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The magnetic polarizability of the neutral pion has been calculated in the background magnetic-field
formalism of lattice QCD. In this investigation, the chiral extrapolation of these lattice results is considered
in a formalism preserving the exact leading nonanalytic terms of chiral perturbation theory. The nf ¼ 2þ 1

numerical simulations are electro-quenched, such that the virtual sea quarks of the QCD vacuum do not
interact with the background field. To understand the impact of this, we draw on partially quenched chiral
perturbation theory and identify the leading contributions of quark-flow connected and disconnected
diagrams. While electro-quenching does not impact the leading-loop contribution to the magnetic
polarizability, the loops which generate the leading term have yet to be considered in lattice QCD
simulations. Lattice QCD results are used to constrain the analytic terms in the chiral expansion and
supplementing those with the two-loop result from chiral perturbation theory enables an evaluation of the
polarizability at the physical quark mass. The resulting magnetic polarizability of the neutral pion is
βπ0 ¼ 3.44ð19Þstatð37Þsyst × 10−4 fm3, which lies just above the 1σ error bound of the experimental
measurement.

DOI: 10.1103/PhysRevD.102.114509

I. INTRODUCTION

The electromagnetic polarizabilities of hadrons provide
important insights into the structure of hadrons related to
their response to electromagnetic fields. The polarizabilities
are manifest in the shape of the γ-hadron Compton scattering
angular distribution. They provide an interesting forum for
the confrontation of experiment and theoretical approaches,
challenging the current understanding of hadron structure
and generating new insights into the essential mechanisms of
quantum chromodynamics (QCD) in the low-energy regime.
Herein, our focus is on the lightest hadron, the pion.

Experimentally, pion electromagnetic polarizabilities have
been extracted from radiative pion photoproduction [1], pion
nucleus scattering [2,3], and from the cross section of the
γγ → ππ process [4–6]. On the other hand, many theoretical
approaches have been considered in understanding pion
polarizabilities, including quark models [7–9], the bosonized
Nambu-Jona-Lasinio model [10], chiral perturbation theory
[11–15], dispersion sum rules [16,17], and the linear sigma
model [18].
The most rigorous formalism for the study of QCD in the

low-energy regime is lattice gauge theory. Here, spacetime
is discretized onto a finite-volume lattice enabling numeri-
cal simulations on supercomputers. While the introduction

of nonperturbatively improved lattice gauge and fermion
actions has enabled excellent control of the discretization
errors, finite-volume effects and quark-mass extrapolations/
interpolations are quantified through the formalism of
chiral effective field theory. This is the focus of the current
investigation.
To compare lattice QCD results with experiment, one

considers corrections associated with the finite volume of
the lattice, extrapolates/interpolates lattice results typically
at several input quark masses to the physical point and
finally accounts for any missing contributions. The latter
are often associated with the neglect of quark-flow dis-
connected diagrams in the lattice QCD simulations, due to
the numerical difficulty in obtaining precise estimates. For
the magnetic polarizability under consideration herein, the
sea quarks in disconnected loops are effectively charge
neutral and the calculations are said to be electro-quenched.
Recently, the formalism of lattice QCD in the presence of

a uniform background magnetic field [19] has been used to
calculate the magnetic polarizability of the nucleon and
pion [20–27]. While the chiral extrapolation of the nucleon
magnetic polarizability has been considered [21,22,28], a
chiral extrapolation of lattice QCD results for the neutral-
pion magnetic polarizability remains. In this paper, we will
extrapolate the lattice QCD results of Ref. [27] for the
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magnetic polarizability of the neutral pion, βπ0 , to the
physical pion mass. These results employ a new Laplacian-
mode projection technique that isolates the state of interest
and enables accurate determinations of the small energy
shifts induced by the background magnetic field. We will
draw on partially quenched chiral perturbation theory to
identify the leading contributions of quark-flow connected
and disconnected diagrams separately and include the
contributions of the missing terms.
The pion-photon scattering amplitude is first considered at

