytic continuation of the Euclidean correlation func-
tions, i.e., the Schwinger functions, it is possible to get
the corresponding Minkowski space Green functions, the
Wightman functions. This can only be achieved if the
analytic structure of the Green functions is known in
advance.
In perturbation theory the analytical continuation from

Minkowski to Euclidean space is done via the usual Wick
rotation [7]. However, beyond perturbation theory there is
no clear rule to analytically continue the Schwinger
functions to complex momenta. For example, there are
indications that the propagators can have complex poles
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[8–11]. The presence of complex poles in the Argand plane
make the usual Wick rotation impractical but not the
analytical extension of the correlation functions [12]. It
has also been argued by some authors that the use of
integral representations can solve the problem of accessing
Minkowski space correlation functions from the corre-
sponding Euclidean functions [13,14]. However, it still
remains to be shown that this achievement works.
Certainly, the precise determination of the structure of cuts
and poles of the propagator for complex p2 is, by itself, a
fundamental problem in physics and also a nontrivial
mathematical problem.
Herein, we make an attempt to access the analytic

structure of the Landau gauge gluon and ghost propagators
for pure Yang-Mills theory, taken from lattice QCD
simulations, using sequences of Padé approximants. The
use of Padé approximants in physics is common and used to
address many problems. A far from complete list of
examples can be found in [15–17] and references therein.
Indeed, the Padé approximants lies at the heart of inves-
tigations on the analytic structure of physical quantities
[18–23] or on the identification of singularities for several
types of functions [24–26].
In what concerns the QCD propagators, in [27] a general

scheme based on Padé approximants to solve the Dyson-
Schwinger equations was suggested, but, to the best knowl-
edge of the authors, it was never implemented or tried. There
have been attempts to determine the analytic structure of
the propagators from the Dyson-Schwinger solutions for the
propagators [28,29] relying on the computation of the
Schwinger functions, combined with the use of functions
that are able to reproduce the nonperturbative solutions of the
theory and also well-known features of theory on the ultra-
violet regime. In [30] there was a tentative to solve the
(approximate) Dyson-Schwinger equations for the gluon and
ghost propagators in pure QCD for complex p2 directly. The
tree level solution for the propagators from the Gribov-
Zwanziger [31–35] class of actions is a ratio of polynomials
and, therefore, can be seen as Padé approximants to the
propagators. As described in [10,11,36,37], this type of
functional form describe extremely well the Landau gauge
lattice gluon propagator data.
The study of the analytic structure of quantum field

theories using the Dyson-Schwinger equations is not
restricted to QCD and, for example, in [8,9] the analytic
structure of other types of theories was also considered.
Also, in [38–40] there has been a tentative to identify the
branch cut for the gluon and ghost propagators relying on
its Källen-Lehmann representation by measuring directly,
from the lattice data, its spectral function at zero temper-
ature. All these studies suggest that the gluon and ghost
propagators have a nontrivial analytic structure that
requires to be understood.
This paper is organized as follows. In Sec. II we review

the fundamentals of Padé approximants, set the notation

and discuss its applications to some test functions. In
Sec. III we look at the quality of the lattice data for the
gluon propagator to check for the presence of logarithmic
behavior in the lattice data and discuss the class of
approximants to be used to describe the lattice propagator.
In Sec. IV the Padé analysis is performed for the gluon
propagator and in Sec. V we report on the results for the
ghost propagator. Finally, in Sec. VI we summarize our
results, discuss its meaning and look for future work.

II. ELEMENTS OF PADÉ APPROXIMANTS

The idea behind the Padé approximants is to represent a
given function by a ratio of polynomials, not necessarily of
the same degree. By approximating a function by a ratio of
polynomials, a set of zeros and poles is associated to the
each Padé approximant. However, not all the zeros and
poles are meaningful. In general, changing the degree of the
polynomials changes the position of the zeros and poles of
the approximants. Still, there is a subset of zeros and poles
whose position in the complex plane remains stable, i.e., it
does not depend on the Padé approximant used. It is these
stable set of zeros and poles that can be associated with
the analytic structure and, therefore, with physical proper-
ties. All the remaining zeros and poles are artifacts of the
approximation.
The stable poles and zeros are the remnants of the

analytic structure of the original function. Some can be
identified with single poles, while others are certainly
representations of more complex structures as multiple
poles or branch cuts. In particular, a branch cut can be
identified as a sequence of sets of close zeros and poles
whose position in the complex plane is essentially inde-
pendent of the Padé approximant used.
For a given propagator Dðp2Þ its ½MjN� Padé approx-

imant is defined as

Dðp2Þ ≈ PM
N ðp2Þ ¼ QMðp2Þ

RNðp2Þ ; ð1Þ

where

QMðp2Þ ¼ q0 þ � � � þ qMðp2ÞM; ð2Þ

RNðp2Þ ¼ 1þ � � � þ rNðp2ÞN: ð3Þ

In our convention, the coefficient of the lowest order term
in the polynomial at the denominator is set to one.
A fundamental result that gives support to the use of

Padé approximants is Pommerenke’s theorem [41]. It states
that, for a meromorphic function fðzÞ, the Padé sequences
½MjM þ k�, with fixed k, converge to fðzÞ in any compact
set of the complex plane. In the Padé approximant, single
poles of fðzÞ, are sets of zero area, and appear in the ½MjN�
approximants as stable poles for sufficiently large values of
M. The Padé approximants have also poles whose position
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depends strongly onM and N, or appear with nearby zeros
that define the so-called Froissart doublets [18,19,42–44].
The absolute value of the residua of these Froissart doublets
is small due to the nearby zeros. Moreover, these doublets
appear at sufficiently large values of M and N and are
artifacts associated with the use of ratio of polynomials.
For practical purposes, it appears that the preferable Padé
approximants are diagonal, i.e., are of the form ½MjM�, or
are nearby diagonal sequences where k ¼ �1.
For certain classes of functions, the convergence of the

