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We propose a fully nonperturbative method to compute inelastic lepton-nucleon (£N) scattering cross
sections using lattice quantum chromodynamics (QCD). The method is applicable even at low energies,
such as the energy region relevant for the recent and future neutrino-nucleon scattering experiments, for
which perturbative analysis is invalidated. The basic building block is the forward Compton-scattering
amplitude, or the hadronic tensor, computed on a Euclidean lattice. A total cross section is constructed from
the hadronic tensor by multiplying a phase space factor and integrating over the energy and momentum of
final hadronic states. The energy integral that induces a sum over all possible final states is performed
implicitly by promoting the phase space factor to an operator written in terms of the transfer matrix on the
lattice. The formalism is imported from that of the inclusive semileptonic B meson decay [P. Gambino and
S. Hashimoto, Phys. Rev. Lett. 125, 032001 (2020)] and generalized to compute the ZN scattering cross
sections and their moments, as well as the virtual correction to the nuclear # decay.
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I. INTRODUCTION

Deep inelastic scattering (DIS) played an important role
on the emergence of the parton picture of nucleon and the
discovery of the asymptotic freedom, which lead to the
fundamental theory of strong interaction, quantum chromo-
dynamics (QCD). The key finding was that the structure
function W may well be described by a sum of parton
distributions, and the partons inside a nucleon behave as if
they are free particles despite the strong force that binds
them together. And, one does not have to take into account
the details of the individual hadronic final states when
calculating the total cross section, which is called the
quark-hadron duality. Perturbative analysis of DIS is based
on these observations.
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Theoretically, the DIS process is factorized into pertur-
bative scattering amplitudes of elementary partons, i.e.,
quarks and gluons, and nonperturbative functions called
parton distribution functions (PDFs), which have to be
determined by fitting the experimental data. (For a review
of the early days of the development, see, for instance, [1].)
However, the separation of perturbative and nonperturba-
tive contributions, so-called the factorization [2], is not
obvious, especially for higher twist contributions which
become relevant when one tries to calculate beyond the
leading order of the operator product expansion (OPE).
There is even an intrinsic difficulty in the scale separation
using OPE due to the renormalon ambiguity (see, for
instance, [3,4]). Therefore, the theoretical analysis of the
lepton-nucleon (£N) scattering has been limited in the
high-energy regime, where the effects of higher twist
operators are negligible.

The other limit, i.e., the low-energy limit, is given by the
elastic scattering of a nucleon, whose form factors can be
calculated using lattice QCD, and the theoretical compu-
tation is based on a solid ground. In the intermediate energy

Published by the American Physical Society


https://orcid.org/0000-0003-4644-2376
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.114516&domain=pdf&date_stamp=2020-12-22
https://doi.org/10.1103/PhysRevLett.125.032001
https://doi.org/10.1103/PhysRevD.102.114516
https://doi.org/10.1103/PhysRevD.102.114516
https://doi.org/10.1103/PhysRevD.102.114516
https://doi.org/10.1103/PhysRevD.102.114516
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

FUKAYA, HASHIMOTO, KANEKO, and OHKI

PHYS. REV. D 102, 114516 (2020)

region, where extra pion(s) can be generated but the process
is still highly nonperturbative, the details of the final state
hadrons also become relevant, and one finds resonances
and other structures in the differential cross sections, i.e.,
the duality is violated. The theoretical analysis of such
processes is far more complicated and quantitative com-
putation based on QCD has remained impractical.

In this work we construct a formalism to compute a total
inelastic cross section of the #N scattering fully non-
perturbatively using lattice QCD. The formalism does not
involve the parton distribution functions. Rather, we
directly compute the (weighted) integral of the hadronic
structure function that defines the total cross section. Since
the method does not rely on the separation of perturbative
and nonperturbative contributions, there is no fundamental
limitation on the range of Q that can be treated. Namely,
the analysis is useful even when the momentum transfer Q?
is small, where the standard perturbative analysis is not
applicable. This is an advantage for the analysis of the
neutrino-nucleon scattering cross section at low energy, i.e.,
the initial neutrino energy in the range from several
hundred MeV to a few GeV, which is the energy range
relevant for the neutrino experiments such as T2K, NOvA,
and DUNE [5]. In fact, in this energy region, the cross
section is neither dominated by the quasielastic scattering,
nor described by deep inelastic scattering. The contribu-
tions of inelastic processes including a few pions is
significant, and there has so far been no established
theoretical method that can reliably treat this region.

We propose to use the hadronic tensor, or equivalently
the forward Compton-scattering amplitude, computed
using lattice QCD. The hadronic tensor is defined as a
matrix element of two weak currents inserted between
nucleon states that represent the initial target nucleon. On
the Euclidean lattice, the two currents are placed away from
each other in space and imaginary time directions, so that
the matrix element obtained after Fourier (or inverse-
Laplace) transform is limited in a unphysical kinematical
region where the final states never become on-shell [6,7].
The physically relevant structure function corresponds to
the imaginary part of the hadronic tensor on the physical
cut, which is hard to obtain with ordinary lattice compu-
tation methods. (One has to solve the inverse problem.
See below.) Our proposal is to use the method developed to
calculate the total semileptonic decay rate of the B meson
[8] that enables us to compute the sum over all possible
states between the two weak currents. With an appropriate
weight of the energy, the so-called phase space, the sum
corresponds to the total scattering cross section after
integrating over spatial momentum.

An approximation is introduced for the phase space
factor that appears as a weight in the energy integral (or the
sum over all possible final states). As we describe later, the
approximation is very precise when the weight is a smooth
function of the energy. This is not the case in practice

because of the sharp upper limit on the energy transfer from
the initial lepton to the hadronic system, and the weight
factor is actually a discontinuous function of energy.
Therefore, the associated error has to be carefully exam-
ined. The experience in the study of the B meson semi-
leptonic decay suggests that it is not substantial [8], and we
study the size of the potential systematic effect for the case
of the £N scattering assuming a form of spectrum of the
final states.

Recently, some attempts have been proposed to compute
the inclusive processes using lattice QCD [9-15]. In the
context of the N scattering, they correspond to the
calculation of the forward Compton-scattering amplitude,
which is the same as what we treat. The kinematical point
accessible on the lattice is apart from the physical cut, and
the methods are devised to relate the lattice data to the
physical amplitude by solving the inverse problem, which
is extremely difficult and there is no satisfactory solution
that provides reliable quantitative results for the physical
amplitudes. The difference of our proposal is that we
do not try to solve the inverse problem, but we advocate
to compute only the energy integral of the physical
amplitude. In that way, the difficulty of the inverse problem
is circumvented, and the physical quantity of interest is
accessible.

The method of energy integral with two current inser-
tions may potentially be applied also to the study of the
Cottingham formula that relates the electromagnetic con-
tribution to the proton-neutron mass difference to the
forward Compton-scattering amplitude [16]. (See also
[17-19] and references therein.) The formula has the form
of an integral of the hadronic tensor in terms of the inserted
energy and momentum, which is the same structure as the
total cross section, but there is an additional complexity due
to the ultraviolet divergence and some dedicated analysis
would be necessary. It is also related to the two-photon
exchange diagram in the ZN scattering, which is relevant to
the precise computation of the electromagnetic radius of a
proton [20].

Another interesting application is the yW exchange
contribution to the nuclear § decay. At O(a), the nucleon
yW box diagram gives rise to a nuclear-structure indepen-
dent correction to the super-allowed nuclear f decays. Its
hadronic uncertainty limits the accuracy of the determi-
nation of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element |V,,|, for which recent phenomenological esti-
mates suggest a tension with the CKM unitarity [21,22]. In
the yW box diagram involving a lepton and a nucleon in the
initial/final states connected by a photon propagator and a
W boson propagator, the hadronic states between the weak
and electromagnetic currents can be any excited states (with
a corresponding quantum number), and their contributions
have to be taken into account. The integral over the internal
momentum resembles that of the total #/N cross section,
and the method developed in this work is applicable.
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The lattice computation of the necessary four-point
functions including two current insertions is a major chal-
lenge especially when flavor-changing currents are involved.
The calculation of the forward Compton-scattering ampli-
tude has been performed so far for a subset of diagrams that
give the leading-twist contributions [6,7,23] or using the
Feynman-Hellmann technique [14,15]. In this work we
figure out all the necessary quark-line contractions including
the cases of the flavor-diagonal, flavor-changing, as well as
those for the f decay for future computations.

This paper is organized as follows. In Sec. II we outline
the method to perform the integral over all possible
intermediate states with an appropriate weight. The method
is essentially the same as those in [24] for current two-point
functions and in [8] for B meson inclusive semileptonic
decays; more details including the derivation is provided in
this paper. The kinematics of the £N scattering is summa-
rized in Sec. IIT and the master formula of the total cross
section is given. An application to the f decay is discussed
in Sec. IV. An explicit formula and some examples of the
energy integral are then described in Sec. V. Potential errors
due to approximations are investigated, which is another
new aspect in this work compared to [8]. Further dis-
cussions and future prospects are given in Sec. VI, and our
conclusions are in Sec. VII.

We also provide some details of the quark-line contrac-
tions, which are necessary to compute the hadronic tensor.
They are especially complicated with the charged current,
which involves the change of flavors, as described in the
Appendix A.

