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Monte Carlo simulations of quantum field theories on a lattice become increasingly expensive as the
continuum limit is approached since the cost per independent sample grows with a high power of the
inverse lattice spacing. Simulations on fine lattices suffer from critical slowdown, the rapid growth of
autocorrelations in the Markov chain with decreasing lattice spacing a. This causes a strong increase in the
number of lattice configurations that have to be generated to obtain statistically significant results. In this
paper, hierarchical sampling methods to tame this growth in autocorrelations are discussed. Combined with
multilevel variance reduction techniques, this significantly reduces the computational cost of simulations
for given tolerances ϵdisc on the discretization error and ϵstat on the statistical error. For an observable with
lattice errors of order α and an integrated autocorrelation time that grows like τint ∝ a−z, multilevel

Monte Carlo can reduce the cost from Oðϵ−2statϵ−ð1þzÞ=α
disc Þ to Oðϵ−2statj log ϵdiscj2 þ ϵ−1=αdisc Þ or Oðϵ−2stat þ ϵ−1=αdisc Þ.

Even higher performance gains are expected for nonperturbative simulations of quantum field theories in
D-dimensions. The efficiency of the approach is demonstrated on two nontrivial model systems in quantum
mechanics, including a topological oscillator that is badly affected by critical slowdown due to freezing of
the topological charge. On fine lattices, the new methods are several orders of magnitude faster than
standard, single-level sampling based on hybrid Monte Carlo. For high resolutions, multilevel Monte Carlo
can be used to accelerate even the cluster algorithm for the topological oscillator. Performance is further
improved through perturbative matching. This guarantees efficient coupling of theories on the multilevel
lattice hierarchy, which have a natural interpretation in terms of effective theories obtained by
renormalization group transformations.
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I. INTRODUCTION

The Euclidean path integral formulation of quantum
mechanics [1] allows the calculation of observable
quantities as expectation values with respect to infin-
ite-dimensional and highly peaked probability distribu-
tions. After discretizing the theory on a lattice with
finite spacing a, expectation values are computed with
Markov Chain Monte Carlo methods (see e.g., [2] for a
highly accessible introduction). This approach is elegant

and attractive since it can be extended to quantum field
theories, where it allows first principles predictions for
strongly interacting theories such as quantum chromo-
dynamics (QCD); see e.g., [3,4]. Ultimately, however,
one is interested in the value of observables in the
continuum limit of vanishing lattice spacing a → 0.
Since the cost of the calculation grows with a high
power of a−1, efficient Monte Carlo sampling tech-
niques are crucial to obtain precise and accurate
numerical predictions. Today, state-of-the-art techniques
[5] are routinely used to accelerate the Metropolis-
Hastings algorithm [6,7] and in particular the hybrid
Monte Carlo (HMC) method [8] has proved to be highly
successful in lattice QCD simulations. However, lattice
calculations with HMC methods still become prohibi-
tively expensive as the continuum limit is approached.
The reasons for this are twofold:
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1. For quantum mechanical problems, the cost Csample
of generating a single discretized path grows at least
in proportion to the number of lattice sites, which
increases with a−1 if the physical size of the
simulation box is kept fixed (for a quantum field
theory in D-dimensions, the growth would be even
faster with a cost of a−D per configuration).

2. As the theory approaches a critical point, subsequent
states in the Markov chain are increasingly corre-
lated, which requires the generation of more paths to
obtain a given number of statistically independent
samples.

Furthermore, the law of large numbers dictates that to
reduce the statistical (sampling) error below a given
tolerance ϵstat, at least Nindep ∝ ϵ−2stat independent samples
have to be generated. While in lattice QCD the continuum
limit is usually taken by extrapolating simulations at
different lattice spacings a and fixed tolerance ϵstat on
the statistical error, in the multilevelMonte Carlo (MLMC)
literature (see e.g., the classical paper [9]) it is more
common to decrease ϵstat in proportion to the tolerance
ϵdisc on the discretization error as the lattice spacing is
reduced. Reducing the combined statistical and discretiza-
tion error in this way would make optimal use of computa-
tional resources to obtain a result with a given total error for
a specific fine lattice spacing.
The correlation of subsequent samples in the Markov

chain is quantified by the integrated autocorrelation time
τint, which grows particularly rapidly for some quantities,
such as the topological susceptibility χt in QCD, where it
has been observed that τint ∝ a−z with z ¼ 5 [10]. This is
attributed to “freezing” of the topological charge and can
lead to observable effects. Those can be both direct, since
e.g., the mass of the η0 meson receives important contri-
butions from the topological susceptibility in a pure Yang-
Mills theory [11,12], and more indirect due to the coupling
of slow modes with large autocorrelation times to other
observables. The authors of [10] further report a milder but
still significant growth with z ¼ 0.5–1.0 for a range of other
physically relevant observables. While the rapid growth of
the integrated autocorrelation time for the topological
susceptibility can be addressed by using open boundary
conditions in time [13,14], this introduces additional
complications since it requires lattices with a very large
extent in the temporal direction.
To estimate the overall growth in cost of a simulation, as

the lattice spacing a is reduced, consider a quantum
mechanical observable with a discretization error that is
OðaαÞ, where values such as α ¼ 1, 2 are typical. To reduce
the discretization error below a tolerance of ϵdisc and the
statistical error below ϵstat incurs a cost

CStMCðϵdisc; ϵstatÞ ¼ Nindep × τint × Csample

¼ Oðϵ−2statϵ−ð1þzÞ=α
disc Þ; ð1Þ

with standard Monte Carlo (StMC), since ϵdisc ∝ aα. To get
an intuitive understanding of this and subsequent complex-
ity estimates, it might be instructive to consider the special
case α ¼ 2, z ¼ 0: since the discretization error decreases
quadratically with a, reducing this error by a factor of 4 can
be achieved by halving the lattice spacing, which in turn
doubles the cost for generating a single sample if the
physical size of the simulation box is kept fixed; in other
words, the cost per sample grows in proportion to ϵ−1=2disc
In this paper, it is shown how this explosion in computa-

tional cost can be significantly reduced with hierarchical
sampling [15] and MLMC [9,16], which has recently
been extended to a Markov chain setting [17,18]. To
generate samples, a hierarchy of L − 1 coarser lattices
with spacings of 2a; 4a;…; 2L−1a and corresponding
coarse-grained versions of the original theory are con-
structed. Based on this hierarchy, a recursive implementa-
tion of the delayed acceptance method in [15] is proposed.
Starting on the coarsest level, proposals are successively
extended by additional modes and screened with a standard
Metropolis-Hastings accept/reject step on increasingly finer
lattices. At this point, it is important to stress that the coarse
lattices are only used to accelerate sampling and do not
introduce any additional bias because ultimately each new
sample is accepted or rejected step with the correct, original
action on the finest lattice. Since evaluating the action on
the coarse lattices is substantially cheaper, the cost of
generating a single fine-level sample is not substantially
higher than if a single-level sampler was used. In fact, when
compared to a method such as HMC, it may be smaller
since the cost of generating an HMC trajectory can be
shifted to the coarsest level where it is substantially shorter.
Since on each level proposals are screened with a
Metropolis-Hastings accept/reject step, the method samples
from the correct distribution on the original lattice with
spacing a and does not introduce any additional bias,
cf. [15]. Due to the convergence of the lattice theories on
subsequent levels of the hierarchy with a → 0, hierarchical
sampling eliminates the growth in autocorrelation time,
reducing the computational cost to

Chierarchicalðϵdisc; ϵstatÞ ¼ Oðϵ−2statϵ−1=αdisc Þ: ð2Þ
MLMC is a variance reduction technique, which uses the

fact that the expectation value of an observable (or quantity
of interest) Q on a lattice with spacing a can be written as a
telescoping sum. For this, assume that there is some integer
L ∈ N and a constant a0 such that a ¼ 2−Lþ1a0. Further, let
Ql be the observable measured on a lattice with spacing
2−la0. Then

E½Q� ¼ E½QL−1� ¼ E½QL−1 −QL−2� þ E½QL−2�

¼ … ¼
XL−1
l¼0

E½Yl� ≈
XL−1
l¼0

Ŷl; ð3Þ
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where

Yl ≔
�
Q0 for l ¼ 0

Ql −Ql−1 for l ¼ 1; 2;…; L − 1;

Ŷl ≔
1

Nl

XNl

j¼1

YðjÞ
l :

Here, the sums in Ŷl are taken over independent samples,
labeled by the superscript “(j).” The key observation is that,
except for the very coarsest level, MLMC estimates
differences of the observable instead of the quantity of
interest itself. Provided that theories on subsequent levels
can be coupled efficiently and the variance of the difference
Ql −Ql−1 decreases sufficiently rapidly as the lattice
spacing a is reduced, significantly lower numbers of
samples Nl are sufficient on the finer levels of the grid
hierarchy. The majority of the cost can be shifted to the
coarser levels l ≪ L, where sampling is substantially
cheaper. Due to the exactness of the telescoping sum [i.e.,
the first equality in Eq. (3)], MLMC does not introduce any
additional bias if the individual MC estimators Ŷl are
unbiased. The algorithms described in the paper allow the
construction of estimators Ŷlwhich have an arbitrarily small
bias. In the numerical results presented below, the size of this
bias is comparable to the discretization error on the original,
fine-level lattice. Compared to Eqs. (1) and (2), MLMC
further reduces the computational complexity to

CMLMCðϵdisc; ϵstatÞ ¼ Oðϵ−2statj log ϵdiscj2 þ ϵ−1discÞ; ð4Þ
see below. Similar estimates have been derived in [9,17,18],
and it has been demonstrated numerically that MLMC leads
to a significant reduction in computational complexity and
overall runtime for a range of applications, e.g., in uncer-
tainty quantification (UQ) for subsurface flow [17,19],
inverse problems [20], or material simulation [21].
While this paper focuses on the application of these new

methods in quantum mechanics, the ultimate goal is to
apply them in D-dimensional quantum field theories, such
as lattice QCD with D ¼ 4 and α ¼ 2. For D > α, the
expected gains are even larger, since the cost to generate a
single configuration grows like a−D instead of a−1 while
the accuracy is still decreasing no faster than a2. The
predicted improvement in computational performance is
summarized in the following diagram, generalizing
Eqs. (1), (2), and (4) to D-dimensions:

CðQFTÞStMC ðϵdisc; ϵstatÞ ¼ Oðϵ−2statϵ−ðDþzÞ=α
disc Þ

↓ðhierarchical samplingÞ
CðQFTÞhierarchicalðϵdisc; ϵstatÞ ¼ Oðϵ−2statϵ−D=α

disc Þ
↓ðmultilevel Monte CarloÞ

CðQFTÞMLMCðϵdisc; ϵstatÞ ¼ Oðϵ−2statϵ1−D=α
disc þ ϵ−D=α

disc Þ: ð5Þ

For example, consider the prediction of the topological
susceptibility (z ¼ 5) in lattice QCD (D ¼ 4) with
improved action (α ¼ 2). In this case, hierarchical sampling
reduces the cost of a Monte Carlo simulation from
Oðϵ−2statϵ−4.5disc Þ to Oðϵ−2statϵ−2discÞ and MLMC reduces the com-
putational complexity even further to Oðϵ−2statϵ−1disc þ ϵ−2discÞ.
To discuss this further, consider first the relative advan-

tage of MLMC over standard Monte Carlo in the con-
tinuum limit ϵdisc → 0 for fixed ϵstat. MLMC only requires
the generation of a small number of samples on the finest
lattice for small ϵdisc (eventually only one for very small
ϵdisc), whereas the number of configurations that have to be
generated with a standard Monte Carlo method is propor-
tional to ϵ−2stat. As can be seen from the final two lines of
Eq. (5), MLMC is a factor of κϵ−2stat faster than standard
Monte Carlo with hierarchical sampling for ϵdisc → 0. This
argument holds for general α and D; the coefficient κ
depends on the relative cost of generating independent
samples on the finest level and the coarser levels. Provided
those costs are proportional to the number of unknowns on
each level (and the constant of proportionality is indepen-
dent of ϵdisc), we expect κ to lie between 1 and 2.
If ϵstat is kept fixed as the continuum limit is taken,

eventually the statistical error will dominate the discretiza-
tion error. To avoid this, one might consider the case where
ϵdisc ¼ ϵstat ¼ ϵ=

ffiffiffi
2

p
and the combined root mean square

error is reduced below some given tolerance ϵ. This is the
common choice in the multilevel Monte Carlo literature
(see e.g., [9]). In that case, the complexity estimates in
Eq. (5) become

