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We continue our study of spectroscopy data for the SU(3) gauge theory with eight fundamental fermions,
motivated by the effective field theory framework of dilaton chiral perturbation theory (dChPT). At leading
order dChPT predicts a constant mass anomalous dimension γm, consistent with the assumed proximity of
an infrared fixed point. For the relatively large fermion masses simulated by the LatKMI Collaboration, the
influence of the infrared fixed point diminishes, and our fits suggest that γm starts running. Since a complete
higher-order analysis is not feasible with presently available data, we adopt a more phenomenological
approach. We propose a partial extension to higher orders, which incorporates the running of γm into the
tree-level Lagrangian. We find that this extension successfully describes the full fermion-mass range of the
LatKMI data, including the pion taste splittings which arise from using staggered fermions in the lattice
simulations. We also investigate a more general class of dilaton potentials proposed in the literature, using
both the LSD and LatKMI datasets, concluding that these data favor the form predicted by dChPT.
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I. INTRODUCTION

Lattice simulations of the SU(3) gauge theory with eight
Dirac fermions in the fundamental representation have
revealed the existence of a flavor-singlet scalar particle,
which, at the fermion masses explored in these simulations,
is approximately degenerate with the pions—the Nambu-
Goldstone bosons associated with chiral symmetry break-
ing [1–4]. A similar light scalar has also been found in the
SU(3) gauge theory with two sextet fermions [5–9], or with
four light and six [10] or eight [11] heavy fundamental
fermions.1

The existence of a light flavor-singlet scalar particle
roughly degenerate with the pions means that, besides the
pions, any effective field theory (EFT) description of the
low-energy behavior has to include a field that represents
this scalar particle. Here, our starting point is dilaton chiral
perturbation theory (dChPT), an EFT in which the lightness
of the scalar particle is assumed to arise from approximate
scale invariance of the underlying theory in the infrared

[17–21].2 Increasing the number of (massless) fermionic
degrees of freedom will eventually take the theory into the
conformal window, where the non-Abelian gauge theory is
still asymptotically free, but develops an infrared fixed
point (IRFP). The idea is that, with eight flavors, the SU(3)
gauge theory is still outside the conformal window, but
close enough to the conformal sill—the number of flavors
where the IRFP first develops—that the breaking of scale
invariance in the infrared is governed by the proximity of
the IRFP. The key assumption is then that the distance to
the conformal sill can be treated as a small parameter, in
which a systematic power counting can be developed. The
scalar particle, which we will refer to as the dilaton, is
interpreted as a pseudo–Nambu-Goldstone boson (pNGB)
for the approximate scale symmetry [17]. The mass of the
dilaton is controlled by this small parameter, just as the
fermion mass leads to a parametrically small pion mass.
Since the fermion mass breaks scale invariance too, the
dilaton mass will also depend on the fermion mass.
In a previous paper [33] we applied leading-order (LO)

dChPT to numerical data for the eight-flavor SU(3) gauge
theory produced in lattice simulations by the LSD
Collaboration [3]. We showed that, over the fermion mass
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1For reviews of lattice work, see Refs. [12–16].

2For early work, and for other low-energy approaches, see
Refs. [22–32].
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range in these simulations, LOdChPT successfully describes
the pNGB sector of the theory, including the dilaton. In
Ref. [3] staggered fermions were used, which exhibit taste
splittings—a lattice artifact mass splitting of the pion
multiplet caused by a partial breaking of the flavor symmetry
group in the staggered fermion formulation.3We showed that
dChPT explains the pattern of taste splittings in the pion
sector observed in Ref. [3] as a function of the fermionmass.
Thevacuumexpectationvalue of the dilaton field depends on
the fermion mass already in LO, leading to a fermion-mass
dependence of pNGB decay constants and masses that is
qualitatively different from QCD. This includes the taste
splittings, which are also qualitatively different from the
pattern seen in QCD with staggered fermions.
Given this success, our goal in this paper is to investigate

whether dChPT can also be applied to the other major
lattice study of the eight-flavor SU(3) gauge theory, by the
LatKMI Collaboration [4].4 This study also used staggered
fermions and presented extensive spectroscopy data for the
pNGB sector, including taste splittings. The KMI simu-
lations were done at larger fermion masses than those of
LSD. Even if dChPT is the correct EFT, the question arises
whether one can fit the KMI data using LO dChPT, or,
alternatively, whether higher orders in the EFT expansion
would be needed. Indeed, unlike for the LSD data [3], we
found that LO dChPT does not quantitatively describe the
KMI data over the full fermion mass range, as will be
discussed in detail in this paper.
For the LSD data, we found that as the fermion mass is

varied, hadron masses and decay constants respond with an
approximate hyperscaling behavior [20]. As the fermion
mass increases, the theory is drawn further away from the
influence of the IRFP at the nearby conformal sill. Once the
fermion mass becomes large enough, we expect that
the running of the coupling will become noticeable, and
thus also the running of the mass anomalous dimension
γm.