II. LATTICE CORRELATORS
AND SPECTRAL FUNCTIONS

We first outline the basic idea of the method we are
proposing. As in the standard analysis, the inelastic
scattering cross section can be written in terms of a product
of the leptonic tensor and hadronic tensor. Using the
spectral decomposition, the hadronic tensor can be viewed
as a spectral function; the total cross section is its integral
over final-state energy with a weight factor determined by
the leptonic tensor. Therefore, once the spectral function is
extracted from the lattice data, the cross section can be
obtained as emphasized in [9]. In practice, the extraction
of the spectral function needs a solution of the inverse
problem, which is a well-known example of ill-posed
problems; there have been no practical methods developed
so far that allow sufficiently accurate quantitative estimates
(see, for instance, [9,10,25]). The problem can be overcome
by combining the energy integral with the computation of
the forward Compton-scattering matrix element [8,24], as
outlined below. The idea was developed from an analysis to
relate the different kinematical regions of the Compton
amplitude using analytic continuation [26].

Let us consider a matrix element of a nucleon with two
current insertions

C(rq) =) ™ (N|J(x.1)J(0.0)|N) (1)

X

1 ~ .

=5 (N (=)™ (g)IN). (2)
For the moment, we ignore the Lorentz and flavor indices
of the current J as well as the spin of the nucleon state |N);
a more concrete definition will be given in the following
sections. The matrix element of the form (1) can be
computed on the lattice from four-point correlation func-
tions including the source operators to create and annihilate
the external state |[N). On the second line, we introduce a
Fourier transform of the current J(q) = Y, ¢™*J(x), and
V is the spatial volume of the lattice. We assume that the
initial state |N) is at rest, so that (1) describes the process
where a momentum q is injected at = 0 and taken out at .
(An extension to the case of nonzero initial momentum of a
nucleon is straightforward.) The time separation between
the two currents is imaginary since the calculation is
performed on the Euclidean lattice. The time evolution

is then described by a transfer matrix e~# with H the
Hamiltonian of the system. Here we use the lattice unit, i.e.,
the lattice spacing is @ = 1. In the analysis of the lattice
data, we do not need the explicit form of the lattice
Hamiltonian A; it is introduced to remind us that the

evolution of individual intermediate eigenstates with

energy w is given by e~ The eigenvalues of z = e~

are limited in the range [0, 1].
The correlator (2) can be formally decomposed into the
contributions of individual energy eigenstates,

Clrq) = / * dop(w:q)e . (3)

with the spectral function

p(w:q) > 80— Exo)|[(X(@IN),  (4)
X(q)

where the sum runs over all possible states X(g) with a
specified momentum ¢. The 6 function in (4) picks the
states of a certain energy w among all possible states with
energy Ex(q).

Since the spectral function p(w;q) describes the tran-
sition rate of the initial state |N) to the states with a certain
energy @ and momentum ¢, the total cross section can be
written as an integral of the spectral function with an
appropriate weight function K(w;q):

r= / d’q A " dok (w:q)p(:q). (5)

The weight function is determined by the details of the
process of interest. For the inelastic ZN scattering, the
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spectral function corresponds to the hadronic tensor and the
weight function K(w; q) represents the phase space of the
scattering specified by the leptonic tensor. Since the energy
integral in (5) extends up to infinity, the kinematical upper
limit for the energy w is also encoded in the weight function
by a step function. The momentum ¢ is also integrated over
to obtain the total rate.

One approach to obtain the total rate I" from (5) would be
to first extract the spectral function p(w;q) from the lattice
correlator by solving the inverse problem (3) and then to
use it in (5). The problem is, however, that the inverse
problem is extremely difficult in practice since the lattice
data C(t; q) are known only at limited values of 7 with non-
negligible statistical noise. In the context of the nucleon
structure, several methods have been proposed to solve the
inverse problem, e.g., a reconstruction through moments
[14,15], the Backus-Gilbert method [9]. More extensive
tests of various methods in the market, including the
maximum entropy method, Bayesian reconstruction,
and neural network methods are found in [13,25].
Unfortunately, none of them allows fully quantitative

|

computation of the spectral function p(w;q) as a function
of w. This is only natural because of the complicated
structure of the spectrum including resonances and scatter-
ing states with interactions. To circumvent the problem, a
smeared spectral function has been considered. It is defined
as p(w) = [do'A(w,@')p(w') with a certain smearing
kernel A(w,®’) that typically has a peak at w ~ @’ and
rapidly decreases for larger | — @'|. The smeared spectrum
p(w) is easier to reconstruct with limited numerical data
[10,24] when the smearing width is sufficiently large. The
computation of the integral (5) from p(w) would then
become another nontrivial problem as it needs to take the
limit of vanishing smearing width.

A practical method to actually compute the smeared
spectral function was proposed in [24], and it has been
applied for the inclusive decay rate of a B meson [8].
The key idea was to identify the weight function K (w; q) in
(5) as a smearing kernel, and then to perform the @ integral
using the correlator computed on the Euclidean lattice. The
o integral can be carried out formally using the relation

/ doK (@, q)p(w:q) / doK () / % S 6 — Exipy)) (2230 (Py — q)
X(Py)
% (N|7(=q)|X(P)) (X (Px)|T () N) (6)
- / doK (a:4)(N\T(~g)5(H - w)T(g)|N) (7)
— (N|T(~q)K (H: )T (q)IN(0)). (8)

On the first line, the definition of the spectral function (4)
and [ d*Px8®)(Py —q) = 1 are inserted. The sum over all
possible states >y, [X(q))(X(q)| is performed with the
-function 5(w — Exg) ), replacing the energy of individual
states Ex,) by the Hamiltonian H.

The intermediate form (7) can be viewed as a
smeared spectral function. In fact, a spectral function
(N|J(-q)8(H — @)J(q)|N) corresponding to the N scat-
tering process is integrated over the energy with a smearing
factor K(w, q). This smearing kernel does not have a peak
structure around , but the mathematical form is equiv-
alent. On the last line, the @ integral is carried out by
introducing an operator K(H;q). The remaining task is
then to find an expression of K (H ;q) that can be practically
implemented in the lattice calculation.

The use of the smeared spectral function has been
extended towards a different direction, i.e., to compute
the scattering amplitude [11,12], where the smearing kernel
is identified as a factor that appears in the Lehmann-
Symanzik-Zimmermann reduction formula, so that the

|

necessary scattering amplitude is directly obtained. The

expression (8) should also be applicable in such a case.
Comparing (8) with (2), we notice that the integral can be

evaluated using the lattice correlators if the operator

K(H;q) is approximated by a polynomial of the form

K(H:q) = ko(q) + ki (q)e™™ + ky(gq)e ™ + -
+ ky(g)e™H, 9)

because the matrix element of the right-hand side is nothing
but C(z;q)’s up to a normalization factor. There may be
various ways to construct this approximation, and the
method introduced in [24] uses the Chebyshev approxi-
mation, which is described in the following.

The Chebyshev approximation is not an expansion in
terms of some small parameters. Rather, it attempts to
approximate the whole function K (w, ¢) in € [0, o] by a
set of orthogonal functions constructed as polynomials of
z = e~ ®. In other words, one may consider the kernel as a
function of z, which can take values between 0 and 1, and
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expand K (—1Inz,q) using an orthonormal set of functions
{T%(z)} with j = 0,1,2,---, N. Here, T’ (x) represents the
shifted Chebyshev polynomials, which are related to the
standard Chebyshev polynomials of the first kind 7';(x) as
Ti(x) =T;(2x — 1). The shifted Chebyshev polynomials
T%(x)’s are defined in 0 < x < 1. The polynomial order N
controls the precision of the approximation.

The Chebyshev polynomials are obtained by a recur-
rence relation:

TO('X) =1L T, ()C) =X,

1
T (x) = 20T (x) = Ty (), (10)

so that the shifted ones are derived as

Ti(x) =1, Ti(x) =2x—1,

T;H(x) =2(2x - l)T;f(x) —T;_l(x). (11)
The first few of the shifted Chebyshev polynomials are then
T5(x) =8x* —=8x+ 1, Tj(x)=32x>—48x>+ 18x— 1,
T;(x) = 128x* — 256x° + 160x> —32x + 1, and so on.
They are shown in Fig. 1 as a function of x (or z) as well
as w through z = ™.

The Chebyshev polynomials are designed such that
they evenly oscillate between —1 and 41 with j the number
of nodes. The Chebyshev approximation of a function
f(x) defined in [0, 1] has the form f(x)=~c(/2+
> %, ¢iTi(x), and each order represents (a sort of)
frequency component of the function. As the higher order
terms are added, the approximation can reproduce finer
details of the original function.

w
1.0
1.0 .
0.5 1
D
7= 0.0
&
—054¢
10 . S
0.0 0.2 0.4 0.6 0.8 1.0
z=e"

FIG. 1. Shifted Chebyshev polynomials T;f(z) for j =1 (gray
line), 2 (red dotted), 3 (blue dashed), 4 (orange dot-dashed),
5 (purple solid). The corresponding values of @ for z = e~ are
shown on the horizontal axis (top).

The Chebyshev approximation of the matrix element of

the operator K(H:;q) and thus of the matrix element of

2 =¢ M can be obtained as follows. We define a state

ly(q)) as |y(q)) =eJ(q)|N) with #, a small time
separation introduced to avoid any divergence when
evaluating (y(q)|y(q)). The approximation may then be
written as

(w(q)lw(q)
), < @IT @)
=2 PO GG (Y

which is based on the corresponding approximation
formula

C*( ) N
K =L+ Y Tz (13)

—

with z =¢

The approximation evaluated on the state |y(g)), as in
(12), may be obtained from that for a c-number (13) by
considering a decomposition into energy eigenstates |i) of
energy ,, i.e., |y) = >_; a;|i). Then, the matrix element of
T'(z) may be written as a sum y_; |a;[*T(e™"), while the
matrix element of the kernel operator is also given as
S i lail*K (w;), each term of which may be approximated
using (13).