CðQFTÞStMC ðϵÞ ¼ Oðϵ−2−ðDþzÞ=αÞ
↓ðhierarchical samplingÞ

CðQFTÞhierarchicalðϵÞ ¼ Oðϵ−2−D=αÞ
↓ðmultilevel Monte CarloÞ

CðQFTÞMLMCðϵÞ ¼ Oðϵ−1−D=αÞ: ð6Þ

In quantum field theories, coarse-grained actions are
naturally obtained by integrating out high-frequency modes
in a renormalization group (RG) transformation, which
results in an effective theory with less degrees of freedom.
In practice, the RG transformation can be carried out either
nonperturbatively (e.g., through a block spin transforma-
tion) or through perturbative matching. The latter would, in
fact, be sufficient for MLMC as long as the variance of Yl
decays sufficiently rapidly since the coarse levels are only
used to accelerate sampling on the original, fine level.
For asymptotically free theories, such as lattice QCD,
Symanzik-improved actions [22,23] can be constructed
by systematically adding suitable terms which are pro-
portional to powers of the lattice spacing a and which
are multiplied by appropriate, so-called “improvement
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coefficients.” These coefficients can be tuned nonpertur-
batively [24,25], or they can be computed using perturba-
tion theory for sufficiently small lattice spacing [22,23].
In the MLMC approach, the perturbatively calculated
improvement coefficients on different levels of the lattice
hierarchy are in fact sufficient since the differences of these
coefficients between subsequent levels are sufficiently
small on fine lattices.
As a proof-of-concept, hierarchical sampling and multi-

level Monte Carlo are applied to two problems in quantum
mechanics (D ¼ 1): a nonsymmetric double-well potential
and the topological oscillator studied in [26]. The latter case
is particularly interesting since it has a topological quantum
number, which freezes in the continuum limit (a → 0). This
results in a rapid growth of the autocorrelation time of the
topological susceptibility if standard HMC sampling is
used. Hierarchical sampling all but eliminates this growth,
resulting in a dramatic reduction in runtime. Furthermore,
the coarse-grained theories can be improved using a
perturbative matching technique for this problem, which
further increases the efficiency of the hierarchical approach.
As demonstrated in [26], for the topological oscillator the
so-called “cluster algorithm” [27] almost entirely elimi-
nates autocorrelations through long-range spin updates.
However, this method can be further accelerated with
MLMC, leading to a reduction in computational complex-
ity and in absolute runtime for high resolutions. Similar
gains are observed for the nonsymmetric double-well
potential problem with MLMC.
In summary, the main achievements of this work are as

follows:
1. It is described in detail how algorithms for

hierarchical sampling and multilevel Monte Carlo
acceleration can be applied to the path integral
formulation of quantum mechanics.

2. It is shown how hierarchical sampling techniques
dramatically reduce autocorrelation times.

3. It is further demonstrated that combining this with
MLMC leads to an additional reduction in computa-
tional complexity and in the total runtime.

4. It is explained how perturbative matching can further
improve performance for the topological oscillator.

It is stressed again that the additional gains due to
MLMC accelerating are expected to be significantly larger
in high-dimensional theories, such as lattice QCD [see
Eq. (5)]. The present paper therefore aims to lay the
foundation for further work on extending the described
methods to quantum field theories on a lattice.
Structure.—This paper is organized as follows: after

briefly reviewing the literature on related approaches in
Sec. I A, the application of hierarchical sampling and
multilevel Monte Carlo to the path integral formulation
of quantum mechanics is discussed in Sec. II. The quantum
mechanical model problems that are used in this work are
described in Sec. III, including the construction of coarse-
grained actions for those problems. Numerical results for

the nonsymmetric double-well potential and the topological
oscillator are presented in Sec. IV, in particular we compare
the runtime of all considered algorithms for fixed ϵstat.
Section V contains the conclusion and outlines directions
for future work. More technical topics, such as a detailed
cost analysis of MLMC and a discussion of how the
methods can be extended to higher dimensional problems,
are relegated to the Appendixes where we also show results
for ϵstat ¼ ϵdisc ¼ ϵ=

ffiffiffi
2

p
.

A. Relationship to previous work

While hierarchical sampling techniques have been sug-
gested previously (see e.g., [28–31]), the variance reduction
techniques from MLMC significantly improve on this.
Equations (2) and (4) show that the additional acceleration
will lead to a further dramatic reduction in computational
complexity. The presented methods are therefore expected
to be superior to the approach in [32], which uses a
hierarchical method to initialize the simulation, but not
for the Monte Carlo sampling. Earlier work in [30,31] uses
renormalization group techniques to sample close to the
critical point of the Ising model where the theories on the
coarser levels become self-similar. Similarly, collective
cluster-update algorithms [27,33,34] have been applied
to models in solid state physics close to phase transitions
(see e.g., [35]). However, the application of all those
techniques is limited to spin systems. The approach here
applies to general systems and delivers significant addi-
tional speedup through multilevel Monte Carlo variance
reduction.

II. METHODS

A. Path integral formulation of quantum mechanics

For completeness and to introduce the discretized path
integral for nonexperts, we recapitulate the key principles
here. The path integral formulation of quantum mechanics
[1] expresses the expectation value of physical observables
as the infinite-dimensional sum over all possible configu-
rations or paths fxðtÞg, where xðtÞ ∈ D ⊂ R for all times
t ∈ R. In this sum, each path xðtÞ is weighted by a complex
amplitude e

i
ℏSðxðtÞÞ, where SðxðtÞÞ is the action, the integral

over the Lagrangian L of the system. This formulation is
very elegant since it allows the direct quantization of any
system which can be described by a Lagrangian. In the limit
ℏ → 0, fluctuations around the classical path which min-
imizes the action cancel out, and the Euler-Lagrange
equations are recovered. However, for simplicity, from
now on we will work in atomic units where ℏ ¼ 1. To make
the evaluation of the path integral tractable, two approx-
imations are made: (1) time is restricted to a finite interval
t ∈ ½0; TÞ and (2) the time interval is divided into d
intervals of size a ¼ T=d, which is known as the lattice
spacing. Conditions have to be imposed on the paths at
t ¼ 0 and t ¼ T; here we use periodic boundary conditions
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xðTÞ ¼ xð0Þ. Each path xðtÞ, which is defined for all times
t ∈ ½0; TÞ, is replaced by a vector x ¼ ðx0; x1;…; xd−1Þ ∈
Ω ¼ Dd. For each j ¼ 0; 1;…; d − 1, the quantity xj
approximates the position xðtjÞ of the particle at the
time tj ¼ aj. Those two approximations turn the infinite-
dimensional integral over all paths into an integral over a
finite, but high-dimensional domain Dd. Evaluating the
integral in Euclidean time converts it to the canonical
ensemble average of a statistical system at a finite temper-
ature. More specifically, the expectation value of an
observable (commonly known as “quantity of interest,”
QoI, in the UQ literature) which assigns a value QðxÞ to
each discrete path x can be written as the following ratio:

E½Q� ¼
R
D…

R
DQðxÞe−SðxÞdx0…dxd−1R

D…
R
D e−SðxÞdx0…dxd−1

¼
Z
Ω
π�ðxÞQðxÞdx; ð7Þ

with the d-dimensional probability density π� given by

π�ðxÞ ¼ Z−1e−SðxÞ; for all x ∈ Ω; ð8Þ

with normalization constant Z. The action SðxÞ is an
approximation of the continuum action

SðxðtÞÞ ¼
Z

T

0

LðxðtÞÞdt;

where L is the Lagrangian.
Physically meaningful predictions, which can be com-

pared to experimental measurements, are obtained by
extrapolating to the continuum limit a → 0 and infinite
volume T → ∞. As d is inversely proportional to the lattice
spacing, the integrals in Eq. (7) become very high dimen-
sional in the continuum limit. In this paper,we do not discuss
finite volume errors (due to finite values of T). In other
words, we take the continuum limitQexact ¼ lima→0E½Q� for
finite T as the “true” value for any observables studied here.

B. Standard Monte Carlo

Since the distribution π� in Eq. (8) is highly peaked, the
expectation value in Eq. (7) is usually computed with
importance sampling. For this, the Metropolis-Hastings
algorithm [6,7] is used to iteratively generate a sequence of
samples xð0Þ, xð1Þ;…; xðN−1Þ ∼ π�. The expectation value
can then be approximated as the sample average

E½Q� ≈ Q̂StMC ≔
1

N

XN−1

j¼0

QðxðjÞÞ: ð9Þ

A single Metropolis-Hastings step for computing xðtþ1Þ,
given xðtÞ, is written down in Alg. 1.

The Markov chain xð0Þ; xð1Þ; xð2Þ;… is generated by
starting from some xð0Þ, which is either a given vector or
drawn at random. Since this xð0Þ is not drawn from the
correct distribution, all subsequent samples xðtÞ are dis-
tributed according to some distribution π�ðtÞ with
limt→∞π

�ðtÞ ¼ π�. In practice, the first nburnin samples are
discarded, and throughout this paper we implicitly assume
that nburnin ≫ 1 is chosen such that for all subsequent
samples the error due to the difference between π�ðtÞ and π�
is much smaller than the discretization and sampling errors.
The law of large numbers states that in the limit of a large

number of samples N ≫ 1 the sample average Q̂StMC in
Eq. (9) is distributed according to a Gaussian N ðμ; σÞ with
mean μ ¼ E½Q� and variance

σ2 ¼ τintVar½Q�
N

: ð10Þ

In this expression, τint is the integrated autocorrelation time
defined as

τint ¼ 1þ 2
X∞
s¼1

E½QðxðtmeasÞÞQðxðtmeasþsÞÞ�
E½QðxðtmeasÞÞ2� ; ð11Þ

where tmeas ≫ nburnin is an arbitrary point in time. As can be
seen from Eq. (10), the number of samples required to
reduce the statistical error below a given tolerance grows
with τint, and it is therefore important to reduce the
correlation between subsequent samples as far as possible.
This can be achieved by carefully choosing the proposal y
in line 1 of Alg. 1. In lattice QCD with dynamical fermions,

Algorithm 1. Standard Metropolis-Hastings step.

Input: Current sample xðtÞ ∼ π�
Output: New sample xðtþ1Þ ∼ π�

1: Pick proposal y from a probability distribution qð·jxðtÞÞ.
2: Compute

π�ðyÞ
π�ðxðtÞÞ ·

qðxðtÞjyÞ
qðyjxðtÞÞ ¼ exp½−ΔS�;

with

ΔS ≔ SðyÞ − SðxðtÞÞ þ log qðyjxðtÞÞ − log qðxðtÞjyÞ:

3: if ΔS < 0, then
4: Set xðtþ1Þ ↤ y
5: else
6: Draw uniformly distributed random number u ∈ ½0; 1Þ.
7: if u < exp½−ΔS�, then
8: Set xðtþ1Þ ↤ y
9: else
10: Set xðtþ1Þ ↤ xðtÞ
11: end if
12: end if
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Hybrid Monte Carlo [8] is very popular since it generates
global updates. We therefore choose to use this method
here, being aware that other algorithms, such as heat bath
sampling, might be more efficient for particular applica-
tions. We nevertheless believe that HMC is representative,
since τint grows with a large power of the inverse lattice
spacing as the continuum limit is approached also with
other sampling approaches. The only exception are some
problem-specific samplers, such as the cluster algorithm
[27] for the topological oscillator, which we therefore also
consider in this work.

C. Multilevel Monte Carlo

We now describe hierarchical methods for overcoming
the growth in autocorrelations and reducing the variance of
the measured observable.

