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Efficient digitization is required for quantum simulations of gauge theories. Schemes based on discrete
subgroups use fewer qubits at the cost of systematic errors. We systematize this approach by deriving a
single plaquette action for approximating general continuous gauge groups through integrating out field
fluctuations. This provides insight into the effectiveness of these approximations, and how they could be
improved. We accompany the scheme by simulations of pure gauge over the largest discrete subgroup of
SUð3Þ up to the third order.
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I. INTRODUCTION

Large-scale quantum computers can simulate nonpertur-
bative quantum field theories which are intractable classi-
cally [1]. Alas, noisy intermediate-scale quantum (NISQ)
era systems will be limited both in qubits and circuit depths.
Whether any gauge theory simulations in this period are
possible depends upon efficient formulations. The situation
is similar to the early days of lattice field theory when
computer memory was limited and the cost of storing
SUð3Þ elements was prohibitive.
For fermionic fields, relatively efficient mappings to

quantum registers are known [2–5] evidenced by most
existing quantum calculations being fermionic [6–9]. The
bosonic nature of gauge fields preclude exact mappings,
but many proposals exist with different costs [10–28]. Digi-
tizing reduces symmetries—either explicitly or through
finite-truncations [10]. These breakings mean a priori the
original model may not be recovered in the continuum
limit [29–34]. Further, choices of digitization may limit
the use of classical resources for Euclidean simulations or
state preparation [35]. In summary, the understanding of

resource costs, systematic errors, and the continuum limit
for these proposals is poorly known today.
In this work, we systematize the proposal of replacing

continuous gauge groups G by their discrete subgroups H
[11,28] by deriving lattice actions using the group space
decimation procedure of [36,37]. After deriving the general
third order action, we will investigate the behavior of
discretizing three distinct gauge groups Uð1Þ, SUð2Þ, and
SUð3Þ. We begin by reviewing the discrete subgroup
approximation in Sec. II. In Sec. III we discuss the general
aspects of the group space decimation procedure.
Following that, in Sec. IV we derive the decimated action
up to 3rd order. Numerical results for V using the decimated
actions are presented in Sec. V. Section VI studies the
continuous group limit, and we conclude in Sec. VII.

II. DISCRETE SUBGROUPS

Approximating gauge theories by replacing G → H was
explored in the early days of Euclidean lattice field theory.
The viability of the Zn subgroups replacing Uð1Þ were
studied in [38,39]. Further studies of the crystal-like
discrete subgroups of SUðNÞ were performed [40–42],
including with fermions [43,44]. These studies met with
mixed success depending on the group and action tested.
The fundamental issue of group discretization can be

understood by considering the Wilson gauge action

S½U� ¼ −
X
p

β

N
ReTrðUpÞ; ð1Þ
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where Up indicates a plaquette of continuous group gauge
links U (for discrete groups, up denotes plaquettes and u
denotes links). As β → ∞, links near the group identity 1
dominate, i.e., U ≈ 1þ ε, where ε can be arbitrarily small.
Therefore the gap ΔS ¼ S½1þ ε� − S½1� goes to zero
smoothly. For discrete groups, ε has a minimum given
by the nearest elements N to 1, and thus ΔS ¼ S½N �−
S½1� > 0. This strongly suggests a phase transition at some
critical βf ¼ c=ΔS, where c ≈Oð1Þ depends on spacetime
dimensionality, gauge group, and entropy. For Uð1Þ → Zn

in 4d, βf ¼ 0.78
1−cosð2π=nÞ [41]. Above βf, all field configura-

tions but u ¼ 1 are exponentially suppressed. Thus,H fails
to approximate G for β > βf. Another way to understand
this behavior follows [45], where some discrete theories are
shown equivalent to continuous groups coupled to a Higgs
field. The Higgs mechanism introduces a new phase
missing from the continuous gauge theory when β → ∞.
Both arguments suggestH be viewed as an effective field

theory for G with a UV-cutoff at Λf. Provided the typical
separation of scales of physics mIR ≪ Λf, the approxima-
tion could be reliable up to OðmIR=ΛfÞ effects.
In lattice calculations, one replaces Λf by a fixed lattice

spacing a ¼ aðβÞ which shrinks as β → ∞ for asymptoti-
cally free theories. To control errors when extrapolating to
a → 0, one should simulate in the scaling regime of
a ≪ m−1

IR . We denote the onset of the scaling regime by
as, and βs. For afðβfÞ ∼ Λ−1

f , errors from the discrete group
approximation would be small if a can be reduced such that
m−1

IR ≫ a≳ af i.e., βs ≤ βf.
In the case of Uð1Þ with βs ¼ 1, Zn>5 satisfies βf > βs.

For non-Abelian groups, only a finite set of crystal-like
subgroups exist. SUð2Þ has three: the binary tetrahedral
BT , the binary octahedral BO, and the binary icosahedral
BI. While BT has βf ¼ 2.24ð8Þ, BO and BI have βf ¼
3.26ð8Þ and βf ¼ 5.82ð8Þ respectively [28], above
βs ¼ 2.2. Hence, BO and BI appear useful for SUð2Þ.
For the important case of SUð3Þ with βs ¼ 6, there

are five crystal-like subgroups with the Valentiner group V
with 1080 elements.1 For all subgroups, βf < βs, with V
having βf ¼ 3.935ð5Þ [28] and thus appear inadequate.
Other work [49] has shown that extending to a subset with
the midpoints between elements of V raises βf ≈ 7.
However this require more qubits and—potentially more
worrisome—sacrifices gauge symmetry completely which
is dangerous on quantum computers [22,50,51].
To decrease af, adding additional terms to Eq. (1) was

attempted [28,36,37,39,42,52–55], although only in [28,42]
were Monte Carlo calculations undertaken for SUð3Þ. Two
reasons suggest this would help. First, additional terms

which have a continuum limit ∝ ReTrFμνFμν, but take
different values on the element of H (e.g., jTrðupÞj2 − 1),
change ΔS and thus af. Second, new terms can reduce
finite-a errors as in Symanzik improvement.
The term usually added was the adjoint trace, giving

S½u� ¼ −
X
p

�
βf1g
3

ReTrðupÞ þ
βf1;−1g

8
jTrðupÞj2

�
; ð2Þ

where up ∈ V , and the first term is normalized so for
βf1;−1g ¼ 0, the S½u� matches the Wilson action (with
βf1g ¼ β). In these works, no relationship was assumed
between βf1g and βf1;−1g. That Eq. (2) improves the
viability of V over the Eq. (1) will be shown in [56].
For a different action,

S½u� ¼ −
X
p

�
β0
3
ReTrðupÞ þ β1ReTrðu2pÞ

�
; ð3Þ

smaller values of af were demonstrated in [28].
With these actions, the dimensionless product Tc

ffiffiffiffi
t0

p
of the pseudocritical temperature and the Wilson flow
parameter were found to agree in the continuum with
SUð3Þ, allowing one to set the scale of those calculations.
a > 0.08 fm was achieved without the effects of af being
seen. This suggest that V can reproduce SUð3Þ in the
scaling region with a modified action, such that practical
quantum computations of SUð3Þ could be performed.
While promising, the choice of new terms was ad hoc
and left unclear how to systematically improve or analyze
effectiveness. In the next section, we systematically derive
lattice actions for H, discovering that the terms added in
these two actions are in fact the first terms generated.