Each term of the right-hand side of (12), the matrix

element of the Chebyshev polynomials 77(Z) may be

constructed from those of 2 = ¢=#

_ wl@)le™y(@) (14)

(w(g)lw(q))

using

C(t+2ty)
C(21)

which is immediately obtained from the lattice data (2).
Then, the right-hand side of (12) is nothing but a linear
combination of (14) with different #’s.

The coefficients c;(g) in (12) are obtained by an integral

2 [z 1 o
cj(q):/ d9K<—1n+§°S;q> cos(jO)  (15)
0

T

according to the general formula of the Chebyshev
approximation. Since K(w;q) = K(—1Inz;q) is a known
function, the coefficients can be obtained easily using
numerical integration.

The Chebyshev approximation provides the best possible
approximation at a given order of the polynomials of the
form (12) and thus of any polynomials of that order. It is the
best in the sense that the maximum deviation from the true
function is minimal in the range 0 < z(=e™®) < 1, which
covers all positive energy eigenvalues of the final states.
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For smooth kernel functions K(w;q), the coefficients
c; (q) rapidly decrease (often exponentially) for larger j, so
that the contributions from higher order terms are sup-
pressed, since the Chebyshev polynomials are bounded:
|T7%(x)] < 1. When the kernel function K(w;q) is non-
smooth or even discontinuous, the approximation becomes
highly oscillatory near the discontinuity and higher order
terms become necessary to suppress them. Examples
relevant for the computation of the inelastic scattering
cross sections are discussed in Sec. V.

One may also consider using the Chebyshev approxi-
mation to obtain more information of the spectral function
p(w;q). In fact, it is possible to introduce a kernel function
that has a finite value only in a small bin of @ and vanishes
otherwise. With such a filtering function, one can stochas-
tically count the number of energy eigenvalues in that bin,
if the Chebyshev approximation works. Unfortunately, the
filtering function is highly discontinuous and thus needs
higher order Chebyshev polynomial terms to achieve good
approximation, which is not practical for this particular
application. The Chebyshev eigenvalue filtering technique
has been used in the context of lattice QCD computation for
the calculation of the Dirac operator eigenvalue spectrum,
through which one can extract the chiral condensate of
QCD [27] as well as the spectral function in the full energy
range [28].

Our proposal is to combine the operator representation
(8) of the w integral with the Chebyshev polynomials in
order to write it using the correlators computed on the
lattice. The remaining integral over ¢, see (5), has to be
carried out with the lattice data obtained at several values of
q. This program has been demonstrated for the B meson
inclusive semileptonic decays in [8]. The formulation for
the ZN scattering is described in the following sections.

In (5) the integral over the energy @ of the hadronic final
state corresponds to the sum over all possible final states
with a given spatial momentum g>. Many of them are
multiparticle states such as Nz, Nzz, etc., which have
continuous spectra in the infinite volume limit. On the
lattice of finite spatial extent, they are discretized to satisfy
the periodic boundary condition, so that the w integral is
actually a sum over various allowed states. The energy of
each state receives power corrections of the form 1/V [29]
and the limit of V' — oo has to be taken. We expect that the
powerlike finite volume effect is marginalized by the
integrals over @ and then g°, because the finite-volume
correction should be most significant for the low-energy
and low-momentum states while the total cross section
receives more contributions from higher energy regions due
to the phase-space enhancement. How such integrals
suppress the finite volume effect is demonstrated in [9]
for the case of K — zz decays. The problem remains
severe when the upper limit of the energy integral is
relatively low so that only a limited number of states are
kinematically allowed due to the finite volume effect.

Studies of individual states, e.g., N states, in the finite
volume would be more useful in such cases.

III. vyN SCATTERING: KINEMATICS

In this section, we summarize the kinematics of the
inelastic ZN scattering partly to establish our notations and
to identify the phase space factor that plays the role of the
weight function of the energy integral. We are particularly
interested in the vN scattering, which is relevant to the
recent and future neutrino experiments, but the formulation
can also be applied for electromagnetic scattering of
electron (or muon) with a slight modification.

The diagram for the vN scattering is shown in Fig. 2. We
assign the energy-momentum as p* = (E,p), p* = (E',p’)
for the incoming (v) and outgoing (¢) leptons, and P* =
(My,0), Py = (w,Px) for the target nucleon (N) and
outgoing hadronic system (X), respectively. The momentum
transfer is then ¢* = (p — p')* = (E— E',p —p'). The rest
frame of the target nucleon is assumed for simplicity, and
M y denotes the nucleon mass. The weak current is denoted
asJ, = vy, 12“ e+ iy, HT“ d + - - -, while the electromag-

netic current is J,(,em) = —ey,e+ % uy,u — %Zlyﬂd.

For a lepton scattering off an unpolarized nucleon
through a W-boson exchange, the differential cross section
is given by

2 1 E 1 2 (¢
o VE( 1 NE NP (g
dE'dQ  4z* E \¢* — M3, 2 * 2

where dQ represents a solid angle of the final lepton
measured with respect to the direction of the incoming
lepton. The leptonic tensor L, is

L;w = 2(p//4pu + pﬂpll./ - p, ’ pg;w - ieﬂy(zﬂpap/ﬂ) (17)

for the weak current. The last term with the totally anti-
symmetric tensor €,,,; arises from the cross term between
the vector and axial-vector currents. For the electromagnetic
interaction the W-boson propagator 1/(g> — M%,) in (16)
has to be replaced by the photon propagator 1/¢>. Also, the
weak coupling g%>/2 needs to be replaced by the electric
charge ¢, and the last term in the leptonic tensor (17) has to
be omitted.

FIG. 2. N scattering.
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The hadronic tensor contains the contribution from
various hadronic states:

W (P PX,
/dPX 21)38W(Py — P — q)
x (N(P)|J,(0)|X (Px)>< (PY)[TL(0)[N(P)).  (18)

Here, |X(Pyx)) represents arbitrary hadronic final states
with total spatial momentum Py. The states are normalized
such that [@Py Y yp,) [X(Px))(X(Px)| = 1. Since the
nucleon is unpolarized, its polarizations (pol.) are averaged.
The mass dimension of W, is —1.

The total cross section may be obtained by integrating
out the differential cross section (16). We choose @ and
q¢* = (p—p')? as the kinematical variables as they are
convenient for the lattice calculation. Using dE'dQ =
(n/EE")dwdq?, which assumes an integral over a cylin-
drical angle, we obtain the total cross section

1 E? ) My+lq| 1 2
) :477.'E2 dq 2 zdw 2 _ M>
0 VMy+q q w

(EL) (2w, w9

In terms of these variables, w and ¢°, the standard
kinematical variables are written as

Q’=-¢*=¢"— (0 - My)*. (20)
and the Bjorken scaling variables are

0 0 ¢ —(w—My)?

== _ = 22
T 2P-q 2My(w—My) ' (22)
P- -M
y=—— = BTN (23)

MyE P-p E

The lower and upper limits of the @ integral in (19)
correspond to the kinematical limits of x =1 and x = 0,
respectively.

Figure 3 shows the integral paths of @ and g? in the plane
of x and Q. For a fixed |g|, the @ integral forms a trajectory
shown in the plot from x =1 down to x = 0. Since the
upper limit of |g| is fixed by the initial lepton energy E, the
integral region is the range below a line of |g| =

Here we write down the explicit forms of the leptonic
tensor L, /2. The metric is chosen as g, =
diag(1,—1,—1,—1). We set the direction of the initial
neutrino on the z axis, i.e., p* = (E,0,0,E). In the
following, we label the z direction by p = k. Other two

10!

1072 10! 10°
x
FIG. 3. Integral paths in terms of ¢*> and  on the plane of x and

Q?. The spatial momentum is chosen as |q| = 27/La x k with
k=1,2,3, 4 (from bottom to top). With a lattice cutoff 1/a =
2.4 GeV and the lattice extent L/a = 32, the physical lattice
extent is L = 2.62 fm. The momentum |q| drawn in this plot
corresponds to the range between 0.47 and 1.88 GeV from
bottom to top.

spatial directions are denoted as i and j, which are either x
or y axes. Each component of L, is written in terms of @
and ¢° as

1
Loo/2 =2E(E - q9) — 5(‘12 - q3).

Lo/2 = Lyy/2 = EQQE — q9 — qy).
Lyi/2 =Ly/2 = —Eq;,

1
Li/2 =2E(E — qi) + E(‘Iz - q3)

11/2_ 11/2_1(q _qO)

i
Lij/2=-L;/2= —E(‘I2 — q5);

where gy = w — My and g, = qo + (¢*> — ¢3)/2E. Here,
Ly; will be combined with W;, which supplies another
factor of g;, so that the sum Ly, W + LW is propor-
tional to ¢7 + ¢7 = ¢* — g, which is written as a function
of @ and ¢°.

The vN scattering cross section is thus obtained from the
master formula (19). The dependence on the initial neutrino
energy appears only through the upper limit of the g>
integral. The neutrino energy in the recent neutrino experi-
ments are typically in the range of several hundred MeV to
afew GeV. (For a review, see [5].) When the initial neutrino
energy cannot be controlled event by event, an weighted
average of o(E) with respect to the incoming neutrino
energy distribution is actually observed. Such an average
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can be easily obtained once the total cross section is
calculated as a function of the initial neutrino energy E.

The quark-line contractions needed to obtain the
Compton amplitudes in lattice calculations are summarized
in Appendix A. The simplest diagrams that contain a single
quark line having two current insertions have been already
considered before [6,7,23], but other patterns of insertions
have to be included to achieve full calculations. We also
note that our method requires the correlation functions with
varying time separations between the two currents, so that
the Feynman-Hellmann approach previously employed
[14,15] cannot be directly applied.