1. Lattice hierarchy

Recall that a path describes the position of the particle at
the discrete points tj ¼ aj with j ¼ 0; 1; 2;…; d − 1. More
formally, define a lattice T as the set of points

T ¼ ftj ¼ ja; j ¼ 0; 1;…; d − 1g:

Paths x on this lattice are objects in the domain
Ω ¼ Dd ⊂ Rd. We introduce a hierarchy of L lattices
T l for l ¼ 0; 1;…; L − 1, such that lattice T l has dl ¼
2l−Lþ1d points and a lattice spacing of al ¼ T=dl ¼
2L−1−la, i.e.,

T l ¼ ftj ¼ jal∶j ¼ 0; 1;…; dl − 1g:

Here T L−1 ¼ T is the original lattice with dL−1 ¼ d points
and a spacing of aL−1 ¼ a. Paths on lattice T l are
represented by vectors in the domain Ωl ¼ Ddl ⊂ Rdl ,
where obviously ΩL−1 ¼ Ω.
Note that the lattices are nested, and the points of the

lattice T l−1 are a subset of the points of T l, namely, the
points with even indices. A path on a particular level l
stores values at the odd and even lattice points, where the
latter are also present on the next-coarser lattice. Formally,
this can be expressed as

Ωl ¼ Ωl−1 ⊕ Ωl−1; ð12Þ

such that all x ∈ Ωl can be written as

x ≔ ½x̃; x0� with x̃; x0 ∈ Ωl−1 and

xj ¼
� x0j=2 for even j

x̃ðj−1Þ=2 for odd j:
ð13Þ

On each lattice, we define an action Sl∶ Ωl → R such
that SL−1 ¼ S is the original action. In the simplest case, the
coarse-level actions are obtained by rediscretizing the

original action S with the appropriate lattice spacings,
but other choices are possible and will be discussed below.
On each level, the action induces a probability distribution
πl such that

πlðxÞ ¼ Z−1
l exp ½−SlðxÞ� for all x ∈ Ωl;

where Z−1
l is the normalization constant. The probability

distribution πL−1 on the finest level is identical to π�
defined in Eq. (8). Further, introduce a conditional prob-
ability distribution π̃lð·jx0Þ for the values at the odd points
on level l, given the values at the even points on the same
level, namely,

π̃lðx̃jx0Þ ¼ Z̃lðx0Þ−1 exp ½−S̃lð½x̃; x0�Þ� ð14Þ

for all x̃; x0 ∈ Ωl−1. The action S̃l should be some
approximation to Sl, such that it is possible to sample
from π̃l for a given x0. For the quantum mechanical model
problems considered in this work, the construction of S̃l is
described in Secs. III A 1 and III B 1.
We stress that although in this paper we assume that the

lattice can be partitioned into sets of mutually independent
even and odd sites, the ideas developed here can be
generalized to higher dimensions. This is outlined in
Appendix A.

2. Hierarchical sampling

Similar to the delayed-acceptance approach in [15], we
next introduce a hierarchical algorithm to efficiently con-
struct a Markov chain on a given level l using coarser
levels: first, we define the two-level Metropolis-Hastings

step in Alg. 2. Setting xðtÞl ¼ ½x̃ðtÞl ; xðtÞl−1�, this algorithm
assumes that on a given level l there is a coarse-level

proposal distribution ql−1ð·jxðtÞl−1Þ which depends on xðtÞl−1.
Based on this, it proposes a new fine-level state which is

either accepted and returned as the new state xðtþ1Þ
l or

rejected; in the latter case, the previous state xðtÞl is returned

as xðtþ1Þ
l . It was shown in [15] that this defines a correct

Metropolis-Hastings algorithm targeting πl.

Let qðTLÞl ðxðtþ1Þ
l jxðtÞl Þ be the transition kernel for the

process xðtÞl → xðtþ1Þ
l implicitly defined by Alg. 2. The key

idea is now to use the algorithm recursively by using qðTLÞl−1
as the proposal distribution ql−1 on level l − 1. The

process of picking yl−1 from ql−1ð·jxðtÞl−1Þ¼ qðTLÞl−1 ð·jxðtÞl−1Þ
in the first line of Alg. 2 then corresponds to a recursive call
to the same algorithm on the next-coarser level. On the
coarsest level, (l ¼ 0) y0 is drawn with the standard
Metropolis-Hastings step in Alg. 1 with corresponding

transition kernel qðMHÞ
0 ð·jxðtÞ0 Þ; here we always assume that

the proposal in this Metropolis-Hastings step is generated
with a symmetric method such as HMC.
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More specifically, to construct a sequence of samples

xð0Þl ; xð1Þl ; xð2Þl ;… ∈ Ωl distributed according to πl, we use
Alg. 3, which is illustrated schematically in Fig. 1.
Note that xðtþ1Þ

l ¼ xðtÞl unless the proposals on all levels
0; 1;…;l get accepted. At first sight, this seems to imply
that the overall acceptance probability of Alg. 3 drops as
the number of levels increases, and subsequent samples are
highly correlated. However, this turns out not to be the case

if the theories on subsequent level converge with l → ∞:
in this case, the proposal from the two-level step in Alg. 2
is almost certainly accepted on finer levels. Our numerical
experiments confirm this observation.
In practice, it is more convenient to implement Alg. 3

iteratively, starting from the coarsest level. As discussed
in Appendix B, the cost of executing Alg. 3 on level l can
be bounded by constant times the number of unknowns
dl on this particular level. Observe also that setting l ¼
L − 1 in Alg. 3 allows drawing a new sample xðtþ1Þ ∼ π�
from the original fine-level probability distribution defined
in Eq. (8).
Relationship to the literature.—The two-level step in

Alg. 2 is closely related to similar algorithms in [15,17].
If the coarse-level sample is drawn with an arbitrary

Metropolis-Hastings kernel ql−1ð·jxðtÞl−1Þ ¼ qðMHÞ
l−1 ð·jxðtÞl−1Þ,

then Alg. 2 above is a variant of the delayed-acceptance
method in [15, Alg. 1] with proposal distribution

qðyljxðtÞl Þ ¼ π̃lðỹljyl−1ÞqðMHÞ
l−1 ðyl−1jxðtÞl−1Þ and approxima-

tion f�xðylÞ ¼ π̃lðỹljyl−1Þπl−1ðyl−1Þ, recalling the nota-

tion xðtÞl ¼ ½x̃ðtÞl ; xðtÞl−1�, yl ¼ ½ỹl; yl−1�.
On the other hand, if the coarse-level sample is drawn

from the exact coarse-level distribution, i.e., if qð·jxðtÞl−1Þ ¼
πl−1ð·Þ, Alg. 2 is identical to [17, Alg. 2].

3. Multilevel Monte Carlo algorithm

As discussed in the Introduction, the multilevel
Monte Carlo algorithm computes the quantity of interest
Q0 on the coarsest level and adds corrections to this by
computing the difference Yl of the observable on sub-
sequent levels l ¼ 1; 2;…; L − 1 according to the tele-
scoping sum in Eq. (3). Since those differences Yl have a
smaller variance, this allows shifting the cost to the coarser
levels where samples can be generated cheaply. The
original MLMC algorithm described in [9] assumes that
it is possible to draw independent identically distributed
(i.i.d.) samples from a distribution on each level. For the
Markov chain Monte Carlo setting considered here, this is
not possible since subsequent samples in the chain are
correlated and, as discussed in [17], this introduces an
additional bias. This bias can be reduced by constructing

Algorithm 2. Two-level Metropolis-Hastings step.

Input: Level l, current sample xðtÞl ∼ πl,
proposal distribution ql−1

Output: New sample xðtþ1Þ
l ∼ πl

1: Let xðtÞl ¼ ½x̃ðtÞl ; xðtÞl−1� and pick yl−1 from ql−1ð·jxðtÞl−1Þ.
2: if xðtþ1Þ

l−1 ¼ xðtÞl−1 (coarse-level proposal rejected), then
3: Set xðtþ1Þ

l ↤ xðtÞl
4: else
5: Pick ỹl from π̃lð·jyl−1Þ and let yl ¼ ½ỹl; yl−1�.
6: Compute

πlðylÞ
πlðxðtÞl Þ

·
π̃lðx̃ðtÞl jxðtÞl−1Þ
π̃lðỹljyl−1Þ

·
πl−1ðxðtÞl−1Þ
πl−1ðyl−1Þ

¼ exp½−ΔSl�;

with

ΔSl ≔ SlðylÞ − SlðxðtÞl Þ
þ S̃lð½x̃ðtÞl ; xðtÞl−1�Þ − S̃lð½ỹl; yl−1�Þ
þ Sl−1ðxðtÞl−1Þ − Sl−1ðyl−1Þ
þ log Z̃lðxðtÞl−1Þ − log Z̃lðyl−1Þ:

7: if ΔSl < 0, then
8: Set xðtþ1Þ

l ↤ yl
9: else
10: Draw uniformly distributed random u ∈ ½0; 1Þ.
11: if u < exp½−ΔSl�, then
12: Set xðtþ1Þ

l ↤ yl
13: else
14: Set xðtþ1Þ

l ↤ xðtÞl
15: end if
16: end if
17: end if

FIG. 1. Hierarchical sampling, as described in Alg. 3, for L ¼ 3
levels.

Algorithm 3. Hierarchical delayed-acceptance sampler (re-
cursive implementation).

Input: Level l, current sample xðtÞl ∼ πl
Output: New sample xðtþ1Þ

l ∼ πl
1: Generate xðtþ1Þ

l using Alg. 2 with level l, current sample

xðtÞl ∼ πl, and proposal distribution

ql−1ð·jxðtÞl−1Þ ¼
8<
: qðMHÞ

0 ð·jxðtÞ0 Þ for l ¼ 1

qðTLÞl−1 ð·jxðtÞl−1Þ for l ¼ 2; 3;…; L − 1
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sequences zð0Þl ; zð1Þl ; zð2Þl ;… of samples for each level l ¼
0;…; L − 1 with Alg. 3 and sampling those sequences with
sufficiently large subsampling rates tl. The typical rule in
statistics is to use twice the integrated autocorrelation time
τint;l to achieve (sufficient) independence. In our numerical
experiments, we set tl ¼ ⌈2τint;l⌉ and observe that the
additional bias due to computing the coarse-level samples
which are only approximately independent is comparable
to the discretization error.
The multilevel Monte Carlo algorithm which we use in

this work is presented in Alg. 4 and visualized in Fig. 2. It is
similar to the multilevel algorithm in [17], but with the
recursive independent sampler in [17, Alg. 3] replaced by
the (suitably subsampled) hierarchical delayed-acceptance
sampler in our Alg. 3 above. Multilevel Monte Carlo
computes

Q̂MLMC
L;fNeff

l g ¼
XL−1
l¼0

Ŷl;Neff
l

with Ŷl;Neff
l
¼ 1

Neff
l

XNeff
l

j¼1

YðjÞ
l ; ð15Þ

which as unbiased estimator for the expectation E½Q�
in Eq. (3). On each level l, the number of samples is
chosen to be

Neff
l ¼ max

(
1; ϵ−2stat

�XL−1
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VlCeffl

q � ffiffiffiffiffiffiffi
Vl

Ceffl

s )
; ð16Þ

where Ceffl is the effective cost of generating an independent
sample (taking into account autocorrelations) and Vl ¼
Var½Yl� is the variance of the quantity Yl on level l, which
converges to zero as l → ∞.

We now discuss how the cost of Alg. 4 increases as the
tolerance on the total error is tightened, assuming for
simplicity i.i.d. samples on all levels. Let the exact value
of the observable in the continuum limit beQexact. The total
mean square error of the multilevel Monte Carlo estimator
defined in Eq. (15) can be expanded as

E½ðQ̂MLMC
L;fNeff

l g −QexactÞ2�
¼ Var½Q̂MLMC

L;fNeff
l g� þ ðE½Q̂MLMC

L;fNeff
l g� −QexactÞ2; ð17Þ

where the first term in the final line of Eq. (17) is the
squared statistical error, whereas the second term is the
squared discretization error. An easy calculation shows that
choosing Neff

l as in Eq. (16) guarantees the following:

Var½Q̂MLMC
L;fNeff

l g� ¼
XL−1
l¼0

Vl

Neff
l

≤ ϵ2stat:

To analyze the complexity, we assume that
(i) The discretization error is of order OðaαlÞ.
(ii) Vl converges with order OðaβlÞ for some β > 0.
(iii) The integrated autocorrelation times of Yl, and thus

also the subsampling rates tl, can be bounded by a
constant independent of l such that the cost Ceffl of
generating an independent sample does not grow
faster than the number of unknowns dl for all l.

