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We study a PT -symmetric scalar Euclidean field theory with a complex action, using both theoretical
analysis and lattice simulations. This model has a rich phase structure that exhibits pattern formation in the
critical region. Analytical results and simulations associate pattern formation with tachyonic instabilities in
the homogeneous phase. Monte Carlo simulation shows that pattern morphologies vary smoothly, without
distinct microphases. We suggest that pattern formation in this model may be regarded as a form of arrested
spinodal decomposition. We extend our theoretical analysis to multicomponent PT -symmetric Euclidean
scalar field theories and show that they give rise to new universality classes of local field theories that
exhibit patterned behavior in the critical region. QCD at finite temperature and density is a member of the
Zð2Þ universality class when the Polyakov loop is used to distinguish confined and deconfined phases. This
suggests the possibility of the formation of patterns of confined and deconfined matter in QCD in the
critical region in the μ − T plane.
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I. INTRODUCTION

Reaching a theoretical understanding of finite-density
QCD has been hampered for decades by a sign problem
[1–3]. The QCD sign problem originates from an imaginary
term in its action induced by the chemical potential μ,
giving rise to nonpositive weights in the path integral. Sign
problems are barriers to simulation in a variety of physics
problems that are in some cases known to be non-
deterministic non-polynomial hard (NP hard) [4,5]. In
QCD, μ explicitly breaks charge conjugation C, but leaves
the theory invariant under the combined action of C and
complex conjugation K. This is a form of PT symmetry
[6–8]. PT -symmetric systems have attracted considerable
theoretical and experimental interest in recent years [9–11];
while there has been great progress in one-dimensional
systems, the behaviors of PT -symmetric systems in higher
dimensions are less well understood [12]. We show that
multifield PT -invariant models in higher dimensions form
a rich class of systems exhibiting pattern formation around
critical points. The number of experimental realizations of
PT -symmetric systems is growing, and it is likely that

pattern formation can be observed experimentally in
engineered systems with d ≥ 2. Finite-density QCD is
an exotic example from the Z(2) class of such models,
similar to the model studied in this paper. This raises the
possibility that finite density QCD might exhibit stable
patterns consisting of the confined and deconfined phases
near the critical end point.
A quantum field theory with PT symmetry is invariant

under the combined action of a discrete linear transforma-
tion P and an antilinear transformation T . For example, the
iϕ3 model of the Lee-Yang transition is invariant under PT
for P∶ϕ → −ϕ and T ∶i → −i [13]. In a PT -symmetric
lattice theory, every transfer matrix eigenvalue must be
either real or part of a complex-conjugate pair. While
complex field theories in general suffer from a sign
problem, a method was recently developed to circumvent
the issue in certain PT complex scalar theories. The
procedure uses Fourier transforms to recast the action into
a real dual form, which is easily simulated. The first
simulations of two-component interacting scalar field
models revealed patterned configurations [14].
Patterning behavior is observed on many length scales in

physics, from condensedmatter to biophysics to astronomy.
Competition between attractive and repulsive forces of
comparable magnitude is often responsible for this pattern-
ing [15–17]. For example, it is thought that opposing nuclear
and Coulomb forces may give rise to nuclear pasta in the
inner crust of neutron stars [18–21]. Notably, patterns can
also form when purely repulsive forces are present [22].
Because imaginary coupling constants can make scalar
exchange repulsive rather than attractive, there is a natural
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connection between PT -symmetric scalar field theory
models and pattern formation. A patterned region of
parameter space is often conceptualized in terms of micro-
phases: subregions each characterized by a distinct type of
morphology like dots, striping, or tubes. In the naive
microphase picture, these subregions are separated from
one another by a first-order transition [17,18].
We study analytically a particular PT -symmetric

Euclidean scalar field theory with a complex action and
demonstrate that there is a region of parameter space near a
phase transition where no homogeneous phase exists, due to
the appearance of instabilities at nonzero momentum. After
transformation into a form with a real, local action, simu-
lation of the model shows that the stable phase in this region
has persistent patterning behavior, associated with those
nonzero momentum instabilities. We give a precise criterion
for the occurrence of pattern formation which generalizes to
a broad class of PT -symmetric models. Although different
patternmorphologies are seen as the parameters of themodel
are varied, the variation is smooth with no indication of
thermodynamically distinct microphases. We connect this
behavior with spinodal decomposition and nucleation.
Finally, we demonstrate that patterning is a universal
phenomenon inmulticomponentPT -symmetric scalar field
theories. QCD at finite density is in the Zð2Þ class of such
theories, like the scalar model below.