Padé sequences to the right limit can be proved explicitly.
Among this class of functions are those of the Stieltjes type
whose general structure is represented by

fðzÞ ¼
Z þ∞

0

dμðtÞ
1þ zt

; jArgðzÞj < π; ð4Þ

where μðtÞ is a measure defined in t ∈ ½0;þ∞½. The
Kallën-Lehmann integral representation for the propagators
of physical particles belongs to the class of Stieltjes func-
tions. However, for the gluon and ghost, which are confined
particles, the corresponding propagators do not have neces-
sarily an integral representation of the type given in Eq. (4).
The numerical experiments performed in [23,38–40] show
that it is possible to build an integral representation for the
propagators if μðtÞ is no longer ameasure in ½0;þ∞½ orwhen
the integration range is extended. This is no proof that the
Padé approximants sequences work well for the gluon and
ghost propagators but given its general properties, given the
predictive power associated with the Padé approximants in
many situations, it seems reasonable to explore the use of
sequences of Padé approximants to investigate the analytic
structure of the propagators.
The traditional definition of the Padé approximants and,

in particular, the computation of the polynomial coeffi-
cients rely on the ability to perform series expansions that,
for the lattice propagators, are not possible. Therefore, the
numerical experiments to be reported in this manuscript
rely in the determination of the absolute minimum of an
objective function, the reduced χ2 for the corresponding
problem, to determine the coefficients of the polynomials.
The value of the reduced χ2 at the minimum will also
describe the quality of the approximation achieved with the
approximant.
For our definition of the Padé approximant it implies

solving a nonlinear global optimization problem. The
computation of the absolute minimum of a nonlinear
function does not have, in general, a solution. For the
numerical experiments, we rely on the global optimization
methods available within MATHEMATICA [45] software
package. Namely, we rely on their implementation of the
differential evolution (DE) method and of the simulated
annealing (SA) method, two standard numerical methods
that address the determination of the absolute extreme of a
generic function.

A. Numerical tests with Padé approximants
on test functions

A first flavor on an analysis of a sequence of Padé
approximants can be obtained looking at simple functions
that are somehow related to the QCD propagators. This is
the motivation to study

D1ðp2Þ ¼ 1

p2 þm2
; ð5Þ

D2ðp2Þ ¼ logðp2 þm2Þ; ð6Þ

D3ðp2Þ ¼ 1

p2
ðω logp2 þ 1Þγ; ð7Þ

which are inspired in the perturbative solution of QCD for
the propagators. The function D1ðp2Þ is the tree level
expression for the propagator and has a simple pole at
p2 ¼ −m2. The function D2ðp2Þ has a branch cut and will
allow to understand how a branch cut appears in a sequence
of Padé approximants analysis. Finally, the function
D3ðp2Þ reproduces the expected behavior for the propa-
gator in the ultraviolet regime and has a simple pole and a
branch cut. In the analysis of the test functions we have also
considered other variants than those reported here.
However, the results for D1ðp2Þ to D3ðp2Þ illustrate well
the outcome of all the trials.
In the current section p2 is dimensionless and, to

simulate the analysis of the lattice data, instead of using
directly the analytical functions D1ðp2Þ to D3ðp2Þ, a set of
uniformly random distributed p in the range p ∈ ½0; 8� was
generated. These “lattice data” is not the direct result of
using the above analytical forms but, instead, we take
Dðp2Þð1þ ϵN ð0; σÞÞ, where N ð0; σÞ is a normal distri-
bution with mean value zero and width σ ¼ 1, with an
associated error that is given by ϵDðp2Þ. In the numerical
experiments for the functions (5)–(7) we set ϵ ¼ 1% and
0.1% and considered 100 data points for p. The lattice data
for the gluon and the ghost propagators used below has
more than a hundred data points, with statistical errors that
are within the same ballpark. The analysis briefly reported
here for the test functions is a less favorable situation
compared with the real data and, in this sense, it provides a
worst case scenario. We have also done the analysis of the
test functions considering more data points and the
numerical experiments show that by increasing the number
of data points, the results of the Padé analysis become
closer to the original functions.
The coefficients of the polynomials for the Padé approx-

imants are computed minimizing the objective function
defined as the χ2 that takes into account the errors on the
data, i.e.,

χ2 ¼
XN
j¼1

�
Dðp2

jÞ −DLatðp2
jÞ

σðp2
jÞ

�2

; ð8Þ
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where the sum is over the data points, Dðp2Þ ¼ PM
N ðp2Þ,