As shown in more detail in Appendix B, it is then possible
to choose the number of levels L such that the discretization
error in Eq. (17) does not exceed ϵdisc. As a consequence,
the cost CMLMCðϵdisc; ϵstatÞ of computing the MLMC esti-
mator in Eq. (15) with a statistical error less than ϵstat and a
discretization error less than ϵdisc has the following com-
putational complexity:

CMLMC ¼

8>>><
>>>:

Oðϵ−2stat þ ϵ−1=αdisc Þ for β > 1;

Oðϵ−2statj log ϵdiscj2 þ ϵ−1=αdisc Þ for β ¼ 1;

Oðϵ−2statϵ−
1−β
α

disc þ ϵ−1=αdisc Þ for β < 1:

ð18Þ

FIG. 2. Schematic visualization of Multilevel Monte Carlo, as
described in Alg. 4, for L ¼ 3 levels.

Algorithm 4. Multilevel Monte Carlo.

Input: Number of levels L, number of samples
per level Neff

l and subsampling rates tl
for l ¼ 0;…; L − 1

Output: MLMC estimate for QoI.

1: for level l ¼ 0;…; L − 1 do
2: for j ¼ 1;…; Neff

l do
3: if l ¼ 0, then
4: Create a new sample xðtþt0Þ

0 from xðtÞ0 with a
standard Metropolis-Hastings method.

5: Compute YðjÞ
0 ¼ Q0ðxðtþt0Þ

0 Þ
6: else
7: Create a new sample xðtþ1Þ

l from xðtÞl with
Alg. 2 and ql−1ð·jxðtÞl Þ ¼ πl−1;
In practice, use tl−1 steps of Alg. 3 to compute
an approximately independent sample zðtþtl−1Þ

l−1
on level l − 1.

8: Compute YðjÞ
l ¼ Qlðxðtþ1Þ

l Þ −Ql−1ðzðtþtl−1Þ
l−1 Þ.

9: end if
10: end for
11: end for
12: Compute the MLMC estimator defined in Eq. (15).
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For the choice ϵdisc ¼ ϵstat ¼ ϵ=
ffiffiffi
2

p
, the total mean square

error in Eq. (17) does not exceed ϵ2 and Eq. (18) becomes

CMLMCðϵÞ ¼

8>><
>>:

Oðϵ−2Þ for β > 1

Oðϵ−2j log ϵj2Þ for β ¼ 1

Oðϵ−2−1−β
α Þ for β < 1;

; ð19Þ

which is a special case of the well-known estimate in [9].
However, the samples created by Alg. 4 on each

of the levels l are generated with a Markov chain and
thus only asymptotically distributed according to πl. As
discussed in [17], the complexity analysis can be modified
to address this issue, leading to an additional factor
j log ϵdiscj in Eqs. (18) and (19). This seems to be not
visible in the numerical results below or in [17] (at least
preasymptotically).

D. Memory requirements

Although the one-dimensional quantum mechanical
problems considered here do not require significant stor-
age, the memory requirements of the algorithms introduced
in this paper need to be considered in addition to their
runtimes. This is particularly important for simulations of
higher dimensional quantum field theories on modern
many-core architectures where the memory per compute
core is limited.
As discussed in detail in Appendix C, on a given level

the hierarchical sampler in Alg. 3 requires less memory
than a standard Metropolis-Hastings method with a HMC
proposal distribution. The memory footprint of the multi-
level Monte Carlo method in Alg. 4 is less than 3 times that
of a HMC-based Metropolis-Hastings algorithm.

III. QUANTUM MECHANICAL MODEL SYSTEMS

To demonstrate the performance of the methods dis-
cussed in the previous section, we consider two nontrivial
quantum mechanical problems.

A. Nonsymmetric double-well potential

The first system describes a particle with mass m0

moving subject to a nonsymmetric double-well potential

VðxÞ ¼ m0μ
2

2
x2 þ λ

4
ðx − ηÞ4. Figure 3 shows this potential

for the choice of parameters that were used in our numerical
experiments, namely, m0 ¼ 1, μ2 ¼ −1, λ ¼ 1, η ¼ 1

4
. In

the Euclidean time formulation of the path integral, the
corresponding Lagrangian is

LðxðtÞÞ ¼ m0

2

�
dx
dt

�
2

þm0μ
2

2
x2 þ λ

4
ðx − ηÞ4; ð20Þ

where xðtÞ ∈ R. For a given path x¼ðx0;x1;…;xd−1Þ∈Rd,
the discretized lattice action is

SðxÞ ¼ a
Xd−1
j¼0

�
m0

2

�
xj − xj−1

a

�
2

þm0μ
2

2
x2i þ

λ

4
ðxi − ηÞ4

�
:

ð21Þ

The observable we consider is the average squared dis-
placement

QðxÞ ¼ 1

d

Xd−1
j¼0

x2j : ð22Þ

Note that since points on the lattice are correlated with a
correlation length which is constant in physical units, the
variance of this observable does not go to zero in the
continuum limit. In other words, the sampling error is not
automatically reduced on finer lattices.

1. Coarse-level action

Coarse-grained versions Sl of the action in Eq. (21) are
obtained by rediscretizing the Lagrangian in Eq. (20) on the
lattice T l with dl ¼ 2l−Lþ1d points and lattice spacing
al ¼ 2L−1−la on level l to obtain

SlðxÞ¼ al
Xdl−1
j¼0

�
m0

2

�
xj−xj−1

al

�
2

þm0μ
2

2
x2j þ

λ

4
ðxj−ηÞ4

�
:

To construct the action S̃l defined in Eq. (14), observe that

πlðxÞ ¼ πevenl ðx0; x2;…; xdl−2Þ
Ydl−1−1
j¼0

πoddl ðx2jþ1jx2j; x2jþ2Þ;

ð23Þ
where πevenl is the marginal distribution of the even points

πevenl ðx0; x2;…; xdl−2Þ ¼
Z
D
…

Z
D
πlðxÞdx1dx3…dxdl−1

FIG. 3. Double-well potential used for numerical experiments.
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and

πoddl ðx2jþ1jx2j; x2jþ2Þ ¼ Z−1
l;j exp ½−Wlðx2jþ1jx2j; x2jþ2Þ�:

ð24Þ
Here Wl is defined for arbitrary values x−, xþ as

Wlðxjx−; xþÞ ¼
m0

al
ðx2 − ðx− þ xþÞxÞ

þ al

�
m0μ

2

2
x2 þ λ

4
ðx − ηÞ4

�
;

and Zl;j ¼ Zl;jðx2j; x2jþ2Þ is a normalization constant
which depends on x2j; x2jþ2. The distribution in Eq. (24)
can be approximated by a Gaussian by writing

Wlðxjx−; xþÞ ≈ Glðxjx−; xþÞ;
with

Glðxjx−; xþÞ ¼
m0

al
σlðx−; xþÞðx − ζlðx−; xþÞÞ2;

where ζl ¼ ζlðx−; xþÞ is the minimum of Wlðxjx−; xþÞ
and satisfies the nonlinear equation�
1þ 1

2
a2lμ

2

�
ζl þ a2l

λ

2m0

ðζl − ηÞ3 ¼ x− þ xþ
2

: ð25Þ

In the code, ζl is found by a small number of fixed point
iterations of Eq. (25), using x̄ ¼ ðx− þ xþÞ=2 as a starting
guess. Further, 2m0σl=al is the curvature of the function
Wl, evaluated at the point x̄ ≈ ζlðx−; xþÞ, i.e.,
2m0

al
σlðx−; xþÞ ¼

∂2Wl

∂x2 ðx̄jx−; xþÞ

¼ 2m0

al

�
1þ 1

2
a2l

�
μ2 þ 3λ

m0

ðx̄ − ηÞ2
��

≈
∂2Wl

∂x2 ðζlðx−; xþÞjx−; xþÞ:

Now write x ¼ ½x̃; x0� as in Eq. (13). Given ζlðx0j; x0jþ1Þ and
σlðx0j; x0jþ1Þ for all j ¼ 0; 1;…; dl−1 − 1, we can then
construct

S̃lð½x̃; x0�Þ ¼
Xdl−1−1
j¼0

Glðx̃jjx0j; x0jþ1Þ:

The resulting probability density π̃lð·jx0Þ defined in
Eq. (14) is a multivariate normal distribution with diagonal
covariance matrix, which can be easily sampled; the
normalization constant in Eq. (14) is

Z̃lðx0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
4πm0

al

�
dl−1 Ydl−1−1

j¼0

σlðx0j; x0jþ1Þ
vuut :

B. Topological oscillator

The second model system is the topological oscillator,
described for example in [26]. This is an interesting
problem since it has a topological quantum number which
can only take on integer values. The Lagrangian is

Lðx; tÞ ¼ I0
2

�
dx
dt

�
2

; ð26Þ

where now crucially x ∈ ½−π; πÞ, i.e., the particle is con-
fined to a finite interval. The Lagrangian in Eq. (26) can be
obtained from the action of a free particle with mass m0

confined to a circle with radius R,

Lðy; z; tÞ ¼ m0

2

��
dy
dt

�
2

þ
�
dz
dt

�
2
�
;

with ðy;zÞ∈R2, y2þ z2¼R2 by setting yðtÞ ¼ R cosðxðtÞÞ,
zðtÞ ¼ R sinðxðtÞÞ and I0 ¼ R2m0. The form of the dis-
cretized action chosen here is

SðxÞ ¼ I0
a

Xd−1
j¼0

ð1 − cosðxj − xj−1ÞÞ:

As above, we used periodic boundary conditions xd ¼ x0.
Note that

1 − cosðxj − xj−1Þ
a2

¼ 1

2

�
dx
dt

�
2

þOða2Þ:

For a given path xðtÞ, the topological charge qðxÞ of the
system describes the number of complete revolutions
during the time period T. Mathematically, it is defined as

qðxðtÞÞ ¼ 1

2π

Z
T

0

dxðtÞ
dt

dt ∈ Z:

For the discretized system, this becomes

qðxÞ ¼ 1

2π

Xd−1
j¼0

fðxj − xj−1Þ mod ½−π; πÞg ∈ Z:

Following the notation in [26], for any x ∈ R, the quantity
z ¼ x mod ½−π; πÞ is defined as z ¼ xþ 2πk with k ∈ Z
such that −π ≤ z < π. The observable we consider is the
topological susceptibility

QðxÞ ¼ χtðxÞ ¼
q2ðxÞ
T

: ð27Þ

Defining ξ ≔ T=I0 and z ≔ a=I0, a tedious but straightfor-
ward calculation shows that the expectation value of χt for
finite a, T is given by
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E½χt� ¼
1

4π2I0

�
1−ξΣ̂2ðξÞ

þ
�
1

2
−ξΣ̂2ðξÞþ

1

4
ξ2ðΣ̂4ðξÞ− Σ̂2ðξÞ2Þ

�
z

�
þOðz2Þ

→
a→01−ξΣ̂2ðξÞ

4π2I0
→

T→∞ 1

4π2I0
; ð28Þ

where for any p ∈ N, ξ > 0 the function Σ̂p is defined as

ΣpðξÞ≔
X
m∈Z

mp exp

�
−
1

2
ξm2

�
; Σ̂pðξÞ≔

ΣpðξÞ
Σ0ðξÞ

: ð29Þ

Equation (28) allows the calculation of the constantΔ0 in the
Taylor expansion E½χt� ¼ E½χtða ¼ 0Þ� þ Δ0aþOða2Þ of
the topological susceptibility. In other words, we can work
out the bias for a given lattice spacing. Thiswill also allow us
to balance the discretization and statistical errors in the
MLMCestimator if we choose ϵdisc ¼ ϵstat. In the continuum
limit (a → 0), the variance of χt can be shown to be

Var½χt� ¼ E½ðχt − E½χt�Þ2� ¼
Rð4π2=ξÞ
8π4I20

→
T→∞ 1

8π4I20
; ð30Þ

with the function R defined by

RðζÞ ≔ 1

2
ζ2ðΣ̂4ðζÞ − Σ̂2ðζÞ2Þ:

1. Coarse-level action

For the topological oscillator., the coarse-level action is

SlðxÞ ¼
IðlÞ0

al

Xdl−1
j¼0

ð1 − cosðxj − xj−1ÞÞ;

where the moment of inertia IðlÞ0 is level dependent. In the

simplest case, one could simply set IðlÞ0 ¼ I0 for all
l ¼ 0; 1;…; L − 1. However, as will be shown below,
performance can be improved significantly by using a

perturbative matching procedure to construct IðlÞ0 on the
coarser levels. To obtain S̃l, rewrite πl as in Eqs. (23) and
(24), where now

Wlðxjx−; xþÞ ¼ W̄lðxjx−; xþÞ þ 2 −
1

2
σlðx−; xþÞ;

with

W̄lðxjx−; xþÞ ¼
IðlÞ0

al
σlðx−; xþÞsin2

�
x − ζlðx−; xþÞ

2

�

σlðx−; xþÞ ¼ 4

				 cos
�
xþ − x−

2

�				;
tan ζlðx−; xþÞ ¼

sinðxþÞ þ sinðx−Þ
cosðxþÞ þ cosðx−Þ

:

Again write x¼ ½x̃;x0� as in Eq. (13), and given ζlðx0j; x0jþ1Þ
and σlðx0j; x0jþ1Þ for all j ¼ 0; 1;…; dl−1 − 1 construct

S̃lð½x̃; x0�Þ ¼
Xdl−1−1
j¼0

W̄lðx̃jjx0j; x0jþ1Þ:

The normalization constant in Eq. (14) is

Zlðx0Þ ¼ ð2πÞdl−1 exp
�
−
IðlÞ0

2al

Xdl−1−1
j¼0

σlðx0j; x0jþ1Þ
�

×
Ydl−1−1
j¼0

B0

�
IðlÞ0

2al
σlðx0j; x0jþ1Þ

�
;

where B0 is the zero-order modified Bessel function of the
first kind. The resulting probability density π̃l is the
product of one-dimensional densities of the form

pσ;δxðxÞ ¼ Z−1
σ exp

�
−2σsin2

�
x − δx

2

��
with

Zσ ¼ 2πe−σB0ðσÞ; ð31Þ
which can be easily sampled for arbitrary values of σ and
δx. In our code, we find that rejection sampling with a
suitable Gaussian envelope (as described in Appendix D)
gives good results.