III. GROUP SPACE DECIMATION

Our ultimate goal is to approximate the path integral of
group G faithfully by a discrete subgroup H by replacing
the integration overG by a summation overH. Group space
decimation can be understood in analogy to Wilsonian
renormalization, where we integrate out continuous field
fluctuations instead of UV modes. The typical method used
with discrete subgroup approximations is to replace the
gauge links U ∈ G by u ∈ H such that the action
S½U� → S½u�. This corresponds to simply regularizing a
field theory. For strong coupling, this appears sufficient. As
β → ∞, correlations between gauge links increase and the
average field fluctuation becomes smaller. When the
average field fluctuations decrease below the distance
between 1 and N of the discrete group, freeze-out occurs
and the approximation breaks down–similar to probing a
regulated theory too close to the cutoff. Therefore, improv-
ing this approximation and understand the systematics can
be done by considering these discarded continuous field

1This name is most common in the mathematical literature
[46,47]. It has also referred to as Sð1080Þ [28,36,37,42] or Σ3×360
[48].
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fluctuations. To do this, instead of performing the replace-
ment U → u, we will integrate out the continuous fluctua-
tions, following the decimation formalism developed by
Flyvbjerg [36,37]. He derived the second order decimated
action for Uð1Þ, SUð2Þ, and SUð3Þ. An important general
feature of the decimated action though is missing from this
second order action—while new terms are generated at
each order, until third order no coefficient of an existing
term is modified. One expects such terms are critical to
understanding deviations from the continuous group and
therefore we compute them in Sec. IV.
It is natural to associate every subgroup element u ∈ H

with an unique set, or region, Ωu containing all closest
continuous group elements U ∈ G:

Ωu ≡ fU ∈ GjdðU; uÞ < dðU; u0Þ; ∀ u0 ∈ Hnfugg; ð4Þ

where the distance is defined as d2ðU; uÞ ¼ TrððU − uÞ†×
ðU − uÞÞ. By such a definition. the continuous group is
fully covered, i.e., G ¼∪u∈H Ωu and a graphical demon-
stration of Ω≡Ω1 can be found in Fig. 1. Note that for any
U ∈ G, there exist a unique u ∈ H and ϵ ∈ Ω such that
U ¼ uϵ, where we may treat ϵ as the error of u approxi-
mating U. In this way, without approximation, the
Euclidean path integral integrating over G can be written
as a summation over H and integration over ϵ ∈ Ω:

Z ¼
Z
G
DUe−S½U� ¼

X
u∈H

Z
Ω
Dϵe−S½u;ϵ�; ð5Þ

where Z is a functional integral over all gauge links U on
the lattice, or equivalently a functional integral over ϵ and a
functional sum over u. In this expression, S½u; ϵ� ¼ S½U� is
defined by replacing each gauge link U by uϵ.
We then expand the exponential in the path integral and

integrate over ϵ producing a moment expansion

Z ¼
X
u∈H

Z
Ω
Dϵ

�
1 − βS½u; ϵ� þ β2

2!
S½u; ϵ�2 þ � � �

�

¼
X
u∈H

�
1 − βhS½u; ϵ�i þ β2

2!
hS½u; ϵ�2i þ � � �

�
; ð6Þ

where we have introduced the notation hfi ¼ R
ΩDϵf with

normalization
R
ΩDϵ ¼ 1. What we are really after is an

expansion for the action S½U�, writing Z in terms of a
cumulant expansion

Z ¼
X
u∈H

exp

�
−
X∞
n¼1

βn

n!
Sn½u�

�
; ð7Þ

allows us to match Eq. (6) with (7) to obtain an effective
action. In this way, after integrating over ϵ, the contribu-
tions to the action depend only on the discrete group gauge
link u and the effective action can be defined as

S½u�≡X
n

βn

n!
Sn½u�: ð8Þ

Up to Oðβ3Þ one has

S1½u� ¼ hS½u; ϵ�i; ð9Þ

S2½u� ¼ −hS½u; ϵ�2i þ hS½u; ϵ�i2; ð10Þ

S3½u� ¼ hS½u; ϵ�3i − 3hS½u; ϵ�ihS½u; ϵ�2i þ 2hS½u; ϵ�i3:
ð11Þ

One may worry about poor convergence in the region of
interest β ≥ βs ≥ 1. As will be discussed more thoroughly
in Sec. VI, βn terms are suppressed by powers of the
average field fluctuation. Thus, the size of the discrete
group, which determines the size of field fluctuations
integrated out, also determines the series convergence.
Starting with the second order terms computed in

Refs. [36,37], the decimated action generates multipla-
quette contributions. Their inclusion in quantum simula-
tions brings substantial nonlocality which requires high
qubit connectivity and increases circuit depth. Luckily
these contributions will be shown to be small in Sec. IV.
In the following section, we will calculate Eq. (9) to (11)

in terms of linear combination of the group characters
starting from the Wilson action of Eq. (1):

S½U�≡ −
X
p

β

N
ReTrðUpÞ ¼ −

X
p

β

N
Reχf1g: ð12Þ

Here we introduced χr, the character of the group repre-
sentation2 r. This is the natural basis for the decimated

FIG. 1. A schematic demonstration of Ω (in green) of G (a
sphere) around 1 (blue point) of the discrete group (shown as
points). N for H are given by red points. We have applied the S2

metric to obtain the Ω. In groups representable in two dimen-
sions, this region resembles a polygon while in higher dimen-
sions, it becomes a polytope.