IV. Wy EXCHANGE CONTRIBUTION
TO g DECAY

Another application of our formulation is about the
higher order corrections to the neutron f decay. It could
also be considered as a nuclear-structure independent
correction to the nuclear f decay, which is relevant for
the precise determination of |V,].

At the leading order the f decay occurs through a virtual
W exchange. At the next order in @, there may be another
exchange of a virtual photon between the final state proton
and electron, that makes a box diagram. An estimate of
such diagram can be obtained easily using the electromag-
netic form factor of a proton if the intermediate state can be
assumed to be a ground-state proton, but actually the
contribution from excited states has to be taken into
account, and it is a source of significant uncertainty. In
our formulation, the integral over the inner-loop momen-
tum can be carried out with the effects of all possible
intermediate states included.

The correction to the tree-level amplitude of the nucleon
p decay may be written as [21]

3a [ sz M3 0
DVA:_ = w M()l, 2’ 24
W 20 0 QZ M%V + Q2 3 ( Q ) ( )
where M ©) (1,0% is the first Nachtmann moment of the
[30 31]:

4/1 1 42r
_ dxi
3 /o (l—l—r)

with r = /1 + 4MZ%x?/Q?. Again, we may rewrite the

integrals over 0 and x by those of @ and g*. The Jacobian
is given by dQ*dx =2M yx/vdwdg?. Then, the formula (24)
can be written in the form

Dm_/

" 1+2r
(1+r)?

structure function F\’ 3

mMP(1,0%) = O, 0% (25)

/MN+‘I| dw 1\42
Vg My (o — My)? My, + Q
FO(x, 0%) (26)

with r and Q7 also rewritten using @ and g>. [See (20)
and (22).]

The structure function F; ) is defined as the part
including the e-tensor ie,,q in W as

i
WH 5 —
2

7}2\/ €;41J(1/}Paqﬁ W3 (27)

and F3 =v/MyW;. (The Fg()) is an isospin singlet com-
ponent of F3.) By looking at the component of (u,v) =
(i,j) = (1,2) we obtain

. q|
W, =—
T My (w0 — My)

F5, (28)
which is to be combined with (26).

The quark-line contraction to compute the relevant
Compton-type amplitude is summarized in Appendix A.
Note that there are other types of contractions from those of
the ZN scatterings because the initial and final states are
different (proton and neutron).

There is a recent lattice computation of the same quantity
but for pion [32], which has been used to estimate the
contribution for nucleon [33]. They used the coordinate-
space integral instead of the momentum space integral
given above. Another method to use the Feynman-
Hellmann theorem has also been proposed [34].

V. ENERGY INTEGRAL

We apply the method outlined in Sec. II to the compu-
tation of the total /N cross section (19) or the loop
correction (26).

On the lattice, one can calculate the forward Compton-
scattering amplitude

CJJ Zezq x Z

- %% < (N(0)|T(~g)e™T,(g)IN(0))  (29)

()1 (x. 1)7,(0.0)|N(0))

from a four-point function that includes the operators to
create and annihilate the initial-state nucleon |N(0)). We
omit the spin index of the nucleon state, but an average over
the nucleon spin is assumed as indicated by %Zpol.' On the
second line, the correlation function is rewritten using the
transfer matrix e~/" , and a Fourier transform of the current
is introduced: J,(q) = >_, e74*J, (x).

Let us consider the o integral in (19). The factor
L,,/(¢* — M3})?* in front of W, has the form o' with [
either 0, 1, or 2, depending on the components y and v, up
to an w-independent factor. The W-boson propagator can
be approximated by a constant, 1/M%,, for low-energy
scatterings. For the electromagnetic scattering, on the other
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hand, 1/(¢*)> = 1/((w — My)* — ¢*)* has to be multi-
plied. We write the factor in front of W, collectively as
K(w,q), so that the integral to be performed is written as
| doK(w)W(w), where the indices other than w are
omitted for simplicity. [The definition of the integral kernel
K(w) will be slightly modified. See below.]

Along the line of (8), the w integral at a fixed ¢ can be
rewritten in the form

/ doK ()W (@) = 5
(30)

The indices y, v as well as ¢ are omitted on the left-hand
side. The upper and lower limits of the w integral has to be
included in the definition of the kernel operator K (H). For
the total cross section (19), the kernel K(w) is proportional
to @' (I =0, 1, or 2) until it hits the upper limit M + |q|
where it vanishes discontinuously. The power / depends on
the form of the leptonic tensor L, so that (30) corresponds
to each term appearing in (19) and we have to add them
together in the end.

As we have already mentioned, the approximation of
K(w) using the Chebyshev polynomials becomes more
difficult when the target function is discontinuous. In order
to avoid this problem, we propose smoothing out the
discontinuity. For example, we can replace the Heaviside
step function (M y + |q| — ) to realize the upper limit by
0,(My + |q| — ) with 8,(x) a smoothed step function,
such as 6,(x) =1/(1 +exp(—x/o)). A parameter o is
introduced to specify the range of the smoothing (or
smearing). To be explicit, we may take the kernel function
of the form

K(o) = 0! x 0,(My + |q| - o). (31)

where the factor ¢ is introduced to compensate the small
time evolution that appears when we define |y,(q)) =

e~finj 4(q)|N(0)). The kernel function (31) does not reflect

the lower limit of the w integral at \/M% + ¢°. That is
because there is no state contributing to the integral
below the lower limit, which corresponds to the elastic
scattering. In fact, the forward Compton-scattering ampli-

tude CJ/(t;q) in (29) behaves as ™V MY+@'t gt large time
separations. Therefore, we can safely extend the lower limit
of the w integral to zero.

The kernel function should be adjusted to treat the
electromagnetic scattering with a photon exchange or
the yW-box correction to the f# decay (26), as they have
complicated prefactors. But, the basic strategy is unchanged.

In order to demonstrate how the Chebyshev approxima-
tion of K(w) works, we show some examples of K () and
its approximations in the following. We set the lattice cutoff

1/a =2.4 GeV and the lattice size L = 32, which are
typical in today’s lattice QCD simulations. The nucleon
mass is taken at the physical value My = 0.96 GeV. The
small time duration ¢, is taken to be minimum, #, = 1, in
the lattice unit. The plots in the following are all in the
lattice unit.

We choose the kernel function K(w) in (31) with the
smoothing parameter ¢ = 0.2, 0.1 and 0.05 (lattice unit).
Figure 4 shows how the smearing modifies the true
function, which has a discontinuity at w = My + |q|
(black curve). Here we choose the momentum insertion
lg| = 27/L x 3, which is roughly 1.4 GeV/c. With these
choices of the smearing width o, the kernel function is
smoothed around the point of the discontinuity. As o
decreases, the curve becomes closer to the true function.
Also shown is mock data for the spectral function (purple),
which models the elastic N as well as Nz continuum
contributions in the infinite volume. It will be used to
estimate potential errors due to the smoothing (see below).

The Chebyshev approximations of the kernel with
polynomial orders N =15, 10, and 20 are shown in
Figs. 5-7. A general observation is that the approximation
of the kernel is quite good when it is sufficiently smeared,
say o = 0.2. For instance, see Fig. 5 for the case of the
smallest nonzero momentum on this lattice, |q| = 2z/L. As
we make ¢ smaller, we need higher order terms, e.g., N =
20 when o = 0.05, to obtain a reasonable approximation.
The same is true for larger momenta |q| =27z/L x 2,
2z/L x 3 (Figs. 6 and 7, respectively).

Even when the approximation for the kernel function is
not very accurate, the integral over @ may be obtained
to a reasonable accuracy. That is because the Chebyshev
approximation produces a function that oscillates around
the true function. Even in the worst case (I =0,
lg| = 27/L x 3, and ¢ = 0.05) among those plotted in
Figs. 5-7, an integral of [5° dwK(w) deviates from its true
value by only 10% (N =5), 2.7% (N = 10), and 0.2%
(N = 20). Therefore, if the spectral function W(w) is @
independent, the error due to the Chebyshev approximation
is well under control. It becomes more problematic when
the spectral function varies rapidly around the upper limit
of the integral. That happens when a threshold opens near
the upper limit My + |g|. For instance, the zN threshold
opens at My + M, where the spectral function sharply
increases. The convolution integral [ dwK (o)W (w) would
then contain larger errors when |g| ~ M, as we discuss in
more details below. Fortunately, the single pion threshold is
relatively easier to treat theoretically using baryon chiral
perturbation theory, and the potential error may be cor-
rected when higher precision is required. The thresholds of
more than one pion would be less problematic since such
contribution is added on the spectrum of fewer pions and
thus their impact is less significant.

Once the approximation is constructed, it is straight-
forward to evaluate the @ integral. We first extract
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FIG. 4. Kernel functions K(w) with [ =0 (top), 1 (middle),
2 (bottom) and their modification due to the smearing. The
modified functions are shown with ¢ = 0.2, 0.1 and 0.05 in the
lattice unit. Other parameters are described in the text. The solid
purple curve represents mock data for the spectrum used to test
the method (in an arbitrary unit).

(Wi (@le" v, (@))/ (v, (@)l (9)) from the lattice corre-
lator as described earlier. By combining them we construct

(W (@IT;(e™)ly.(q))/ (v, (@)lw.(qg)). from a ratio of
correlators  CJ/(t + 2t;q)/CJl(2t9;q), and then using
(12) with the coefficients c; determined from the form
of the kernel function, the integral is obtained.