5 In dChPT, at leading order, the mass anomalous
dimension is constant, γm ¼ γ�, where γ� is the mass
anomalous dimension at the nearby IRFP. dChPT allows
for a nonconstant γm, but the power counting underlying
dChPT accommodates corrections to a constant γm only
through higher orders. In order to systematically compare
dChPTwith the KMI data, we would thus have to consider
dChPT to next-to-leading order (NLO) or beyond.
However, the relatively large number of additional param-
eters that would be needed already at NLO, and limitations
of the presently available lattice data, to be discussed
below, prevent us from attempting a complete NLO fit.
Instead, we will take a more phenomenological approach,

based on the following observation. The salient difference
between the KMI and LSD data appears to be that a constant
γm cannot account for the full range of (larger) fermion

masses explored in the KMI data. We will thus extend LO
dChPT by only including higher-order effects that are
directly related to γm; we will refer to this extension as γ-
dChPT. This makes our approach not systematic, since most
NLO and higher-order effects are left out. Strictly speaking,
γ-dChPT should thus be viewed as a model approach.
In order for LO dChPT to accommodate a varying γm, we

will modify the mass-dependent part of the potential, as
described in detail in Sec. II. This raises the question of
what happens if one also considers a generalization of the
dilaton part of the potential. A class of potentials depending
on a new parameter Δ, generalizing the dilaton potential of
dChPT, has been proposed before [24,25,28,32], and we
will refer to this different extension of LO dChPT as
Δ-dChPT. One recovers LO dChPT, including its dilaton
potential, by taking Δ → 4. It is interesting to also confront
Δ-dChPT with the data. We will revisit the analysis of
the LSD data using Δ-dChPT by Ref. [32], and extend this
investigation to the KMI data. Despite claims in the
literature [32], Δ-dChPT takes us outside the systematic
power counting of dChPT, and should thus be considered as
a more phenomenological approach to the low-energy
behavior of the Nf ¼ 8 theory.
This paper is organized as follows. In Sec. II we

introduce γ-dChPT, in which LO dChPT is extended to
accommodate a varying γm. In Sec. III we first present our
evidence that γm, as well as other LO parameters, are
changing over the KMI mass range in a fit to LO dChPT.
We then apply γ-dChPT to the pNGB sector of the KMI
data. We find that a rather simple model for a varying γm
provides good fits of the KMI data, including taste
splittings. In Sec. IV we consider the generalized class
of dilaton potentials, reviewing the application ofΔ-dChPT
to the LSD data, and applying it to the KMI data.
Combining these results provides some evidence that the
dilaton potential of LO dChPT is preferred by the data, i.e.,
that the preferred value in Δ-dChPT is close to Δ ¼ 4.
Finally, Sec. V contains our conclusions. In Appendix Awe
elaborate on the choice of a mass-independent scale setting
prescription. In Appendix B we investigate the claim of
Ref. [32] thatΔ-dChPTadmits a systematic power counting
for any value of Δ and show that this claim is incorrect.

II. DILATON CHPT AND γm

In Sec. II A, we begin with a summary of LO dChPT.
This is the EFT that was applied to the LSD data in
Ref. [33]. In Sec. II B we revisit the physics of hyperscal-
ing and its manifestation in LO dChPT. This leads us in
Sec. II C to introduce γ-dChPT, where we generalize the
low-energy Lagrangian to accommodate a nonconstant
mass anomalous dimension. We emphasize that this exten-
sion takes us outside the strict EFT framework. In Sec. II D
we present the hadronic quantities to be fit to the KMI data
of Ref. [4] in the rest of this paper.

3For reviews, see Refs. [34,35].
4We will often shorten “LatKMI” to just “KMI.”
5For an early study of γm in the Nf ¼ 8 theory, see Ref. [36].
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A. dChPT at lowest order

The Euclidean LO Lagrangian for dChPT is given by

L ¼ 1

2
f2τe2τ∂μτ∂μτ þ

1

4
f2πe2τtrð∂μΣ†∂μΣÞ

þ Lmðτ;ΣÞ þ LdðτÞ: ð2:1Þ

The potential terms are

LdðτÞ ¼ f2τBτe4τðc0 þ c1τÞ; ð2:2aÞ

Lmðτ;ΣÞ ¼ −
1

2
f2πBπmeð3−γ�ÞτtrðΣþ Σ†Þ: ð2:2bÞ

Here Σ is the usual nonlinear field describing the pion
multiplet, while τ is the dilaton effective field. L depends
on the low-energy constants (LECs) fτ, fπ , Bπ , Bτ, γ�, c0,
and c1.
We define the theory in the Veneziano limit [37], in

which N ≡ Nc ∝ Nf is taken to infinity keeping the ratio
nf ¼ Nf=Nc fixed, with Nf the number of fundamental-
representation flavors and Nc the number of colors. The
power counting is [17]

p2 ∼m ∼ nf − n�f ∼ 1=N: ð2:3Þ

The relation p2 ∼m defines the power counting of ordinary
ChPT.6 The small parameter controlling the hard breaking
of scale invariance is nf − n�f, where n