II. ANALYTICS

We begin by studying the Euclidean action,

Sðϕ; χÞ ¼
X
x

1

2
ð∇μϕÞ2 þ

1

2
ð∇μχÞ2 þ Vðϕ; χÞ; ð1Þ

where we set

Vðϕ; χÞ ¼ 1

2
m2

χχ
2 − igϕχ þ UðϕÞ þ hϕ; ð2Þ

where UðϕÞ ¼ λðϕ2 − v2Þ2. Equation (1) represents a
Hermitian scalar field ϕðxÞ coupled to a PT -symmetric
scalar field χðxÞ by the imaginary strength ig.
Our model is amenable to analytical treatment. Because

χ enters quadratically in the action S, it can easily be
integrated out, yielding a nonlocal effective action of the
form

Seff ¼
X
x

�
1

2
ð∂μϕðxÞÞ2 þ λðϕ2 − v2Þ2 þ hϕ

�

þ g2

2

X
x;y

ϕðxÞΔðx − yÞϕðyÞ: ð3Þ

This model has been extensively studied in the case
mχ ¼ 0; see, e.g., [17] and references therein. In the
two-dimensional case, pattern formation with stripes and

dots is known to occur. The mχ ¼ 0 limit is sometimes
described in the condensed matter literature as Coulomb
frustrated because the extra interaction acts against the
symmetry-breaking behavior of the ϕ4 model [16,17,23].
However, our simulations show that the observed pattern-
ing behavior is not tied to the long-range nature of the
Coulomb interaction, and also occurs for a Yukawa
interaction, i.e., when mχ ≠ 0.
We determine the value of the order parameter ϕ0 at

tree level by minimizing the potential or equivalently by
minimizing the effective potential associated with Seff :

Veffðϕ0Þ ¼ λðϕ2
0 − v2Þ2 þ g2ϕ2

0=2m
2
χ − hϕ0: ð4Þ

The effect of χ on ϕ0 for h ¼ 0 is to restore the symmetric
value ϕ0 ¼ 0 at sufficiently large values of g. The value of
ϕ0 is essentially the expected value of the zero-momentum
component of the field ϕ. Pattern formation is associated
with Fourier modes ϕ̃ðqÞ with nonzero q. One approach to
understanding pattern formation is to expand Seff in a
derivative expansion. The last, nonlocal term in Seff
generates the terms

Z
d4x

g2

2m2
χ
ϕðxÞ

X∞
n¼0

�
−∇2

m2
χ

�
n

ϕðxÞ: ð5Þ

The n ¼ 0 term in this expansion is the last term in Veff .
Crucially, the n ¼ 1 term is negative, indicating that the
quadratic derivative term becomes negative for sufficiently
large g. When the quadratic kinetic term is sufficiently
negative, the homogeneous phase is unstable to perturba-
tions with nonzero wave number. Thus the occurrence of a
pattern-forming region is a manifestation of a Lifshitz
instability [24].
Additional information on the phase structure follows

from the inverse ϕ propagator obtained from Seff at tree
level:

G−1ðq2Þ ¼ q2 þ U00ðϕ0Þ þ
g2

q2 þm2
χ
; ð6Þ

where U00ðϕ0Þ ¼ −4λv2 þ 12λϕ2
0. The allowed phases

of the model are determined using ϕ0 and GðqÞ. The
poles of the propagator are obtained from the zeros of
ðq2 þm2

χÞðq2 þ UÞ þ g2. This quadratic in q2 has real
coefficients, so its roots r1 and r2 are either both real or
form a complex conjugate pair. If both zeros occur at
q2 < 0, then the propagator must decay exponentially. We
refer to this region of parameter space as the normal region.
If the zeros are complex, they must form a complex
conjugate pair with r1 ¼ r�2, and the propagator decays
exponentially with sinusoidal modulation. We refer to this
region of parameter space as the complex region. In both of
these cases, the homogeneous phase is stable against small

SCHINDLER, SCHINDLER, MEDINA, and OGILVIE PHYS. REV. D 102, 114510 (2020)

114510-2



fluctuations for all values of q2 > 0. The boundary between
these two behaviors is by definition a disorder line [25]. If
one of the roots is positive and the other negative, then the
inverse propagator G−1ðqÞ is negative at q2 ¼ 0, and ϕ0 is
not a stable solution. This is the unstable region of
parameter space, which occurs in the case g ¼ 0 when
V 00ðϕ0Þ < 0. If both roots are positive, then ϕ0 is stable
against perturbations at q2 ¼ 0, but unstable in a linearized
analysis against perturbations with q2 ¼ r1 or q2 ¼ r2. This
is the region we identify as the pattern forming region.
The unstable region, where ϕ0 is unstable against

q2 ¼ 0 perturbations, is determined simply by V 00
effðϕ0Þ ¼

U00ðϕ0Þ þ g2=m2
χ < 0. Note that as g2 → 0, we obtain the

standard result V 00ðϕ0Þ < 0 for the unphysical region. A
more comprehensive analysis requires the roots r1 and r2 of
G−1ðq2Þ. We see immediately that if one root is positive and
the other negative, the homogeneous solution ϕ0 is unsta-
ble. This is precisely the condition V 00

eff < 0. The roots are
determined from the quadratic formula and given by

r1;2 ¼
1

2
½−ðm2

χ þ U00Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

χ þ U00Þ2 − 4m2
χU00 − 4g2

q
�
ð7Þ

which can be rewritten immediately as

r1;2 ¼
1

2
½−ðm2

χ þ U00Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

χ − U00Þ2 − 4g2
q

�: ð8Þ

The complex pole region is determined by ðm2
χ −UÞ2 −

4g2 < 0 so the boundary of the complex region is given by
ðm2

χ −UÞ2 − 4g2 ¼ 0. The stability condition U00ðϕ0Þ þ
g2=m2

χ > 0 is automatically satisfied in this region. The
parameters g andm2

χ are always positive, but U00 is negative
for small ϕ and positive for large ϕ. Thus there are two
possible solutions: 2g ¼ m2