A practical problem is that the Chebyshev polynomials
T%(x) involve huge cancellations among different orders

of x** (k=0,1,..., J), since the coefficients may grow as
fast as 4% with alternating signs. As a consequence,

W (@)|T5(e™)ly.(q))/ (wu(@)|w.(q)) with large j may
have an error larger than 1. Since the Chebyshev poly-
nomials are constructed such that |7;(x)| <1 is satisfied,
the terms whose magnitude is greater than 1 due to
statistical fluctuations can easily destroy the whole approxi-
mation. In order to avoid such a problem, we should add

constraints  |[(y,(q)|T;(e")lw.(@))/ (w.(@)w.(q))] < 1.
when we determine their numerical values from the
lattice data. This can be done using a constrained fit.
Namely, we extract the Chebyshev matrix elements

@) T3 (e )y, (9))/ (w,(@)lw.(q)) from the correla-

tors (v, (q)|e"|w,(q))/ (w,.(@)lw.(q)) by a fit with the
constraints. Due to the statistical error of the correlators, the
higher order Chebyshev polynomials are not well deter-
mined but limited within the range between —1 and +1.
Such poorly determined higher order terms are still useful
to estimate potential errors due to the truncation of the
polynomial. (See [24] for details).

The systematic error due to ignored higher order terms in
the Chebyshev approximation can be estimated from their
coefficients. Since the shifted Chebyshev polynomials,
T%(x), form a orthonormal basis of functions in 0 <x<1
and those of higher j represent rapid variation of the true
function, we expect that the high-j coefficients ¢} are
suppressed when the true function varies only slowly. This
can be confirmed with the examples of the approximations
given above. Figure 8 shows how ¢} decreases for higher
polynomial orders j. The plots are presented for different
I’s and momenta |g|’s. For all the cases, the coefficient ¢}
basically falls exponentially as j gets higher. The rate of
decrease is faster when the smearing width o is larger
(6 =102), and |c;| becomes O(107%) or even smaller
already at j = 10. This size represents the relative error
in the final result, because the Chebyshev matrix elements

(w(@)|T;(e™)lw.(@))/(wu(@)lw.(q)) are constrained
between —1 and +1 by construction. The decrease of ¢}
becomes slower for smaller 6. Thus, for more rapidly
varying kernel functions, much larger polynomial orders
are necessary to achieve the same precision. When the
lattice data are available only in a limited range of the time
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FIG. 5. Kernel function K(w) and its Chebyshev approximations plotted in the lattice unit. Top panels are for / = 0 while the middle

and bottom panels show them for / = 1 and 2. From left to right, the smearing width gets narrower (¢ = 0.2, 0.1 and 0.05). The
approximations are written with the polynomial order N = 5, 10, and 20. The energy integral is truncated at @ = My + |q|; || is taken
as the smallest nonzero momentum on the lattice: |q| = 2z/L, so that the upper limit is at @ = 0.60.

separation between two currents, this sets the limit of the
method, and we have to choose sufficiently large ¢ such
that the truncation error is under control. The results should
then be extrapolated to the limit of ¢ — 0.

An example of the extrapolation ¢ — 0 is shown in
Fig. 2 of [8] for the inclusive semileptonic B decays. It is
for the same type of function with / = 2, and the data show
that the dependence on the smearing parameter ¢ is mild
and becomes essentially flat for some small values of o
(<0.1 in the lattice unit).

For the #N scattering, for which lattice computation
of the relevant amplitude is not available in the form
useful to perform this analysis, we consider a simple model
that describes an elastic scattering plus a single pion
production processes. The elastic channel corresponds to

a delta function 8(w — /M3, + ¢*) in the spectral function
W(w) in (30). The single pion production begins at

s = (My + m,)?* for s = > —q*. The spectral function
typically has a shape

M2 — 2\ 2 4 2
W(w)Nﬂ\/(l_M> _4dma
N N

which comes from the imaginary part of a one-loop
diagram describing a creation and annihilation of an Nz
pair in the s channel. (Strictly speaking, this is valid only
for two scalar particles. To be more realistic, one should use
for instance the heavy-baryon chiral perturbation theory.
The qualitative feature near the threshold is expected to be
unchanged, though.) It is shown in Fig. 4 (purple curve)
with an arbitrary unit. The relative weight between the

elastic contribution (a peak at ® = \/M% + ¢°) and the Nz
continuum is unknown, so that the height of the peak is also

(32)
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FIG. 6. Same as Fig. 5, but with |g| = 2z/L x 2. The upper limit of the kernel function is @ = 0.79.

arbitrary. The task is then to obtain a convolution integral of
W(w) with the (smeared) kernel K(w). Apparently, the
contribution of the elastic channel is underestimated by the
smearing, while the Nz contribution is likely overestimated
because the spectrum is an increasing function.

We estimate the error due to the smoothing with the
model described above. This example, shown in Fig. 4, at
lg| =27/L x 3 is a particularly dangerous case, since
the discontinuity of the kernel is in the region where the
spectrum is rapidly growing from the Nz threshold. The
deviation from the true value at finite ¢ and its extrapolation
to 6 — 0 is shown in Fig. 9. The plot shows the integral of
the mock data divided by the true value for the elastic
contribution as well as for the Nz states. The elastic
contribution (open circles) has the same relative error
among different I’s, because it is simply determined by
the value of K, (w)/K,_o(w) at @ = \/M% + q*>. The Nx
contribution depends on the details on the kernel function,
thus on /, and the error increases with [ (filled circles). It
appeared that the error in this particular case is quite
significant for the Nz continuum contribution, and one

probably needs ¢ = 0.1 or smaller to control the extrapo-
lation, which seems to be well described by a linear
dependence on ¢>. The error would probably cancel
between the elastic and Nz contributions. When the elastic
contribution is relatively large, the cancellation becomes
stronger and the total error might not be as substantial as the
estimate for the Nz contributions suggests.

The actual error depends on the details of the spectrum.
The value of ¢ can be chosen at the analysis stage of the
lattice data, and thus the analysis can be repeated for
various ¢ without extra computational cost. How much one
can reduce ¢ depends on how large time separations the
lattice data exist without being overwhelmed by the
statistical noise.

VI. DISCUSSIONS

This work proposes a method to compute the inelastic
N scattering cross section using lattice QCD. The key
steps for computing the total cross section are to decom-
pose the forward Compton-scattering amplitude into the
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contributions of different energies and then to integrate
with an appropriate weight factor that represents the phase
space. Instead of literally performing this program, we
consider the spectral decomposition only virtually and
realize the energy integral by identifying the weight factor
as an operator constructed from the Hamiltonian. This
weight operator between the two currents in the Compton
amplitude can be reconstructed from the corresponding
lattice computation. The essential point is that we can avoid
the explicit spectral decomposition, which is a well-known
example of the ill-posed inverse problem.

In the standard analyses of DIS, the cross section is
measured depending on Q? and x, from which one can
determine the structure functions F;(x, Q%). (The subscript
distinguishes distinct kinematical structures, but the details
are not important in this discussion.) In the parton model,
the structure functions are further decomposed into the
contributions of partons (quarks and gluons) and written in
terms of the parton distribution functions (PDFs). The basic
assumption here is that the power corrections of the form
1/Q? and higher can be neglected, which is justified only

Same as Fig. 5, but with |g| = 2z/L x 3. The upper limit of the kernel function is @ = 0.99.

above Q’~ several GeV?. In fact, in the low Q7 region,
there are resonance structures in F;(x, Q%) near x ~ 1 due to
low-lying energy states. Such resonances may not be
treated by perturbation theory. Even using the lattice
QCD calculation, treating the individual excited states is
avery challenging task, since they are actually multiparticle
states like Nz, Nzz, - - -, whose spectrum becomes dense on
large volumes. Our proposal is to consider only a sum over
such states, which is a well-defined quantity and the
correspondence with the lattice observable can be estab-
lished. In other words, instead of the structure functions
F;(x,Q?), we only analyze their weighted integrals.

The problem of the standard analysis at low Q? is related
to the assumption of quark-hadron duality. In the pertur-
bative QCD calculation one takes the quark and gluon
external states, which are unphysical, instead of hadronic
states. Such an assumption can be justified when one sums
over a certain range of kinematical variables because the
nonperturbative effects which are enhanced near the res-
onances can be avoided [35]. In the analysis of DIS, the
duality has been observed to be satisfied after averaging

114516-13



FUKAYA, HASHIMOTO, KANEKO, and OHKI

PHYS. REV. D 102, 114516 (2020)

10°

[5]
5]

[5]
|51

5]

1072

o
[

10-°
15 20 25 0 5 10 15 20 25
J J

FIG. 8. Chebyshev coefficients |c|. Top panels are for / = 0 while the middle and bottom panels show them for / = 1 and 2. From left
to right, the inserted momentum increases: |q| = 2z/L, 2x/L x 2, 2x/L x 3.

over some appropriate range of x [36-38] (see also [39] for
areview). Conversely, some sort of smearing (or averaging)
of the experimental data is necessary to compare with
perturbative QCD, and it becomes more prominent in the
low Q? region. So far, no quantitative measure on how
much smearing has to be introduced for a desired precision
has been known. Our proposal is one way to define such
smearing on a theoretically solid foundation. In this paper,
we have focused on the calculation of the total cross
section, but it can be easily extended to the cases of a
partially integrated cross section, which plays the role of
the smearing. Fully nonperturbative computation is pos-
sible in our framework, and no assumption of duality is
necessary.