DLatðp2Þ are the data points for the given function and
σðp2Þ are the associated statistical error with DLatðp2Þ.
Our analysis does not take into account the correlations
between the various momenta.
The coefficients of the polynomials are defined by

estimating the absolute minima of χ2 with the routines
for global optimization included in MATHEMATICA [45].
In general, the results for the zeros and poles obtained

with the DE and SA methods have similar patterns, with
possible deviations in the detail. Further, for the numerical
experiments associated to the function given in Eqs. (5) to
(7) only the Padé approximants of type ½N − 1jN� and up to
N ¼ 20 were considered. The values obtained for the
χ2=d:o:f: at the global extrema are, for all functions and
for the two methods considered, in the range 0.8–1.2. In
Fig. 1 we show an example of the reduced χ2 obtained with
the DE method. Similar curves can be drawn for the SA
method. It is reassuring that both methods return very close
values for the χ2=d:o:f. In this section we will show,
preferably, the results obtained with the DE method.
Moreover, given that this section aims to illustrate the
performance of the Padé analysis on the test functions, only
a selected set of plots will be considered.
In Fig. 2 we report how a single pole can be identified

by a sequence of Padé approximants associated with the
function given by Eq. (5) for m2 ¼ 0 (top two plots) and
for m2 ¼ 0.5 (bottom two plots). As seen, the Padé
sequence reveals extremely well the pole at origin, that
appears already for the lower N, and is always associated
with higher values for the absolute value of the residua
for all Ns. On the other hand the pole at p2 ¼ −0.5 is not
seen as clearly as the pole at the origin. However, for
lower N the dominant poles are located at the right p2 ¼
−0.5 but, as N is increased, it moves away from its right
position and, for some N, a zero of the approximant is
associated with the pole position. We have checked that
the identification of a single pole improves both when the
number of data points increases and when the statistical
errors on the data become smaller. Further, exploring the
distribution of poles and zeros for the complex p2, see
Fig. 3, no stable positions are observed. The conclusion
from studying the plots mentioned previously is that the
analysis of the Padé approximants data generated from
Eq. (5) suggests that a single pole should be associated
with the data. The sequences of Padé approximants are
able to reproduce the analytic structure of the original
function.
The remaining functions (6) and (7) have branch cuts at

on axis negative values of p2. For these functions, the
sequence of zeros and poles, along the real axis p2, coming
from the sequence of Padé analysis can be seen in Fig. 4. In
both cases there is a stable sequence of close poles and
zeros that starts at the branch point p2 ¼ 0 and move

towards the negative p2 axis. If for the pure logarithm
function, the poles with the largest residuum are not those
close to the origin, for the perturbative like solution (7) the
position of the dominant pole is preferably at the true pole
position.
Similarly as for the function (5), one can look to the set

of poles and residua as in Fig. 3 with the results repeating
the pattern observed in this Fig. These results suggest that,
indeed, the function hidden in the data has no poles for
complex p2. More, these results suggest that in a sequence
of Padé approximants a branch cut is identified by a
sequence of zeros and poles with large residua. Again,
the Padé analysis seems to be able to identify a branch cut
and a single pole on top of a branch point.

FIG. 1. The χ2=d:o:f: obtained by minimizing the χ2 defined in
Eq. (8) for the functions (5) (top), (6) using for both functions
m2 ¼ 0 (middle) and (7) with ω ¼ 0.3 and γ ¼ −13=22 (bottom).
The values reported are obtained with the DE method for ϵ ¼ 1%.
Similar curves can be made for different values of ϵ, number of
momentum data points and for the SA algorithm.
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For completeness in Fig. 5 we report the full set of poles
in the entire complex plane and for all N, as given by the
Padé approximant analysis for the data associated with (5)
(top plot) and with (7) (bottom plot). The full set of poles
and zeros have a complex pattern and their absolute value
of the residua have an hierarchy of values (see the legend at

the right side). We call the reader’s attention to the position
of the poles with the largest absolute value of the residua.
Figure 5 also shows the Froissart doublets that necessarily
appear at sufficiently large N.
Besides the studies using the sets of data generated from

Eqs. (5) to (7), we also investigated the outcome of a
standard Padé analysis, i.e., on the results that uses a series
expansion for the gluon propagator functional given by
renormalization group improved perturbation theory

Dðp2Þ ¼ 1

p2

�
ω log

p2

Λ2
QCD

þ 1

�
γ

; ð9Þ

where γ ¼ −13=22 is the gluon anomalous dimension for
pure Yang-Mills theory. In order to perform the Padé
analysis of this function we took, for the various constants
the values used in [37] to describe the lattice data, namely
ω ¼ 33αs=12π, with αs ¼ 0.3837 and ΛQCD ¼ 0.425 GeV.
A standard analysis show that the Padé approximants
reproduce the pole at p2 ¼ 0, that appears as a stable
point at the right location, for both ½NjN� and ½N − 1jN�
sequences. Further, a structure of poles and zeros on the
negative side of the real p2 axis, that start at p2 ¼ 0,
simulate the branch cut along the negative real axis
similarly as in Fig. 4. Moreover, the analysis of the
sequences ½NjN�, ½N − 1jN� and ½N − 2jN� give a quite
small coefficient associated with the largest power in the
denominator for ½NjN� Padé sequences, compared with the
remaining coefficients, and the two sequences ½N − 1jN�
and ½N − 2jN� result in essentially the same quality for the
approximant. Our interpretation for this result being that the
Padé approximant suggests that, at large momentum, the
gluon propagator behaves as a 1=ðp2Þι with ι being
somewhere between one and two, i.e., the Padé approx-
imants are sensitive to the log corrections of the tree level
perturbation theory.

FIG. 2. Distribution of zeros (crosses) and poles (circles) for
on-axis momenta as a function of N, resulting from the Padé
analysis for the data generated with Eq. (5) for m2 ¼ 0 (top two
plots) and for m2 ¼ 0.5 (bottom two plots). The scale on the left
refers to the absolute values of the residua.