χ − U00 when U00 < m2
χ , and

2g ¼ U00 −m2
χ when U00 > m2

χ . The normal region has
r1;2 < 0 while the pattern-forming region has r1;2 > 0.
In either case, the discriminant of the quadratic formula
must be positive. From the solution for the roots we see that
the stability condition U00ðϕ0Þ þ g2=m2

χ > 0 implies that
for real roots, the discriminant in the quadratic formula is
always smaller in magnitude than jm2

χ þ U00ðϕ0Þj. The
normal region is thus characterized by m2

χ þ U00ðϕ0Þ < 0

in addition to the discriminant condition ðm2
χ þ U00Þ2 −

4m2
χU00 − 4g2 > 0 and the stability condition U00ðϕ0Þ þ

g2=m2
χ > 0. The pattern forming region is characterized by

m2
χ þU00ðϕ0Þ > 0 in addition to the discriminant and

stability conditions.
In Fig. 1, we plot the regions for the four distinct phases

of the model as a function of hϕi for the parameter set
m2 ¼ 1=2, λ ¼ 1=10 and v ¼ 3. The different regions are
classified by the nature of the poles of the ϕ propagator in

the q2 complex plane. We denote the region of parameter
space where both poles are real and negative as “Normal”
(orange in 1). This leads to exponential decay of the ϕ
propagator, as it does in conventional field theories. In the
region labeled Complex (blue), the poles as a function of q2

in the ϕ propagator are complex conjugates. This region is
similar to the so-called broken PT region of PT -sym-
metric quantum mechanical models. The ϕ propagator in
this region also decays exponentially, but with sinusoidal
modulation. The boundary between the Normal and
Complex regions is called a disorder line. The region
labeled Patterns (green) is the region where both poles are
real and positive; it is in this region where persistent
patterns occur. In the Unstable region (red), both poles
are real with one positive and one negative. This region is
not thermodynamically stable, and is inaccessible as an
equilibrium state in simulations in the canonical ensemble.
As in the familiar case of a ferromagnetic Ising model, the
phase diagram has a cut at h ¼ 0 across which ϕ0 jumps.
The two sides of the cut may be in the Normal, Complex or
Pattern regions. We see evidence for this behavior in the
Pattern region in our lattice simulations at h ¼ 0: ϕ0 can
have either sign, and the observed patterns are correspond-
ingly inverted.
The effective action Seff is a function of g2, and can be

continued to g2 < 0. This corresponds to the continuation
g → ig in S, in which case the action S becomes real, and
neither pattern formation nor complex q2 poles can occur.
The small areas of normal behavior seen in Fig. 1 in

FIG. 1. Phase diagram of model in the n − g plane for the
parameter set m2 ¼ 1=2, λ ¼ 1=10 and v ¼ 3. In the region
labeled Complex (blue), the poles as a function of q2 in the ϕ
propagator are both complex. In the Normal region (orange), both
poles are real and negative. The region labeled Patterns (green) is
where both poles are real and positive. It is in this region where
persistent patterns occur. In the Unstable region (red), both poles
are real with one positive and one negative. This region is not
thermodynamically stable.
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between the complex and unstable phases are connected to
the larger normal region when the phase diagram is plotted
as a function of g2 and g2 < 0 values are included. The
relative size of the unstable and pattern-forming regions is
directly controlled bymχ. The Coulomb-frustrated model is
obtained in the limit mχ → 0. In that limit, the boundary
between the unstable and pattern-forming region moves to
g ¼ 0, and the unstable region is seen only for g2 < 0.
In the limit mχ → ∞, the pattern-forming and complex
regions vanish and standard ϕ4 behavior is obtained.
The inverse propagatorG−1ðqÞ has a minimum at q2 > 0

provided g > m2
χ . The propagator has poles with q2 > 0 if

the minimum of G−1ðqÞ lies below zero; that is, when
2g −m2

χ − 4λv2 þ 12λϕ2
0 < 0. Such poles are tachyonic in

the usual sense of continuation to Minkowski space and are
generally taken to indicate an instability of the system such
that a homogeneous equilibrium phase is not stable. The
two-point function will not decay with spatial separation,
instead exhibiting oscillatory behavior. This tachyonic
region is in reasonable agreement with the boundaries of
the pattern-forming region observed in simulation, subject
to the limitations imposed by lattice size and spacing.
An equivalent approach to determining the phase struc-

ture is to start from S rather than Seff and find the static
solution ðϕ0; χ0Þ which minimizes Vðϕ; χÞ. Unless the
underlying PT symmetry of S is broken, ϕ0 will be real
and χ0 will be purely imaginary. Linearizing the propagator
around the static solution, we find the inverse propagator
for the ðϕ; χÞ set of fields is q2 þM, whereM is the 2 × 2
mass matrix,