One of the main themes in the study of nucleon structure
is the determination of PDFs. With our method, the x
dependence of PDFs is not accessible as we need an
integral over the energy of the final hadronic system. Still,
some moments of the cross section can be computed by
choosing an appropriate weight function including some

power of x, for instance. Once various moments are
obtained, they can be used to constrain the overall shape
of PDFs. We have to be careful, though, because the
integral over @ while fixing ¢* corresponds to an integral
along a curve on a (x,0?) plane as shown in Fig. 3.
They cannot be simply written using the moments conven-
tionally defined as [] dxx"F;(x, Q?) at a fixed Q. One
may consider instead integrated moments of the form
i) o 1 /(Q*)™ [} dxx"F;(x, Q%), which can be calculated

using the method introduced in this work. Given the fact
that the Q? dependence of F;(x,(Q?) is a subdominant
effect and can be understood using evolution equations, one
could still gain some information from such analyses.
Towards realistic computation of the inelastic #N scat-
tering cross section, there are a couple of challenges we
would be confronted by. One of the major limitations,
which is actually common in lattice QCD calculations, is
that the spatial momentum |g| one can reach would be less
than a few GeV/c. The momentum is of course limited due
to the discretization effects, but in practice the limitation
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FIG. 9. Extrapolation of the energy integral to the limit of
o — 0. The estimate is given with a mock spectrum. The integral
at finite o divided by that of ¢ = 0 is shown. The contribution
from the elastic channel (gray), which is independent of /,
extrapolates from below. The Nz contribution depends on !/
[l = 0 (black), 1 (blue), 2 (red)] and is overestimated at finite o.
The horizontal axis is ¢°. The data points correspond to ¢ = 0.15,
0.1, 0.05 as well as 0.02. The last point is already very
close to 6 = 0.

rather comes from large statistical noise of higher momen-
tum correlators, for which the signal is rapidly over-
whelmed by the noise. As a consequence, it will be very
challenging for the lattice computations to reach the DIS
kinematical region, > a few GeV/c. The energy region of
interest for the neutrino experiments, T2K and DUNE, on
the other hand, is below a few GeV, which would be
within reach.

Even at small momenta, the computation of the forward
Compton amplitude is a challenging task, because it requires
a saturation of the ground state nucleon on both ends to
prepare (N| and |N). The signal-to-noise ratio for nucleon
decreases as exp[—(my — 3m,/2)t] for large time separa-
tions where the ground state would dominate [40]. Even for a
nucleon two-point function, it requires a lot of effort to make
sure that the ground state has been reached, and there have
been many studies to investigate the ground-state saturation
for three-point functions, which are relevant for various
nucleon charges. (See, for instance, [41-43]. More details
and a full list of references may be found in [44].) The up-to-
date simulations have a time separation between the nucleon
source and sink operators about 1 fm, which is not ideal to
sufficiently suppress the excited states of mass gap about the
pion mass but is a necessary compromise. The insertion of
two currents separated from each other in the time direction
requires even larger time separation than the computation of
the three-point functions. The computations carried out so
far [13—15] do not include extensive tests of the ground-state
saturation. We emphasize that the signal-to-noise problem is

common for all lattice calculations, especially for those of
nucleon properties, and various methods are being studied to
improve the situation.

VII. CONCLUSIONS

This paper describes a new method that enables us to
explore a class of new applications of lattice QCD. It is
about inclusive processes such as the lepton-nucleon scat-
tering without specifying the final hadronic states. On the
lattice, the corresponding quantity is the forward Compton-
scattering amplitude calculated at various Euclidean time
separations between the two inserted currents. The neces-
sary quark-line contractions are summarized. The lattice
observable can be related to the physical cross section. The
method has been already successfully tested for inclusive B
meson decays [8].

The method opens a new possibility to study the vN
scattering in the low-energy region, which is relevant to the
neutrino oscillation experiments, such as T2K and DUNE.
So far, theoretically solid analysis has been possible only for
elastic scattering, for which the form factors computed on the
lattice can be used, and for deep inelastic scattering, which is
described by perturbation theory. The region between these
lowest and high-energy scales can be treated fully non-
perturbatively using the technique proposed in this work.

Although this paper describes only the total cross section
in order to be explicit, the proposed method can be utilized
to compute other related quantities, such as moments of x
or other variables. The change of the analysis is only to
modify the smearing kernel, and the extension is straight-
forward as long as it does not introduce more disconti-
nuities. Through such moments, one can extract more
information about the process and the nuclear structure.

The actual computation is yet to be carried out. The
computational cost is significantly more demanding for the
forward Compton-scattering compared to that of the three-
point function used to extract the form factors. (The necessary
quark-line contractions are summarized in Appendix A.)
Furthermore, the signal-to-noise problem is more severe, So
that the realistic calculation would be a substantial challenge
in lattice QCD in the next decade. This work provides a
framework for such future studies; we have started a
numerical study to demonstrate its practical feasibility.
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APPENDIX A: QUARK-LINE CONTRACTIONS
WITH TWO CURRENT INSERTIONS

A challenging part in the lattice computation of the
inelastic ZN cross section is the calculation of the forward
|

Compton-scattering amplitude (29), which involves two
current insertions. It may be obtained utilizing the
Feynman-Hellmann technique as applied in [14,15], but
here we consider the more conventional approach to
contract the quark lines. See also [6,7,23] in which a part
of the current insertion topologies was considered.

In order to extract the matrix element (29) we need to
compute the following two-point and four-point functions
on the lattice. For completeness, we also define the three-
point function:

C2pt(tsep;p> = Ze—ip'(y—x) <N(tsnkvy>N(tsrcvx)>’

y

C%t(tsep’ Tl;p’ q) = Ze—lﬁ'(y—x)+iq~(z—x) <N(tsnkvy)01 (tl’z)N(tsrmx»’

.z

0,.0 —ip-(y—x)+ig,-(z;—x)+igs-(zo— N
Cor P (taps 71, 7239 1 40) = D €70 G0 G0 (N (14, 9) O (11,21) O (12, 22)N (1. ),

RESES)

With fe, = fop — te, T) = 1) — Ly, and 7) = 1) — tg. The
spatial momentum components are discretized on the lattice
as p; = 2zn;/L with an integer n; for a lattice of the spatial
extent L. In the end we take the initial nucleon momentum
to zero, p = 0, and the source position x can be fixed, e.g.,
x = 0, without loss of generality. The operators O and O,
are the weak or electromagnetic current with some Lorentz
structure.

1. Preparation

The nucleon interpolating operators at source and sink
may be defined as

!

! 1y A / /
Pgr = e be Ltg, [u/l;,Sﬂ/},/d;,],

!y A ! / /
Ny =e’"'d4 [dZ,S/;/ylu;,], Ny = €]

for P (proton) and N (neutron). Roman letters a, b, ... stand
for the color index, while the Greek indices a,pf, ...
distinguish the spinor components. S is a diquark spin
matrix, which we choose S = Cys = 7,73 and § = —S.

We define the quark propagator P~! of a flavor g as
(D")as(v, x) = (qi(x)gj(y)). The flavor ¢ may either
represent up (u) or down (d) quark. We call it the forward
propagator, because we assume it describes a propagation
in the same direction in time as the nucleon propagator. In
the following, we use a notation F,(y, x) = (D' )gg (y,x).
We will define the backward propagator as well, shortly.

The nucleon two-point function is obtained by taking all
possible contractions as

Copt = Tz (Py Ps)
e T (F ST S

da odp
HF )L (F )L (SFS)5). (A1)
where T is a projection matrix and the repeated indices are
summed. The projection matrix is set to extract desired
nucleon state. For instance, to sum over the nucleon spin it
is set as T = diag(1,1,0,0).

To compute the three-point function, our strategy is to
build a sequential propagator and then to contract at
the location of the operator. To do so, we define the backward
(sink-sequential) propagators 5, ;, which depend on the
flavor of the valence sequential backward quark propagator:

B, (z:y.x) = 8u[Fu(y.x). Fa(y. x)] - D (v.2).
By(z:y.x) = SglFu(v.x). Fu(y. x)] - D' (v.2).  (A2)
where S, ,’s are diquark propagators that reflect the structure
of the nucleon interpolating operator at the sink. They are
composed of u#- and d- or two u-quark forward propagators as

SulFu Faliy = eV e [T (F)p (SFS)

+ (TFY) (SFI5)ee

op

+ (FUT)oh(SFI8)os

c'c
op

+ (TF)h (SFIS)55), (A3)
SulF s Fu,)o8 = e e [(F, T)5< (ST F,,ST)bb
+ (S"F LT (FuST)pe ) (Ad)
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The connected three-point functions with a neutral current
insertion is then constructed as

CﬁFu(Z’ y, X)

3pt = T (Py (y)|alu(2)|P5(x))

= Tr[B,(z;y, x)TF,(z, x)],
= Ty (Py(y)|dTd(z)|P5(x))
= Tr[By(z;y, X)L F 4(z, x)],

Cdld(z.y.x)
(AS)

where the current operator has a y-matrix structure I'.

2. Four-point functions

Here we describe a scheme for the computation of
the general four-point nucleon correlation functions for
both flavor-diagonal (or neutral) and flavor-changing (or
charged) currents. We consider the following four-point
functions:

e 1 -
Cin’ (21.22.3.%) = Toy (Py (017 (21)72 (22) | P5 ().

0 5 _
Ciot” (21.22.3.%) = Ty (Py T (21)0'7 (2) | (x)).