FIG. 3. Distribution of poles for complex p2 as a function of N,
resulting from the Padé analysis for the data generated with
Eq. (5) for m2 ¼ 0. On the top plot are all the poles with the
legend showing the corresponding residua, while on the bottom
plot the poles whose residua jAj is smaller than one are omitted.
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For the standard Padé analysis, we also considered the
case where the simple pole at the origin was regularized by
a mass term and where the log was also regularized by a
constant mass term. In general, we found that the Padé
approximants, taken from the series expansions, are able to
reproduce the appropriate analytic structures. However, if
the mass term that regularizes the log becomes complex
valued the Padé analysis was able to identify correctly the

branch point but does not predict correctly the position of
the branch cut.
The study of the test functions show that the sequences

of Padé approximants can provide a reliable glimpse of
the analytic structure of certain types of functions. The
analysis performed for D1ðp2Þ, D2ðp2Þ and D3ðp2Þ will
certainly guide us in the understanding of the analytic
structure of the lattice propagator data using sequences of
Padé approximants.

III. PADÉ APPROXIMANTS AND THE
LATTICE PROPAGATORS

Let us try to understand what type of Padé approximants
we should use to describe the lattice gluon propagator.
Although focusing now only on the gluon propagator,
similar reasonings apply to the ghost propagator with
minimal changes. The one-loop renormalization group
improved prediction for the gluon propagator (Euclidean
space) is given in Eq. (9) where ω ¼ 11Nαsðμ2Þ=12π,
αsðμ2Þ is the strong coupling constant defined at the
renormalization scale μ and γgl ¼ −13=22 is the gluon
anomalous dimension. This expression can be compared
with gluon lattice data to check if the lattice data is sensitive
to the logarithm correction to the tree level propagator.
Herein, in order to investigate for the presence of the log
behavior in the lattice data, we will consider the propagator
computed with the ensembles of gauge configurations
published in [37]. The lattice data is renormalized in the
MOM scheme through the condition

FIG. 5. Full set of poles for all N, from the Padé analysis for the
data generated using Eq. (5) with m2 ¼ 0 (top) and Eq. (7) with
ω ¼ 0.3 (bottom).

FIG. 4. The zeros and poles computed from the sequence of
Padé approximants for the data generated using Eq. (6) with
m2 ¼ 0 (top two plots) and Eq. (7) with ω ¼ 0.3 (bottom
two plots).
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Dðμ2Þjμ¼3 GeV ¼ 1

μ2
: ð10Þ

Details of the simulation and of the lattice setup can be
found in [37].
In Fig. 6 we compare the renormalized gluon propagator

with both the tree level expression

Dðp2Þ ¼ 1

p2
ð11Þ

and Eq. (9). The overall scale for the expressions (11)
and (9) is fixed by demanding that the functional forms
match the lattice data at p ¼ 4 GeV; note that the matching
is not performed exactly at the renormalization scale.
The numerical values of the various parameters used to
build the curves are reported in the caption of Fig. 6.

The curves in Fig. 6 show that (9) is on top of the lattice
data for momenta p ∼ 3 GeV and above, while the tree
level expression (11) shows clear deviations from the lattice
data for the range of momenta considered. We take this as
an indication that the high precision lattice data of [37]
identifies correctly the one-loop logarithmic correction
given in Eq. (9).
For our purpose, i.e., the investigation of the analytic

structure of the propagators, the lattice simulations will
provide a set of Dðp2Þ for real Euclidean p2 that will be
approximated by ratios of polynomials. In particular we
will consider the Padé approximants ½MjN�

Dðp2Þ ≈QMðp2Þ
RNðp2Þ ð12Þ

already mentioned previously in Eq. (1). The perturbative
propagator shows a branch cut along the negative part of
the real Euclidean p2 axis and, to accomodate for such
possibility, besides (12) it would be natural to look at
approximants of the type ½MjN;OjS� given by

Dðp2Þ ≈QMðp2Þ
RNðp2Þ

�
ω ln

LOðp2Þ
KSðp2Þ þ 1

�
γgl
: ð13Þ

In Eqs. (12) and (13) the polynomials QMðp2Þ, RNðp2Þ,
LOðp2Þ and KSðp2Þ are defined as

QMðp2Þ ¼ q0 þ � � � þ qMðp2ÞM; ð14Þ

LNðp2Þ ¼ l0 þ � � � þ lNðp2ÞN; ð15Þ

ROðp2Þ ¼ 1þ � � � þ rOðp2ÞO; ð16Þ

KSðp2Þ ¼ 1þ � � � þ kSðp2ÞS: ð17Þ

However, in practice, maybe due to the poor sensitivity to
the variations of the coefficients that define the polynomials
that appear in the logarithmic correction, it turns out that
the minimization of the χ2 using expression (13) is rather
difficult to perform as the analytic structure changes sig-
nificantly as N is increased. For these reasons we will omit
the outcome of the analysis based on the use of Eq. (13).
The applications based on Padé approximants use

typically the diagonal and/or the near diagonal approxim-
ants. We follow the same rule and, for the class of
approximants given by Eq. (12), we will investigate the
ratios of polynomials that have M ¼ N and M ¼ N − 1.
The motivation to set M ¼ N − 1 and not M ¼ N þ 1
comes from results of perturbation theory, a behavior that
the approximant should reproduce at large p2. As for the
test functions considered previously, for each Padé approx-
imant, the coefficients of the polynomials are computed
looking at the (candidate) absolute minima for the χ2

defined in Eq. (8).