M ¼
 ∂2V

∂ϕ2
∂2V
∂ϕ∂χ

∂2V
∂ϕ∂χ

∂2V
∂χ2

!
; ð9Þ

which is

M ¼
�
U00ðϕ0Þ ig

ig m2
χ

�
: ð10Þ

The mass matrix M is not Hermitian, but it satisfies a PT
symmetry condition,

M ¼ σ3M�σ3: ð11Þ

This condition implies that the eigenvalues of M� must be
the same as those ofM, and thus they are either both real or
form a complex pair. The zeros of the inverse matrix
propagator can be obtained as the zeros of the characteristic
equation:

det ðq2 þMÞ ¼ ðq2Þ2 þ trðMÞq2 þ detðMÞ: ð12Þ

The coefficients trM and detðMÞ are real, implying that
the roots are either both real or form a complex conjugate

pair. The zeros of the characteristic equation are the
propagator poles and so the two methods give the same
results.

III. SIMULATIONS

The complex Euclidean action S may be cast into a real
local form suitable for simulation by the following steps.
First, we write the derivative term for χ as a functional
integral over a momentum πμ conjugate to ∇μχ:

exp

�
−
X
x

1

2
ð∇μχÞ2

�
¼
Z

½dπμ�exp
�
−
X
x

1

2
π2μþ iπμ∇μχ

�
.

ð13Þ

After integration by parts on the iπμ∇μχ term, the func-
tional integral over χ becomes Gaussian and local. After
integration over χ, we obtain a dual action of the form [14]

S̃ ¼
X
x

1

2
½∇μϕðxÞ�2 þ

1

2
π2μðxÞ þ Ṽ½ϕðxÞ;∇ · πðxÞ�; ð14Þ

where the dual potential Ṽ is given by Ṽðϕ;∇ · πÞ ¼
ð∇ · π − gϕÞ2=2m2

χ þ λðϕ2 − v2Þ2 þ hϕ. The dual action
S̃ is real so the sign problem has been eliminated. The dual
action is easily simulated using the Metropolis algorithm to
update ϕ and πμ. The field ϕ is the order parameter
associated with the Zð2Þ symmetry, and we focus on its
behavior. Patterns are observed in this model at h ¼ 0 in
two and three dimensions [14]. We have performed
extensive Monte Carlo simulations on 322 and 642 lattices
varying the parameters g and h holding fixed the other
parameters at m2

χ ¼ 0.5, λ ¼ 0.1 and v ¼ 3. These are the
same parameters used in Fig. 1. We observe similar
behavior in the ðg; hÞ plane for d ¼ 3.
We have checked for the onset of the pattern forming

region as g is increased at h ¼ 0. Figures 2 and 3 show the
evolution of the spatial average of ϕ under the Monte Carlo
algorithm as a function of the number of measurements.
Measurements were begun after 400 lattice sweeps, where
each sweep represents a Monte Carlo update of every site
on the lattice. There are 250 sweeps in between each
measurement; the first 200 measurements are shown.
Results are shown in both cases for cold (ordered) and
hot (random) initial conditions. We see very clearly that at
g ¼ 0.76 both the cold start and the hot start are converging
to an equilibrium behavior consistent with hϕi ≠ 0. On the
other hand, at g ¼ 0.83 both the cold start and the hot start
are converging to an equilibrium behavior consistent with
hϕi ¼ 0. Configuration snapshots indicate that pattern
formation begins at a critical value gc in the range
0.76 ≤ gc ≤ 0.83. Although the convergence of the hot
start at g ¼ 0.76 to the ordered phase is perhaps 3 times
slower than the convergence of the cold start to the
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patterned phase at g ¼ 0.83, the times required are much
shorter than the length of our runs.
Figure 4 shows nine configuration snapshots of ϕ from a

642 lattice, each taken after 20 000 lattice sweeps, in which
the fields at every site are updated. These snapshots are
taken from a large dataset that extends from g ¼ 0.0 to
g ¼ 2.0 at h ¼ 0 out to g around 1.0 at h ¼ 0.95, covering
the region where pattern formation occurs. For smaller
values of g, the length scale of pattern formation is too large
for a 642 lattice to reveal much information. For larger
values of g, the length scale of pattern formation is on the
order of the lattice spacing so the details of any pattern
formation are lost.

Though each configuration shows a distribution of
different shapes, we observe a number of general features.
At h ¼ 0 and intermediate values of g, we primarily see
long curved line segments, often called stripes. For a given
pair of g and h values, the width of these stripes is fairly
uniform, but there is considerable randomness in the overall
pattern. As h increases for fixed g, the typical line segment
length decreases until commensurate with the width,
forming a dot. The dots then shrink until disappearing at
the boundary of the pattern-forming region. As g increases
for fixed h, the width of the morphologies tends to
decrease. The variation in pattern morphologies is smooth
as g and h are varied, as is the change in histograms of ϕ
values and the average action hSi.
Figure 5 shows the absolute value jϕ̃j of the Fourier

transforms of the configurations ϕ shown in Fig. 4. All
graphs use the same color scale, but we clip large values for
visual clarity. This is necessary because as h increases, the
zero mode jϕ̃ð0Þj, representing the expected value of ϕ,
dominates. The eight patterned configurations have a
common feature: a ring in momentum space. The radius
of the ring increases with g but is not heavily dependent on
h. At ðg; hÞ ¼ ð0.9; 0.4Þ, there is no ring and jϕ̃ð0Þj is large.
This corresponds to a nonzero expectation value and the
absence of patterns. The tachyonic region observed in
simulations is in reasonable agreement with the pattern-
forming region obtained analytically, given the limitations
imposed by lattice size and spacing.