Cin ™ (21:223.%) = Tay Ny D (2002 (22) P ().
= Tay (Ny )V (20757 (22)Po(x)),
= Ta (Ny ()L (2072 (22) P ().
x) = Ty (Ny ()17 (2005 (22) [P (),

x) = Toy (Py ()L (1)) (22) [ P5(x)),
07 (21,22, 3.%) = Tag (Py ()15 (20) 75 (22) | P5 ().
0 (210 22090%) = To (Py )W (2P (22) [ Po()),

i (1) ) (. \|B
t (21,22, ¥, %) = T55’<P6’(y)|‘]d (z1)Ju (Zz)|P5(x)>v

(1) 7(2)
Cfﬁ Ya (21,22, ¥, %)

54)-](
Ci (z1,22,y,X)

|
(1) 42)

where we introduce the neutral and charged currents,

uud uud uud

J0 =ary, — JO =arig. (A6)

The superscript (i) distinguishes the two operators inserted
(i=1or?2).

a. Neutral current

For the neutral currents the current insertions and the
corresponding quark lines from the source to sink nucleon
operators are shown in Fig. 10.

In order to contract at the location of the current J(1), 21,
we need to compute three different current sequential
propagators. One is the current-sequential propagator (C):

C (z 2, X )

Z9 q27

_ D_I(Z Z2) F<2) - F (Z29x)’
ZD 2.25) - €42@TA) . F (25, %),

(A7)

and two others are the current-sink sequential and sink-
current sequential propagators called G and &, which
were introduced in [48], where we should replace the
CP-violating operator with the current operator J?) for our
purpose (see Fig. 11). Then, the sink-current sequential
propagators £ are defined as

Eq(z:20.y.%) = By(22:y.%) - TP - B (z.2).  (A8)
The current-sink sequential propagators G can be expressed
using the diquark propagators S as

Gu' (233,%) = Su[Culy, 22,%), Fu(,)]- D7 (v, 2),

Gu' (239:%) = SulFu(3:%), Ca (v, 22.%)] - D' (v.2),

Gy (2:3.2) = (SulCu(y. 22.%). F o (v.))
+8alFu(3.%).Cu(y.22,%)]) - D7 (v.2). (A9)

In what follows, we omit the arguments (x,p,...) in the

propagators for simplicity. Then, the connected four-point

00 0307

uud uud UuUU uud U ud uud u U d
«]q(Ll) J182) Jz(il)’]c(l2) ’L(Ll)‘]z?) Jc(il)‘]sz)
FIG. 10. Connected diagrams for the nucleon four-point functions with N JEPJE,”, J,(,I)JEJZ), and JEPJEP currents inserted.
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z
z
J(2) J2
udu uud

FIG. 11.

functions for the neutral currents are given using F, C, &,
and G as

2)

J(u])J(-

4pt—conn TI‘[B F ) Cu] + Tr[(é’u + gﬁ”) . F(l) fu]
C:]d)t gonn = TI‘ Bd : Cd] + Tr[é’d . ]—‘(1) . ]:‘d]’
(1) 42
et = THG T ),
(131(2)
4pt conn Tr[g ! F fd] (A]O)

where Tr denotes a trace over color, spinor indices as well
as the location of the current z = z;, which is limited on the
time-slice ¢,. The first term in either case corresponds to the
diagram given on the left in Fig. 10. The G-type contri-
bution does not appear for J,J .

b. Charged current

The quark-line contractions are more complicated for the
charged current, for which the quark flavor changes. All the
diagrams for the charged current insertions JU)J Sf) and

J SLI )J@) are shown in Fig. 12. The first and third diagrams in
both cases resemble the first and third ones given in the
J,J, current in Fig. 10, where we can use the backward
sequential propagators B, and &, for these diagrams. On
the other hand, for the second diagram the Wick contrac-
tions of the sink and source quarks are different from that of
the J,,J, or J,J ; current (see Fig. 13), so that the backward
sequential propagators G defined above cannot be used.

@M

uud U U
(1) 7(2)
JY J+

FIG. 12. Connected diagrams for the nucleon four-point functions with J{!

z z z
J(2) J(2) J2)
uud

duu U du

guu g{{d gd “

Propagators for computing the connected nucleon four-point functions.

To evaluate these crossing diagrams, it is convenient to

define generalized nucleon two-point functions: N; ik [F g
ForFa) =TITN N 13)], Ny = e q¢' (4" Sqf ],
Nij = e*[q CSqJ]ql , where we introduce flCtlthus
valence quarks with three different flavors ¢;, (i,
k =1, 2, or 3). Therefore it is understood that the Wick
contraction for the function N, [F, .F,,.F,] is taken
only for a pair of the same fictitious valence quark flavors
(¢:g;). An explicit example is

N321[‘7:‘]|”7:42’f%]
= Tsye®" e {(a3)§ [(a2)) Sy (1))
[(Q%)ysyﬁ(ﬂh)/](‘h) )

W (SFy T)ag (Fo,ST)f (Fo )y (A1)

Using this we can construct a generalized diquark propa-
gator for the crossing diagrams.

Let us first focus on the case of J<_1)J(+2) insertions. As
shown in Fig. 13, when the final contraction is taken at J(),
the forward propagator is always given by F ;. Using this,
we construct the backward sequential propagator H’-/+ for
the crossing diagrams,

v (@yx) = 8 FL(3,%),Cy (0,20, )] - DR (3, 2),
(A12)

uud

(1) 7(2)

J+ J

(left) and J, % J@ (right) currents inserted.
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u U d uud uud uud uud uud uud uud

uUud U U d U U d U U d U U d U U d U U d U U d
FIG. 13. Crossing diagrams for the flavor changing current for J) (left) and for J @) (right).
such that J 5 5 _
S . F = {T <Nijk>5/( ) il
0@ 7 8(q1)y (@1)a
Cé/tvpt —cross =Tr [H“ " F fd] (A13) g 5’
StulFu Faltg ={ T s (5 s Bl |
where &/-7+[F,,F,] is a diquark propagator for o ! 5(q2)6(a2)q
crossing diagrams, and the concrete form will be given 5 5 B
below. C, is a current-sequential forward propagator Sf’;k [Fy F (12](111 {T55/ (Niji)s ( = a) (N123) 5}.
defined as 5(Q3)ar5(‘13)a
(A15)
Ci(z,20,x) = D7 (z,20) - T? - F(z0.x).  (Al4)
. . . . S For example, S5, [F . F ] is
Obviously, C, = C, ,intheisospin symmetric limit. We note ;
that such diquark propagator for crossing diagrams can be SEF oy F Ja
obtained by taking the functional derivative of the general- 132 92lad
ized nucleon two-point functions (N, x[F,, . F,,. F,,]). For = et (F, T)h? (quZ)aﬂ (A16)
example, the diquark propagator correspondmg to the first
diagram in Fig. 13 is given as 83, [Fq =Cy.Fy =Fu,  The full contribution of the diquark propagator S’/ is then
where the function S;’]’ LIF aFa, s deﬁned as obtained by the sum of four diagrams,
' |
(8 [Fu €)= (STl Fus €] 4+ S5 [Cs Ful + STl F s €] + SH[C Fu))isy
= Vel Sy (FUT)p (SCL )+ (Fu)os (SCLT)5?
+H(SC )55 (FuT)of + (SCLT)L (Fu)gs)- (A17)

For the other two diagrams, they are evaluated using the backward propagators B, and &, since the diagrammatic structure is
the same as the flavor-diagonal case. However the quark flavors in the third (£-type) diagram in Fig. 12 should be different
from the original £-type propagators, since the quark flavor for backward propagators will change in the case of the charged
current. For this purpose we introduce generalized functions &, ,, defined as

Eg0,(zy.%) = B, (2257, x) - TP - D71 (25, 2). (A18)

Then the first diagram in Fig. 12 is Tr[B, - T - C.], and the third diagram is Tr[€,, - TV - F,].
Next, we consider the Ji) J) insertions. A similar argument to the previous analysis for J{! >J(+2) can apply. As shown on

the right-hand side of Fig. 13, there are four crossing diagrams like those of JU)J (+). Another diquark propagator for
crossing diagrams S7+/- is given as

(87+7-[F o C_))2 = (85 [F o C-] + 89 [Fun C_] + Sy [F o C_] + S5, [F o 1)

= @b abes,  ((TC_S)5P(F ) + (TF, )ap (C_ S)“

ap

+(TC_ ) (Fpy + (FDp(C-S)s) (A19)

ad aad

pa
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ddu ddu ddu ddu
uud uud uud uUud
JJ(:)L(LQ) Jl(Ll)Jf)

ddu ddu ddu ddu

uud uud uud uud
(1) 7(2) (1) 7(2)
Ji g Jy ' JY

FIG. 14. Diagrams for proton to neutron transitions for J?Ji) J&])J(f), J( )J< ), and J(UJ(Z)

where C_ is the current-sequential propagator

C_(z,2p,x) = DJI(Z,ZQ) T - Falza, ). (A20)

Then the backward current-sink sequential propagator for

. . J . . .
the crossing diagrams ;""" is given in terms of &/+/-

Hy (5, x) =8I F L (0,2),C (v 22, 0)) - D7 (0, 2)

(A21)

In summary, the full connected contribution of the nucleon

JOJ f) and J SFI)J ) correlation functions are written as

2)

(_1)J(_
C

pt—conn

=Tr[B, - T -C, ]+ Tr[(Eq +Hu™) - TW - F,
C]S:)J(Z) _ [Bd

4pt—conn C_] + Tr[(é’ud + H‘é*"-) . 1"(1) . fu] ,

(A22)

where the first term in either case corresponds to the
diagram on the left in Fig. 12.

c. f-decay amplitude

Finally, we also consider the proton to neutron transition
amplitudes that are given by four-point functions of
JS:)JE,Z), JE,I)JSE), J$)J512), and JEZI)JEE). Again, the crossing
diagrams exist for these correlation functions. As shown in
Fig. 14, we have two types of diagrams for each operator
combination. We also note that there are four different types
of the contractions for each diagram, which are common to
all diagrams, since the flavor changing current is commonly
given by J..