FIG. 6. The “high” momenta lattice Landau gauge gluon
propagator for a simulation on a 644 lattice (top) and on a 804

lattice (bottom) compared to the tree level expression 1=p2 and
the one-loop renormalization group improved prediction as given
in (9). The lattice data shown is renormalized in the MOM
scheme at μ ¼ 3 GeV. The tree level and the one-loop expres-
sions were matched to the lattice data for μ ¼ 4 GeV. The one-
loop expression for the gluon propagator was computed with
ΛQCD ¼ 0.425 GeV, αsð3 GeVÞ ¼ 0.3837 as in [37], where the
details about the lattice simulation can be found.
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IV. PADÉ APPROXIMANTS AND THE LATTICE
LANDAU GAUGE GLUON PROPAGATOR

For the investigation of the analytic structure of the
Landau gauge lattice gluon propagator we rely on simu-
lations performed on hypercubic spacetime lattices using
the Wilson gauge action for β ¼ 6.0 at several physical
volumes. The lattice data considered is associated with
simulations that use (i) a 324 lattice with 50 gauge
configurations, published in [46]; (ii) a 644 lattice with

2000 gauge configurations, published in [37]; (iii) a 804

lattice with 550 gauge configurations, published in [37] and
(iv) a 1284 lattice using 35 gauge configurations, published
in [47]. The physical volumes for the lattices are, respec-
tively, ð3.25 fmÞ4, ð6.50 fmÞ4, ð8.13 fmÞ4 and ð13.01 fmÞ4
for a lattice spacing of a ¼ 0.1016ð25Þ fm. The rationale to
use the data from all these simulations being that it allows
to have a better sensitivity to different regions of momenta
and, in this way, to be able to identify clearly possible
structures in the complex plane. Indeed, the data from the
324 simulation the major number of data points has a p≳
1 GeV and by increasing the number of lattice points the
number of infrared momenta is increased. All the lattice
data reported here was renormalized in the MOM scheme
according to (10).
The renormalized gluon propagator data used in the Padé

analysis can be seen in Fig. 7. All datasets are essentially
compatible with each other at one standard deviation level
and, in this sense, they define a unique curve. The
exception being the zero momentum propagator, not seen
in Fig. 7, for the simulation performed on the smallest
physical volume that is larger than the corresponding
values for all the other simulations. In order to the check
for the finite volume effects and the level of statistical
precision achieved by the various simulations we report the
values of Dð0Þ for all the data sets that is 10.64ð38Þ GeV2

for the 324, 8.900ð49Þ GeV2 for the 644, 8.847ð99Þ GeV2

for the 804 and 8.98ð39Þ GeV2 for the 1284 simulation. The

FIG. 7. Landau gauge gluon propagator used in the Padé
analysis.

FIG. 8. The χ2=d:o:f: as obtained in the minimization process with the DE method. From top left to right bottom the plots refer to the
minimization of the 324, of the 644, of the 804 and of the 1284 lattice data as a function of N for Padé approximants of type ½N − 1jN�.
The corresponding curves computed with the SA method are similar.
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reader should note that, due to the way the propagator is
computed, the zero momentum propagator has, typically,
the largest statistical error and, therefore, its contribution to
the χ2 is smaller than the remaining momenta.
In Fig. 8 we report on the values of the χ2=d:o:f:

obtained when one uses the differential evolution method

to minimize the χ2 for Padé approximants of type
½N − 1jN�, as a function of the degree of the polynomial
in the denominator. Although not shown, the corresponding
curves computed with the simulated annealing method are
essentially indistinguishable. The data in Fig. 8 reveal
that by increasing the lattice size the value of χ2=d:o:f:

(a)

(b)

FIG. 9. Evolution of the poles for complex momenta given by the Padé approximants ½N − 1jN� and computed with the differential
evolution minimization method. The scale on each plot refers to the absolute value of the residua for each pole.
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decreases. In all cases, the minimization results in accept-
able values for the reduced χ2. The exception are the
outcome of the minimizations for the smallest lattice when
N ≳ 20 that have large χ2=d:o:f.
In Figs. 9–12 the poles of the propagators for complex

momenta as given by the Padé approximants ½N − 1jN� are
reported. Figures 9 and 10 summarize the results computed

with the differential evolution method, while Figs. 11 and
12 show the outcome of the minimization when using the
simulated annealing method. The scales in the rhs of the
figures refer to the absolute value of the residua of each
pole. In all cases, the dominant poles, i.e., those with the
highest absolute value for their residua, are associated with
the color red and those poles with the smaller residua

(a)

(b)

FIG. 10. The same in Fig. 9 for the two largest lattices.
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appear in dark blue. For each lattice size all the figures have
two sets of plots. The upper plot reports all the poles for
complex p2 as given by the Padé approximants. In the
lower ones only the poles with the highest residua are
shown, i.e., it includes the poles whose absolute value for
the residuum is such that log jZj > 0. In the Padé sequences

the poles appear always as pairs of complex conjugate p2

values with the same jZj. The Figs. only show the poles that
have ℑðp2Þ > 0.
The analysis of the dominant poles of Figs. 9–12 sug-

gests that the Landau gauge gluon propagator has a pair
of complex poles located around p2 ∼ −0.3� i0.5 GeV2.