FIG. 2. Spatial average of ϕ versus Monte Carlo time for
g ¼ 0.76 using the parameter set h ¼ 0,m2 ¼ 1=2, λ ¼ 1=10 and
v ¼ 3 on a 32 × 32 lattice. Measurements were begun after 400
lattice sweeps, and there are 250 sweeps in between each
measurement. The first 200 measurements are shown. The hot
start is in blue, and the cold start is orange.

FIG. 4. Configuration snapshots of ϕ in Eq. (14) on a 642 lattice
for several values of h and g. The color scale runs from −3 to 3,
ranging from dark to light. From left to right, h ¼ 0.0, 0.2, and
0.4; from top to bottom: g ¼ 0.9, 1.0, and 1.1. The other
parameters are m2

χ ¼ 0.5, λ ¼ 0.1, and v ¼ 3. Each configuration
was obtained after a hot start followed 20 000 sweeps through the
lattice.

FIG. 3. Spatial average of ϕ versus Monte Carlo time for
g ¼ 0.83 using the parameter set h ¼ 0,m2 ¼ 1=2, λ ¼ 1=10 and
v ¼ 3 on a 32 × 32 lattice. Measurements were begun after 400
lattice sweeps, and there are 250 sweeps in between each
measurement. The first 200 measurements are shown. The hot
start is in blue, and the cold start is orange.
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In most of the two-dimensional simulations, we see a
fairly complete ring in momentum space, consistent with
pattern formation without preferred directions. In some
cases, however, a smaller number of modes on the ring are
excited, and the absence of isotropy is evident in the
configurations. This is most common near the boundary of
the pattern-forming region. This may be related to finite
size effects, to lattice pinning or to some form of locking
into an atypical region of configuration space. It is known
that the ground state for Ising systems with a long-range
frustrating interaction is the striped phase [26], but we are
not aware of a similar result for the frustrated Yukawa
system with continuous spins.

IV. DISCUSSION

As a first step towards approximating the behavior of the
equilibrium patterning state, let us consider a simple model
that provides insight into the change between different
patterning behaviors. Motivated by the Fourier-space sim-
ulation results, we consider configurations of the form

ϕðxÞ ¼ ϕ0 þ
Xn
j¼1

A cos ðkj · x − δjÞ; ð15Þ

where the momenta kj are constant in magnitude but
uniformly distributed in direction; the phases δj are also
uniformly distributed. Figure 6 shows the topography of
two configurations with different sets of kj and δj values.

This rather simple model reproduces much of the observed
pattern morphology. It is clear that any configuration with
the structure of Eq. (15) will tend to produce topographic
contours that appropriately mimic the patterns of stripes
and droplets as ϕ0 is varied. The observed pattern mor-
phology varies continuously with ϕ0 suggesting that there
is no phase transition between different microphases when
this picture is valid. Conceptually, we expect that the
amplitude Aj for each component of the sum is determined
by the nonlinear dynamics, but the phases δj represent
collective coordinates associated with would-be zero
modes of the system. However, we note that reproducing
all aspects of equilibrium patterned behavior is a difficult
problem.
The numerical and analytical results taken together

suggest that the patterned region is a single thermodynamic
phase. Patterned morphologies change smoothly into one
another as g and h vary, exhibiting a common ring-shaped
form in Fourier space. We see no evidence for the existence
of distinct microphases, nor for first- or second-order
thermodynamic transitions between supposed microphases.
Moreover, the analytics suggest that all patterning arises
from a common origin, the tachyonic modes. It is possible
that some currently unknown operator might serve as an
order parameter for what are referred to as geometric
transitions. In the case of the d ¼ 1 Ising model that there
is an infinite class of nonlocal string operators, each with its
own disorder line. This is associated with the behavior of
the model in an imaginary magnetic field, a PT -symmetric
system [27], so such behavior may exist in other
PT -symmetric theories. Such transitions need not affect
thermodynamic behavior. Another possibility is that the
existence and meaning of microphase concept may be
closely related to concepts from phase transition dynamics,
to which we now turn.

FIG. 5. The absolute value of the Fourier transforms ϕ̃ðkÞ for
the configurations shown in Fig. 4. We scale each graph so that its
colors run from 0 (dark blue) to 10 (light yellow). Any lattice
point with magnitude greater than 10 is set to 10. The ring-shaped
Fourier transforms correspond to patterning in Fig. 4.

