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Based on lattice nonrelativistic QCD (NRQCD) studies, we present results for Bethe-Salpeter
amplitudes for ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ in vacuum as well as in quark-gluon plasma. Our study is
based on 2þ 1 flavor 483 × 12 lattices generated using the Highly Improved Staggered Quark action and
with a pion mass of 161 MeV. At zero temperature, the Bethe-Salpeter amplitudes follow the expectations
based on nonrelativistic potential models. At nonzero temperatures, the interpretation of Bethe-Salpeter
amplitudes turns out to be more nuanced but consistent with our previous lattice QCD study of excited
Upsilons in quark-gluon plasma.
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I. INTRODUCTION

Potential models give a good description of the quarko-
nium spectrum below the open charm and bottom thresh-
olds; see, e.g., Refs. [1,2] for reviews. Even some of the
states above the threshold are also reproduced well within
this model. Potential models can be justified using an
effective field theory approach [3,4]. This approach is
based on the idea that for a heavy quark with mass m, there
is a separation of energy scales related to the quark mass,
inverse size of the bound state, and binding energy,
m ≫ mv ≫ mv2, with v being the velocity of the heavy
quark inside the quarkonium bound state. The effective
field theory at scale mv is the nonrelativistic QCD
(NRQCD), where the heavy quark and antiquark are
described by nonrelativistic Pauli spinors and pair creation
is not allowed in this theory [5]. The effective theory at
scale mv2 is potential NRQCD (pNRQCD), and the quark-
antiquark potential appears as a parameter of the pNRQCD
Lagrangian. The potential model appears as the tree-level
approximation of pNRQCD [4]. Nonpotential effects are
manifest in the higher-order corrections. For very large
quark mass, v ∼ αs ≪ 1. Therefore, the large energy scales
can be integrated out perturbatively [3,4]. However, for
most of the quarkonium states realized in nature, this
condition is not fulfilled. If ΛQCD ≫ mv2, all the energy
scales can be integrated out nonperturbatively and the

potential is given in terms of Wilson loops calculated on the
lattice [3,4]. So, in this limit, too, the potential description
is justified. However, for many quarkonia, ΛQCD ≃mv2,
and it is not clear how to justify the potential models.
In potential models, one can also calculate the quarko-

nium wave function. On the other hand, in lattice QCD, we
can calculate the Bethe-Salpeter amplitude, which in the
nonrelativistic limit reduces to the wave function. Thus, one
can use the Bethe-Salpeter amplitude for further tests of the
potential models. In particular, one can also reconstruct the
potential from the Bethe-Salpeter amplitude [6–10]. Most
of these studies focused on quark masses close to or below
the charm quark mass, though in Ref. [9] quark masses
around the bottom quark have also been considered. The
resulting potential turned out to be similar to the static
potential calculated on the lattice, but some differences
have been found. The potential description is expected to
work better for larger quark masses, and therefore the
bottomonium is best suited for testing this approach.
Studying the bottomonium on the lattice using a fully
relativistic action is more difficult because of the large
cutoff effects and the rapid falloff of the correlators. One of
our aims is to test the potential model by calculating the
bottomonium Bethe-Salpeter amplitude using lattice
NRQCD [11,12], which is very well suited for studying
the bottomonium [13–20].
The existence and the properties of quarkonia in the hot

medium attracted a lot of attention in the last 30 years. It
was proposed a long time ago that quarkonium production
in heavy-ion collisions can be used to probe quark-gluon
plasma formation [21]. The study of in-medium properties
of quarkonia and their production in heavy ion collisions is
an extensive research program; see, e.g., Refs. [22–24] for
reviews. The in-medium properties of quarkonia as well as
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their dissolution (melting) are encoded in the finite temper-
ature spectral functions. Quarkonium states show up as
peaks in the spectral function that become broader as the
temperature increases and eventually disappear above some
temperature (T). The temperature above which no peaks in
the spectral function can be identified is often called the
melting temperature. Reconstructing quarkonium spectral
functions from lattice calculations at nonzero temperature
appeared to be very challenging (see, e.g., discussions in
Refs. [25–28]). The study of Bethe-Salpeter amplitudes has
been proposed as an alternative method to address this
problem. The idea behind this approach is to compare the
Bethe-Salpeter amplitude calculated on the lattice with the
expectations of the free field theory that would indicate an
unbound heavy quark-antiquark pair. Bethe-Salpeter ampli-
tudes at nonzero temperature for charmonium have been
calculated in previous lattice QCD studies [29–34], but
presently our understanding regarding the interpretations of
quarkonia Bethe-Salpeter amplitudes at T > 0 remains
murky. Although using a weak-coupling approach means
it is possible to generalize the potential description to
nonzero temperature [35,36], it is unclear if such an
approach and the interpretations of quarkonia Bethe-
Salpeter amplitudes are applicable in the temperature
regime of interest. In this paper, we focus on lattice-
NRQCD-based determinations of Bethe-Salpeter ampli-
tudes of ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states at T > 0. By
comparing with the corresponding T ¼ 0 results, where the
interpretations of Bethe-Salpeter amplitudes are more
straightforward, we point out and discuss subtleties asso-
ciated with interpretations of Bethe-Salpeter amplitudes
at T > 0.