�
f is the limiting value

of nf for the theory at the conformal sill: the boundary
between the regime where the massless theory undergoes
chiral symmetry breaking, and the regime where this theory
is conformal in the infrared, i.e., where the gauge coupling
g runs into an infrared fixed point g�.
Invoking the proximity of the sill of the conformal

window, we assume that the β function is small at the chiral
symmetry breaking scale, and that the corresponding value
of g is close to g�. We can then expand the mass anomalous
dimension γðgÞ in powers of nf − n�f around γ� ¼ γðg�Þ,
the mass anomalous dimension at the infrared fixed point at
the conformal sill. For a detailed discussion of the con-
struction of the LO Lagrangian, and the underlying power
counting, see Refs. [17,20].
In the dilaton potential (2.2), c0 is Oð1Þ, while c1 is

proportional to the small expansion parameter nf − n�f.
7 For

m ¼ 0, we shift the τ field to τ þ v0, with v0 ¼ hτijm¼0

(before the shift). After the shift, the dilaton expectation
value vðmÞ ¼ hτi vanishes in the massless theory. Defining

f̂π;τ ¼ ev0fπ;τ; ð2:4aÞ

B̂τ ¼ e2v0Bτ; ð2:4bÞ

B̂π ¼ eð1−γ�Þv0Bπ; ð2:4cÞ

the Lagrangian becomes

L ¼ 1

2
f̂2τe2τ∂μτ∂μτ þ

1

4
f̂2πe2τtrð∂μΣ†∂μΣÞ

þ Lmðτ;ΣÞ þ LdðτÞ; ð2:5Þ
with

LdðτÞ ¼ f̂2τ B̂τe4τVdðτÞ; ð2:6aÞ

VdðτÞ ¼ c1

�
τ −

1

4

�
; ð2:6bÞ

Lmðτ;ΣÞ ¼ −
1

2
f̂2πB̂πmeð3−γ�ÞτtrðΣþ Σ†Þ: ð2:6cÞ

The shift sets c0 ¼ −c1=4, and now the whole LO
Lagrangian is Oðp2Þ in the power counting (2.3). We will
assume c1 > 0, so that the potential Ld þ Lm is bounded
from below.
Assuming m ≥ 0, the potential is minimized by Σ ¼ 1.

The dilaton expectation value v ¼ vðmÞ solves the saddle-
point equation

ð3 − γ�Þm
4c1M

¼ veð1þγ�Þv; M ¼ f̂2τ B̂τ

f̂2πB̂πNf

: ð2:7Þ

The solution is positive and monotonically increasing with
m. The spectroscopy data we considered in Ref. [33] can
then be expressed as functions of m,

M2
π

F2
π
¼ 1

d1
vðmÞ≡ hðmÞ; ð2:8aÞ

Fπ ¼ f̂πevðmÞ ð2:8bÞ

¼
�
d0m
hðmÞ

� 1
1þγ�

; ð2:8cÞ

M2
τ

F2
π
¼ d3ð1þ ð1þ γ�Þd1hðmÞÞ: ð2:8dÞ

Explicitly,

hðmÞ ¼ 1

ð1þ γ�Þd1
W0

�ð1þ γ�Þd1
d2

m

�
; ð2:9Þ

where W0 is the Lambert W function. The parameters
d0;1;2;3 are defined in terms of the LECs of the tree-level
Lagrangian,

6The dimensionful quantities, p2 and m, are measured in units
of the dynamically generated infrared scale of the massless
theory.

7For a few more details about the power counting, see
Appendix B.
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d0¼
2B̂π

f̂1−γ�π

; d1¼
ð3− γ�Þf̂2π
8B̂πc1M

; d2¼
f̂2π
2B̂π

; d3 ¼
4c1B̂τ

f̂2π
:

ð2:10Þ

In Ref. [33] we applied LO dChPT, as summarized
above, to the LSD data [3]. The key assumptions under-
lying this analysis were as follows: (a) the Nf ¼ 8, Nc ¼ 3
theory undergoes chiral symmetry breaking; (b) for the
LSD mass range, the β function is small enough that the
dChPT power counting is applicable. The results of our
analysis corroborated these assumptions.

B. Hyperscaling

Consider momentarily a mass-deformed infrared con-
formal theory. We can probe the theory over a range of
scales where g is so close to the infrared fixed-point g� that
all effects of its running can be neglected. The breaking of
scale invariance is then driven entirely by the input bare
fermion massm0. Under these circumstances, any hadronic
mass M follows a simple hyperscaling law,

M
ΛUV

∼
�

m0

ΛUV

� 1
1þγ�

: ð2:11Þ

HereΛUV is an ultraviolet scale for which the approximation
γmðμÞ ¼ γ� is valid for any μ ≤ ΛUV, and m0 ¼ mðΛUVÞ,
wheremðμÞ is the running renormalized mass. Hyperscaling
is based on the following simple observations:

(i) The renormalized mass, m ¼ mðμÞ, runs as dictated
by its anomalous dimension. By contrast, the renor-
malized coupling has attained its fixed-point value g�
(up to negligible corrections); hence also the mass
anomalous dimension has a fixed value γ� ¼ γmðg�Þ.