2Through out this work we suppress the argument of χr, but it
can only be Up or up and context makes it clear which is meant.
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action. All characters required for our β3 calculation are in
Table I. In the interest of deriving a decimated action
for general gauge groups, we have chosen a nonstandard
basis for Uð1Þ and SUð2Þ. This allows for one general
scheme for UðNÞ and SUðNÞ groups. This basis is not
linearly independent and relations between representations
exist. This dependence is typically used to write Uð1Þ and
SUð2Þ in reduced sets of representations. We have
collated relations between the overcomplete basis in the
Appendix B.
In deriving the decimated action, integrating out the field

fluctuations require us to reduce expressions of the form
hϵi1j1 � � � ϵinjni. To simplify these, we use an identity derived
in [57] for SUðNÞ and UðNÞ groups for any integer n ≤ N.
The necessary relations for n ≤ 3 are found in Appendix A.
From these identities, we are left with expectation values of
χr over Ω

Vr ≡ 1

dr
hReχri; ð13Þ

where dr is the dimension of representation r.
For Uð1Þ → Zn, there is only one representation at each

order of the cumulant expansion, Vfhg ¼ hϵhi. These terms
can be computed analytically by a change of variables
ϵ ¼ eiϕ [37]:

Vfhg ¼
1

V0

Z π
n

−π
n

dϕeiϕh ¼ n
πh

sin

�
πh
n

�
ð14Þ

with h ¼ 1; 2;… being integers and the normalization
constant V0 ¼

R
Ω dϵϵ0 ¼ 2π

n .
Extending this to non-Abelian groups, e.g., SUðNÞ, Ω

becomes a high-dimensional polytope in SUðNÞ space. In
[36], the Vr for BI and V were computed up to second order
by approximating these polytopes with hyperspheres to two
significant figures. It is crucial to remove these approx-
imations for our purpose because the uncertainty δVr ∼
Oð1%Þ is magnified in the coupling constants of the

decimated action. These couplings are combinations of
powers of Vr with extreme cancellations making the
fraction errors grow rapidly. Hence we avoid the hyper-
sphere approximation and numerically compute all the Vr
necessary for the 3rd order actions to Oð0.1%Þ. (Results
found in Table I.)

IV. ORDER-BY-ORDER DECIMATION

In this section, we summarize the derivation of the
decimated action order-by-order. Further details can be
found in Appendix C. The first order is relatively straight-
forward, and only contains a single plaquette term.
Working from Eq. (9)

βS1½u� ¼ −
β

N
hReTrðu1ϵ1u2ϵ2ðu3ϵ3Þ†ðu4ϵ4Þ†Þi

¼ −
β

N
Reðu1abu2cdu3†efu4†ghhϵ1bcihϵ2dei

× hϵ3†fgihϵ4†haiÞ: ð15Þ

After applying Eq. (A2), S1½u� depends only on u:

βS1½u� ¼ −V4
f1g

β

N
Reðu1abu2cdu†3efu†4ghÞδbcδdeδfgδha

¼ −V4
f1g

β

N
Reχf1g ≡ −βð1Þf1g

1

N
Reχf1g; ð16Þ

where βðnÞr is the nth order term in front of 1
dr
Reχr.

It is comforting that at OðβÞ, no new terms are generated

in S½u�. This allows for rescaling βð1Þf1g → β, recovering the

procedure of directly replacingU → u in the Wilson action.
Although this rescaling is permitted, Vf1g < 1 contains
content about the approximation G → H. As the number of
elements of H increases, Ω shrinks and Vf1g → 1. This
means Vf1g quantifies how denselyH coversG and thus the

minimal fluctuation size. Since βð1Þf1g ¼ V4
f1gβ, decreases in

TABLE I. The dimension, dr, the character χr, and Vr½G → H� ¼ d−1r hReχri of character r for the decimations Uð1Þ → Zn,
SUð2Þ → BI, and SUð3Þ → V . We have followed the normalizations in Table 14 of [58].

r dr χr Vr½Uð1Þ → Zn� Vr½SUð2Þ → BI� Vr½SUð3Þ → V �
f1g N TrðUÞ n

π sinðπnÞ 0.964748(2) 0.83414(6)
f2g NðNþ1Þ

2

1
2
ðTr2ðUÞ þ TrðU2ÞÞ n

2π sinð2πn Þ 0.90798(3) 0.62874(11)

f1; 1g NðN−1Þ
2

1
2
ðTr2ðUÞ − TrðU2ÞÞ … 1 0.83414(6)

f1;−1g N2 − 1 jTrðUÞj2 − 1 … 0.90798(3) 0.65971(10)
f3g NðNþ1ÞðNþ2Þ

6

1
6
ðTr3ðUÞ þ 2TrðU3Þ þ 3TrðU2ÞTrðUÞÞ n

3π sinð3πn Þ 0.83257(2) 0.42119(13)

f2; 1g NðN2−1Þ
3

1
3
ðTr3ðUÞ − TrðU3ÞÞ — 0.964748(2) 0.65971(10)

f1; 1; 1g NðN−1ÞðN−2Þ
6

1
6
ðTr3ðUÞ þ 2TrðU3Þ − 3TrðU2ÞTrðUÞÞ — — 1

f2;−1g NðN−1ÞðNþ2Þ
2

1
2
ðTr2ðUÞTrðU†Þ þ TrðU2ÞTrðU†ÞÞ − TrðUÞ — 0.83257(2) 0.46693(13)

f1; 1;−1g j NðNþ1ÞðN−2Þ
2

j 1
2
ðTr2ðUÞTrðU†Þ − TrðU2ÞTrðU†ÞÞ − TrðUÞ − n

π sinðπnÞ — 0.62874(11)
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Vf1g signals the poorness of using Eq. (16) alone. This is
discussed further in Sec. VI.
We now proceed to calculate the second order decimated

action while fixing a few typos in [36] along the way.
The second order decimated action S2½u� ¼ −hS½u; ϵ�2i þ
hS½u; ϵ�i2 depends upon two plaquettes Up ¼ U1U2U

†
3U

†
4

and Uq ¼ U5U6U
†
7U

†
8. A natural decomposition of S2½u�

can be made into three terms based on how the two
plaquettes p and q are related: p ¼ q (one-plaquette
contribution), p ∩ q ¼ 1-link (two-plaquette contribution),
and p ∩ q ¼ 0-links. To all orders, the p ∩ q ¼ 0 contri-
butions to the decimated action vanish. For the case of
p ¼ q, we conclude that it is

1

2!
β2S2½u�1p ¼ −βð2Þf0g − βð2Þf2g

2

NðN þ 1ÞReχf2g

− βð2Þf1;1g
2

NðN − 1ÞReχf1;1g

− βð2Þf1;−1g
1

N2 − 1
χf1;−1g; ð17Þ

where the βð2Þr can be found in Table II.
Next, we calculate the case of p ∩ q ¼ 1-link for the

second order decimation. Contracting the δ’s in Eqs. (A3)
and (A4), where unlike Eq. (C1), we only identify one link
as the same between the two plaquettes. This leads to the
following expression,