II. BETHE-SALPETER AMPLITUDES AT T = 0

To define the Bethe-Salpeter amplitude for the botto-
monium, we consider the correlation function

C̃r
αðτÞ ¼ hOr

qqðτÞÕαð0Þi; ð1Þ

where Õα is the meson operator that has a good overlap
with a given quarkonium state α and Or

qq is a point-split
meson operator with the quark and antiquark fields sep-
arated by distance r,

Or
qqðτÞ ¼

X
x

q̄ðx; τÞΓqðxþ r; τÞ: ð2Þ

Here, Γ fixes the quantum number of the meson.
Furthermore, in the present work, we use Coulomb gauge
fixed ensembles to define the expectation value. Inserting a
complete set of states, we obtain the following spectral
decomposition of the correlator:

C̃r
αðτÞ ¼

X
n

h0jOr
qqð0ÞjnihnjÕαð0Þj0ie−Enτ: ð3Þ

Assuming that only one state jαi contributes at large τ,
which is correct for an appropriately chosen Õα, at large
Euclidean time, we have

C̃r
αðτÞ ¼ A�

αh0jOr
qqð0Þjαie−Eατ; ð4Þ

where A�
α ¼ hαjÕαð0Þj0i. The matrix element

ϕαðrÞ ¼ h0jOr
qqð0Þjαi ð5Þ

is called the Bethe-Salpeter (BS) amplitude and describes
the overlap of the quarkonium state jαiwith the state that is
obtained by letting the two field operators at distance r act
on the vacuum. In the nonrelativistic limit, it reduces to the
wave function of the given quarkonium state. Thus, up to
normalization factor, the Bethe-Salpeter amplitude is given
by the large τ behavior of expðEατÞCαðτÞ, with Eα being
the energy of quarkonium state jαi, which is also calculated
on the lattice. In the following, we will use the terms BS
amplitude and wave function interchangeably.
As mentioned in the Introduction, we aim to calculate the

bottomonium BS amplitudes using NRQCD. We per-
formed calculations using 2þ 1 flavor gauge configura-
tions generated by HotQCD with the Highly Improved
Staggered Quark (HISQ) action [37,38]. The strange quark
mass was fixed to its physical value, while the light quark
masses correspond to the pion mass of 161 MeV in the
continuum limit [37,38]. We use the same NRQCD
formulation as in our previous study [39,40]. For the
calculations at zero temperature, we use 484 lattices
and β ¼ 10=g20 ¼ 6.74 corresponding to lattice spacing
a ¼ 0.1088 fm. We use 192 gauge configurations in our
analysis with eight sources per configuration.
To construct the meson operators that have the optimal

projection, we start with the source [40]

Oiðτ;xÞ ¼
X
r

ψ iðrÞq̄ðτ;xÞΓqðτ;xþ rÞ: ð6Þ

Here, ψ iðrÞ is the trial wave function of the ith bottomo-
nium state obtained by solving the Schrödinger equation
with the Cornell potential modified by discretization effects
[15]. Since GijðτÞ ¼ hOiðτÞOjð0Þi is nonzero (though
small) also for i ≠ j, we have to solve the generalized
eigenvalue problem