FIG. 6. Topography of synthetic configurations of the form
Eq. (5), for two different sets of ðkj; δjÞ and ϕ0 ¼ 0. The light
blue, turquoise, and dark blue regions correspond to the regions
where ϕðxÞ > 4, where 0 < ϕðxÞ < 4, and where ϕðxÞ < 0,
respectively. [This is equivalent to plotting the regions of ϕðxÞ
that are positive when ϕ0 ¼ −4 or 0.] The synthetic model
topography mimics the patterns in the Fig. 1 field configurations:
the light blue region forms a set of droplets, and the turquoise
region looks like a striped configuration.
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A. Model A dynamics

It is enlightening to consider the dissipative dynamics of
our model as compared with similar behavior seen in phase
transition dynamics of closely related systems [24,28,29].
Because the order parameter ϕ is not conserved, we can
model its dynamics using Seff and model A dynamics, i.e.,
with a Langevin equation

∂ϕðx; tÞ
∂t ¼ −Γ

δSeff
δϕðx; tÞ þ ηðx; tÞ; ð16Þ

where as usual Γ is a decay constant and η is a white noise
term. The dependence on Langevin “time” is suppressed
for notational simplicity. The difference between this model
and the standard model A dynamics of a ϕ4 field theory
obtained at g ¼ 0 is the nonlocal term in Seff induced by χ.
If we linearize the Langevin equation around a homo-
geneous solution ϕ0 and transform to momentum space, it
becomes

∂ϕ̃ðq; tÞ
∂t ¼ −Γ

�
q2 þ U00ðϕ0Þ þ

g2

q2 þm2
χ

�
ϕ̃ðq; tÞ þ η̃ðq; tÞ

¼ −ΓG−1ðqÞϕ̃ðq; tÞ þ η̃ðq; tÞ: ð17Þ

If the nonlocal term were not present, ϕ0 would be unstable
when U00ðϕÞ < 0, and spinodal decomposition would
occur. Comparing the dynamics when g ≠ 0 to the purely
local model when g ¼ 0, we see that the large-q behavior is
identical, but g ≠ 0 changes the small-q behavior. In the
region where pattern formation occurs in equilibrium,
model A dynamics is that of spinodal decomposition for
large q, but relaxational for small q. This suggests that the
equilibrium patterning behavior of this model may be
understood as a form of arrested spinodal decomposition.
Starting from a homogeneous solution ϕ0 with U00ðϕÞ < 0,
the early-time Langevin evolution will produce the expo-
nentially growing modes of spinodal decomposition for
large q, but for small q fluctuations are damped. Spinodal
decomposition is arrested at a characteristic scale in
momentum space, with ϕ0 stabilized by the nonlocal term.
From this point of view, the chief dynamical difference
between the patterned region and the unstable region is that
in the patterned region, low q fluctuations are suppressed
but grow exponentially with t in the unstable region.
The presence of a characteristic scale, obvious in the Fourier

transforms of configuration snapshots, may seem reminiscent
of model B dynamics for a conserved order parameter
[24,28,29]. In model B dynamics with g ¼ 0, the system will
eventually leave the spinodal region U00ðϕÞ < 0 as phase
separation completes. This does not happen in this model
when g ≠ 0; large homogeneous regions are unstable to
fluctuations of nonzero q. In particular, coarsening at arbi-
trarily large scales does not occur: the order parameter is not
conserved, and large-scale (small-q) fluctuations relaxquickly.

B. Arrested spinodal decomposition vs microphases

The dichotomy between a tachyonic origin of equilib-
rium patterned phases and the microphase model is
reminiscent of the distinction between spinodal decom-
position and nucleation and growth in phase transition
dynamics. If we take g ¼ 0 in Seff , we recover standard
model A dynamics for a ϕ4 field theory. A homogeneous
field configuration ϕu with U00ðϕuÞ < 0 will decay via
spinodal decomposition, characterized by time-dependent
patterns characterized by coarsening and phase separation.
In model A dynamics, the field is unstable against
exponentially growing low-momentum modes, with the
q ¼ 0 growing fastest. On the other hand, a metastable field
configuration ϕm is characterized as a local minimum of U,
but not the global minimum ϕg of U, so that UðϕmÞ >
UðϕgÞ. It is easy to produce such metastable states in a ϕ4

model by adding a symmetry-breaking term −hϕ to the
action, as we have done. Conceptually, spinodal decom-
position is naturally understood in momentum space, while
nucleation is understood in real space. Classically, they
were considered to be two different processes. However, it
is known that there is typically no sharp boundary between
these two mechanisms observed in simulations of phase
transition dynamics [30–32].
In the microphase approach to pattern formation [17,18],

solutions of the field equations are found which represent
idealized geometries such as dots or stripes, from which
different microphases are constructed. The microphase with
the lowest free energy is considered to be the stable phase,
and in principle there are first-order phase transitions
between distinct microphases. This strategy is explored
extensively in [17] for the Coulomb-frustrated ϕ4 model. It
should be clear that the stable microphases are closely
related to the bubbles of nucleation theory, in the same way
that arrested spinodal decomposition is related to spinodal
decomposition. However, we do not see any evidence for a
phase transition between microphases in our lattice simu-
lations. The pattern morphology seen in simulations at
different values of h and g does not show abrupt changes, as
the microphase picture predicts. On the other hand, there
are models for which it has been rigorously shown that the
zero-temperature behavior is that of an ordered striped
phase [33], as suggested by the microphase picture. We
propose that the relation of our tachyonic picture of pattern
formation to the microphase picture is essentially the same
as that of spinodal decomposition to nucleation and growth.
There are regions of parameter space where the behavior of
a patterning system is well described by microphases, or by
arrested spinodal decomposition, but the distinction is
not sharp.