2. Coarse-level matching

Ideally, the coarse-level actions should be obtained by
recursively integrating out the modes that can be repre-
sented on a given lattice, but not on the next coarser one. In
other words, Sl−1 is an effective action obtained from Sl.
While for an arbitrary action this cannot be done exactly, an
approximate effective action can be constructed by a
perturbative renormalization group transformation or
through (approximate) matching. Here we follow the latter
procedure for the topological oscillator to adjust the

moment of inertia IðlÞ0 on the coarser levels, starting from

the physical value I0 ¼ IðL−1Þ0 on the finest lattice. Let
χtða; I0; TÞ be the topological susceptibility calculate for a
given I0, T and lattice spacing a, and recall that we can
compute χtða; I0; TÞ up to corrections of Oðða=I0Þ2Þ. We
now require that

χtðal−1; Iðl−1Þ0 ; TÞ ¼ χtðal; IðlÞ0 ; TÞ þOððal=IðlÞ0 Þ2Þ
for all l ¼ 1;…; L − 1. Using Eq. (28), this gives

Iðl−1Þ0 ¼
�
1þ al

IðlÞ0

· δIðT=IðlÞ0 Þ
�
IðlÞ0 þOððal=IðlÞ0 Þ2Þ;

with
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δIðξÞ ¼
1

2
·
1 − 2ξΣ̂2ðξÞ þ 1

2
ξ2ðΣ̂4ðξÞ − Σ̂2ðξÞ2Þ

1 − 2ξΣ̂2ðξÞ þ ξ2ðΣ̂4ðξÞ − Σ̂2ðξÞ2Þ

and Σ̂p as defined in Eq. (29). As the following numerical

results show, computing Ið0Þl with this approximate coarse-
level matching procedure significantly improves perfor-
mance both for the hierarchical sampler in Alg. 3 and the
MLMC method in Alg. 4.

IV. RESULTS

We now quantify the performance gains of the numerical
algorithms described above. All results were generated with
a C++ code developed by the authors which is freely
available at https://bitbucket.org/em459/mlmcpathintegral/.
The reported runtimes were obtained by running a sequen-
tial version of the code (which was compiled with version
18.5.274 of the Intel C compiler) on a single core of an Intel
E5-2650 v2 (2.60 GHz) CPU.
For all numerical results, we set T ¼ 4; as remarked

above we do not consider finite-volume errors here, i.e., we
assume that the exact value is the expectation value of the
observable in the limit a → 0 at a given T. As can be seen
from Eq. (28), finite-volume errors are exponentially sup-
pressed for the topological oscillator.1 For the double-well
potential, the mass is set to m0 ¼ 1.0 whereas the moment
of inertia for the topological oscillator is I0 ¼ 0.25.

A. Autocorrelations

To quantify the significant reduction of autocorrelations
which is achieved by hierarchical sampling, we measure
the integrated autocorrelation time τint for the single-level
Metropolis-Hastings algorithm (Alg. 1) if either a simple
HMC algorithm or the hierarchical delayed acceptance
sampler in Alg. 3 is used. We refer to the first method as
“StMC” from now on, whereas the latter is denoted as
“HSMC.” In the latter case, the number of levels is chosen
such that the coarsest level is fixed and always has d0 ¼ 16
points for the double-well potential and d0 ¼ 32 for the
topological oscillator (corresponding to lattice spacings of
a0 ¼ 0.25 and a0 ¼ 0.125, respectively). A HMC sampler
is used to generate proposals on the coarsest level. In all
cases (i.e., either on the fine level for the StMC method or
on the coarsest level for HSMC), 100 HMC steps are
carried out and the size of the HMC time step is tuned such
that the acceptance probability of the HMC sampler is close
to 80%.We implemented a simple HMCmethod based on a
symplectic leapfrog integrator. The integrated autocorrela-
tion time defined in Eq. (11) is estimated by measuring the
QoI for N ¼ 105 samples and computing

τ̂int ¼ 1þ 2
XW
s¼1

ρ̂ðsÞ
ρ̂ð0Þ ≈ τint with

ρ̂ðsÞ ¼ 1

N − s

XN−s

j¼1

QðjÞQðjþsÞ

≈ E½QðxðtmeasÞÞQðxðtmeasþsÞÞ�;

where tmeas is defined as in Eq. (11). As described in [36],
the size of the windowW is chosen such that systematic and
statistical errors on τ̂int are balanced. Figure 4 shows the
integrated autocorrelation time of the quantity of interest
defined in Eq. (22) for the double-well potential. As can be
seen from this plot, τint increases in proportion to a−z with
z ≈ 2.29 for small lattice spacings, whereas it is completely
flat for the hierarchical sampler.
For the topological oscillator, the observable is the

topological susceptibility defined in Eq. (27). Here two
different setups are considered for the hierarchical sampler:
in the first setup, the value of IðlÞ0 on the coarse levels is
adjusted with the perturbative matching procedure
described in Sec. III B 2. For comparison, we also consider

the case where IðlÞ0 ¼ I0 ¼ 0.25 is kept fixed on all levels;
we refer to this as the “not renormalized” setup in the
plots. As Fig. 5 shows, for the topological susceptibility the
integrated autocorrelation time increases very rapidly with
approximately τint ∝ a−z, z ¼ 8.77 for small lattice spac-
ings if a standard HMC sampler is used. In fact, the
measured τ̂int is larger than 1000 for lattice spacings smaller
than 0.03, and the single-level method becomes practically
unusable if a is reduced further. This is consistent with
the results shown in [26, Fig. 1]and can be attributed
to freezing of the integer-valued topological charge q:
for small lattice spacings, tunneling between sectors with
different values of q becomes increasingly unlikely. If the

FIG. 4. Integrated autocorrelation time for double-well poten-
tial. Results are shown both for a standard HMC and the
hierarchical sampler.

1To see this, note that for T ≫ I0 the leading order term in the
sum Σ̂2ðT=I0Þ defined in Eq. (29) is 2e−T=ð2I0Þ.
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hierarchical sampler is used, this problem is dramatically
reduced: τint is around 10 and grows only weakly for small
lattice spacings. Perturbative matching reduces τint by a
factor of approximately 2.
The slow growth of the integrated autocorrelation for

the hierarchical sampler is related to the acceptance
probability of Alg. 3. Recall that a proposal on the finest

level is only accepted (i.e., xðtþ1Þ
L−1 ≠ xðtÞL−1) if all coarse-level

proposals have been accepted. In other words, the overall

acceptance probability pacc ¼ Pðxðtþ1Þ
L−1 ≠ xðtÞL−1Þ is the prob-

ability of accepting the proposal generated with HMC on
the coarsest level (this probability is tuned to around
80%), times the probabilities of accepting the proposals
generated with the two-level step in Alg. 2 on all levels
l ¼ L − 1; L − 2;…; 1.
Figure 6 shows this overall acceptance probability pacc

as the number of levels L increases for both the double-well
potential and the topological oscillator. For the double-well
potential, the overall acceptance rate does not drop below
75% which implies that the acceptance probability of an
individual two-level Metropolis-Hastings step approaches
100% on the finer levels. For the topological oscillator, a
similar behavior can be observed, although the curve
flattens slower and the total acceptance rate approaches
a smaller value for small lattice spacings. As expected, the
acceptance probability is higher for the renormalized
action. This is not surprising since in the two-level
Metropolis-Hastings step the coarse-level proposal is a
better approximation of the even modes on the next-finer
level. Although this explains the smaller absolute value of
the autocorrelation time in Fig. 5, measurements of the
runtime (see Table III below) show that using the renor-
malized action for the HSMC method has a smaller impact
on the overall runtime since the average cost per sample
grows as the acceptance probability increases. This can be

seen immediately from Alg. 2: if the proposal is already
rejected on one of the coarser levels, it is no longer
necessary to carry out the more expensive two-level
Metropolis-Hastings steps on the finer levels.

B. Discretization error and variance decay

To quantify the discretization error ΔdiscðaÞ as a function
of the lattice spacing, we derive an asymptotic bound on
ΔdiscðaÞ. For this assume, that

ΔdiscðaÞ ¼ E½QðaÞ� − E½Qða ¼ 0Þ� ¼ Δ0aα þOðaαþ1Þ:

For the double-well potential, the parameters Δ0 and α are
obtained by calculating Q̂ðaÞ with N ¼ 4 × 108 samples
(using the hierarchicalmethod inAlg. 3) for a range of lattice
spacings a ¼ 1=32; 1=16; 1=8; 1=4. As shown in Fig. 7, the

FIG. 5. Integrated autocorrelation time for topological oscil-
lator. Results are shown both for a standard HMC and the
hierarchical sampler.

FIG. 6. Acceptance probability pacc ¼ Pðxðtþ1Þ
L−1 ≠ xðtÞL−1Þ of

standard HSMC. Results are shown both for the double-well
potential and the topological oscillator action.

FIG. 7. Discretization error ΔdiscðaÞ as a function of the lattice
spacing a for the double-well potential. The fit takes the form
Δ0a2. Statistical errors are shown as vertical bars, and the data
points are labeled with the number of dimensions d for each
lattice spacing.
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measured data are consistent with α ¼ 2. The coefficientΔ0

is estimated by approximating E½Qða ¼ 0Þ� by Q̂ðafineÞ
with afine ¼ 1=512 and fitting a function of the form
logΔ0 þ 2 log a to logðQ̂ðaÞ − Q̂ðafineÞÞ to obtain Δ0 ¼
0.11408. Based on this result, we use the relationship
ϵdisc ¼ Δ0a2 to relate the lattice spacing to the tolerance
on the discretization error in the following. For the topo-
logical oscillator, the asymptotic form of the discretization
error can be deduced from Eq. (28), which implies that
at leading order the error is linear in the lattice spacing
(α ¼ 1). For our choice of numerical values, we find that
Δ0 ¼ 0.21567.
For the performance of the multilevel Monte Carlo

method, the behavior of the variance Vl of the difference
of the quantity of interest between subsequent levels is
important. Recall in particular that the computational
complexity of the MLMC algorithm given in Eq. (18)
depends on value of β which bounds Vl=Vl−1 ≤ 2−β.
Figure 8 shows Vl for the double-well potential as well
as the variance of the quantity of interest itself. As can be
seen from this plot, β is larger than 1 but smaller than 2, and
hence (since α ¼ 2, as discussed above) we expect the
computational complexity of MLMC to beOðϵ−2stat þ ϵ−1=2disc Þ.
This assumes that the subsampling rates and integrated
autocorrelation times can be bounded, which appears
plausible given the results shown in Figs. 4 and 5. The
variance decay for the topological oscillator is shown
in Fig. 9, both for the perturbatively renormalized action
and the unrenormalized action. Renormalizing the action
reduces the absolute value of Vl. In both cases, it is safe to
assume that β ≥ 1, and hence we expect the computational
complexity to be no worse than Oðϵ−2statj log ϵdiscj2 þ ϵ−1discÞ,
provided the subsampling rates and integrated autocorre-
lation times can be bounded as a → 0.