GijðτÞΩjα ¼ λαðτ; τ0ÞGijðτ0ÞΩjα ð7Þ

to obtain the optimized operator for bottomonium state α,

Õα ¼
X
j

ΩjαOj: ð8Þ

The value of τ0 is arbitrary to some extent but should be
considerably smaller than τ. Choosing larger τ0 helps
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suppress higher-lying states, i.e., states with energies larger
that the energy of ϒð3SÞ. However, the operators Oi in
Eq. (6) already have very good overlap with ϒðnSÞ states.
Therefore, we choose τ0 ¼ 0 in this study. It has been
checked in our previous work that using larger values of τ0
does not change the results significantly [40]. To obtain the
BS amplitude, we consider the large τ behavior of the
following combination:

eEατC̃r
αðτÞ ¼ eEατ

X
j

ΩjαhOr
qqðτÞOjð0Þi: ð9Þ

The energy Eα has been determined from the fits of the
correlators of the optimized operators Õα [40]. In practice,
the value of τ does not have to be very large. We find that
τ > 0.3 fm works for all states; i.e., the resulting BS
amplitudes are time independent. For τ ¼ 0, the BS
amplitude will be equal to the trial wave function ψ iðrÞ.
To obtain the proper normalization of the BS amplitude, we
require that

R∞
0 drr2jϕαðrÞj2 ¼ 1. After this normalization,

exponential factor eEατ drops out. Therefore, the normal-
ized BS amplitudes do not depend on the choice of the
energy Eα. In Fig. 1, we show the BS amplitude ϕαðrÞ for
ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states compared to the corre-
sponding trial wave functions ψαðrÞ used to construct the
optimized meson operators. We see that the r dependence
of the BS amplitudes is in qualitative agreement with the
expectations of nonrelativistic potential model. However,
the details of the r dependence are different from the input
trial wave function. We also note that the orthogonalization
procedure is important for getting the correct r dependence
of the BS amplitudes.
If the potential picture is valid, the BS amplitude should

satisfy the Schrödinger equation

�
−∇2

mb
þ VðrÞ

�
ϕα ¼ Eαϕα; ð10Þ

with mb being the b-quark mass of the potential model.
Note that the reduced mass in the bb̄ system ismb=2, hence
the absence of factor 2 in the above equation. Using the BS
amplitude and the energy of at least two bottomonia states
determined in NRQCD from the above equation, we can
obtainmb and the potential VðrÞ. We determine the b-quark
mass using ϒð1SÞ and ϒð2SÞ states as follows:

mb ¼
∇2ϕϒð1SÞ
ϕϒð1SÞ

− ∇2ϕϒð2SÞ
ϕϒð2SÞ

Eϒð2SÞ − Eϒð1SÞ
: ð11Þ

To evaluate ∇ϕα, we use the simplest difference scheme.
The value of mb determined from the above equation for
different values of quark-antiquark separation r is shown in
Fig. 2. The r range was chosen such that it does not include
the node of ϒð2SÞ and large distances, where the statistical
errors are large. We see some modulation of the extracted
mb in r, which may indicate that the BS amplitude cannot
be completely captured by the Schrödiner equation, but
there is no clear tendency ofmb as function of r. Therefore,
we fitted the values of mb obtained for different r to a
constant. This resulted in

mb ¼ 5.52� 0.33 GeV: ð12Þ

This value of the effective bottom quark mass obtained by
us is not very different from the one used by the original
Cornell model, mb ¼ 5.17 GeV [41], but is significantly
larger than the b-quark mass used in most of the potential
models (see, e.g., Ref. [42]). We also determined the value
of mb using the BS amplitudes and the energy levels of
ϒð1SÞ and ϒð3SÞ and obtained mb ¼ 5.82ð0.51Þ GeV.
This agrees with the above result within the errors.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0.2  0.4  0.6  0.8  1  1.2  1.4

r [fm]

r φα(r) Υ(1S)
Υ(2S)
Υ(3S)

FIG. 1. The BS amplitudes for ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states
at T ¼ 0 as function of r (filled symbols) compared with the
corresponding trial wave functions (open symbols).
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FIG. 2. The effective bottom quark mass, mb, in the potential
approach determined for different quark-antiquark separations r
(see text). The horizontal solid line is the fitted value ofmb, while
the dashed lines indicate the corresponding uncertainty.
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Having determined mb, we can also calculate the
potential, VðrÞ, using the BS amplitudes and the botto-
monium energy levels as