1

2!
β2S2½u�2p ¼ −βf2rg

1

N
Re½χf1gðupÞ�

1

N
Re½χf1gðuqÞ�

− βf2ig
1

N
Im½χf1gðupÞ�

1

N
Im½χf1gðuqÞ�

− βf2tg
1

N
Re½χf1gðup�q†Þ�

− βf2ug
1

N
Re½χf1gðup�qÞ�; ð18Þ

where we have used the fact that all the Vr’s are real due to
our choice of the integration region. The explicit expres-
sions for the couplings are found in Table II. Note that this
expression is also applicable to Uð1Þ.
We would now like to comment on how the two-

plaquette—and general multiplaquette—terms contributes
to the S½u�. It would be desirable if these terms could
be neglected, because they require substantial quantum
resources. By inspecting Table III, one observes that the
two-plaquette βr are Oð0.1Þ or smaller than the single-
plaquette terms. The largest coupling, β2i, multiples a term
Imχ1Imχ1 ≈ 0. Strong cancellations are expected from
correlations between the remaining terms (shown in
Fig. 2) as evident by the observation β2t ≈ −β2u.
It is reasonable to expect these individual reasons to

persist at higher orders, suggesting that at a fixed order
all multiplaquette terms can be neglected compared to their
1—plaquette counterpart. But can we argue that the multi-
plaquette terms generated at order Oðβn−1Þ are still neg-
ligible when the OðβnÞ contribution is introduced? To do

TABLE II. βr½G → H� of character r for a general group decimation. For completeness, we have included the 4
two-plaquette terms derived in [36,37] at second order labeled as 2r; 2i; 2t and 2u.

r βr

f0g 1
4N2 ½1 − V8

f1g�β2
f1g V4

f1gβ þ 1
8N2 V4

f1g½4V8
f1g − V4

f1;1g − 2V4
f1;−1g − V4

f2g�β3
f2g Nþ1

8N ½V4
f2g − V8

f1g�β2
f1; 1g N−1

8N ½V4
f1;1g − V8

f1g�β2
f1;−1g N2−1

4N2 ½V4
f1;−1g − V8

f1g�β2
f3g ðNþ1ÞðNþ2Þ

6N2 ½ 1
24
V4
f3g þ 1

12
V12
f1g −

1
8
V4
f1gV

4
f2g�β3

f2; 1g ðN2−1Þ
6N2 ½1

6
V4
f2;1g þ 1

3
V12
f1g −

1
4
V4
f1gV

4
f1;1g −

1
4
V4
f1gV

4
f2g�β3

f1; 1; 1g ðN−1ÞðN−2Þ
6N2 ½ 1

24
V4
f1;1;1g þ 1

12
V12
f1g −

1
8
V4
f1gV

4
f1;1g�β3

f2;−1g ðN−1ÞðNþ2Þ
16N2 ½V4

f2;−1g þ 2V12
f1g − V4

f1gð2V4
f1;−1g þ V4

f2gÞ�β3
f1; 1;−1g j ðNþ1ÞðN−2Þ

16N2 j½V4
f1;1;−1g þ 2V12

f1g − V4
f1gð2V4

f1;−1g þ V4
f1;1gÞ�β3

f2rg 1
2
V6
f1g½14Vf2g þ 1

4
Vf1;1g þ 1

2
Vf1;−1g − V2

f1g�β2
f2ig 1

2
V6
f1g½14Vf2g þ 1

4
Vf1;1g − 1

2
Vf1;−1g�β2

f2tg 1
8N V

6
f1g½Vf2g − Vf1;1g�β2

f2ug 1
4N2 V6

f1g½1 − Vf1;−1g�β2
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this, we look at the continuum limit of each term being
introduced. In this way, we recognize that the two-plaquette
terms are related to the Lüscher-Weisz action [59].
k-plaquette terms corresponds to applying 2k − 2 deriva-
tives to a4hTrFFi and are thusOða2kþ2Þ. Here F is the field
strength tensor. Combining this with the observation that
for a coupling βj generated at OðβnÞ has the scaling
βj ≈ 10−nβn, we estimate that

hSk−plaq
m ½u�i

hS1 plaq
n ½u�i ≈

�
10

β

�
n−m a2kþ2hD2k−2ðTrFFÞi

a4hTrFFi ; ð19Þ

where D is a covariant derivative projected onto the lattice
directions. The combination of higher powers of a and the
associated expectation values of higher-dimensional oper-
ators should be sufficient to suppress the mild β enhance-
ment for n > m, at least for Oðβ3Þ S½u�. For these reasons,
we will neglect higher order multiplaquette terms.
For the third-order terms of Eq. (11), we, therefore, only

focus on the case where three plaquettes are identical.
Combining Eqs. (C3), (C4), and (C5) we arrive at the third
order contribution to the single-plaquette decimated action

β3

3!
S3½u� ¼ −

βð3Þf3g
df3g

Reχf3g −
βð3Þf2;1g
df2;1g

Reχf2;1g

−
βð3Þf1;1;1g
df1;1;1g

Reχf1;1;1g −
βð3Þf2;−1g
df2;−1g

Reχf2;−1g

−
βð3Þf1;1;−1g
df1;1;−1g

Reχf1;1;−1g −
βð3Þf1g
df1g

Reχf1g; ð20Þ

where the overall factor of 1=3! has been absorbed into the

definition of βð3Þr . Note that, unlike the second order results
where only certain decimation programs generate renorm-
alization for existing terms, the third order S3½u� introduces
corrections to Reχ1 for all G → H. Additionally, a number
of the specific group identities in Eqs. (B1)–(B3) also lead
to renormalization.

TABLE IV. Parameters of a discrete subgroups necessary to
study the behavior of βf.

G H ΔS N C Vf1g

Uð1Þ Z2 2 1 2 0.6366
Z4 1 2 4 0.9003
Z10 3−

ffiffi
5

p
4

2 10 0.9836

SUð2Þ BT 1
2

8 6 0.8939
BO 1−

ffiffi
2

p
2

6 8 0.9309

BI 3−
ffiffi
5

p
4

12 10 0.9648

SUð3Þ Sð108Þ 2
3

18 4 0.7138
Sð216Þ 2

3
54 4 0.7557

Sð648Þ 1 − 1
3
ðcos π

9
þ cos 2π

9
Þ 24 9 0.7855

V 5−
ffiffi
5

p
6

72 5 0.8342

FIG. 2. Example of two plaquettes up and uq where p ∩ q ¼
u2 ¼ u8. The second order contributions depend on (top) up�q ¼
u1u5u6u

†
7u

†
3u

†
4 and (bottom) up�q† ¼ u1u2u7u

†
6u

†
5u2u

†
3u

†
4.