(a)

(b)

FIG. 11. Evolution of the poles for complex momenta given by the Padé approximants ½N − 1jN� and computed with the simulated
annealing minimization method. The scale on each plot refers to the absolute value of the residua for each pole.
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Indeed, in all the figures there is a pole for p2 around
this value with the largest absolute value for the residua.
Note that, in general, the ℑðp2Þ at the pole fluctuates
significantly. The results using the DE method and the
smallest lattice identify this pole only for the smaller N
and for N ≥ 6 the pole is not seen anymore. The
analysis of the upper plots of Fig. 9 seems to suggest

that there is also a pole at ℜðp2Þ ≥ 0 that is not seen in
all the remaining simulations. The pole at p2 ∼ −0.3�
i0.5 GeV2 appears for the three largest lattices when one
uses the SA method to do the minimization of the χ2.
For the DE only for the largest lattice the pole is
identified at all N. This seems to suggest that the
singularity associated with this momenta is connected

(a)

(b)

FIG. 12. The same in Fig. 11 for the two largest lattices.
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with the infrared structure of the theory.1 One can
estimate the position of the singularity looking at the
dominant pole results of the largest lattice. It follows

that, in all cases and for all lattices, the dominant pole
has ℜðp2Þ < 0. If one ignores the five smaller and larger
N results, according to the DE the singularity is at

(a) (b)

(c) (d)

FIG. 13. Poles (circles) and zeros (crosses) from the Padé approximants ½N − 1jN� at the real p2 axis, computed using the differential
evolution and simulated annealing minimization methods, for the two smallest lattices.

1The number of momenta data points considered here for the gluon propagator being 63 for the 324 lattice, with seven momenta being
smaller than 1 GeV, 126 data points for the 644 lattice, with 21 momenta below 1 GeV, 168 data points for the 804 lattice, with 37
momenta below 1 GeV, and 340 data points for the 1284 lattice, that has 131 momenta below 1 GeV.
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p2¼−ð0.185−0.570Þ� ið0.301−0.614ÞGeV2, while the
SA method returns slightly smaller and looks the singu-
larity at p2¼−ð0.106−0.308Þ� ið0.118−0.489ÞGeV2.
On the other hand, if one takes into consideration only
those 10 ≤ N ≤ 20, the DE method identify the singu-
larity at p2 ¼ −ð0.343− 0.220Þ � ið0.301− 0.546Þ GeV2

and the SA returns a p2 ¼ −ð0.220 − 0.150Þ � ið0.227−
0.444Þ GeV2.
For the gluon propagator the predictions of the Gribov-

Zwanziger actions adjusted to describe the lattice data
[10,11] also suggest the presence of complex poles that are
associated with the infrared momenta. According to [37]

(a) (b)

(c) (d)

FIG. 14. The same as Fig. 13 for the two largest lattices.
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the gluon propagator has a singularity at p2 ¼ −0.268�
i0.459 GeV2 if one uses the tree level prediction of
the refined Gribov-Zwanziger action to describe the
lattice data up to p ∼ 1 GeV. The global fits performed
therein identify a pole at p2¼−ð0.20−0.32Þ� ið0.38−
0.59ÞGeV2. Recall that in [37] the global fits have to
introduce regularization masses and, in general, the
global fits have χ2=d:o:f: > 2 with an exception that
takes the value 1.11, whose functional form has a single
pole at p2¼−0.257�0.382iGeV2. Although our current
estimate points towards a pole at slightly smaller ℜðp2Þ,
it is reassuring that the various estimates of the pole
positions herein and in [37] are compatible with each
other. Further, in [23] the gluon propagator was inves-
tigated with a fixed order Padé approximant computed
with the Schlessinger point method [16]. The authors
identified a pair of complex conjugate poles at p2 ≈
−0.3� i0.5 GeV2 for the same 644 lattice gluon propa-
gator data and a pole at p2≈−0.2� i0.35GeV2 for the
decoupling solution of the Dyson-Schwinger equations.
Although it is difficult to make a precise comparison of
the numbers, it is striking that all estimates are essentially
the same and also in good agreement with the analysis
inspired on the Gribov-Zwanziger type of actions. A
recent analysis of the Dyson-Schwinger equations for the
gluon and ghost propagators in pure Yang-Mills theory in
the complex p2 plane [48] found a singular behavior for
p2 that is quite close to the complex poles given by the
Padé analysis.
We would like to call the reader’s attention that if the

studies performed herein and in [10,11,23,36,37,49–53]
suggest or assume that the gluon propagator has pairs
of complex poles singularities, this is not always the
case. For example, in [30] the authors solved the
coupled set of Dyson-Schwinger equations for the gluon
and ghost propagators, using a particular truncation, and
found no evidence of complex conjugate poles. The
Curci-Ferrari model investigated in [54,55], a massive
extension of the Landau-gauge Faddeev-Popov lagran-
gian, leads to a propagator that reproduces lattice data
using a real mass while featuring complex conjugated
poles. Further, real valued mass gaps for the gluon and
related to gluon confinement were estimated in several
works [46,56–61].
The perturbative result for the gluon propagator has a

branch cut along the real axis for negative p2 and,
therefore, one expects to be able to identify a branch
cut using the lattice gluon data. In Figs. 13 and 14 we
show the zeros and poles for on-axis momenta as given
by the sequences of Padé approximants for the different
lattice data sets. As discussed in the examples of Sec. II A,
the branch cut is expected to appear as a sequence of zeros
and poles. Indeed, the Figs. 13 and 14 show sequences of
poles and zeros along the negative real axis and close to
the origin. However, in opposition to the results for the