the one-loop level in partially quenched chiral perturbation
theory. Remarkably, the structure of the four-pion vertex
causes the sea-quark-loop contributions to the magnetic
polarizability at one loop to vanish. Thus, the fact that the
lattice simulations are electro-quenched has no impact on
the one-loop contributions to the magnetic polarizabilities.
The origin of the one-loop contributions is associated with
the quark-annihilation contractions of the quark field oper-
ators of the neutral-pion interpolating fields.
The one-loop diagram provides a leading model-

independent constant term in the expansion of the
Compton amplitude. Because the magnetic polarizability
contribution to theCompton scattering amplitude is typically
written in terms ofMπ times the magnetic polarizability, βπ0 ,
the expansion of the latter in terms ofMπ starts at order 1=Mπ
governed by the aforementioned model-independent con-
stant, followed by odd powers ofMπ .We do not refer to these
terms as nonanalytic because in the expansion of the
Compton amplitude they correspond to integer powers of
M2

π ∝ mq. The leading nonanalytic behavior first occurs in
two-loop chiral perturbation theory through the appearance
of logarithms of Mπ .
We find that the lattice QCD results for βπ0 are described

very well over the available pion-mass range by an
expansion in powers of Mπ involving three terms. Upon
adding the loop contributions missing in the current
lattice simulations at the physical pion mass, we find that
the magnetic polarizability of the neutral pion is
βπ0 ¼ 3.44ð19Þð37Þ × 10−4 fm3, lying just above the 1σ
error bound of the experimental measurement.
The paper is organized in the following way. In Sec. II, we

review the magnetic polarizability of the neutral pion in the
context of lattice QCD, using partially quenched chiral
effective theory. Numerical results of the chiral extrapolation
are presented in Sec. III, and Sec. IV provides a summary.

II. MAGNETIC POLARIZABILITY OF THE
NEUTRAL PION

For pion-photon scattering, the Taylor expansion of the
Compton amplitude in photon energies at threshold can be
expressed as

T ¼ −2½ϵ⃗1 · ϵ⃗�2ðe2 − 4πMπαπω1ω2Þ
− 4πMπβπðq⃗1 × ϵ⃗1Þ · ðq⃗2 × ϵ⃗�2Þ þ � � ��; ð1Þ

where απ and βπ are the electric and magnetic polar-
izabilities, respectively. There have been several calcula-
tions of the pion electromagnetic polarizabilities in chiral
perturbation theory [11–15]. The chiral Lagrangian is
composed of the following terms having different chiral
orders:

L ¼ L2 þ L4 þ L6 þ � � � ; ð2Þ

where the subscripts refer to the chiral order. The expres-
sion for L2 is

L2 ¼
F2
π

4
Tr½DμUDμU†� þ F2

π

4
Tr½mðU þ U†Þ�; ð3Þ

where U ¼ e2iϕ=Fπ , ϕ is the matrix of pseudoscalar fields,

ϕ ¼ 1ffiffiffi
2

p

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K̄0 − 2ffiffi
6

p η

1
CCA; ð4Þ

and m is the quark mass matrix expressed as

m ¼

0
BB@

M2
π 0 0

0 M2
π 0

0 0 2M2
K −M2

π

1
CCA: ð5Þ

The one-loop Feynman diagram for the pion magnetic
polarizability is illustrated in Fig. 1.
For the neutral pion, the scattering amplitude is writ-

ten as

T ¼ −ie2

3F2
π

Z
d4k
ð2πÞ4

½2ðk − q1Þ · ðk − q2Þ þM2
π�ð2k − q2Þνð2k − q1Þμ

ðk2 −M2
πÞððk − q2Þ2 −M2

πÞððk − q1Þ2 −M2
πÞ

ϵμðq1Þϵν�ðq2Þ þ C:S; ð6Þ

where C:S: denotes crossing symmetry where the photons
labeled q1;μ and q2;ν in Fig. 1 couple with the opposite time
ordering. Here, the π0π0πþπþ vertex is considered. The
same result is obtained for the π0π0π−π− vertex and the full
result contains both contributions.