C. Total runtime

Finally, we compare the total runtime for the following
three different setups:

StMC: The standard single-level Monte Carlo method in
Alg. 1 with a HMC sampler.

HSMC: The standard Monte Carlo method in Alg. 1
with the hierarchical delayed-acceptance sampler
written down in Alg. 3.

MLMC: The multilevel Monte Carlo method in Alg. 4
The configuration of StMC and HSMC is described in
Sec. IVA. For the multilevel method, the coarsest level has
d0 ¼ 16 points for the double-well potential and d0 ¼ 32
points for the topological oscillator. The subsampling rates
tl in Alg. 4 are set to ⌈2τ̂int;l⌉ where τ̂int;l is the estimated
integrated autocorrelation time of the quantity of interest on
level l obtained with the hierarchical sampler. We con-
firmed that this choice of subsampling rate is sufficient
to generate approximately independent samples and that
any additional bias in the final MLMC estimator due to
imperfect subsampling is comparable to the discretization
error. In all cases, we generated and discarded a sufficiently
large number of samples before computing estimators to
ensure that the Markov chains are equilibrated on all levels.
The runtimes reported here do not include the time spent in
this burn-in phase of the simulation. The tolerance on the
statistical error is set to a fixed value of ϵstat ¼ 10−4 for the
double-well potential and ϵstat ¼ 10−2 for the topological
oscillator, where the difference in size accounts for the fact
that the discretization error decreases much more rapidly
for the double-well problem. Figures 10 and 11 show the
total runtime for those values of ϵstat and different lattice
spacings a, corresponding to different values of ϵdisc: as
discussed in Sec. IV B, for both considered problems, we

FIG. 8. Variance of difference estimators Yl and the quantity of
interest Ql for the double-well potential. The lattice spacing on
level l is al ¼ 2L−1−la. The data points are labeled with the
number of dimensions dl for each lattice spacing.

FIG. 9. Variance of difference estimators Yl and the quantity of
interest Ql for the topological oscillator. The lattice spacing on
level l is al ¼ 2L−1−la. The continuum limit as given in Eq. (30)
is shown as a red dashed line. The data points are labeled with the
number of dimensions dl for each lattice spacing.

JANSEN, MÜLLER, and SCHEICHL PHYS. REV. D 102, 114512 (2020)

114512-14



bound the discretization error by ϵdisc ¼ Δ0aα with α ¼ 2,
Δ0 ¼ 0.11408 for the double-well potential and α ¼ 1,
Δ0 ¼ 0.21567 for the topological oscillator. The times
reported for HSMC and MLMC in Figs. 10 and 11 were
obtained with the renormalized coarse-level action. As can
be seen from those figures, the runtime grows rapidly with

ϵ−ð1þzÞ=α
disc for the StMC method, which is proportional to a
high power a−1−z of the inverse lattice spacing since the

discretization error is first order in all cases. Here a factor
a−1 arises since the cost of generating a path is Oða−1Þ and
the remaining power a−z can be explained by the growth in
τint discussed in Sec. IVA. As the results in Figs. 10 and 11
show, by taming autocorrelations the HSMC method
reduces the growth of computational cost. In fact, for
the lattice spacings considered here, the cost grows slower
than predicted by the theoreticalOðϵ−1discÞ complexity bound
for the topological oscillator. This is a preasymptotic effect
and the reason for it is twofold: first, the (fixed) cost of the
expensive coarse-level HMC sampler still contributes
significantly to the overall cost of the hierarchical sampler
which is not yet dominated by the evaluation of the action
on the finer levels. Second, as can be seen from the initial
drop of the total acceptance probability in Fig. 6, the
probability of accepting a proposed sample in the two-level
Metropolis-Hastings step on a given level is smaller than 1
on the coarser levels, before it approaches 1 on the finer
levels. As a consequence, in a significant proportion of
cases generating a hierarchical sample does not require the
evaluation of the fine-level action since the proposal is
already rejected on a coarser level.
MLMC reduces the asymptotic rate of growth further,

and for the double-well potential MLMC is significantly
faster than HSMC for the smallest tolerance ϵdisc consid-
ered here. Table I summarizes the speed-up of MLMC over
StMC for both problems. The relative gain of MLMC over
HSMC is shown in Table II. Although the gap between the
runtime of the two methods also reduces for the topological
oscillator, for the tolerances considered here HSMC is still
faster than MLMC.
While here we kept the tolerance ϵstat fixed, in

Appendix E, we also show the runtime as a function of
the tolerance ϵ on the total root mean square error, i.e.,
for ϵdisc ¼ ϵstat ¼ ϵ=

ffiffiffi
2

p
.

FIG. 10. Runtime of different Monte Carlo sampling algo-
rithms for the double-well potential with a fixed tolerance ϵstat ¼
10−4 on the statistical error. Results are shown in seconds and as a
function of the tolerance ϵdisc. The data points are labeled with the
number of dimensions d for each lattice spacing.

FIG. 11. Runtime of different Monte Carlo sampling algo-
rithms for the topological oscillator with a fixed tolerance ϵstat ¼
10−2 on the statistical error. Results are shown in seconds and as a
function of the tolerance ϵdisc. The data points are labeled with the
number of dimensions d for each lattice spacing.

TABLE I. Comparison of runtime for standard, single-level
Monte Carlo (StMC) and MLMC. All times for the double-well
potential were obtained with ϵstat ¼ 10−4 and are given in units of
104 seconds. For the topological oscillator, a value of ϵstat ¼ 10−2

was used and times are given in seconds.

d a ϵdisc tStMC tMLMC

Speed-
up

Double well ( 32 0.1250 1.78 × 10−3 0.17 0.64 0.3×
64 0.0625 4.46 × 10−4 0.14 0.87 0.2×
128 0.0312 1.11 × 10−4 1.54 1.03 1.5×
256 0.0156 2.79 × 10−5 14.32 1.16 12.3×
512 0.0078 6.96 × 10−6 152.21 1.20 126.9×
1024 0.0039 1.74 × 10−6 1160.02 1.38 840.9×

Topological
oscillator

8<
:

64 0.0625 1.35 × 10−2 1.13 1.72 0.7×
96 0.0417 8.99 × 10−3 39.26 3.51 11.2×
128 0.0312 6.74 × 10−3 665.32 4.95 134.4×
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1. Breakdown of MLMC cost

For the multilevel method, it is instructive to break down
the total computational cost into the time spent on the
individual levels of the lattice hierarchy. To estimate the
fraction of the runtime spent on level l, we computed

Neff
l CefflP

L−1
l¼0N

eff
l Ceffl

;

which is plotted in Fig. 12. As can be seen from this plot,
for the double-well potential more than half of the time is

spent on the coarsest level of the lattice hierarchy. This can
be explained by the fact that, as Fig. 8 shows, the variance
of difference estimators decreases by a factor between 2
and 4 between subsequent levels. The cost is more evenly
distributed between levels for the topological oscillator
problem since in this case the variance decays with a near-
linear rate (see Fig. 9).

2. Gains from coarse-level matching

Finally, we quantify the gains from coarse-level match-
ing for the topological oscillator. For this, the HSMC and
MLMC runs were repeated without coarse-level matching,
i.e., with IðlÞ0 ¼ I0 ¼ 0.25 for all l ¼ 0; 1;…; L − 1.
Table III shows that this results in a relatively modest
reduction of the runtime for the HSMC sampler. As already
discussed at the end of Sec. IVA, this can be explained by
the fact that renormalizing the coarse-level action leads to a
reduction of the integrated autocorrelation time, but this
effect is largely compensated by the increased cost per
sample. As the corresponding speed-ups for MLMC in
Table IV show, the gain is significantly larger for the
multilevel method, where coarse-level matching more than
halves the runtime. This is because for MLMC matching
the actions have the additional effect of reducing the
absolute value of the variance of the difference estimators,
as can be seen from Fig. 9.

FIG. 12. Estimated breakdown of cost per level for MLMC.
Results are shown for the finest lattice spacing with d ¼ 2048 for
the double-well potential and d ¼ 1024 for the topological
oscillator.

TABLE II. Comparison of runtime for HSMC and MLMC. All
times for the double-well potential were obtained with ϵstat ¼
10−4 and are given in units of 104 seconds. For the topological
oscillator, a value of ϵstat ¼ 10−2 was used and times are given in
seconds.

d a ϵdisc tHSMC tMLMC

Speed-
up

Double well 8><
>:

32 0.1250 1.78 × 10−3 0.14 0.64 0.2×
64 0.0625 4.46 × 10−4 0.21 0.87 0.2×
128 0.0312 1.11 × 10−4 0.34 1.03 0.3×
256 0.0156 2.79 × 10−5 0.59 1.16 0.5×
512 0.0078 6.96 × 10−6 1.13 1.20 0.9×
1024 0.0039 1.74 × 10−6 2.12 1.38 1.5×
2048 0.0020 4.35 × 10−7 4.10 1.46 2.8×

Topological
oscillator

8<
:

64 0.0625 1.35 × 10−2 0.31 1.72 0.2×
128 0.0312 6.74 × 10−3 0.44 4.95 0.1×
256 0.0156 3.37 × 10−3 0.62 5.72 0.1×
512 0.0078 1.68 × 10−3 0.91 7.42 0.1×
1024 0.0039 8.42 × 10−4 1.36 8.76 0.2×
2048 0.0020 4.21 × 10−4 1.97 10.47 0.2×

TABLE III. Comparison of HSMC without and with coarse-
level mass matching, denoted by tð0ÞHSMC and tHSMC, respectively.
All times were obtained with ϵstat ¼ 10−2 and are given in
seconds.

d a ϵdisc tð0ÞHSMC
tHSMC Speed-up

64 0.0625 1.35 × 10−2 0.36 0.31 1.2×
128 0.0312 6.74 × 10−3 0.64 0.44 1.4×
256 0.0156 3.37 × 10−3 0.96 0.62 1.5×
512 0.0078 1.68 × 10−3 1.44 0.91 1.6×

1024 0.0039 8.42 × 10−4 1.90 1.36 1.4×
2048 0.0020 4.21 × 10−4 2.57 1.97 1.3×

TABLE IV. Comparison of MLMC runtime without and with
coarse-level mass matching, denoted by tð0ÞMLMC and tMLMC,
respectively. All times were obtained with ϵstat ¼ 10−2 and are
given in seconds.

d a ϵdisc tð0ÞMLMC
tMLMC Speed-up

64 0.0625 1.35 × 10−2 4.07 1.72 2.4×
128 0.0312 6.74 × 10−3 10.68 4.95 2.2×
256 0.0156 3.37 × 10−3 16.47 5.72 2.9×
512 0.0078 1.68 × 10−3 19.27 7.42 2.6×

1024 0.0039 8.42 × 10−4 21.92 8.76 2.5×
2048 0.0020 4.21 × 10−4 25.64 10.47 2.5×
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3. Multilevel accelerated cluster algorithm

For the topological oscillator, the cluster algorithm [27]
can be used to generate Monte Carlo updates with
extremely small autocorrelations for arbitrarily small lattice
spacing. We implemented a variant of Alg. 4 in which the

new samples xðtþt0Þ
0 (line 4) and the coarse-level samples

zðtþtl−1Þ
l−1 (line 7) are generated with the (single-update)
cluster algorithm instead of the hierarchical sampler in
Alg. 3. Again the subsampling rates are set to tl ¼ ⌈2τ̂int;l⌉
and we find numerically that τ̂int;l ≈ 3 for all levels l
considered here. The number of unknowns on the coarsest
level was fixed to d0 ¼ 512, while increasing to fine-level
problem size from d ¼ 1024 to d ¼ 16384. The perfor-
mance of this MLMC algorithm is compared to the
standard, single-level cluster algorithm, again updating a
single cluster in each Metropolis-Hastings step. As the
numerical results in Fig. 13 show, MLMC is around 40%
faster than the standalone cluster algorithm for the smallest
lattice spacing considered here. The speed-up of the
MLMC accelerated cluster algorithm over the single-level
cluster algorithm for all lattice spacings is shown in
Table V. More importantly, the numerical experiments
show that the runtime of MLMC increases roughly as
Oðj logðϵdiscÞj2Þ and thereby grows significantly slower
than the runtime of the cluster algorithm, which shows the
expected Oðϵ−1discÞ growth. Again we also show the corre-
sponding results for varying ϵstat ¼ ϵdisc ¼ ϵ=

ffiffiffi
2

p
in Fig. 17

in Appendix E.
It should be stressed at this point, that while the cluster

algorithm proved to be highly efficient for the topological

oscillator, its applicability is highly problem dependent and
can for example not be directly used for the double-well
potential problem considered in this work or many other
problems in quantum field theory.