VðrÞ ¼ Eα þ
∇2ϕα

mbϕα
: ð13Þ

The results are shown in Fig. 3. Given our findings for mb,
it is not surprising that the values of the potential obtained
using ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states agree within errors.
In the figure, we also compare the value of VðrÞ determined
from the different states to the phenomenological potential
of the original Cornell model [41] and the energy of static
quark-antiquark pair obtained from Wilson loops at lattice
spacing a ¼ 0.06 fm [38]. It is quite nontrivial that all these
potentials agree with each other. A similar conclusion is
reached in Refs. [7–9] when the limit of quark mass going
to infinity is taken. We note that the relativistic corrections
to the spin-dependent part of the potential are quite small
for the b quark mass [43] and thus are not visible given our
statistical errors.
The discussion above ignored spin-dependent effects. To

address the spin-dependent part of the potential, we also
calculated the BS amplitude for ηbðnSÞ states, n ¼ 1, 2, 3.
We have found that the corresponding BS amplitudes agree
with the ones of the ϒðnSÞ states within errors. Therefore,
with the present statistics, we cannot resolve the spin-
dependent part of the potential.
As discussed above, the r dependence of the BS

amplitudes qualitatively follow the r dependence of the
trial wave function ψ iðrÞ obtained from the potential
model. But at qualitative level, significant differences

can be seen (cf. Fig. 1). This potential model used mb ¼
4.676 GeV [15], which is smaller than the effective quark
masses determined above. Therefore, we calculated thewave
functions of ðnSÞ bottomonium states using the static quark-
antiquark energy [38] as a potential and mb ¼ 6 GeV. The
results are shown in Fig. 4, and we see that the agreement
between the BS amplitude and the wave functions is
significantly improved. We also note that the dependence
of the energy levels on mb is rather mild; e.g., changing mb
from 4 to 6 GeV only reduces the spin-averaged 2S-1S
splitting by 3.5%. Thus, using large values of mb in the
potential model is a viable option.

III. BETHE-SALPETER AMPLITUDES AT T > 0

We can also consider the mixed correlator C̃r
αðτ; TÞ

defined in Eq. (1) for T > 0 by evaluating the expectation
value over a thermal ensemble at a temperature T ¼ 1=β,

C̃r
αðτ; TÞ ¼

1

ZðβÞTr½O
r
qqðτÞÕαð0Þe−βH�; ð14Þ

with the thermal partition function ZðβÞ ¼ Tr½e−βH�. Using
energy eigenstates to evaluate the trace and inserting a
complete set of states, we obtain the following expression
for the correlator C̃r

αðτ; TÞ:

C̃r
αðτ; TÞ ¼

1

ZðβÞ
X
n;m

e−ðEn−EmÞτhmjOr
qqjnihnjÕαjmie−βEm:

ð15Þ

Since we perform calculations in NRQCD, the sum over m
should be restricted to states that do no contain the heavy
quark-antiquark pair; heavy quark pair creation is not
allowed in NRQCD. We denote those states as jm0i.
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FIG. 4. The BS amplitude for ϒðnSÞ states as function of r
(filled symbols) compared with the nonrelativistic wave functions
obtained from potential model with mb ¼ 6 GeV (open sym-
bols).
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FIG. 3. The potential, VðrÞ, obtained from the BS amplitude of
ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ states compared to the phenomeno-
logical Cornell potential [41] shown as a solid line as well as to
the energy of the static quark-antiquark pair obtained from
Wilson loops using a ¼ 0.06 fm lattice [38]. All the lattice
results were normalized to coincide with the Cornell potential
at r ¼ 0.4 fm.
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If we write the states jni as jn0γi, where index n0 labels the
light degrees of freedom and γ labels the quarkonium states,
the above expression for C̃r

αðτ; TÞ can be rewritten as

C̃r
αðτ; TÞ ¼

1

ZðβÞ
X
γ;n0;m0

½e−ðEn0 ;γ−E
0
mÞτe−βEm0

× hm0jOr
qqjn0γihn0γjÕαjm0i�: ð16Þ

If we write Em0γ ¼ Eγ þ Em0 þ ΔEm0γ and assume that the
operator Õα mostly projects onto quarkonium state jαi, we
can obtain a simplified form,

C̃r
αðτ; TÞ ¼ e−Eατ

�
ϕαA�0

α þ 1

ZðβÞ

×
X
m0

hm0jOr
qqjm0αihm0αjÕαjm0ie−βEm0−ΔEm0ατ

�
;

ð17Þ
with A�0

α ¼ A�
α=ZðβÞ. In the above equation, we separated

out them0 ¼ 0 vacuum contribution in the sum correspond-
ing to the thermal trace. At small temperature, the first term
in the above equation is the dominant one, and the
correlator is approximately given by the T ¼ 0 BS ampli-
tude. In general, however, there is no simple interpretation
of the correlator C̃r