This one-loop diagram generates a leading model-
independent constant term in the expansion of the
Compton amplitude, thus providing a leading
divergent term in the chiral expansion of the magnetic
polarizability,

HE, LEINWEBER, THOMAS, and WANG PHYS. REV. D 102, 114509 (2020)

114509-2



βπ0 ¼
α

32π2F2
πMπ

�
1

3
þOðM2

πÞ
�
: ð7Þ

In order to appreciate what is included in current lattice
QCD simulations in which photon coupling to disconnected
quark loops is not included, we now consider the separation
of the valence and loop contributions to βπ0 in partially
quenched chiral perturbation theory. This was first consid-
ered byHu et al. [29] in the graded symmetry formalism [30]
at one loop. Here we briefly review these results in the
complementary diagrammatic formalism [28,31].
Considering the diagrammatic approach, all the quark-

flow diagrams for the πþ; π0, and π− dressings of the neutral
pion are illustrated in Fig. 2. As we are applying the
formalism to nf ¼ 2þ 1 dynamical-fermion simulations,
we do not consider the additional quark flows associated
with the flavor-singlet η0 meson [29], as there are no partial
quenching effects to consider and it remains massive
∼1 GeV.
Figures 2(a) through 2(d) include sea-quark-loop con-

tributions and because they only involve the u and d
flavors, the contribution of these sea-quark-loop diagrams
can be isolated in the diagrammatic approach by replacing
the light sea-quark-loop flavor with a strange sea-quark-
loop flavor [28,31]. Thus, they can be calculated through
the consideration of a K-meson loop with the K-meson
mass replaced by pion mass.
The Compton scattering amplitude for the average of

Figs. 2(b) and 2(c) composing the πþ dressing of the
neutral pion can be expressed as

T ¼ −ie2

6F2
π

Z
d4k
ð2πÞ4

½ðk − q1Þ · ðk − q2Þ −M2
π�ð2k − q2Þνð2k − q1Þμ

ðk2 −M2
πÞððk − q2Þ2 −M2

πÞððk − q1Þ2 −M2
πÞ

ϵμðq1Þϵν�ðq2Þ þ C:S: ð8Þ

From the above equation, one can see that not only does
the coefficient differ from that in Eq. (6) but the structure is
also different. There is a sign change for theM2

π term in the
numerator. This leads to an exact cancellation of the two
contributions to βπ after the integral over k has been
carried out.

The origin of this cancellation is in a reduction of the
contribution of the four-meson vertex with two derivatives
from the Lagrangian of Eq. (3) by a factor of 4 for the K-
meson loop. In contrast, the four-meson vertex of the mass
insertion remains the same, thus generating a new cancel-
lation. As a result, this quark flow does not generate the

q q

FIG. 1. The leading one-loop diagram for the pion magnetic
polarizability. Both π0π0πþπþ and π0π0π−π− vertices contribute
with the same sign.

0

(a)

u

u−
(b)

u

u−
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d−
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d
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d

u−

d−
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(f)

u

du−
d−

(h)

d

ud−
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FIG. 2. One-loop quark-flow diagrams for the πþ, π0, and π−

dressings of the neutral pion. The leading contribution to the
magnetic polarizability is obtained by attaching two photons to
the quark-flow lines of the meson loop in four different ways,
outside-outside, inside-inside, and the two inside-outside pos-
sibilities. Diagrams (a) through (d) include sea-quark-loop
contributions. As the lattice results are electro-quenched,
photon couplings to the inside lines are not included. However,
this vertex involving a sea quark loop does not contribute to the
magnetic polarizability, as described in the text. Diagrams (e)
through (h) are quark-annihilation contractions of the quark
field operators of the neutral-pion interpolating fields. These
quark-flow connected loop diagrams remain to be calculated in
lattice QCD and are not included in the simulation results of
Ref. [27].
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structure of the βπ term in Eq. (1). The situation is the same
for the π− dressings of Figs. 2(a) and 2(d) and the π0