(ii) No physical scale is generated dynamically in the
massless theory. When the fermion mass is nonzero,
the induced physical scale M is set by the condition
M ∼mðMÞ.

Indeed, starting from the solution for mðμÞ for a constant
mass anomalous dimension,

mðμÞ
m0

¼
�

μ

ΛUV

�
−γ�

; ð2:12Þ

the hyperscaling law (2.11) immediately follows by postu-
lating that the typical hadron massM satisfiesM ∼mðμÞ for
μ ¼ M. For any γ� > 0, the existence of the physical scaleM
is guaranteed if m0 ≪ ΛUV. Starting from mðμÞ ¼ m0 ≪ μ
at μ ¼ ΛUV, mðμÞ keeps increasing as μ is decreased, until
eventually the equality M ¼ mðMÞ is reached.
Returning to dChPT, in Ref. [33] we found that the LSD

data are in the “large-mass” regime [20], where

jnf − n�fj ∼ c1 ≪
m0

M
; ð2:13Þ

for all (bare) masses. As follows from the previous
subsection,8 in LO dChPT, c1 encodes the magnitude of
the β function at the chiral symmetry breaking scale. The
large-mass regime is thus an approximate hyperscaling
regime, where the input fermion mass dominates the
breaking of scale invariance. Indeed, in Ref. [20] we
showed that the leading mass dependence predicted by
LO dChPT in the large-mass regime is the hyperscaling
relation (2.11), for all hadronic masses and decay constants.
We also calculated corrections to this relation, which are
present in dChPT already at LO, because the β function at
the chiral symmetry breaking scale, hence c1, is (by
assumption) parametrically small, but not vanishingly
small as in a mass-deformed infrared conformal theory.
Moreover, we showed that as long as

jnf − n�fj log
�

m0

jnf − n�fjM
�

≪ 1; ð2:14Þ

dChPT provide a systematic expansion, even though
m0=M can be large. By Eq. (2.7), M is constructed from
LECs which can be defined in the chiral limit. It is a
striking difference between ordinary ChPTand dChPT that,
because of the nearby IRFP, in dChPT a systematic low-
energy expansion exists even if the fermion mass is not
small relative to the infrared scale of the massless theory, so
long as inequality (2.14) holds.
The fermion mass range explored in the KMI data is

higher than in the LSD data. The comparison can be made,
for example, in units of t0 (see Fig. 5 of Ref. [2]). We will
return to the comparison between the LSD and KMI data,
and its limitations, in Sec. III E below. As mentioned in the
Introduction, when we increase the input fermion mass the
influence of the IRFP diminishes. Eventually, we will reach
energy scales where the running of the coupling picks up,9

and, as a result, so does the running of the mass anomalous
dimension. In the next subsection, guided by this consid-
eration, we will develop a generalized notion of hyper-
scaling, which is founded on the same principles as above,
except that the assumption of a constant mass anomalous
dimension is relaxed. This will lead to the framework of
γ-dChPT, where LO dChPT is extended to accommodate a
varying mass anomalous dimension. We stress that the
power counting of dChPT allows for corrections to a
constant γm, but only via higher-order terms in the
expansion in nf − n�f. In seeking an extension of LO
dChPT that accommodates a varying γm we are thus asking
for a partial resummation of these higher-order terms, under
the assumption that these are the dominant higher-order
corrections.

8See also Appendix B.
9At extremely high-energy scales perturbation theory will

eventually take over, and the β function will tend to zero as
dictated by asymptotic freedom.
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We conclude this subsection with a technical comment.
The hyperscaling law (2.11) can be rewritten as

m0

M
∼
�

m0

ΛUV

� γ�
1þγ�

: ð2:15Þ

It follows that the fermion massm0 is always much smaller
than any hadronic massM (as long as m0 ≪ ΛUV), and the
same is true for the decay constants Fπ and Fτ. Moreover,
in Ref. [20] we showed that this conclusion extends to
nf < n�f, below the conformal window, and that it applies
also to the masses of the pNGBs, Mπ and Mτ. We will
assume that the ratio m0=M remains small also when the
simple hyperscaling relations, Eqs. (2.11) and (2.15), are
generalized to account for the running of γm. Indeed, for the
LSD data, m0=Mπ ranges between 0.015 and 0.04, while
for the KMI data it ranges between 0.07 and 0.17. Since
m0=Mπ ≪ 1, this allows us to use a mass-independent
renormalization scheme.10 As we will see below, this
greatly simplifies our considerations.