TABLE III. Numerical values of βr½G → H� of character r for the decimations Uð1Þ → Z4, SUð2Þ → BI, and SUð3Þ → V . For
completeness, we have included the 4 two-plaquette terms derived in [36,37] at second order.

r βr½Uð1Þ → Z4� βr½SUð2Þ → BI� βr½SUð3Þ → V �
f0g 0.142081β2 0.0155979ð8Þβ2 0.021267ð4Þβ2 þ 0.0008079ð3Þβ3
f1g 0.657022β þ 0.128321β3 0.866276ð8Þβ − 0.001350ð8Þβ3 0.48411ð13Þβ þ 0.020812ð14Þβ2 − 0.000550ð4Þβ3
f2g −0.066855β2 −0.02652ð3Þβ2 −0.01301ð3Þβ2 − 0.000960ð5Þβ3
f1; 1g … … …
f1;−1g … … −0.00999ð4Þβ2 − 0.001202ð5Þβ3
f3g 0.010483β3 0.001185ð14Þβ3 0.000485ð3Þβ3
f2; 1g … … …
f1; 1; 1g … … …
f2;−1g … … 0.001070ð11Þβ3
f1; 1;−1g … … …

f2rg −0.173459β2 0.000102ð7Þβ2 −0.000034ð18Þβ2
f2ig 0.04238β2 0.009295ð7Þβ2 0.006040ð10Þβ2
f2tg 0.04238β2 −0.0046477ð15Þβ2 −0.002883ð19Þβ2
f2ug 0.13314β2 0.0046477ð15Þβ2 0.003184ð15Þβ2
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Putting together Eqs. (16), (17), and (20), the single-plaquette decimated action of Eq. (7) to Oðβ3Þ for a general gauge
group is,

S½u� ¼
X
p

− ðβð1Þf1g þ βð3Þf1gÞ
1

N
Reðχf1gÞ − βð2Þf0g − βð2Þf2g

2

NðN þ 1ÞReχf2g − βð2Þf1;1g
2

NðN − 1ÞReχf1;1g

− βð2Þf1;−1g
1

N2 − 1
χf1;−1g − βð3Þf3g

6

NðN þ 1ÞðN þ 2ÞReχf3g − βð3Þf2;1g
3

NðN2 − 1ÞReχf2;1g

− βð3Þf1;1;1g
6

NðN − 1ÞðN − 2ÞReχf1;1;1g − βð3Þf2;−1g
2

NðN − 1ÞðN þ 2ÞReχf2;−1g

− βð3Þf1;1;−1g
2

NðN þ 1ÞðN − 2ÞReχf1;1;−1g; ð21Þ

where βr are in Table II. Note that this S½u� is correct for any
G → H. Referring to Eqs. (B1), (B2), and (B3), for a given
G simplifications occur. For SUð3Þ, with

βr ≡
X
n

1

n!
βðnÞr ; ð22Þ

this corresponds to:

S½u� ¼
X
p

− ðβf1g þ βf1;1gÞ
1

3
Reχf1g − ðβf0g þ βf1;1;1gÞ

− ðβf2g þ βf1;1;−1gÞ
1

6
Reχf2g

− ðβf1;−1g þ βf2;1gÞ
1

8
χf1;−1g

−
βf3g
10

Reχf3g −
βf2;−1g
15

Reχf2;−1g: ð23Þ

For Uð1Þ and SUð2Þ, we refer the reader to Appendix B.

V. RESULTS FOR V

As a demonstration, we simulated Eq. (23) to each order
in β for SUð3Þ → V. For these computations 102 configu-
rations separated by 103 sweeps were collected on a 44

lattice and plotted in Fig. 3. In the figure, we compare the
average energy per plaquette hE0i versus the coupling, βf1g
as defined in Eq. (22), which multiplies the Wilson term
Reχ1. For SUð3Þ, this corresponds to β, and βf1g þ βf1;1g
for V.
Naively, hE0i is monotonic in a. Including Oðβ2Þ terms,

we observe a clear reduction in hE0i and thus an improve-
ment over the Wilson action for small a. This suggests
promise in this systematic approach. As will be discussed
in Sec. VI, it also supports the effectiveness of the
previously studied ad hoc actions. Instead of freezing
out, the theory approaches a nonzero value of hE0i.

At Oðβ3Þ, hE0i displays nonmonotonic behavior due to
the negative coefficient of χ1 at β3. This suggests the higher
order terms (4th order and beyond) required to match
Eq. (6) and (7) are dominating the action.
Taken together, the OðβnÞ results suggests that the

decimation procedure, formulated as a strong coupling
expansion, converges to the continuous theory slowly.
Sufficiently large order calculations would suppress the
higher order contributions in the form βn=n! for a rea-
sonable range of β. While an Oðβ4Þ calculation would
undoubtedly be insightful to understanding this conver-
gence, other approaches such as introducing “counter-
terms” to absorb some higher-order contributions, or
instead using a character expansion may prove fruitful.
It also may prove useful to take the expansion in Eq. (7) as
an effective theory where each character is subject to field
redefinitions. While these possibilities are interesting to
investigate, they are certainly beyond the scope of this
work. We therefore leave them for future studies.

FIG. 3. Average energy per plaquette, hE0i¼1−RehTrUpi=3,
vs β̃1 on 44 lattice for V action with corrections of: (▪) Oðβ1Þ, (•)
Oðβ2Þ, and (▴) Oðβ3Þ. The black line is the SUð3Þ result.
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VI. FINITE GROUP EFFECTS

With Eq. (21), it is possible for us to investigate
systematically the effect of replacing the continuous group
by its finite subgroup. In order to proceed, it is useful to
introduce a new parameter which approximately represents
the field fluctuations. To do this, consider the representa-
tion of a continuous group lattice gauge link in terms of the
corresponding generators λa in the adjoint representation,
U ¼ eiλaAa , where a summation over color indices a is
implied. In this form, we see that the gauge fields
correspond to amplitudes in each of the generators. For
ϵ ∈ Ω, inserting its small parameter expansion ϵ ≈ 1þ
iλaAa − 1

2
ðλaAaÞ2 þ � � � into Eq. (13) gives

Vr ≈ 1 −
Z
Ω
DA

�
cð2Þr

X
a

A2
a þ � � �

�
; ð24Þ

where DA is a measure over all Aa which respects gauge

symmetry and cðnÞr are representation and group-dependent
constants. From this, we see that as the subgroup H
incorporates more elements, the size of Ω approaches 0
and Vr → 1 from below. This means that for finite Ω the
domain size of Aa that gives rise to Ω is an indicator for
deviations from G ofH. Flyvbjerg defines a parameter R as
the radius of a hypersphere with equal volume to Ω to get a
handle on the domain of Aa. This allows him to approxi-
mate Vr analytically [36,37]. Here, we can use this idea to
roughly understand the scaling of Vr.
For Uð1Þ → Zn, the hypersphere is exactly Ω and R

cleanly defines ϵ ≤ R ¼ π=n. BeyondUð1Þ, the connection
between Ω and a single value of R is complicated because
the Ω of H form polytopes in the hypervolume of their
continuous partner (see Fig. 1 for a clear demonstration). In
this case, while one could take Ω to be contained by a
hypersphere centered at 1 whose boundary incorporates
elements of the nearest neighbors of 1 in H, making some
element of the hypersphere not included in Ω. On the other
hand, there exists a largest hypersphere centered at 1 that
only contains elements in Ω. In this way, we define an
upper and lower bound for R. Note, this is different from
[36,37] where the polytopes of H were always approxi-
mated by hyperspheres with definite radii. For SU(2) with
BI, we find 0.09 ≤ R2 ≤ 0.15 which can be compared to
R2
sphere ¼ 0.12 of [36,37]. In the case of SU(3) with V ,

0.42 ≤ R2 ≤ 0.93 compared to R2
sphere ¼ 0.62.