dressings of Figs. 2(a) through 2(d). As a result, Figs. 2(a)
through 2(d) do not contribute to βπ0 .
Thus, the fact that the lattice simulations are electro-

quenched has no impact on the leading one-loop contri-
bution to the magnetic polarizability. Although the charge
on the quark loop is set to zero in the lattice QCD
simulations, the vanishing of this quark flow prevents
the electro-quenched approximation from impacting the
leading one-loop contribution.
It follows from the preceding discussion that only the

diagrams of Figs. 2(e) through 2(h) contribute to the π0

magnetic polarizability [29].
However, the quark-annihilation loop diagrams of

Figs. 2(e) through 2(h) have yet to be calculated in lattice
QCD and are not included in the lattice simulation results of
Ref. [27]. Thus, the lattice QCD results which we analyze
here correspond to the tree-level contribution in effective
field theory.
Tree-level contributions to the Compton amplitude are

analytic in the quark mass ∝ M2
π . Because the magnetic

polarizability contribution to the Compton scattering
amplitude is proportional to Mπβπ0 , the tree-level expan-
sion of βπ0 starts at order 1=Mπ with the form

βtree
π0

¼ a−1
1

Mπ
þ a1Mπ þ a3M3

π þ � � � : ð9Þ

As highlighted in Eq. (7), the one-loop diagram of
Fig. 1 generates a model-independent contribution at the
leading order of 1=Mπ . However, tree-level physics can
also contribute.
Consider for example σ-meson exchange. The relevant

diagram is illustrated in Fig. 3. Effective interactions for
σγγ and σππ vertices can be written as

Lσγγ ¼ e2gσγγFμνFμνσ; ð10Þ

Lσππ ¼ gσπππ⃗ · π⃗σ: ð11Þ

According to the linear sigma model [32] and the quark
model calculation in Ref. [33], the coefficients gσππ and gσγγ
can be written as

gσγγ ≈
5

72π2Fπ
; gσππ ¼

m2
σ −M2

π

2Fπ
≈

m2
σ

2Fπ
: ð12Þ

With a simple calculation, one obtains a magnetic polar-
izability contribution of

βσπ ¼
4α

Mπ

gσγγgσππ
m2

σ
¼ 5α

36π2MπF2
π
¼ aσ−1

Mπ
; ð13Þ

thus generating a leading 1=Mπ contribution to the π0

magnetic polarizability at tree level with

aσ−1 ¼ 4.7 × 10−4 fm2: ð14Þ

While the consideration of σ-meson exchange in this
manner is somewhat phenomenological, its consideration
admits a tree-level contribution proportional to 1=Mπ that
should be taken into account in fitting the results from
lattice QCD calculations. In summary, the tree-level para-
metrization of Eq. (9) is used to describe the results of
lattice QCD. The coefficients a−1, a1, and a3 are deter-
mined by fitting results from lattice QCD [27]. With the
lattice QCD results described, one can then proceed to
include the missing contributions such as that of Eq. (7).

III. NUMERICAL RESULTS

A description of the lattice QCD results obtained in
Ref. [27] for the magnetic polarizability of the neutral pion,
βπ

0

L , in terms of the leading tree-level terms of Eq. (9) is
presented in Fig. 4. The lattice QCD results are described
very well by the tree-level contributions. The parameters
obtained in the fit are as follows:

a−1 ¼ þ1.34 × 10−4 fm2; ð15aÞ

FIG. 3. The σ exchange channel. Double, dashed, and wavy
lines represent the σ-meson, pion, and photon, respectively.