C. Varying γm and γ-dChPT

We will now proceed to develop the extension of LO
dChPT allowing for a scale-dependent γm. The renormal-
ization group (RG) equation governing the dependence of
the renormalized mass m on the renormalization scale μ is
closely related to the behavior of the renormalized mass
under scale transformations. In order to relate the two, we
first review how a scale is introduced into the bare theory;we
will do this using dimensional regularization. For more
details, we refer to Ref. [19]. We regulate the action of the
microscopic theory as

S ¼
Z

ddxμd−40 LðxÞ; ð2:16Þ

where L is the bare Lagrangian and d is the number of
dimensions. With the factor μd−40 , the bare action S is
invariant under scale transformations if we promote the
bare parameters μ0 and m0 to spurions. The scale trans-
formation rules are

m0 → λm0; ð2:17aÞ

μ0 → λμ0; ð2:17bÞ

AμðxÞ → λAμðλxÞ; ð2:17cÞ

ψðxÞ → λ3=2ψðλxÞ; ð2:17dÞ

where Aμ is the bare gauge field and ψ the bare fermion
field.
The function γm, defined by the RG equation

μ

m
dm
dμ

¼ −γm; ð2:18Þ

describes the response of the renormalized mass m to a
change of the renormalization scale μ. In amass-independent
scheme, all renormalization factors depend on the scales μ
and μ0 only through their ratio, μ=μ0. Hence,

γm ¼ γmðgðμ=μ0ÞÞ; ð2:19Þ

where g ¼ gðμ=μ0Þ is the running coupling. From now on,
we will write γmðμ=μ0Þ for γmðgðμ=μ0ÞÞ, with a slight abuse
of notation. We choose μ not to transform under scale
transformations: the transformation (2.17) describes a rescal-
ing of all the dimensionful bare quantities relative to a fixed
renormalization scale.
Once γm is known we can express mðμÞ, the renormal-

ized mass at an arbitrary renormalization scale μ, in terms
of the bare mass, m0 ¼ mðμ0Þ, by integrating Eq. (2.18)
between μ0 and μ. Introducing the formal solutions

E�ðμ=μ0Þ ¼ e�
R

log μ=μ0
0

dtγmðetÞ ð2:20Þ

of the RG equations

μ
dE�

dμ
¼ �γmðμ=μ0ÞE�; ð2:21Þ

one has

mðμÞ ¼ E−ðμ=μ0Þm0: ð2:22Þ

Using Eq. (2.17) for the dependence of the bare parameters
m0 and μ0 on the scale transformation parameter λ,
it follows that an infinitesimal scale transformation of
the renormalized mass is governed by the differential
equation [19]

∂mðλ; μÞ
∂ log λ ¼

�
1þ γm

�
μ

λμ0

��
mðλ; μÞ; ð2:23Þ

which is solved by

mðλ; μÞ ¼ λE−ðμ=ðλμ0ÞÞm0: ð2:24Þ

For constant γm ¼ γ�, Eq. (2.20) simplifies to

E�ðμ=μ0Þ ¼
�
μ

μ0

��γ�
; ð2:25Þ

and hence

10The β and γ functions in a mass-dependent scheme can be
expanded in powers ofm0=M, and the first term in this expansion
yields a mass-independent scheme that is a good approximation if
m0=M ≪ 1.
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mðλ; μÞ ¼ λ1þγ�mðμÞ ¼ λ1þγ�

�
μ0
μ

�
γ�
m0: ð2:26Þ

The second equation explains the origin of the factor λ1þγ�.
A factor λ comes from the transformation ofm0, Eq. (2.17),
while the remaining factor λγ� comes from the trans-
formation of μ0, Eq. (2.17b). With the transformation rules
of the effective fields

τðxÞ → τðλxÞ þ log λ; ð2:27aÞ

ΣðxÞ → ΣðλxÞ; ð2:27bÞ

it follows that LmðxÞ in Eq. (2.2b) transforms into
λ4LmðλxÞ, as required for the invariance of the action.
In order to accommodate a nonconstant γm, we replace

Lm of Eq. (2.2b) by

Lm ¼ −
1

2
f2πe3τE−ðeτfπ=μ0ÞBπðμ=μ0Þmðμ=μ0ÞtrðΣþ Σ†Þ:

ð2:28Þ

Let us derive the transformation properties of this
Lagrangian. The combination Bπðμ=μ0Þmðμ=μ0Þ is by
assumption RG invariant, and we can write Bπðμ=μ0Þ as

Bπðμ=μ0Þ ¼ BRG
π Eþðμ=μ0Þ: ð2:29Þ

The new LEC,BRG
π , is both RG invariant and scale invariant,

also by assumption. Hence Bπðμ=μ0Þmðμ=μ0Þ ¼ BRG
π m0,

and using Eq. (2.17a) it follows that under a scale trans-
formation

∂
∂ logλBπðμ=ðλμ0ÞÞmðλ;μÞ¼þBπðμ=ðλμ0ÞÞmðλ;μÞ: ð2:30Þ

The factor E−ðeτfπ=μ0Þ in Eq. (2.28) is invariant under a
scale transformation by construction, because the combina-
tion eτfπ=μ0 is.