While superficially the cumulant expansion has appeared
as a strong-coupling expansion in β, the actual behavior is
controlled by both β and R with R controlling Vr. As
pointed out in [36,37], the leading order behavior for small
R for a given power of βα (α > 0) is actuallyOð½βR2�αR−2Þ.
Therefore one would predict that the relative smallness of
R2 for BI compare to V signals that βf should be larger for
BI which is indeed the case.

For subgroups of SUð3Þ, this scaling behavior becomes
unsatisfactory because R2 ∼ 1. It is possible to study this
breakdown in Uð1Þ → Zn where the systematic effect of
decimation can be studied in detail both because errors can
be made arbitrarily small for large n and because Vr and βr
are known analytically. In terms of R, one can expand the
βr for the Uð1Þ action of Eq. (B8) to find:

βf0g ≈
�
R2

3
−
19R4

90
þ � � �

�
β2; ð25Þ

βf1g þ βf1;1;−1g ≈
�
1 −

2R2

3
þ R4

5
þ � � �

�
β

þ
�
−
17R4

90
þ 311R6

945
þ � � �

�
β3; ð26Þ

βf2g ≈
�
−
R2

3
þ 53R4

90
þ � � �

�
β2; ð27Þ

βf3g ≈
�
17R4

90
−
1609R6

2835
þ 46303R8

56700
−
77603R10

103950
þ� � �

�
β3:

ð28Þ

The first thing to note is that the Oð½βR2�αR−2Þ scaling
found in [36,37] continues to the third order. One might be
tempted to use this leading behavior to estimate the βf or
the radius of convergence of this series, but this would be
incorrect. Instead, it behooves one to note that for both 2nd
and 3rd order contributions, the subleading terms ½R2�kR−2

with k > α initially grow until a 1=k! factor dominates over
all the other factors.
But what is the origin of this behavior? For simplicity,

we can understand this behavior by considering the
expansion of V4m

j which form βr. The specific combination
of V4m

j dictated by the cumulant expansion ensures that
orders lower than Oð½βR2�αR−2Þ cancel in βr. The j
representation contributes to βfr1;…;rkg in the form of

V4m1

fj1
1
;…;j1l g

� � �V4mk

fjk
1
;…;jkng under the constraint jrj ¼ mij̃i

where jrj ¼ jr1j þ � � � þ jrkj and j̃i ¼ jji1j þ � � � þ jjilj.
One might worry that studying the expansion of V4m

j is
not representative, but one can verify that the scaling
behavior observed below persists in βr, although the
numerical factors become cumbersome. For V4m

j ≡
V4m
fj1;…;jlg, j̃ ¼ jj1j þ � � � jjlj, we have

V4m
j ≈ 1 −

2

3
mðj̃RÞ2 þ 1

45
ð10m2 −mÞðj̃RÞ4 þOðm3½j̃R�6Þ

ð29Þ
from which, we see that the coefficients of the ½R2�kR−2

contributions to βr are accompanied by a factor
∝ 1

k!m
k−1j̃2k−2. While the factorials ensure the series
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converges, βr for higher representations r have larger m, j̃,
or both leading to higher order terms in the expansion being
large for moderate R. This helps explaining why Z4 with
the Wilson action fails to replicateUð1Þ substantially above
β ¼ 1—while the naive scaling would suggest R≲ ffiffiffi

β
p k

1−k

would be enough to suppress higher representations, in
reality a stronger bound of maxf 1

k!m
k−1ðj̃RÞ2k−2g1≤j̃≤jrj ≲ 1

for ∀ βr is required for all subleading terms to be small.
Considering the range of m with fixed jrj; j̃, the bound is
strictest when jrj ¼ j̃ yielding R≲ 1=jrj3=2 in order for the
lowest order contribution to dominate such that R≲ ffiffiffi

β
p α

1−α

provides a reasonable estimate for the range of β where the
decimated action provides a reasonable approximation for
its continuous partner. While these conditions are satisfied
for BI, they are violated for V in which case the dominant
term in the R expansion isn’t clear.
Another feature observed in the R expansion of the Zn

group is that because Vr ∝ sin rR, the sign of the Oð½rR�kÞ
terms oscillate, and therefore the sign of βðnÞr can depend
sensitively on R. Since Reχrð1Þ > ReχrðN Þ, where N is
the nearest neighbors of 1 inH (see Fig. 1), the overall sign

of βðnÞr determines whether or not the rth term in the action
enters the frozen phase in the limit of β → ∞. This

behavior is observed in Fig. 6 where βð1;2Þf1g > 0 but

βð3Þf1g < 0.
From the behavior observed in Uð1Þ, we can improve

the quantitative understanding of how well H can approxi-
mate G, even when βr are not known analytically. Clearly,
Vr → 1 indicates that the R → 0, and in that limit the two
actions would agree. Therefore, the difference between
the two actions SG − SH ≈ βχf1gðUÞ − βf1gχf1gðuÞ ≈ ð1 −
V4
f1gÞβχf1gðuÞ serves as an indicator of βf.
This proxy can be compared to others in the literature,

which are collected in Table IV. The simplest estimate is
β−1f ∝ ΔS ¼ ReTrð1Þ − ReTrðN Þ [41]. While this estimate

finds monotonic behavior for discrete groups of Uð1Þ and
SUð2Þ, different Oð1Þ factors are needed. It also fails
completely for SUð3Þ, as seen in the left panel of Fig. 4.
Observing the differing Oð1Þ factors, [41] suggested a

different estimate. For discrete non-Abelian subgroups
near βf, S½u� is dominated by contributions from
up ¼ N . From duality arguments, the action near βf
could be approximately rewritten as a ZC action where
C is the minimal cycle such that uC ¼ 1 for all u ⊂ N .
Since C ¼ n for Zn, these arguments predict a single
curve βf ≈ 0.78=ð1 − cosð2π=CÞÞ directly from the study
of βf in Zn for all discrete subgroups. The discrepancy
between SUð2Þ and Uð1Þ was reduced from ∼300% to
∼50%. The authors of [41] warned that this approxi-
mation could be poor for SUð3Þ albeit without numeri-
cal evidence. Since then βf for the subgroups of SUð3Þ
have been found and as anticipated, this estimator
proves to be poor as presented in the center of
Fig. 4. In the plot on the right of Fig. 4, βf is plotted
as a function of ð1 − V4

f1gÞ−1. We find that monotonic,

linear behavior is observed within the uncertainzties for
each continuous group. Best fit lines have been included
for each group to guide the eye. This suggests that our
estimator captures some of the nonperturbative behavior
near the freezing transition better than ΔS−1 or C.
Physics of the different groups differ, as signaled by
their different scaling regimes. If we divide βf by a
rough estimate of βs ¼ ½1; 2.2; 6� for Uð1Þ; SUð2Þ; SUð3Þ
respectively, we might expect to further remove some of
this group dependence. Doing so in Fig. 5, we find that
SUð2Þ and SUð3Þ collapse onto a single line and Uð1Þ
within 25%.
Using our higher order results, one can then gain insight

into the effectiveness of the ad hoc actions of V . Each of
these actions corresponds to terms that are generated at 2nd
order in the decimated action. The first ad hoc action used
in [28] can be rewritten as