FIG. 4. A description of lattice QCD results [27] (black points)
for the magnetic polarizability of the neutral pion, βπ

0

L , in terms of
the leading tree-level terms of chiral effective field theory. The
solid curve indicates the fit and the dot-dashed curves indicate the
uncertainty associated with the statistical uncertainties of the lattice
results. The vertical dotted line indicates the physical point.
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a1 ¼ þ6.85 × 10−5 fm4; ð15bÞ

a3 ¼ −1.22 × 10−6 fm6: ð15cÞ

We note the leading coefficient is similar in scale to the
model estimate of Eq. (14) but suggests σ exchange
contributions are smaller than estimated in the model.
With the fit parameters constrained, we can proceed to

model the missing loop contributions associated with
diagrams (e) through (h) of Fig. 2 and thus predict the
full QCD result for βπ0.
The correction to the leading coefficient, a−1, is straight-

forward. As explained in the discussion of Fig. 2, the loop
contribution of Fig. 1 cannot contribute in the contempo-
rary lattice QCD results under consideration. Thus, in
correcting for the missing contribution, we draw on
Eq. (7) and transform

a−1 → a−1 þ
α

96π2F2
π
: ð16Þ

To correct a1, we draw on the two-loop chiral perturba-
tion theory calculations of references Bellucci et al. [12]
and more recently Gasser et al. [14]. At this order, one
obtains the same leading model-independent term from the
one-loop contribution in Eq. (7). The two-loop contribution
introduces terms at order Mπ and nonanalytic terms
involving Mπ logMπ and Mπ log2Mπ . The typical radius
of convergence of chiral perturbation theory is ∼2Mπ ,
which means that it should be reasonable to draw from the
two-loop expression of Ref. [14] to correct the magnetic
polarizability at the physical pion mass.
Following the notation and associated values provided in

Ref. [14],

β2loops¼
α

32π2F2
πMπ

�
1

3
þM2

πðd1þ−d1−Þ
16π2F2

π
þOðM4

πÞ
�
; ð17Þ

with

d1þ ¼ 8br −
1

648
ð144lðlþ 2l̄2Þ

þ96lþ 288l̄2 þ 113þΔþÞ;

d1− ¼ ar1 þ 8br þ 1

648
ð144lð3l̄Δ − 1Þ

þ36ð8l̄1 − 3l̄3 − 12l̄4 þ 12l̄ΔÞ þ 43þΔ−Þ;
Δþ ¼ 13643− 1395π2; Δ− ¼ −3559þ 351π2; ð18Þ

where l≡ ln ðM2
π=μ2Þ, l̄i are scale-independent low-energy

couplings (LECs) defined in Eqs. (3.8) and (3.9) of
Ref. [14] associated with divergences at order p4 and,
ar1 and br are low-energy couplings associated with
divergences at order p6, defined in Eqs. (3.10) and

(3.11) of Ref. [14]. The scale μ is taken to be the rho-
meson mass, μ ¼ Mρ ¼ 0.770 GeV. The uncertainty in the
values of these parameters generates an uncertainty in the
magnetic polarizability that will contribute in our system-
atic uncertainty analysis.
The contributions from the LECs of L6 contained in the

coupling ar1 are associated with short-distance physics and
therefore can have overlap with the lattice simulation
results. We proceed by replacing the fit coefficient with
the result from Eq. (17),

a1 →
α

2

−ar1
ð16π2F2

πÞ2
: ð19Þ

The remaining logarithmic terms of Eq. (17) derived in the
two-loop calculation are added. However, we also use these
contributions as systematic uncertainty, both as a measure
of the possible contributions from terms of higher order in
the chiral expansion and to account for any overlap with
contributions already contained in the lattice QCD simu-
lations. In summary, we model the full QCD magnetic
polarizability of the neutral pion as

βQCD
π0

¼
�
a−1 þ

α

96π2F2
π

�
1

Mπ

þ α

2

d1þ − d1−
ð16π2F2

πÞ2
Mπ þ a3M3

π: ð20Þ

The final full-QCD prediction for the magnetic polar-
izability of the neutral pion is shown in Fig. 5. There we
show the original fit to the lattice QCD results and the full