11 Noting that the scaling dimension of Σ is
zero, and taking the contribution from the factor e3τ into
account, we obtain

∂
∂ log λLmjλ¼1 ¼ 4Lm þ xμ

∂
∂xμ Lm ¼ ∂

∂xμ ðxμLmÞ; ð2:31Þ

which establishes the invariance of the action. This con-
clusion is valid for any choice of the function γm.
The Lagrangian for dChPTwith a varying γm function is

given by Eq. (2.1), now with Lm given by Eq. (2.28). The
theory is invariant under the scale transformation of the

effective fields, Eq. (2.27), combined with the spurion
transformation rules12

mðμÞ → mðλ; μÞ; ð2:32aÞ
μ0 → λμ0; ð2:32bÞ
c0 → c0 − log λ; ð2:32cÞ
c1 → c1: ð2:32dÞ

The transformation rule (2.32c) is needed to ensure the
invariance of (the spacetime integral of) Ld in Eq. (2.2a).13

As usual, once the spurions m, μ0, and c0 are set equal to
their fixed values, this breaks the scale symmetry explicitly.
We may again shift the τ field, as we did in Sec. II A,

such that after the shift it has a vanishing expectation value
for m ¼ 0. The LECs fπ;τ and Bτ are redefined as in
Eq. (2.4), but now B̂π is defined as

B̂πðμ=μ0Þ ¼ B̂RG
π Eþðμ=μ0Þ; B̂RG

π ¼ ev0BRG
π ; ð2:33Þ

so that B̂π ¼ ev0Bπ . The Lagrangian after the shift is again
given by Eq. (2.5), but now with

Lm ¼ −
1

2
f̂2πe3τE−ðeτf̂π=μ0ÞB̂πðμ=μ0Þmðμ=μ0ÞtrðΣþ Σ†Þ;

ð2:34Þ
instead of Eq. (2.6c). Note that, instead of being a function
of eτfπ=μ0, now E− is a function of eτf̂π=μ0.
Let us now reconsider the trace anomaly. We first apply

the scale transformation only to the effective fields, setting
the spurions equal to their fixed values. In this case,14

∂
∂ log λ ¼

∂τ
∂ log λ

∂
∂τ ¼

∂
∂τ ; ð2:35Þ

and we obtain the contribution of Lm to ∂μSμ, the
divergence of the dilatation current Sμ (see Appendix D
of Ref. [17]),
� ∂
∂τ − 4

�
Lm ¼ −ð1þ γmðeτf̂π=μ0ÞÞLm

¼ −ð1þ γmðeτf̂π=μ0ÞÞmψ̄ψðEFTÞ: ð2:36Þ
In the last step we identified Lm with the EFT representa-
tion of mψ̄ψ in the underlying theory. This reproduces, in
the EFT, the contributions from the fermions to the trace
anomaly [38]. Recall that we have defined γm to be a

11Being μ independent, E−ðeτfπ=μ0Þ is trivially RG invariant.

12In Ref. [17] we introduced a spacetime dependent spurion
field χðxÞ for the renormalized mass, but for our present purposes,
a spacetime independent spurion for m is sufficient.

13The transformation rules of c0 and c1 get modified at higher
orders. For a detailed discussion of Ld, see Refs. [17,20].

14We omit the contribution from the scale dependence of the
spacetime coordinates [compare Eq. (2.31)].
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function of μ=μ0; cf. Eq. (2.19). Replacing τ by vðmÞ, its
vacuum expectation value at nonvanishing m, we see that
Eq. (2.36) effectively identifies the renormalization scale μ
with Fπ ¼ evðmÞf̂π; cf. Eq. (2.8b). This reveals a key feature
of our construction of γ-dChPT: γm is evaluated at a
renormalization scale equal to the physical scale Fπ , which,
in turn, is a function of the input fermion mass. We
comment that we chose the hadronic scale inside E− in
Eq. (2.28) to be fπ , but, to achieve the desired scaling
behavior, we could equivalently choose fτ, or, more
generally, any other hadronic scale mh that enters the
dChPT Lagrangian (or generalization thereof) via the
combination eτmh, such as the nucleon mass in the chiral
limit.
We now specialize to specific choices for the function

γm. First, for constant γm ¼ γ�,

B̂πðμ=μ0ÞE−ðeτf̂π=μ0Þ ¼ B̂RG
π

�
μ

μ0

�
γ�
e−γ�τ

�
μ0
f̂π

�
γ�

¼ B̂πðμ=f̂πÞe−γ�τ; ð2:37Þ

and the LagrangianLm in Eq. (2.34) reduces to Eq. (2.6c).15

This also implies B̂πðμ=f̂πÞ ¼ eð1−γ�Þv0Bπðμ=fπÞ, consis-
tent with Eq. (2.4c).
We next introduce a new choice for γm that we will be

using for the actual fits to the KMI data. With t ¼ τ þ
logðf̂π=μ0Þ we define

E−ðeτf̂π=μ0Þ ¼ E−ðetÞ ¼ e−F̃ðtÞ; ð2:38Þ

where

F̃ðtÞ ¼ γ̃0t −
1

2
b̃t2 þ 1

3
c̃t3; ð2:39Þ

a cubic polynomial in t. The variable t is invariant under
scale transformations, and, consistent with our general
discussion, γ̃0, b̃, and c̃ are LECs that do not depend on
μ or μ0. Reexpressing t in terms of τ, we write