As for the diagram on the left of each operator, it is
convenient to introduce the following diquark propagator
for the proton to neutron transition

(SNP[fw]:d])m/ = (ST[Fu Fal + ST, Fu. F ol
+ SHFur Fal + SH1[Fus Fal)e
(A23)

For example, the diagrams given in Fig. 15 are obtained by

Tr[BY? - TV . ¢, (A24)

where B’;P is the sequential backward propagator of d
quark,

By (z3y.x) = SNP[F,(v.x). Fu(y. x)] - D7 (v.2). (A25)

Using B)® we also obtain the backward sink-current

sequential propagators for the left diagrams of JE,I)J @)

=+
and J'J? in Fig. 14,
ENP(zy.x) = BYP (2259, x) - T@ - D7 (20.2).  (A26)

For the diagrams on the right for each operator combi-
nation in Fig. 14, we use the following four different types
of the backward current-sink sequential propagators,

= S‘/M‘/+ . D_l
SJ,IJ+ D 1

Hluh
deh

HJ+ u SJ+ D—l

My =8/ Dyt (A27)

where each of diquark propagators is defined as

ddu ddu ddu ddu
uud uud uud uud
FIG. 15. All contractions that contribute to the first diagram in
Fig. 14.
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(87+u)ad) = (81,[Cur Fal + SI[Cun Fal + SB1[Cun F)
+ 8%, [Cu Fal)od,
(8(11:252 [C+, fd] + 53%2 [C+’ ]:d] + Sgél [C+, fd]

+SWC Fal)iy

(gluh)gg

(SJJJ)ZZ (ST3a[Fus Cal + ST [Fus Cal + 8351 [F s Cdl
+ 8% [fuvcd])(l(/’
(SJ"J+)ZZ (ShalCr Ful + S$lC Ful 4+ 8534 [Fun Co]

+ SHFu Co)iy (A28)

Using these propagators, the full connected contribution of
the nucleon J(f)JEtz), JE,I)J@, J(+1>J£,2), and Jill)Ji2> corre-
lation functions are written as

2)

Clp o =THBY T )+ T .10 7,

Cla s =TH(EF )T 7,

C b =TH(EY 1) T 7,

Cl e = THBYF-T0).C ]+ Tefpe T, (A29)

We note that the neutron amplitudes of the Compton
scattering as well as the #~ decay are also obtained from
these functions by interchanging u and d flavor indices.
Therefore, all the necessary quark-line contractions for the
p decay are given by these formulas.

As implemented in [14,15], some of these matrix
elements may be obtained utilizing the Feynman-
Hellmann technique. However, such numerical implemen-
tation would be more demanding. For example, the
four-point functions with an insertion of J(_l)J(+2> are
obtained from a second derivative of the two-point function

in the presence of two external source terms e;J) + ¢, JT @,
When the currents are flavor changing, it corresponds to a
modification of the Dirac operator to a flavor-dependent

one D(m,) — (lj (Iﬁ'(l")) Del(l’;: ;) ), and one has to compute its
inverse at various values of €, to take a numerical
derivative and then an extrapolation €;, — 0. Further-
more, in order to control the time separation between
the two currents one has to repeat the method with the
source terms only at a given time slice.

We use this technique to verify the quark-line contraction
codes with the flavor changing currents. We place the
external field corresponding to J(1?) multiplied by a small
parameter €, at a given time slice 7, and compute the
two-point function. By taking a numerical derivative we
confirm that the results agree with what we obtain with the
four-point functions including two current insertions.

APPENDIX B: NUMERICAL CHECK
OF THE CONTRACTION
Let us consider the current with an external field, .Aﬂ, SO
that the effective action can be expressed as Loy = Locp +

A" + €2J ) A* with some small parameters €;,. On
thls background field, we replace the Dirac operator D by

D — (D+ eV 4 ,I'?), (B1)

Then, the quark propagation with operator insertions is
included in the forward-sequential propagator as a small
perturbation. For simplicity, in the following analysis we
consider the isosymmetric limit, i.e., D;! = D7

As an example, we consider the case of J 541) J 5,2). The two
currents couple only to the up-quark propagator, so that we
should modify the up-type Dirac operator as

D' = (D, 4+ e TWs(t — 1) + e,TP6(t — 1))~
=D;' - eID‘IF(”D‘l — &,D;' T D!
+ 66,0, TOPTOP + b T D' TOD )
+ O(3, 63). (B2)

Thus we define the following “perturbed” propagator,

f€]+€2 (y’x)
= F(y.x) =D (v, 7)) - TV - F(z,x)
— D7 (y,22) - T - F(z3,x)
+ee(D7(y,21) TV D7 (21, 25) - T - Flz, %)
+D7(y,22) T D (22, 21) - - F(z1,x)).

Using this “perturbed” propagator, the connected
diagrams for the current-current nucleon four-point func-
tion can be evaluated from the ordinary nucleon two-
point function N[F€*¢ F,|. The four-point correlator

7050

4pt—conn
proportional t0 €16 in N[Fete F,|, or equivalently one
should take 0 [f€1+€" fd] o- Here, N[f(l), .7:(2)]
is a general nucleon two-point correlation function
computed as

(z1,22,,x) can be extracted from a contribution

|€1.2—’

NIF () F i) = e e((F oy DYa(F o) (SF ,5)5

odp
HFEOD)SS(Fm)hh(SFS)56.  (B3)

D
so that C,,, = N[F,. F,].

In order to compute the correlation function with the
flavor-changing currents, we define additional perturbed
propagators
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Fei(y,x) = F(y,x) =D (y,z1) - TV - Fzy, %),
Fey,x) = F(y,x) =D (y,25) - T - F(z3, %),
Fae(y,x) = F(y,x) + €107 (y,21) -TW - D7 (2, 25)
-T@) - F(z, %),
Fei(y, x) = F(y,x) + €107 (v, 22) - T@ - D723, 2)

T F(zy,x). (B4)

From the diagrams in Fig. 12, the correlation function

with charged currents J()J f) can be obtained from
N[Fere2, Foar] 4 Ny [F, F2, F] + Ny  [F2, F, Féil+
N312[F,f€2,f€l] +N321[.¢€2,F,f€l], where the first
term corresponds to the sum of the first and third diagrams
in Fig. 12, and each of the other four terms corresponds
each of the crossing diagrams in Fig. 13.

In summary, the four types of the nucleon “perturbed”
two-point functions are given as

@)

(1)

Ju Ju — €| +e
C2pt—conn - N[f ! 2’f]’
d Vd — €)+e€
Cv2,pt—c0nn N F Fe 7]

(1) 7(2)
Cé[_n—Jconn _N[}-glez ‘7:5261] +N132[-7:’~7:€27}—€1]
+N231[f€2,f,F€1] +N312[]:,.7:€2
+ Nay[Fe, 7. F),

7F€1]

2)

CJ(+1)J(_

2pt—conn =

N[Fecr, Fae] 4+ Ny F, Fo, F2]
+ Nogi [F, F, F| + Ny [F, F, F

+ Ny [F, F, Fel, (BS)
and the four-point functions may be obtained as
1.5¢-27 ‘
=]
le-27 - o uu - &
o dd
o -+ o <
A -
‘,A"( L -
5e-28 |- e -
,"‘j&‘ ol
arT e
A e -
= R et
“g‘/ - e -5 a8 s
0 “gig—‘e'&-& D N e o ;
_5¢-28 | | | | |
0 00005 0001 00015 0002 00025
€€
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3e-27 |
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2e-27 — o uu —
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le27 e e
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opEEES .
R .
L
L T i
.
-~
1e27 \ \ \ \ \
0 0.0005 0.001 0.0015 0.002 0.0025

J 2
2pt—conn ’
€1,—0

Czjlpt—conn (Zl’ 2,¥,X ) (B6)

86'186‘2

where J(VJ(?) represents one of the four combinations:
VARSI R S (OF S AN O

We carry out a numerical test of these correspondences
using a lattice calculation on a 43 x 8 lattice gauge
configuration. In the background field method, we specify

the parameters as follows. The source position xg. is

Xsre = (x’ t) = (17273’6)3 Lsep = 4, p= (O’ 0, O)’ q =
(2,-2,-1), ¢,=(1,2,3), 1,=2, =3, TV =y,
'®» =y Since the perturbed” two-point functions

C2pt—conn can be expressed as C2pt—c0nn = f(ey, €;), with
flere) = fo+eife, +efe, +€1fe§ +€zfeg +e€erfee,
O(e?), it is useful to consider the following combination:

_ f(070> +f(€l’ €2) +{(_€19 _€2)
flen,0) + f(=e1,0) _f(0,e) +
2 2
= €]€2f€1€2 + O(€4>'

.7(61’ 62)
10, —6,)

(B7)

Since in the numerical calculations we only have the data at
some discrete values of €;¢,, we fit the data to obtain the
linear coefficient of the eje, term in C2pt Lo = f€1,€).
The fits are shown in Fig. 16, where an excellent
linear dependence on €;¢, may be observed. The com-
parison between the direct and the background field

method is shown in Table I. We can confirm a precise
correspondence.

€&

FIG. 16. Results for C’Zpt—conrr The linear fits to the lattice data are also shown.
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TABLE I. Comparison of the results from the direct and the background field propagator methods. The correlators at a certain lattice
point are listed in the unit of 1072,

I J0IY J0 7
hline Re(Cup—conn) —-3.908 0.9488 4.114 5.098
Re(fe,e,) -3.907 0.9487 4.114 5.098
Im(Cip—conn) 10.77 2.312 —2.786 3.868
Im(f.,) 10.77 2312 —2.786 3.868
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