0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

5

6

M2 GeV2

F
0
10

4
fm

3

FIG. 5. The full QCD prediction for the magnetic polarizability
of the neutral pion βπ0 (red curve). The previous fit (blue curve) of
the lattice QCD simulation results (black points) has been
corrected to incorporate pion-loop contributions absent in the
current simulation results (red curve). The experimental meas-
urement (blue point) and our corresponding prediction (red point)
are plotted at the physical pion mass. Theoretical uncertainties
include the statistical error from fitting the lattice QCD results
and systematic uncertainties as described in the text.
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QCD prediction of Eq. (20) for 0 ≤ M2
π ≤ 2M2Phys

π where
Eq. (20) is expected to display reasonable convergence.
Table I provides the contributions of terms considered in

Eqs. (9) and (20). Here one observes the leading contribution
of Eq. (20) dominates the full result. Similarly, the correction
applied at order Mπ in Eq. (19) is relatively small.
At the physical pion mass, we find βπ0 ¼

3.44ð19Þð37Þ × 10−4 fm3, where the first uncertainty terms
from the statistical error from fitting the lattice QCD results
and the seconduncertainty are systematic as described above.
The experimental value of βExpt

π0
¼ 1.29ð1.10Þ × 10−4 fm3 is

from Ref. [34]. It was determined by fitting the cross section
for γγ → π0π0. Our prediction is just above the 1σ error
bound of this experimental measurement.

IV. SUMMARY

In this paper, we have investigated the magnetic polar-
izability of the neutral pion based upon an analysis of recent
lattice QCD simulations at a range of quark masses. The
pion-photon scattering amplitude is first considered at the
one-loop level in partially quenched chiral perturbation
theory. There, the structure of the four-pion vertex causes
the sea-quark-loop contributions to the magnetic polariz-
ability at one loop to vanish. Thus, the fact that the lattice
simulations are electro-quenched has no impact on the
leadingone-loop contributions to themagnetic polarizability.
The origin of the one-loop contributions is shown to be

associated with the quark-annihilation contractions of the
quark field operators of the neutral-pion interpolating
fields. As these contributions have yet to be considered
in lattice QCD, the results from contemporary calculations
are associated with tree-level terms at this order.
By considering the relationship between the Compton

amplitude and the magnetic polarizability, a leading tree-
level contribution proportional to 1=Mπ was motivated,
enabling a good characterization of the lattice simulation
results. The phenomenology of σ-meson exchange provides
a specific model for generating such tree-level behavior.

The full QCD result is obtained by drawing on two-loop
results from chiral perturbation theory. Because the lattice
calculation does not include quark-annihilation loop con-
tributions, we are free to add the leading contribution from
the two-loop result of chiral perturbation theory with no
issue of double counting. While LEC contributions propor-
tional toMπ associated with short-distance physics are used
to replace the lattice fit parameter, long-distance physics
generating chiral logarithms are added to the lattice
simulation results. Our final result is illustrated in Fig. 5.
Our prediction for the magnetic polarizability of the

neutral pion is βπ0 ¼ 3.44ð19Þstatð37Þsyst × 10−4 fm3, just
above the 1σ error bound of the experimental measure-
ment. As the experimental uncertainty is reduced in future
experiments, we anticipate a significant increase in the
central value.
Future research will focus on the inclusion of the quark-

annihilation loop contributions in lattice QCD. As these
results become available, our fit functions will be modified
to include finite-volume effects and enable corrections to
infinite volume. In this case, no modeling of the leading
contributions will be required, thus providing more robust
predictions.
It will also be important to bring the techniques of

partially quenched chiral perturbation theory to the two-
loop calculation to disclose the role of sea-quark-loop
contributions. While incorporating the effects of the quark
charges in lattice QEDþ QCD simulations is now well
established [35,36], important correlations exploited in
extracting the small energy shifts relevant to polarizabilities
will be lost. This presents a formidable challenge to
calculating sea-quark-loop contributions to magnetic polar-
izabilities from the first principles of QCD.
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