F̃ðtÞ ¼ F̃ðlogðf̂π=μ0ÞÞ þ FðτÞ; ð2:40Þ

FðτÞ ¼ γ0τ −
1

2
bτ2 þ 1

3
cτ3; ð2:41Þ

which defines the coefficients of the cubic polynomial FðτÞ
in terms of those of F̃ðtÞ, and logðf̂π=μ0Þ. Substituting into
Eq. (2.34), and absorbing e−F̃ðlogðf̂π=μ0ÞÞ into B̂π , the final
form of the Lagrangian becomes

Lm ¼ −
1

2
f̂2πB̂πme3τ−FðτÞtrðΣþ Σ†Þ: ð2:42Þ

We will use the acronym γ-dChPT for the Lagrangian
defined by Eq. (2.1), withLd given by Eq. (2.2a) andLm by
Eq. (2.42) for some general function FðτÞ. Of course, for
the case of a linear FðτÞ, Eq. (2.42) reduces to Eq. (2.2b),
and the Lagrangian is just LO dChPT.
As an EFT, dChPT is based on the power counting

established in Refs. [17,20] and reviewed above. As in
ordinary ChPT, loop corrections in dChPT can be included
systematically; the power counting (2.3) dictates which
terms occur at the NLO [17], at the next-to-next-to-leading
order (NNLO), and so on. The same is true in the large-
mass regime, where the power counting is controlled by
Eq. (2.14). This raises the question of how much γ-dChPT
deviates from the strict EFT framework of dChPT itself. If
we rely on algebraic structure and symmetries only, this
allows E−ðeτf̂π=μ0Þ in Eq. (2.34), or, equivalently, FðτÞ in
Eq. (2.42), to depend on an infinite number of parameters,
reflecting the model nature of γ-dChPT. But if, on the other
hand, we assume that FðτÞ takes the form of Eq. (2.41),
with

γ0∼ ðnf−n�fÞ0¼ 1; b∼nf−n�f; c∼ ðnf−n�fÞ2;
ð2:43Þ

then the factor e−FðτÞ may be obtained via partial resum-
mation of terms from all orders in the expansion in powers
of nf − n�f. It thus reflects a fairly modest departure from
dChPT, in that we will be taking into account some higher-
order analytic terms, resummed into e−FðτÞ, while omitting
other higher-order terms. In addition, we will not calculate
any nonanalytic higher-order corrections when fitting
γ-dChPT to data. We will reexamine the scenario of
Eq. (2.43) after presenting our fits to the KMI data in
Sec. III.

D. Hadronic quantities for varying γm
As in Sec. II A, we begin with the saddle-point equation.

For m ≥ 0 the potential is minimized by setting Σ ¼ 1 in
Eq. (2.34), and v ¼ vðmÞ is the solution of [compare
Eq. (2.7)]

ð3 − γmÞm
4c1M

¼ vevþFðvÞ; ð2:44Þ

where now

γm ¼ F0ðvÞ: ð2:45Þ

When FðτÞ is linear in τ we reproduce the results of
Sec. II A, whereas for FðτÞ in Eq. (2.41) we have15In this special case, the dependence on μ0 drops out.
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γm ¼ γ0 − bvþ cv2: ð2:46Þ

Equation (2.44) can be rewritten as

m ¼ d2
d̃1

1

3 − γm
vevþFðvÞ; ð2:47Þ

with

d̃1 ¼
f̂2π

8B̂πc1M
: ð2:48Þ

For a general function F, Eq. (2.47) cannot be explicitly
inverted analytically. We will, in effect, solve it numerically
form as a function of v, as described in Sec. III. In terms of
v, Fπ is still given by Eq. (2.8b). The pion mass is now

M2
π ¼ 2B̂πmev−FðvÞ; ð2:49Þ

so that, using Eq. (2.47), the ratio M2
π=F2

π is given by

M2
π

F2
π
¼ 1

d̃1

v
3 − γm

: ð2:50Þ

The three equations (2.47), (2.8b), and (2.50) contain six
parameters, d̃1, d2, f̂π and the three parameters inside F: γ0,
b, and c.
We will not fitMτ to the KMI data, as the errors found in

Ref. [4] are too large for such a fit to have statistical
relevance. We will, however, fit the staggered taste split-
tings obtained in Ref. [4]. WithMΓi

the masses of the taste-
split pions corresponding to the tastes

Γi ∈ fΓ5;Γμ5;Γμν;Γμ;ΓIg; ð2:51Þ

we will fit the differences16

ΔðΓiÞ≡ a2ðM2
Γi
−M2

πÞ; ð2:52Þ

according to [39,40]