complex pole singularities, the two minimization meth-
ods do not provide consistent results when one com-
pares the two outcomes. The DE method suggests that,
if a branch cut can be associated with the lattice data,
the branch point is quite close to the origin. On the
other hand, if one can read a branch cut along the
negative real axis from the analysis of the SA method,
then the branch point should be at ℜðp2Þ ≲ −0.5 GeV2.
Only the data for the largest lattice from the SA method
can suggest that the maybe-branch point can be closer to
the origin. Once more, the Padé analysis seems to have
problems with the exact determination of branch cuts.
This can be either a problem of the method or that a
calculation with a much larger ensemble of configura-
tions is needed for a proper identification of the branch
cut and/or of the branch point.
One can use previous studies to estimate the window

for possible values of the mass scale that regularizes
the logarithm correction to the tree level perturbation
result and, in this way, estimate the branch point.
Unfortunately, the reading of mass scales from other
works is not straightforward and oftentimes the pre-
dictions are for ratios of mass scales only. Despite this
limitation, one can force the reading of one of the mass
to be identified with the branch point. For example,
relying on the works [50,55] one can naïvely identify
the branch point with the quoted “gluon mass” term that
is 0.12 GeV2 and 0.36 GeV2, respectively. On the other
hand, the work done in [37] to fit the full set of lattice
data returns a mass scale of 0.216 GeV2.2 As stated
above, one has to read these figures with great care.
They all seem to be in the same ballpark and, in this
sense, provide a unified picture of a set of results
obtained by rather different methods.
In summary, our analysis suggests that the analytic struc-

ture of the gluon propagator has a pair of complex con-
jugate poles together with a branch cut along the negative
real axis of the Euclidean momenta. The corresponding
branch point is located close to the origin and at the
negative side of the Euclidean axis momenta.

V. THE LANDAU GAUGE GHOST PROPAGATOR
AND THE PADÉ APPROXIMANTS

Let us now discuss the use of Padé approximants to
investigate the analytic structure of the Landau gauge ghost
propagator as seen in lattice simulations. For the lattice
ghost propagator, we use the data published in [47] for
the simulation performed on a 804 lattice with β ¼ 6.0,
renormalized in the MOM scheme at μ ¼ 3 GeV, as for the
gluon data analysed previously. The ghost propagator
lattice data can be seen in Fig. 15.

2The value reported refers to the constant mass that regularizes
the logarithm for infrared momenta.
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The reduced χ2 obtained in the minimization of
the objective function for the differential evolution and
the simulated annealing methods is reported in Fig. 16 for
the ½N − 1jN� Padé approximants. Compared to the optimal
χ2=d:o:f: obtained for the gluon propagator that are around
unit, see Fig. 8, it turns out that the values of the optimal
reduced χ2 for the ghost take smaller values and are
around 0.15.
In Fig. 17 we show the poles for complex momenta

computed from the different Padé approximants with the
two minimization methods. As can be observed, according
to the Padé approximants, the ghost propagator has no
complex poles.
In Fig. 18 we resume the set of on-axis momenta poles

and zeros as given by the two optimization methods. We
stress the good agreement between the results computed
with the differential evolution and the simulated annealing
methods. The first remark being that, according to the Padé
approximants, there is a structure of zeros and poles near
the origin and towards the negative part of the Euclidean p2

real axis. Moreover, the pole with the highest value of the
absolute value of the residua is always located at p2 ¼ 0.3

This is a strong indication of the presence of a pole at
p2 ¼ 0, in good agreement with the perturbative result for
the ghost propagator. For negative on axis p2 and close to
the origin it is observed a pole with a nearby but not
overlapping zero that, probably, is an indication of the
branch cut with a branch point located at Euclidean
momenta p2 ∼ −0.1 GeV2. A second sequence of poles
and zeros is observed at p2 ∼ −1 GeV2, but the residua of
the poles is significantly smaller than the residua close to
the origin. The Padé analysis seems to suggest that the

ghost has a unique singularity located at the origin. This
result is in good agreement and gives support to the no-pole
condition for the ghost propagator as proposed by Gribov
[31] and also supports the ghost dominance at infrared mass
scales [62].

VI. SUMMARY AND CONCLUSIONS

The access to the analytic structure of the QCD
propagators is crucial if one aims to understand, for
example, how confinement can be identified in the
propagators or to compute the propagator for timelike
momenta. Lattice QCD simulations provide a first-
principles calculation tool but delivers the two point
correlation functions on a finite region of momenta that,
typically, goes up to ≲10 GeV, on a finite number of
momenta. Continuum methods rely on truncations of an
infinite tower of the equations and, in principle, the
underlying field equations can be solved both for real and
complex momenta. Recently, modified perturbative analy-
sis for the propagators also proved to be helpful to
understand the QCD dynamics. It is the interplay of all
the methods that certainly will produce a clear picture for
the propagators and sharpen our interpretation of the
nonperturbative dynamics of QCD.
Herein, we make a first try to extend the lattice data

for the Landau gauge fundamental propagators of pure

FIG. 15. The Landau gauge ghost propagator used in the Padé
analysis.

FIG. 16. Reduced χ2 at the minimum of the χ2 as obtained by
the differential evolution method (top) and by the simulating
annealing method (bottom) as a function of the degree N of the
Padé approximant ½N − 1jN�.