C. Computational complexity

The observation of pattern formation in field theories
with complex actions raises interesting issues about
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computational complexity as well as ergodicity breaking in
bosonic models with sign problems. Some characteristics
observed in our simulations, such as large numbers of
distinct configurations and slow quasizero modes, are
reminiscent of glassy behavior, and it has been argued
that at low temperatures, the patterned phase gives way to a
glassy phase [34,35]. It is known that the problem of
finding the ground state of an Ising model with general
couplings is NP hard [5]. Certain fermionic models with
sign problems have been mapped to the Ising spin glass, a
known NP-hard problem [4]. We are unaware of general
results for bosonic models with sign problems. However,
the Coulomb frustrated model, which our model becomes
in the mχ → 0 limit, has been used as an example of
a system exhibiting glassy behavior without quenched
disorder [34,35].

V. UNIVERSALITY

We can extend conventional scalar field theory univer-
sality classes by augmenting the appropriate models with
additional PT -symmetric fields. For every conventional
scalar universality class, there are PT -symmetric exten-
sions of the model that exhibit patterning behavior in
the vicinity of a critical point. Consider a general PT -
symmetric scalar theory in d dimensions. We suppose there
is a set of fields ϕa that transform trivially under P and T
transformations and a set of fields χb that transform
nontrivially in such a way that the action is invariant under
the combined action of the operators PT . For example,
we can extend the model described in Eq. (1) to one with
an OðNÞ symmetry acting on both ϕ⃗ and χ⃗ fields, with
PT -symmetric couplings such as −igϕ⃗ · χ⃗.
We find homogeneous equilibrium phases by minimiz-

ing V, with ðϕa
0; χ

b
0Þ the global minimum among all

homogeneous solutions. We assume that PT symmetry
is maintained, which implies that ϕa

0 is real, χ
b
0 is imaginary

and Vðϕ0; χ0Þ is real. The mass matrix M associated with
this solution is given in block form by

M ¼
 ∂2V

∂ϕ2
∂2V
∂ϕ∂χ

∂2V
∂ϕ∂χ

∂2V
∂χ2

!
ð18Þ

evaluated at ðϕa
0; χ

b
0Þ. This mass matrix is not necessarily

Hermitian but is PT symmetric. In the two-component
case, we had M ¼ σ3M�σ3. This generalizes to the
multicomponent case as

M ¼ ΣM�Σ; ð19Þ

where Σ is a diagonal matrix with entries �1. The
characteristic equations for M and M� are the same, so
they have the same eigenvalues. As a consequence, the
eigenvalues of M must either both be real or form a

complex-conjugate pair. As before, the zeros of
detðq2þMÞ are the poles of the matrix propagator. In
order for the expectation values of the fields ðϕ0; χ0Þ to be
stable at quadratic order against q2 ¼ 0 perturbations, we
must have detðMÞ > 0. Instability with respect to q2 ¼ 0

fluctuations occurs when detðMÞ < 0, and det ðq2 þMÞ
has an odd number of real positive roots. A homogeneous
solution represents a normal phase, perhaps metastable, if
det ðq2 þMÞ has zeros only for q2 and negative. Thematrix
propagator decays exponentially in all channels. In regions
of parameter spacewhere a homogeneous solution gives rise
to complex zeros of det ðq2 þMÞ, the matrix propagator
will exhibit sinusoidal modulation of exponential decay in
the associated channels, but the homogeneous vacuum is
stable. If a homogeneous solution has detðMÞ>0 and an
even number of real, positive roots, it will be quadratically
stable against q2 ¼ 0 fluctuations, but not against fluctua-
tionswhereq2 is a positive root. This is the signal that pattern
formation is a Lifshitz transition.
The one-loop effective potential Veffðϕ; χÞ is given by

Veffðϕ; χÞ ¼ Vðϕ; χÞ þ 1

2

Z
ddq
ð2πÞd ½log det ðq

2 þMÞ�:

ð20Þ

When detðq2 þMÞ is negative for q2 in some positive
interval, the ground state energy density of the homo-
geneous state Veffðϕ; χÞ will have an imaginary part,
indicating its instability. This is conventionally interpreted
as a decay rate. For a state unstable with respect to q2 ¼ 0
fluctuations, where detðMÞ < 0, the decay rate is a
measure of the time to reach a new phase where the
expected values of ϕ and χ are different. For phases
exhibiting pattern formation, where detðMÞ > 0, the decay
rate is a measure of the time required to move from a
homogeneous phase to the patterned phase, with no change
in the expected values of ϕ and χ. In either case, it is given
by

Γ ¼ π

2

Z
R

ddq
ð2πÞd ; ð21Þ

where R is the region of q space where detM < 0. This
formula is equivalent to the one given by Weinberg and Wu
[36], where the decay rate is given in terms of the zero-
point energy of the tachyonic modes. Note that this decay
rate is perturbative, representing a fast decay, in contrast to
the slow modes associated with changing pattern morphol-
ogy. This indicates that relaxation from a given initial
condition may take little simulation time relative to
autocorrelation time. Adequately sampling the equilibrium
state may require a great deal of time depending on the
target observables. In the general case, there may be more
than one homogeneous solution that is unstable to pattern
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formation. We cannot necessarily predict which inhomo-
geneous phase has the lowest free energy. In the case of a
theory with three or more components, pattern formation
may be quite complicated [26].