αðτ; TÞ in terms of some finite temper-
ature quarkonium wave function. The temperature depend-
ence of this correlator crucially depends on the value of the
matrix elements hm0jOr

qqjm0αi and hm0αjÕαjm0i. The size
of hm0jOr

qqjm0αi depends on the separation r, and therefore

also the size of the thermal effect will be r dependent. For
values of r that are about the size of the bottomonium state
of interest, the matrix elements hm0jOr

qqjm0αi and
hm0αjÕαjm0i should be of similar size, and thus the
temperature dependence of C̃r

αðτ; TÞ is expected to be
comparable to the correlator of Õα explored in Ref. [40].
We performed calculations of C̃r

α at six different temper-
atures using 483 × 12 lattices from HotQCD Collaboration.
The parameters of the calculations including the gauge
coupling β ¼ 10=g20 and number of configurations are
summarized in Table I. As at zero temperature, we used
eight sources per gauge configuration. The projectionmatrix
Ωjα has been determined from the finite temperature corre-
lators according to Eq. (7). We checked, however, that the
difference between the finite temperature projection matrix
and the zero temperature projection matrix is very small.
We could use the same approach as in Ref. [40] to

explore the temperature dependence of the correlator
C̃r
αðτ; TÞ and define the effective mass for a fixed r,

aMr
effðτ; TÞ ¼ ln

�
C̃r
αðτ; TÞ

C̃r
αðτ þ a; TÞ

�
: ð18Þ

Now, the effective mass also depends on the distance r
between the quark and antiquark in the point-split current.
In Fig. 5, we show the effective mass ofϒð1SÞ correlator as
function of r and τ at the lowest and the highest temper-
atures. The errors of the effective masses are not shown to
improve the visibility. Since the energy levels in NRQCD
are only defined up to a lattice-spacing-dependent constant,
as in Ref. [39], we calibrate the effective masses with
respect to the energy level of ηbð1SÞ state at zero temper-
ature. At large τ and r, the errors are quite large, and within
these errors, we do no see any medium effects in the
effective mass at the lowest temperature. For small r, the
effective mass quickly reaches a plateau with increasing τ.
For large r, the effective mass at 151 MeV reaches the
plateau from below. At the highest temperature,
T ¼ 335 MeV, the r and τ dependences of the effective
masses look similar for not-too-large values of r. However,

TABLE I. The parameters for the 2þ 1 flavor HISQ ensembles
at T > 0 with 483 × 12 lattices.

β T (MeV) No. of configurations

6.740 151 384
6.880 172 384
7.030 199 384
7.280 251 384
7.596 334 384

FIG. 5. The effective massesMr
effðτ; TÞ in GeVof theϒð1SÞ correlator at T ¼ 151 MeV (left) and T ¼ 334 MeV (right) as a function

of τ and r.
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the behavior of the effective mass is qualitatively different
for large r. In particular, the effective mass does not reach a
plateau with increasing τ. For excited states, the results for
Mr

effðτ; TÞ look similar, except that the errors are very large
for r > 0.65 fm. As an example, we show the effective
mass forϒð3SÞ in Fig. 6 at two values of r, r ¼ 0.25 fm and
r ¼ 0.65 fm for different temperatures. For the smaller r, we
see no temperature dependence of the ϒð3SÞ effective mass
atT ¼ 172 MeVandT ¼ 251 MeV.This is likely due to the
fact that thematrix elements hm0jOr

qqjm0ϒð3SÞi are small for
r ¼ 0.25 fm and the first term in Eq. (17) dominates. Note,
however, that the errors are large. For the highest temper-
ature, T ¼ 334 MeV, we start to see significant temperature
dependence. For the larger distance, r ¼ 0.65 fm, the
medium effects are more pronounced. While the modifica-
tions ofMr

eff are small for T ¼ 172 MeV, thermal effects are
significant for T ¼ 251 MeV and 334 MeV, comparable in
size to the thermal effects in the effective masses of
correlators of optimized operators [40].
Since the correlator C̃r

α does not correspond to a positive
definite spectral function, it is difficult to infer in-medium
properties of bottomonia from Mr

eff . The large statistical
errors make this even more complicated. Another way to
analyze the temperature dependence of C̃r