3The exact position of the pole is between p2 ¼ −0.001 and
p2 ¼ 0.000 for the two methods for N > 6.
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Yang-Mills SU(3) theory to the complex plane and, in
this way, investigate their analytic structure. We use
sequences of Padé approximants and look at the corre-
sponding zeros and poles to try to disentangle the stable
poles and zeros that are translated into poles and branch
cuts. From a numerical point of view, the determination
of the Padé approximants is reduced to a global opti-
mization problem that we handle with two different
methods. The patterns of the zeros and poles given by

the differential evolution and the simulated annealing
methods is similar and compatible. The full set of poles
from the Padé analysis, using the simulated annealing
method, for the gluon data with the 1284 results and of
the ghost data for the 804 lattice for all N can be seen
in Fig. 19.
In the investigation of the gluon propagator a combina-

tion of several lattices is used with the aim of accessing
different ranges of momenta in order to be able to identify

FIG. 17. Evolution of the poles for complex momenta given by the Padé approximants ½N − 1jN� and computed with the differential
evolution method (top two plots) and the simulated annealing method (bottom two plots) for the ghost propagator. For each method, the
bottom plot includes only those poles that the absolute value of the residua is such that log jZj > 0.
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the analytic structure of this propagator. It is for the largest
physical volume that the results fluctuate less when
changing the degree of the Padé approximant and that
the two global optimization methods are closer to each
other. The picture that emerges from the analysis of the
different lattice data being that the gluon propagator is
described by a pair of complex conjugate poles, which are

associated with the infrared momenta, together with a
branch cut.
A pair of complex conjugate poles associated with the

gluon propagator is also present in other descriptions, but
not all of them, of the lattice propagator data. For example,
a pair of complex conjugate poles is required by the
analysis of the lattice data inspired on the family of
Gribov-Zwanziger actions. In what concerns the location
of the poles, the analysis of Sec. IV identifies the pole at
p2 ¼ −0.281ð62Þ � i0.423ð122Þ GeV2, according to the
DE method, and at p2 ¼ −0.185ð35Þ � i0.355ð108Þ GeV2

for the SA method. The location of the complex poles
predicted by the Padé analysis is in good agreement with
other estimates of complex poles that can be found in the
literature.
The branch cut in the gluon propagator is expected as it

appears in the perturbative analysis of this two point
correlation function, a behavior that the lattice data should
reproduce at higher momenta. The Padé analysis suggests a
branch cut whose corresponding branch point is difficult to
determine, with the results of the global optimization
methods not being consistent with each other. The differ-
ential evolution method points towards a branch point that
is close to the origin for the smallest lattices but not the
largest lattice volume, where a structure emerges only for
ℜðp2Þ ≤ −0.5 GeV2. The simulated annealing method
shows the reverse behavior, i.e., a structure that can be
associated with a branch cut emerges at ℜðp2Þ ≥
−0.5 GeV2 for the largest lattice. As the Figs. 13 and 14

FIG. 18. Zeros (crosses) and poles (circles) computed with the
Padé approximants and the differential evolution method (top)
and the simulating annealing method (bottom) as a function of the
degree N for the ghost propagator. The scale on the rhs refers to
the absolute value of the residua associated to the poles.

FIG. 19. Full set of poles from the Padé analysis, using the
simulated annealing method, for the gluon data with the 1284

results (top plot) and of the ghost data for the 804 lattice (bottom
plot) and for all N.
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show, in general, there are zeros and/or poles that can be
identified with a possible branch cut that start to appear at
ℜðp2Þ ∼ −0.1 GeV2 or smaller values of ℜðp2Þ. We take
this value as an indication of a nearby branch point.
The Padé analysis is not able to provide precise information
on the branch cut. This is either a limitation of the method,
a limitation of a low statistical precision of the simulations
or a combination of the two.
Our analysis of the ghost propagator is limited by the

available lattice results. However, it turns out that the
results associated with the ghost two point correlation
function produce a quite clear picture for the analytic
structure of the propagator. It clearly identifies a simple
pole at p2 ¼ 0, or nearby, and no further singularities are
observed. Furthermore, the sequences of poles and zeros
along the real p2 axis, see Fig. 18, shows a distribution that
mimics what is expected for a branch cut. The correspond-
ing branch point occurs at p2 ∼ −0.1 GeV2. It seems that
the ghost propagator is described essentially by its pertur-
bative behavior, i.e., the ghost dressing function p2Dghðp2Þ
has no poles but only a branch cut. The dressing function is
finite at p2 ¼ 0 and, therefore, it seems that the non-
perturbative QCD dynamics generates a mass scale that
regularizes the log behavior for infrared momentum. In this
sense, the Padé analysis for the ghost supports the no-pole
condition for the ghost propagator and also the idea of
ghost dominance in the infrared region.
The analysis of the lattice data performed with the

sequence of Padé approximants is able to provide a picture
for the analytic structure of the gluon and ghost propa-
gators. The problem observed with the identification of the
branch cuts can, in principle, be solved by an increase on
the number of gauge configurations and on the number of
momentum data points used in the calculation. It also
would be helpful to have better control of the systematics
such that the lattice simulations can provide the propagators
for a larger number of momenta. We recall that a lattice
calculation of the propagators, or any Green function of the
QCD fundamental fields that is not gauge invariant, is a
multiple step that starts with the sampling using a suitable

gauge action and the rotation of the links towards the
Landau gauge. From the computational point of view it is
the gauge fixing that is the most demanding part of the
calculation. Also the computation of the ghost propagator
demands solving a set of large sparse linear systems for
each gauge configuration. The increase of the statistical
precision of the computation is feasible but certainly very
time consuming. We believe that the method explored in
the current work can give us valuable information on the
distribution of poles, zeros and branch cuts of the propa-
gators and, in principle, it can be extended for the quark
propagator.
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