V. CONCLUSION

In this paper, we have described a hierarchical sampling
algorithm and applied it for simulations in quantum
mechanics. We demonstrated that this can overcome the
rapid growth of autocorrelations as the continuum limit is
approached. In particular, we considered the anharmonic
oscillator with a nonsymmetric double-well potential and
the quantum mechanical topological oscillator model
described in [26]. Empirically, we find that for both cases
the integrated autocorrelation time does not show any
significant increase toward the continuum limit when the
lattice spacing approaches zero. This result is particularly
significant for the susceptibility of a topological oscillator,
which suffers from freezing of the topological charge if a
single-level method with a standard HMC sampler is used.
Combining this new hierarchical sampling technique

with a multilevel Monte Carlo acceleration results in a
dramatic reduction of the computational complexity and a
significant reduction of the overall runtime. For the finest
considered lattice spacings, the additional speed-up from
MLMC (compared to hierarchical sampling for a non-
symmetric double-well potential or the cluster algorithm
for a topological oscillator) is around 1.4× to 2.8×. We find
that the accurate construction of coarse-level theories with
an approximate matching procedure is important to achieve
optimal performance.
In this paper, we have concentrated on reducing the time

spent in the sampling phase of the Markov Chain
Monte Carlo simulation and did not include burn-in times
in the reported runtimes. However, also burn-in can be
accelerated with hierarchical sampling since the reduction
in autocorrelation time allows chains to equilibrate much
faster.
While here we have demonstrated the methods for

quantum mechanical systems, the same techniques can
be used in lattice field theory simulations. In fact, as
explained in the Introduction, we expect the speed-up to be
more significant in this case since the relative cost of

FIG. 13. Runtime of single-level (StMC) and multilevel
(MLMC) cluster algorithm for the topological oscillator with a
tolerance ϵstat ¼ 10−3 on the statistical error. Results are shown in
seconds and as a function of the tolerance ϵdisc. The data points
are labeled with the number of dimensions d for each lattice
spacing.

TABLE V. Comparison of single-level (StMC) and multilevel
(MLMC) cluster algorithm for the topological oscillator. All
times were obtained with ϵstat ¼ 10−3 and are given in seconds.

d a ϵdisc tStMC tMLMC Speed-up

1024 0.003906 8.42 × 10−4 2.44 13.13 0.2×
2048 0.001953 4.21 × 10−4 4.86 18.50 0.3×
4096 0.000977 2.11 × 10−4 9.38 19.06 0.5×
8192 0.000488 1.05 × 10−4 20.60 23.81 0.9×

16384 0.000244 5.27 × 10−5 39.51 27.38 1.4×
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computations on coarser levels is further suppressed. A
crucial step will be to construct suitable coarse-grained
theories which could be achieved analytically in perturba-
tion theory or by adopting the framework of Symanzik’s
effective theory, where the improvement coefficients can be
computed perturbatively. Since many physically interesting
theories, and in particular lattice QCD, is asymptotically
free, this is expected to work increasingly well as the
continuum limit is approached. Of, course, finding non-
perturbative methods to construct the course grained theory
would be even better.
Recently, multilevel Monte Carlo has received sig-

nificant attention in other areas, which led to further
innovations. While here the method is described in the
most natural setup, where coarse levels are constructed
by increasing the lattice spacing, coarsening in other
categories is also possible and potentially leads to further
performance gainsby using the multi-index Monte Carlo
[37] technique. For example, the complexity of the theory
could be reduced on coarser levels or the physical volume
of the lattices could be increased with l, thus aiming to
approach the continuum limit a → 0 and large volume
limit T → ∞ simultaneously. In lattice QCD, one might
increase the dynamical quark masses on the coarser
levels, which simplifies the computation of the fermion
determinant.
In summary, the success of the benchmark computations

presented in this paper suggests that applying MLMC
techniques to higher dimensional theories, e.g., to gauge
theories, is indeed a promising approach which we plan to
follow in the future.
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APPENDIX A: EXTENSION TO HIGHER
DIMENSIONS

To illustrate how the methods in this paper, and in
particular the two-level Metropolis-Hastings step in Alg. 2,
can be extended to higher dimensions, consider a discre-
tized two-dimensional theory for which the degrees of
freedom are located at the vertices of a uniform lattice with
spacing a. If Ω is the state space and S∶ Ω → R is the
lattice action, the probability density π� which is sampled
with a Monte Carlo method is defined by

π�ðΦÞ ¼ Z−1e−SðΦÞ for all Φ ∈ Ω:

Starting from the finest lattice T , construct a hierarchy of L
lattices T ¼ T L−1; T L−2;…; T 0 by doubling the lattice
spacing simultaneously in both dimensions; this is shown
for two subsequent levels T l, T l−1 of the hierarchy in
Fig. 14 (left). On level l, the lattice spacing is written as
al ¼ 2l−Lþ1a and we assume that there is an action
Sl∶ Ωl → R with associated probability density πl where

πlðΦÞ ¼ Z−1
l e−SlðΦÞ for all Φ ∈ Ωl: ðA1Þ

Again, the coarse-level theories are naturally obtained as
(approximate) effective theories of the original fine-level
theory on level L − 1 where SL−1 ¼ S and πL−1 ¼ π�.
While the coarse-level actions are constructed by starting

from the original lattice, the hierarchical sampler in Alg. 2
constructs new fine-level samples by generating a proposal
on the coarsest lattice and successively adding fine-level
modes. On each level l, this requires a mechanism for
filling in the values of unknowns in the fine-level space Ωl
for a given state Φ0 ∈ Ωl−1 in the coarse-level space Ωl−1.
We use two iterations of the construction described for
the Ising model in [31] to achieve this. As illustrated in
Fig. 1(a) there, the key idea is to use a rotated lattice with a
lattice spacing that is reduced by a factor

ffiffiffi
2

p
. The values at

2a
a

coarse lattice

fine lattice

ℓ-1

ℓ

ℓ

ℓ

FIG. 14. Fill-in of fine-level unknowns on a hierarchical two-
dimensional lattice as required in lines 5 and 6 of Alg. 5. Starting
from the coarse-level unknowns on a rotated lattice (upper left),
first the unknowns in Ωð1Þ

l associated with the empty blue squares

are filled in using π̃ð1Þl (upper right). Next, the distribution π̃ð2Þl is

used to fill in the unknowns in Ωð2Þ
l associated with the solid red

circles (lower right) to finally obtain the state on the fine lattice
(lower left).
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the additional sites that are generated in each rotation are
drawn from a distribution which depends only on the values
at the already existing sites.2

To explain this process in more detail, observe that
on each level l the state space Ωl can be written as the

direct sum of three spaces Ωð2Þ
l , Ωð1Þ

l , and Ωl−1 with

Ωl ≔ Ωð2Þ
l ⊕ Ωð1Þ

l ⊕ Ωl−1, which should be compared
to the decomposition in Eq. (12). To see this and to define

Ωð1Þ
l , Ωð2Þ

l , separate the unknowns Φ ∈ Ωl into three
different classes, depending on which topological entity
of a coarse grid cell on level l − 1 they are associated with,
namely, the following:

1. Coarse-level unknowns associated with coarse-level
vertices, collected in a vector Φ0 ∈ Ωl−1 and shown
as empty black circles in Fig. 14.

2. Fine-level unknowns associated with the interior of

coarse-level cells, collected in Φ̃ð1Þ ∈ Ωð1Þ
l and

shown as empty blue squares.
3. Fine-level unknowns associated with edges of

coarse-level cells, collected in Φ̃ð2Þ ∈ Ωð2Þ
l and

shown as solid red circles in the figure.

GivenΦ0 ∈ Ωl−1, Φ̃ð1Þ ∈ Ωð1Þ
l , and Φ̃ð2Þ ∈ Ωð2Þ

l write Φ̄ ¼
½Φ̃ð1Þ;Φ0� ∈ Ω̄l ≔ Ωð1Þ

l ⊕ Ωl−1 and

Φ ¼ ½Φ̃ð2Þ; Φ̄� ¼ ½Φ̃ð2Þ; ½Φ̃ð1Þ;Φ0�� ∈ Ωl; ðA2Þ

which should be compared to Eq. (13) in the main text.
Assume that there is a conditional probability density

π̃ð1Þð·jΦ0Þ on the state space Ωð1Þ
l , given the values of

the coarse-level unknowns Φ0 ∈ Ωl−1. Since the empty
black circles and empty blue squares in the top right of
Fig. 14 define a rotated lattice with spacing

ffiffiffi
2

p
al, the

density π̃ð1Þ can be constructed by writing down an action
S̃ð1Þ∶ Ω̄l → R on this rotated lattice, namely,

π̃ð1ÞðΦ̃ð1ÞjΦ0Þ¼ðZ̃ð1Þ
l ðΦ0ÞÞ−1exp½−S̃ð1Þl ð½Φ̃ð1Þ;Φ0�Þ�: ðA3Þ

This action could for example be obtained by a renorm-
alization group transformation on Sl, followed by some
approximations that guarantee that it is possible to effec-

tively generate states in Ωð1Þ
l for a given Φ0. Similarly,

define a conditional probability density π̃ð2Þð·jΦ̄Þ on Ωð2Þ
l ,

given the values of the unknowns Φ̄ ∈ Ω̄l. Here
Sð2Þ∶ Ωl → R can be expressed as an approximation of
Sl with

π̃ð2ÞðΦ̃ð2ÞjΦ̄Þ ¼ ðZ̃ð2Þ
l ðΦ̄ÞÞ−1 exp ½−S̃ð2Þl ð½Φ̃ð2Þ; Φ̄�Þ�

¼ ðZ̃ð2Þ
l ð½Φ̃ð1Þ;Φ0�ÞÞ−1

× exp ½−S̃ð2Þl ð½Φ̃ð2Þ; ½Φ̃ð1Þ;Φ0��Þ�: ðA4Þ

The exact choice of S̃ð1Þ and S̃ð2Þ influences the acceptance
rate, but does not have any impact on the fine-level
discretization error. Algorithm 3 for the Metropolis-

Hastings step ΦðtÞ
l → ΦðtÞ

l can now be rewritten for a
two-dimensional theory as shown in the following Alg. 5.
An explicit expression for ΔSl is readily obtained from

Eqs. (A1), (A3), and (A4). The key difference between

Alg. 2 and Alg. 5 is that the fine-level states from Ωð1Þ
l and

Ωð2Þ
l are filled in in two steps and that the triple product

of ratios in Alg. 2 has been replaced by the product of the

four ratios ρl, ρ
ð2Þ
l , ρð1Þl , and ρ0l−1 in Alg. 5. A similar

construction is possible in higher dimensions where it is
necessary to successively fill in the fine-level unknowns
which are not in the coarse-level state space.

Algorithm 5. Two-level Metropolis-Hastings step for two-
dimensional theories.

Input: Level l, current sample ΦðtÞ
l ∼ πl, proposal

distribution ql−1
Output: New sample Φðtþ1Þ

l ∼ πl
1: Let ΦðtÞ

l ¼ ½Φ̃ð2;tÞ
l ; ½Φ̃ð1;tÞ

l ;ΦðtÞ
l−1�� with ΦðtÞ

l−1 ∈ Ωl−1,

Φð1;tÞ
l ∈ Ωð1Þ

l , Φð2;tÞ
l ∈ Ωð2Þ

l as in Eq. (A2)

and pick Ψl−1 from ql−1ð·jΦðtÞ
l−1Þ.