α is to consider the
integral

Nαðτ; TÞ ¼
Z

∞

0

drr2ðC̃r
αÞ2: ð19Þ

At zero temperature, this quantity should be proportional to
expð−2EατÞ for sufficiently large τ. This is also expected to
be true below the crossover temperature. The combination

Nnormðτ; TÞ ¼ expð2EατÞNαðτ; TÞ ð20Þ

should be independent of τ and can be interpreted as the
normalization of the BS amplitude. In Fig. 7, we show

Nnormðτ; TÞ as function of τ for different temperatures
normalized to 1 at t ¼ τ=a ¼ 3. As before, the energy
values, Eα, have been determined from the correlators of
optimized operators at T ¼ 0 [40].
For the lowest temperature as well as for T ¼ 0, we see

that Nnormðτ; TÞ is approximately constant as expected.
Here, we note that the τ range in Fig. 7 is different for
ϒð1SÞ, ϒð2SÞ, andϒð3SÞ states. This is due to the fact that
the correlators Cr

ϒð2SÞ and Cr
ϒð3SÞ will be contaminated by

the lowest ϒð1SÞ state at large τ as the projection is not
perfect due to the small operator basis of only three
operators used in this study. As the temperature increases,
we see that Nnormðτ; TÞ no longer approaches a constant but
increases at large τ. This implies that the correlator C̃r

α is no
longer dominated by the first term in Eq. (17). The τ
dependence of Nnormðτ; TÞ is larger for high temperatures
and is also more pronounced for excited states, as expected.
We could also analyze the τ dependence of Nαðτ; TÞ in

terms of the corresponding effective masses

aMNα
eff ðτ; TÞ ¼ ln

�
Nαðτ; TÞ

Nαðτ þ a; TÞ
�
: ð21Þ

At large τ, these effective masses should reach a plateau
equal to 2Eα. Our results for M

Nα
eff for the different ϒðnSÞ

states are shown in Fig. 8. As before, the effective masses
have been calibrated with respect to the energy of ηb state at
T ¼ 0. We see that at T ¼ 0 as well as at the lowest
temperature the effective masses reach a plateau correspond-
ing to the physical mass (energy), but at higher temperatures,
this is not the case, in general. For the ground state, the errors
are large enough so that no clear medium shift can be seen,
except at the highest temperature, T ¼ 334 MeV. For the
ϒð2SÞ, the corresponding effective masses decrease with
increasing τ for T ≥ 251 MeV. For the ϒð3SÞ, we see a
significant shift inMNα

eff ðτ; TÞ already forT > 191 MeV. The
behavior ofMNα

eff ðτ; TÞ is qualitatively similar to the behavior
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of the effective masses of the correlator of optimized
operators studied in Ref. [40]. This corroborates the findings
of Ref. [40] on the in-medium modifications of the botto-
monium spectral functions. For theϒð1SÞ state, our findings
are also consistent with other studies of bottomonium at
nonzero temperature using NRQCD [44–49].

Before concluding this section, we mention that so far
we only discussed ϒðnSÞ states but very similar results
have been obtained for ηbðnSÞ states as well.

IV. COMPARISONS BETWEEN T > 0 AND T = 0
BETHE-SALPETER AMPLITUDES

If we insist on the interpretation of the correlator
C̃r
αðτ; TÞ in terms of the wave function, we could simply

divide it by Nαðτ; TÞ and study the r dependence of the
corresponding ratio for sufficiently large τ. At small
temperatures, this ratio will have an r dependence that
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closely follows the r dependence of the BS amplitude at
T ¼ 0. In Fig. 9, we compare ϕαðτ;TÞ¼ C̃r

αðτ;TÞ=Nαðτ;TÞ
for the lowest temperature, T ¼ 151 MeV, and τ ¼
0.653 fm with the corresponding zero temperature BS
amplitudes. For the ϒð1SÞ and the ϒð2SÞ, we do not
see any difference between the zero temperature BS
amplitude and ϕαðτ; TÞ. For the ϒð3SÞ, some difference
between the zero temperature and finite temperature result
for ϕαðτ; TÞ can be seen at large r, though it is not
statistically significant. In any case, the r dependences
of ϕα at T ¼ 0 and T ¼ 151 MeV are quite similar even for
the ϒð3SÞ. The lack of medium effects in the BS amplitude
for T ¼ 151 MeV is not surprising since at this temperature
all bottomonia should exist as well-defined states. Next, we
compare ϕαðτ; TÞ at the lowest and the highest temper-
atures for τ around 0.4 fm. Namely, we use τ ¼ 0.436 fm at
the lowest temperature and τ ¼ 0.394 fm at the highest
temperature. This comparison is shown in Fig. 10, and no