FIG. 4. βf as a function of (left) ΔS−1, (center) the cycle C ofN , (right) ð1 − V4
f1gÞ−1. Note that for the subgroups ofUð1Þ and SUð2Þ,

monotonic behavior is observed for all three variables, but only for ð1 − V4
f1gÞ−1 are the subgroups of SUð3Þ monotonic.
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S½u� ¼ −
X
p

�
β0
3
ReTrðupÞ þ β1ReTrðu2pÞ

�
;

¼ −
X
p

�
ðβ0 − 3β1Þ

1

3
Reχf1g þ ð6β1Þ

1

6
Reχf2g

�
;

ð30Þ

where we have used β1 ¼ aβ0 þ b with a ¼ −0.1267 and
b ¼ 0.253. For an unpublished action of

S½u� ¼ −
X
p

�
β̃f1g
3

Reχf1g þ
β̃f1;1g
8

Reχf1;−1g

�
ð31Þ

where β̃f1;1g ¼ aβ̃f1g þ b with a ¼ −0.587 and b ¼ 1.80.
The trajectory parameters were chosen to be parallel to the
freezing point at large β0 by eye. From Fig. 6, we see that in
both ad hoc actions, reasonably agreement is found for
intermediate β for the 3rd order action. Here β is the
coefficient in front of Reχf1g for the ad hoc actions. The
ad hoc trajectories are known to poorly reflect G at low β,
because they lack curvature to fix the known requirements
at β ¼ 0. At large β, we expect higher order terms in the
cumulant expansion to become relevant and thus

disagreement is expected to occur. This surprising agree-
ment in the intermediate region of β suggests that actions
formed by neglecting terms in the cumulant expansion are
optimized in their character basis by setting the couplings
to results given by the resuming higher order contributions
in cumulant expansion with fluctuations G=H inte-
grated out.

VII. CONCLUSION

In this work, we used the cumulant expansion to develop
a systematic method for studying and improving lattice
actions that replace continuous gauge groups by their
discrete subgroups. This is a step in the ongoing trek
toward developing accurate and efficient digitization on
quantum computers. These decimated actions, through the
factor Vf1g, have superior predictive power for finding the
freezing transition compared to prior estimators.
We further computed the third-order, single-plaquette

contribution for the general group. These higher-order
terms are necessary for systematizing the decimation
procedure of SUð3Þ → V where it has been observed that
the inclusion of terms generated in the second-order
cumulant expansion with ad hoc couplings improve the
approximation of SUð3Þ. The most immediate work in
these directions would be to compute more Euclidean
observables (i.e., Wilson flow parameter and pseudocritical
temperature) from the full decimated action of Eq. (21) and
compare them to [28,56]. Given the large corrections from
second to third order for V, additional work should be
devoted to computing the fourth-order contributions.
In order to move beyond pure gauge theory, it will be

necessary to consider quark fields. While the computational
resources increase substantially for dynamical quarks, an
advantage of the discrete subgroup approximations is that
many standard lattice field theory techniques such as
fermionic determinants and pseudofermions can be applied.
This was demonstrated in early works on dynamical
fermions where BI replaced SUð2Þ [43,44].
Another important step in studying the feasibility of this

procedure is to explicitly construct the quantum registers
and primitive gates à la [60] where smaller discrete groups
were investigated. Together with classical lattice results,
this would allows for resource counts.
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FIG. 5. βf=βs as a function of ð1 − V4
f1gÞ−1.

FIG. 6. βfrg trajectories of Sn½u� to the ad hoc actions with
additional terms (left) Reχf2g of [28] and (right) Reχf1;−1g of [56].
The open circles indicate the boundary between the frozen and
unfrozen phases obtained on 24 lattices.
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APPENDIX A: CREUTZ IDENTITIES

A useful identity was derived in [57] for SUðNÞ and UðNÞ groups such that for any integer n ≤ N

hϵi1j1 � � � ϵinjni ¼ c1εi1A1
1
…A1

N−1
εj1A1

1
…A1

N−1
× � � � × εinAn

1
…An

N−1
εjnAn

1
…An

N−1

þ c2εi1i2A1
1
…A1

N−2
εj1j2A1

1
…A1

N−2
× � � � × εinAn−1

1
…An−1

N−1
εjnAn−1

1
…An−1

N−1
þ � � �

þ cBn
εi1i2…inA1

1
…A1

N−n
εj1j2…jnA1

1
…A1

N−1
; ðA1Þ

where ε is Levi-Civita symbol, Aj
i are the contracted dummy indices, and Bn is the Bell number accounting for the number

of ways that one can put the open indices ik, jl on ε such that no ik and jl appear in the same ε. In [57], Eq. (A1) was derived
for integrating over the entire group G. Hence in our case, we need to determine the constants ci’s when integrating only
over Ω for hϵiji; hϵijϵkli, hϵijϵ†kli, hϵijϵklϵmni, hϵijϵklϵ†mni, with i; j; k; l; m; n ∈ ½N�. This is done by contracting the tensor
structure on each side of Eq. (A1) with products of Kronecker delta’s and solving the resulting linear equations.
At first order, only one integral is needed:

hϵiji ¼ Vf1gδij: ðA2Þ

At second order, there are two relations

hϵijϵkli ¼
1

2
ðVf2g þ Vf1;1gÞδijδkl þ

1

2
ðVf2g − Vf1;1gÞδilδjk; ðA3Þ

and

hϵijϵ†kli ¼ Vf1;−1gδijδkl þ
1

N
ð1 − Vf1;−1gÞδilδjk: ðA4Þ

At third order, there are four structures, but by complex conjugation one can reduce this to two unique ones:

hϵijϵklϵmni ¼
1

6
ðVf3g þ 4Vf2;1g þ Vf1;1;1gÞδijδklδmn þ

1

6
ðVf3g − Vf1;1;1gÞðδilδjkδmn þ δinδjmδkl þ δijδknδlmÞ

þ 1

6
ðVf3g − 2Vf2;1g þ Vf1;1;1gÞðδinδjkδlm þ δilδknδjmÞ; ðA5Þ

hϵijϵklϵ†mni ¼ 1

2
ðVf2;−1g þ Vf1;1;−1gÞδijδklδmn þ

1

2
ðVf2;−1g − Vf1;1;−1gÞδilδjkδmn

þ
�

N
ðN − 1ÞðN þ 1ÞVf1g −

1

2ðN þ 1ÞVf2;−1g −
1

2ðN − 1ÞVf1;1;−1g

�
ðδinδjmδkl þ δijδknδlmÞ

þ
�
−

1

ðN − 1ÞðN þ 1ÞVf1g −
1

2ðN þ 1ÞVf2;−1g þ
1

2ðN − 1ÞVf1;1;−1g

�
ðδinδjkδlm þ δilδknδjmÞ: ðA6Þ

APPENDIX B: GROUP PROPERTIES

For a given group, the general basis is overcomplete. These leads to simplifications in our derivations for a given group.
Here we present the related characters for three groups of relative importance: Uð1Þ; SUð2Þ; SUð3Þ.
For Uð1Þ, the resulting identities are

χf1g ¼ −χf1;1;−1g; χf1;�1g ¼ χf2;�1g ¼ χf1;1;1g ¼ 0: ðB1Þ

For SUð2Þ, one finds that

χf1g ¼ χf2;1g; χf2g ¼ χf1;−1g; χf1;1g ¼ 1; χf1;1;1g ¼ χf1;1;−1g ¼ 0; χf3g ¼ χf2;−1g; ðB2Þ

and for SUð3Þ, the set of dependent representations needed up to third order in the cumulant expansion are
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χf1g ¼ χf1;1g; χf2g ¼ χf1;1;−1g; χf1;−1g ¼ χf2;1g; χf1;1;1g ¼ 1: ðB3Þ

Another important set of identities are those which relate products of Reχr to sum of Reχr. They are easily enough
derived, but we display a few key ones here:

ðReχf1gÞ2 ¼
1

2
Reðχf2g þ χf1;1g þ χf1;−1g þ 1Þ; ðB4Þ

Reχf1gReχf2g ¼
1

2
Reðχf1g þ χf2;1g þ χf2;−1g þ χf3gÞ; ðB5Þ

Reχf1gReχf1;1g ¼
1

2
Reðχf1g þ χf1;1;1g þ χf1;1;−1g þ χf2;1gÞ; ðB6Þ

Reχf1gReχf1;−1g ¼ Reðχf1g þ χf2;−1g þ χf1;1;−1gÞ: ðB7Þ

Applying all the simplifications in Eq. (21) for specific groups, we write S½u� for Uð1Þ and SUð2Þ respectively. ForUð1Þ:
S½u� ¼

X
p

− ðβf1g − βf1;1;−1gÞReχf1g − βf0g − βf2gReχf2g − βf3gReχf3g: ðB8Þ

For SUð2Þ:

S½u� ¼
X
p

− ðβf1g þ βf2;1gÞ
1

2
Reχf1g − ðβf0g þ βf1;1gÞ

− ðβf2g þ βf1;−1gÞ
1

3
Reχf2g

− ðβf3g þ βf2;−1gÞ
1

4
Reχf3g: ðB9Þ

APPENDIX C: DERIVATION OF THE DECIMATED ACTION

In this Appendix, we expand upon the derivation of the decimated action. First, for the second-order term in Eq. (10),
there are three terms which we decomposed based on the number of links that the two plaquettes p, q shared. For case
p ¼ q reads:

β2hS½u; ϵ�2i ¼ β2

N2
hReðTrðu1ϵ1u2ϵ2ðu3ϵ3Þ†ðu4ϵ4Þ†ÞÞReðTrðu1ϵ1u2ϵ2ðu3ϵ3Þ†ðu4ϵ4Þ†ÞÞi

¼ β2

2N2
ðjVf1;1gj4Reχf1;1g þ jVf2gj4Reχf2g þ V4

f1;−1gχf1;−1g þ 1Þ; ðC1Þ

where we have utilized Eqs. (A3) and (A4) to contract the u’s after integration. The second term of Eq. (10) is obtained from
first order action of Eq. (16) which reads,

β2hS½u; ϵ�i2 ¼
�
1

N
β2V4

f1gReχf1g

�
2

¼ 1

2N2
β2V8

f1gðReχf2g þ Reχf1;1g þ χf1;−1g þ 1Þ; ðC2Þ

where we have used Eq. (B4).
For the third-order terms of Eq. (11), as discussed we need only consider when the three plaquettes are identical. This will

be done term by term, where the first term is

β3hS½u; ϵ�3i ¼ −
β3

N3
hReTrðu1ϵ1u2ϵ2ðu3ϵ3Þ†ðu4ϵ4Þ†ÞReTrðu5ϵ5u6ϵ6ðu7ϵ7Þ†ðu8ϵ8Þ†ÞReTrðu9ϵ9u10ϵ10ðu11ϵ11Þ†ðu12ϵ12Þ†Þi

¼ −
β3

2N3

�V4
f3g
2

Reχf3g þ V4
f2;1gReχf2;1g þ

V4
f1;1;1g
2

Reχf1;1;1g þ
3V4

f2;−1g
2

Reχf2;−1g

þ
3V4

f1;1;−1g
2

Reχf1;1;−1g þ 3V4
f1gReχf1g

�
: ðC3Þ
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For the mixed-order term in Eq. (11):

−3β3hS½u; ϵ�ihS½u; ϵ�2i ¼
3β3V4

f1g
2N3

Reχf1g½V4
f2gReχf2g þ V4

f1;1gReχf1;1g þ V4
f1;−1gχf1;−1g þ 1�

¼
3β3V4

f1g
4N3

½ðV4
f1;1g þ 2V4

f1;−1g þ V4
f2g þ 2ÞReχf1g þ ðV4

f1;1g þ 2V4
f1;−1gÞReχf1;1;−1g

þ ðV4
f1;1g þ V4

f2gÞReχf2;1g þ V4
f1;1gReχf1;1;1g þ ð2V4

f1;−1g þ V4
f2gÞReχf2;−1g þ V4

f2gReχf3g�;
ðC4Þ

where the second line was simplified with the identities from Appendix B. The final term in Eq. (11) follows from another
identity:

2β3hS½u; ϵ�i3 ¼ −2
β3V12

f1g
N3

ðReχf1gÞ3

¼ −
β3V12

f1g
2N3

ðReχf3g þ 2Reχf2;1g þ Reχf1;1;1g þ 6Reχf1g þ 3Reχf2;−1g þ 3Reχf1;1;−1gÞ: ðC5Þ
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