2: if Φðtþ1Þ
l−1 ¼ ΦðtÞ

l−1 (the coarse-level proposal was rejected)
then

3: Set Φðtþ1Þ
l ↤ ΦðtÞ

l
4: else
5: Pick Ψ̃ð1Þ

l from π̃ð1Þl ð·jΨl−1Þ
6: Pick Ψ̃ð2Þ

l from π̃ð2Þl ð·j½Ψ̃ð1Þ;Ψl−1�Þ
7: Let Ψl ¼ ½Ψ̃ð2Þ

l ; ½Ψ̃ð1Þ
l ;Ψl−1�� and compute

exp½−ΔSl� ¼ ρl · ρ
ð2Þ
l · ρð1Þl · ρ0l−1 with

ρl ≔
πlðΨlÞ
πlðΦðtÞ

l Þ

ρð2Þl ≔
π̃ð2Þl ðΦ̃ð2;tÞ

l j½Φ̃ð1;tÞ
l ;ΦðtÞ

l−1�Þ
π̃ð2Þl ðΨ̃ð2Þ

l j½Ψ̃ð1Þ
l ;Ψl−1Þ�

ρð1Þl ≔
π̃ð1Þl ðΦ̃ð1;tÞ

l jΦðtÞ
l−1Þ

π̃ð1Þl ðΨ̃ð1Þ
l jΨl−1Þ

ρ0l−1 ≔
πl−1ðΦðtÞ

l−1Þ
πl−1ðΨl−1Þ

:

8: Accept the proposal Ψl and set Φðtþ1Þ
l ↤ Ψl with

probability minf1; exp½−ΔSl�g; set Φðtþ1Þ
l ↤ ΦðtÞ

l if
the proposal is rejected.

9: end if

2Although sampling is particularly simple if the action only
contains nearest-neighbor interactions (as for the Ising model in
[31]) so that the value at each new site can be drawn independ-
ently, this is not a necessary condition.
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APPENDIX B: MULTILEVEL MONTE
CARLO COST ANALYSIS

We make the reasonable assumption that the cost

Ccoarse of generating a sample xðtþ1Þ
0 with the standard

Metropolis sampler on the coarsest level is proportional
to the number of unknowns d0 and does not increase as
the number of levels increases (while keeping a0 fixed).
More specifically, we assume that this cost Ccoarse can be
bounded by

Ccoarse ≤ A0d0 ¼ 2−Lþ1A0d

for some constant A0. Furthermore, given the coarse-level
sample yl−1, the cost of executing Alg. 2 is proportional
to dl and can be bounded by

C2−levell ≤ B0dl ¼ 2l−Lþ1B0d

for some other constant B0. A straightforward calculation

shows that the cost of obtaining a new sample xðtþ1Þ
l with

Alg. 3 can be bounded by

Cl ≤ ðA0 þ B0Þdl ¼ 2l−Lþ1ðA0 þ B0Þd;

i.e., does not grow more than linearly with the number
dl of unknowns on level l. Taking into account
the subsampling rates tl, the cost of obtaining an

independent measurement of YðjÞ
l on level l in Alg. 4

is therefore

Ceffl ¼
�
⌈τint;l⌉ðC2−levell þ tl−1Cl−1Þ for l ¼ 1;…; L − 1

⌈τint;0⌉t0Ccoarse for l ¼ 0;

ðB1Þ

where τint;l is the integrated autocorrelation time on
level l. In our code, we measured Ccoarse, C2−levell , and Cl
during the setup phase of each run and then
used Eq. (B1) to compute Ceffl required in Eq. (16).
The integrated autocorrelation time was updated on-
the-fly in the multilevel Monte Carlo algorithm, gen-
erating additional samples if this increased the Neff

l
in Eq. (16).
To quantify the cost of the multilevel Monte Carlo

algorithm in Alg. 4, further assume that the subsampling
rates tl are bounded by some tmax≥tl for all
l ¼ 1;…; L − 2. By definition, this is also an upper bound
on the integrated autocorrelation times on all levels, i.e.,
τint;l ≤ tmax for l ¼ 0; 1;…; L − 1. Then, there exists a
constant C̃0 such that Ceffl ≤ C̃0dl ¼ 2lC̃0d0; in other
words, the cost for generating an independent measurement

YðjÞ
l on level l does not grow at a faster rate than the number

of unknowns dl ¼ 2ld0 ¼ 2l−Lþ1d on this particular level.
More generally, to make the following derivation applicable
for field theories in D > 1 dimensions (where D ¼ 1
corresponds to quantum mechanics), we assume that there
is a C0 > 0 such that

Ceffl ≤ 2DlC0 for all l ¼ 0; 1;…; L − 1:

We now show how the cost of the MLMC algorithm
depends on the tolerances ϵdisc and ϵstat as ϵdisc; ϵstat → 0.
Using the definition of Neff

l in Eq. (16) and the fact that
maxfA;Bg ≤ Aþ B, the total cost of MLMC with a
tolerance ϵstat on the statistical error and a given number
of levels L can be bounded by

CMLMC ¼
XL−1
l¼0

Neff
l Ceffl ≤ ϵ−2statσðLÞ2 þ σ̃ðLÞ; ðB2Þ

where

σðLÞ ≔
XL−1
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VlCeffl

q
; σ̃ðLÞ ≔

XL−1
l¼0

Ceffl :

Assuming that

Vl ≤ 2−βlV0;

a straightforward calculation shows that σðLÞ can be
bounded as follows, depending on whether β is larger,
equal, or smaller than D,

σðLÞ ≤ κ0
XL−1
l¼0

2
D−β
2
l ≤

8>><
>>:

κþ for β > D

κ0L for β ¼ D

κ−2
1−β
2
L for β < D;

ðB3Þ

with the constants

κ0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
C0V0

p
; κþ ¼ κ0

1 − 2
D−β
2

¼ −κ−:

The sum σ̃ðLÞ is readily bounded by

σ̃ðLÞ ≤ C0

2DL

2D − 1
: ðB4Þ

To obtain a bound on the number of levels L, we further
assume that the discretization is of order α, i.e., for a given
lattice spacing a, the discretization error ΔdiscðaÞ can be
bounded by
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ΔdiscðaÞ ≤ Δ̃0aα

for some constants α ≥ 1, Δ̃0. If we set a ¼ 2−Lmaxþ1a0
with

Lmax ¼ 1þ ⌈log2ða0Δ̃1=α
0 Þ − 1

α
log2ϵdisc⌉;

the discretization error will be smaller than ϵdisc. Hence, it is
not necessary to usemore thanLmax levels, andL in Eq. (B3)
can be bounded by

L ≤ 2þ log2ða0Δ̃1=α
0 Þ − 1

α
log2ϵdisc:

Using this bound in Eqs. (B3) and (B4) implies that the cost
in Eq. (B2) has the following computational complexity as a
function of ϵdisc and ϵstat:

CMLMC¼

8>>><
>>>:
Oðϵ−2statþ ϵ−D=α

disc Þ for β>D

Oðϵ−2statj logϵdiscj2þ ϵ−D=α
disc Þ for β¼D

Oðϵ−2statϵ−
D−β
α

disc þ ϵ−D=α
disc Þ for β<D:

ðB5Þ

For the quantum mechanical problems considered in this
paper, we have thatD ¼ 1, which leads to the computational
complexity in Eq. (18); Eq. (4) in the introduction is a special
case of this for α ¼ β ¼ 1. In fact, as explained in [17],
α ¼ β holds more generally for the Markov Chain variant
of the multilevel Monte Carlo algorithm. Hence, for quan-
tum field theories in higher dimensions with D > α ¼ β,
the third case in Eq. (B5) applies, which results in Eq. (5)
in the Introduction. Finally, setting ϵstat ¼ ϵdisc ¼ ϵ=

ffiffiffi
2

p
gives Eq. (6).

APPENDIX C: MEMORY REQUIREMENTS

To put the memory requirements of the algorithms
described in this paper into context, consider a D-
dimensional quantum field theory and HMC sampling
as an established reference method. In addition to the
current state xðtÞ, both the proposal y and ν ≥ 1 tempo-
rary vectors have to be stored to implement the sym-
plectic time stepping scheme in the enlarged phase
space. For the simple leapfrog implementation used in
this work, ν ¼ 1 since only one additional momentum
vector is required. If there are d lattice points in each
direction, this leads to a total storage requirement of 2þ
ν state vectors of length dD or MHMC ¼ ð2þ νÞdD
double precision variables in D-dimensions. Executing
the two-level Metropolis-Hastings step in Alg. 2 on

level l of the hierarchy requires storage for xðtÞl and the
proposal yl, which are both vectors of length dDl .

Depending on how the proposal on level l − 1 is
generated, this might require additional vectors of length
dDl−1. For example, if the proposals yl−1 are drawn from

ql−1ð·jxðtÞl−1Þ with a single-level Metropolis-Hasting
method and a HMC proposal distribution, one would
require ν additional vectors. However, since unknowns
on the finer levels are filled in recursively and existing

entries of xðtÞl are used to represent the current state on
coarser levels, the hierarchical sampler in Alg. 3 only

needs to store two vectors of length dDl to represent xðtÞl
and the proposal yl as well as ν vectors of length dD0 to
account for the Metropolis-Hastings step on the coarsest
level with l ¼ 0. This leads to total storage requirements
of MHSðlÞ ¼ 2dDl þ νdD0 for Alg. 3. In particular, on the
finest level

MHSðL − 1Þ ¼ ð2þ 2−ðL−1ÞDνÞdD < MHMC: ðC1Þ

To obtain the memory requirements of the MLMC
method in Alg. 4, note that on each level both the

current state xðtÞl and a proposal yl have to be stored. In
addition, the storage requirements of the hierarchical
sampler in Alg. 3 have to be taken into account on all
but the very finest level. Consequently, for L ≥ 2 levels,
the total amount of required memory is

MMLMC ¼ 2
XL−1
l¼0

dDl þ
XL−2
l¼0

MHSðlÞ

¼
�
2þ 4

1 − 2−ðL−1ÞD

2D − 1
þ ν

L − 1

2ðL−1ÞD

�
dD

< ð6þ νÞdD < 3MHMC: ðC2Þ

As Eqs. (C1) and (C2) show, the memory footprint of
the hierarchical sampler in Alg. 3 is actually smaller than
that of HMC, whereas the MLMC method in Alg. 4
requires less than 3 times the amount of storage used by
a standard HMC method for any dimension D. Limited
storage usually restricts the size of systems that can be
simulated for higher dimensions (D ≥ 3). As the second
line of Eq. (C2) shows, for those higher dimensional
problems the additional memory overhead of MLMC
(compared to HMC) is actually less than 30%.

APPENDIX D: REJECTION SAMPLING

To draw samples from the distribution pσ;δx defined in
Eq. (31), we use rejection sampling with a Gaussian
envelope, as described in the following algorithm:
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APPENDIX E: FIXED TOLERANCE
ON THE TOTAL ERROR

While for the results presented in the main text we fixed
ϵstat and varied the tolerance on the discretization error, in
the following we also show the (estimated) runtime as a
function of the tolerance ϵ on the total root mean square
error. For this, we set ϵstat ¼ ϵdisc ¼ ϵ=

ffiffiffi
2

p
as is common in

the multilevel Monte Carlo literature. Figures 15 and 16
show the runtime of the single-level HMC method, the
hierarchical sampler, and the multilevel method as a
function of the tolerance ϵ on the total error; they should

be compared to Figs. 10 and 11. Finally, Fig. 17 shows the
runtime of the standard cluster-sampler and the multilevel-
accelerated variant of the method; the corresponding plot in
the main text is Fig. 13.

FIG. 15. Estimated runtime of different Monte Carlo sampling
algorithms for the double-well potential. Results are shown in
seconds and as a function of the tolerance ϵ on the total error. The
data points are labeled with the number of dimensions d for each
lattice spacing.

FIG. 16. Runtime of different Monte Carlo sampling algo-
rithms for the topological oscillator. Results are shown in seconds
and as a function of the tolerance ϵ on the total error. The data
points are labeled with the number of dimensions d for each
lattice spacing.

FIG. 17. Runtime of single-level (StMC) and multilevel
(MLMC) cluster algorithm for the topological oscillator. Results
are shown in seconds and as a function of the tolerance ϵ on the
total error. The data points are labeled with the number of
dimensions d for each lattice spacing.

Algorithm 6. Rejection sampling for distribution pσ;δx de-
fined in Eq. (31)

1: loop
2: Draw sample x from Gaussian distribution gσ

with gσðxÞ ¼
ffiffiffiffi
2σ
π3

q
exp ½− 2σ

π2
x2�.

3: if −π ≤ x ≤ π, then
4: Draw uniformly distributed random u ∈ ½0; 1Þ.
5: if u ≤ exp ½−2σðsin2ðx

2
Þ − x2

π2
Þ�, then

6: return xþ δx
7: end if
8: end if
9: end loop
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