temperature effect can be observed. This is presumably due
to the fact that for this τ value the contribution of the second
term in Eq. (17) is too small. Therefore, in Fig. 11, we show
our results for ϕαðτ; TÞ at T ¼ 251 MeV and several values
of τ. As one can see from the figure for the ϒð2SÞ and
ϒð3SÞ, there is a significant τ dependence of ϕα. At small r,
the τ dependence is mostly due to the τ dependence of the
normalization factor Nnorm of the BS amplitude, cf. Fig. 7,
while for larger r, also the shape of the BS amplitudes
changes. This suggests that the normalized BS amplitude
cannot be interpreted simply as the wave function of in-
medium ϒ in the potential model picture. Yet, the r
dependence of ϕαðτ; TÞ does not change much from one
τ value to another. In summary, the correlation C̃r

αðτ; TÞ
shows significant temperature dependence as one would
expect based on the previous studies. However, the r
dependence of this correlator does not change significantly
as the temperature and τ is varied. Thus, focusing only
on the r dependence of C̃r

αðτ; TÞ without a detailed study
of its τ dependence may result in wrong conclusions about
the fate of ϒð2SÞ and ϒð3SÞ states at high temperature.
For the ϒð1SÞ, there is only little dependence of ϕα on τ,
and therefore in Fig. 11, we only show the numerical
results for τ ¼ 0.393 fm. This lack of τ dependence
indicates that ϒð1SÞ can exist in the deconfined
medium at T ¼ 251 MeV as a well-defined state with
little medium modification, in agreement with the pre-
vious studies of bottomonium at nonzero temperature
based on NRQCD [44–49].
The lack of temperature dependence of the normalized

BS amplitude at T > 0 at τ ≃ 0.4 fm demonstrated in
Fig. 10 has an interesting consequence. It means that
ϕαðr; TÞ can be used as a proxy for the T ¼ 0 BS amplitude
at zero temperature. Since the two temperatures shown in
Fig. 10 correspond to two different lattice spacings, this
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result also implies that the lattice spacing dependence of the
BS amplitude is small. Therefore, the comparison of the
wave function obtained from potential model and BS
amplitude obtained on the lattice with a ¼ 0.1088 fm in
Sec. II seems justified.

V. CONCLUSIONS

Using lattice NRQCD in this paper, we studied the
correlation functions, C̃r

α, between operators optimized to
have good overlaps with the of ϒð1SÞ, ϒð2SÞ, and ϒð3SÞ
vacuum wave functions and simple spatially nonlocal
bottomonium operators, where the bottom quark and
antiquark are separated by distance r. This correlator has
been calculated at zero as well as at nonzero temperatures.
At zero temperature, C̃r

α can be interpreted in terms of the
Bethe-Salpeter amplitude. We have found that the r
dependence of the Bethe-Salpeter amplitude closely resem-
bles the corresponding potential-model-based bottomo-
nium wave function. Moreover, by choosing the bottom
quark mass used in the Schrödinger equation to be
approximately 5.5 GeV, we estimated the heavy quark-
antiquark potential from Bethe-Salpeter amplitudes and
found agreement with the static quark potential calculated
on the lattice. These findings support the potential model
for the bottomonium in vacuum.
We studied the temperature and Euclidean time depend-

ence of C̃r
α in terms of effective masses. For ϒð1SÞ, we see

only very small temperature and Euclidean time depend-
ence of the corresponding effective masses, except at the
highest temperature of 334 MeV. For ϒð2SÞ and especially
for ϒð3SÞ, significant dependence on the Euclidean time
were observed, making it difficult to draw parallels between

Bethe-Salpeter amplitudes and potential model based in-
medium wave functions. Since the r dependence changes
very little with varying Euclidean time and temperature,
focusing solely on the r dependence of C̃r

α at a fixed τmight
lead to misleading conclusions regarding existence of well-
defined ϒð2SÞ and ϒð3SÞ in medium. On the other hand,
we found that the behavior of the effective masses is similar
to the one previously studied by us using correlators of
optimized bottomonium operators [40], supporting the
picture of thermal broadening of bottomonium states.
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