VI. APPLICATION TO QCD

QCD at finite density is a multicomponent field theory
with a generalized PT symmetry. Its widely conjectured
phase structure is characterized by a first-order line with a
critical end point in the Zð2Þ universality class. Although a
thorough treatment of the critical behavior requires an
understanding of quark degrees of freedom, it is sufficient
for our purposes to focus on the real and imaginary parts PR
and PI of the trace of the Polyakov loop. The real part, PR,
is the order parameter for the pure gauge deconfinement
transition. This transition is in the three-dimensional Zð3Þ
universality class, and is first order. The order parameter
hPRi is zero in the low-temperature, confined phase, and
jumps at the deconfinement transition temperature to a
nonzero value. When dynamical quark fields with realistic
masses are added at finite temperature, the phase transition
is replaced by a rapid crossover where hPRi rapidly
increases with temperature. Over the same temperature
interval, the chiral condensate of u and d quarks rapidly
decreases with temperature.
It is widely believed, mostly on the basis of theoretical

models but also simulations, that this crossover behavior
extends into the μ − T plane, eventually running into a low-
temperature, first-order line coming out of the T ¼ 0 axis,
with a second-order critical end point at the point where the
first-order line becomes a crossover. It is in the vicinity of
the critical end point that pattern formation is possible. It is
well known that QCD at nonzero temperature and baryon
density has a sign problem. The origin of the sign problem
can be seen simply from the contribution of heavy quarks
and antiquarks to the Euclidean space partition function.
Heavy quarks move through spacetime on essentially
straight timelike trajectories. When a heavy quark traverses
a topologically nontrivial closed loop from t ¼ 0 to
t ¼ β ¼ 1=T, it carries with it a factor of P. Similarly,
heavy antiquarks carry a factor of Pþ. This is just the non-
Abelian Aharonov-Bohm phase factor for a closed loop. If
μ ¼ 0, these contributions to the partition function are
equally weighted, and the partition function is real. If
μ ≠ 0, however, nontrivial quark trajectories carry a factor
eβμP and antiquarks a factor e−βμP†, and the weights of
different configurations in the partition function become
complex.
Euclidean QCD with μ ≠ 0 in fact possesses a symmetry

of PT type; specifically, invariance under CK. Charge
conjugation C is a unitary transformation which exchanges
P and P†, while K is an antiunitary transformation which
also exchanges P and P†. AlthoughKwould also conjugate

any complex numbers appearing in configuration weights,
those do not appear because they would cause a sign
problem at μ ¼ 0, which does not occur. Thus QCD in
Euclidean space at finite density has a generalized PT
symmetry. This is completely consistent with the expected
behavior of QCD at finite density. The expectation value of
PI is zero when the chemical potential is zero. It becomes
nonzero when the chemical potential μ is nonzero, but CK
symmetry requires it to be purely imaginary. This gives rise
to two different real expectation values for P and P†.
This in turn implies that the free energies required to insert
a static quark versus a static antiquark are different, as
expected when μ ≠ 0.
The universality class of the critical end point is widely

believed to be in the Zð2Þ universality class, which is also
the university class of the conventional liquid-gas phase
transition. Because the baryon number density has a
discontinuity across the first-order line, it is a natural
expectation. The three-dimensional effective field theory
for PR and PI falls naturally into the universality class of
the PT extension of Zð2Þ critical behavior, with PR and PI
identified with ϕ and χ respectively. This raises the
possibility that finite-density QCD could exhibit pattern
formation near its critical end point, composed of regions of
confined and deconfined phase. This is an attractive and
interesting possibility, as it would lead to balls of decon-
fined quark matter appearing near the critical end point on
the low-μ side of the critical line, while balls of confined
baryonic matter would appear on the high-μ side of the
critical line. Rod and sheet phases are also possible. This is
the QCD analog of nuclear pasta in neutron star crusts [21].
However, this simple picture does not take into account the
behavior of the chiral order parameter. We know from
Polyakov-Nambu-Jona Lasinio (PNJL) models and simu-
lations that analysis of the critical behavior of QCD at finite
temperature must take into account both confinement-
deconfinement and chiral phenomena to arrive at a com-
plete description. It has been suggested that the chiral
degrees of freedom may also become unstable near the
critical line due to a Lifshitz instability [37,38]. Thus we
face the exciting possibility that the behavior of QCD at
finite density may be much richer than previously con-
ceived, posing new challenges to theory, simulation and
experiment.
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