ΔðΓ5Þ≡ ΔP ¼ 0; ð2:53aÞ

ΔðΓμ5Þ≡ ΔA ¼ C1Eðγ1Þ þ 3C3Eðγ3Þ
þ C4Eðγ4Þ þ 3C6Eðγ6Þ; ð2:53bÞ

ΔðΓμνÞ≡ ΔT ¼ 2C3Eðγ3Þ þ 2C4Eðγ4Þ þ 4C6Eðγ6Þ;
ð2:53cÞ

ΔðΓμÞ≡ ΔV ¼ C1Eðγ1Þ þ C3Eðγ3Þ
þ 3C4Eðγ4Þ þ 3C6Eðγ6Þ; ð2:53dÞ

ΔðΓIÞ≡ ΔS ¼ 4C3Eðγ3Þ þ 4C4Eðγ4Þ: ð2:53eÞ

Here C1;3;4;6 are LECs associated with the taste-breaking
potential [40], and

EðγiÞ ¼ eð4−γiÞv: ð2:54Þ

Equation (2.54) assumes that γi, the anomalous dimensions
of the taste-breaking four-fermion operators, are constant
(see Ref. [33] for more details). A global fit of the data
including all the taste splittings has eight new parameters,
coming from Eq. (2.53), in addition to the six parameters of
the basic fit. This is a large number of parameters, and, as
we will see, some of them are not sufficiently constrained
by the available data. Thus, we will not venture into an
exploration of any scale dependence of the γi.
We end this section with a comment. While in LO

dChPT the potential is bounded from below, in
γ-dChPTwith general FðvÞ the potential can be unbounded
from below.17 Mathematically, this appears to be a problem,
but we contend that it is physically irrelevant. Within the
EFT framework, the potential can only be known for Oð1Þ
values of the fields. While the pion field is always Oð1Þ
because it is a compact field, this is not the case for τ. We
thus need to restrict the EFT toOð1Þ values of τ “by hand.”
In practice, this means that after fits to the data, we need to
check that indeed values of v predicted by the fits areOð1Þ,
and do not land in the large-field region. In all our fits with
a varying γm indeed unphysical regions of the potential
occur at very large values of v, but they are separated from
the physical region by an exponentially large potential
barrier. Consistently, our fits never explore the unphysical
region of the potential.

III. FITS TO THE LATKMI DATA

In this section, we will present our fits to data reported in
Ref. [4], obtained by the LatKMI Collaboration for the
eight-flavor SU(3) gauge theory. We begin in Sec. III A
with a discussion of these data and the policies we will
follow when we use them. In Sec. III B, we present
“window” fits. These are fits of M2

π=F2
π and aFπ to the

predictions of LO dChPT, for successive quintets of
fermion masses, from the five lightest masses to the five
heaviest ones. Altogether, ten different fermion masses
were simulated in Ref. [4], making six (overlapping)
windows. The window fits test the constancy of the LO
dChPT parameters. We find a systematic trend of change

16We note thatMΓ5
¼ Mπ is the mass of the Nambu-Goldstone

pion.

17For polynomial FðvÞ, a necessary and sufficient condition
that the potential will be bounded from below is that the highest
power of v is even, and its coefficient is positive.
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for all fit parameters, by much more than their errors allow,
proving that the full KMI mass range cannot be fit to LO
dChPT. Then, in Sec. III C we fit the data at all ten fermion
masses simultaneously to γ-dChPT, the extension of LO
dChPTwith a varying γm constructed in Sec. II C, with the
special choice of γm in Eq. (2.46). We find that this
extension of dChPT successfully describes the KMI data-
set. Data for taste-split pion masses is available for a more
limited set of fermion masses, and we present our fits
including the taste splittings in Sec. III D. We end with a
discussion of the scale dependence of γm found in our fits in
Sec. III E.
The simulations of Ref. [4] were all performed at the

same bare coupling. Invoking a mass-independent scale
setting prescription, this implies that all ensembles have a
common lattice spacing a. We elaborate on the choice of a
scale setting prescription in Appendix A.
We will be using lattice units in all our fits. This means

taking μ ¼ μ0 ¼ 1=a, and thus mðμÞ ¼ mðμ0Þ ¼ m0.

A. The LatKMI data

The pion massMπ and decay constant Fπ were measured
in Ref. [4] at ten bare-mass values

am0 ∈ f0.012; 0.015; 0.02; 0.03; 0.04; 0.05;
0.06; 0.07; 0.08; 0.1g: ð3:1Þ

In Ref. [4] a great effort was made to also determine the
dilaton mass Mτ. It was found that indeed a dilaton exists,
roughly degenerate with the pions. Mτ was measured for
only six fermion masses, leaving out am0 ¼ 0.05, 0.07,
0.08, and 0.1. More seriously, the statistical errors of Mτ

turn out to be too large to have any real impact on our fits.
In the window fits to LO dChPT (next subsection), we
found that when we include a fit of M2

τ=F2
π to Eq. (2.8d) in

our global fit, d3 remains largely undetermined, while all
other fit parameters do not change. The only noticeable
change is a higher p value, as might be expected. We thus
omit the dilaton mass from the fits discussed in this paper.
Other hadron masses were also determined, notably

the vector meson mass aMρ and the nucleon mass
aMN .

18 For these hadrons, the prediction from LO
dChPT is that the ratios Mρ=Fπ and MN=Fπ should be
independent of am0 [20]; this is also true if we extend LO
dChPT to include a varying γm. Excluding the two largest
fermion masses, am0 ¼ 0.08 and 0.1, we found that we can
fit Mρ=Fπ to a constant, with a p value of 0.31. MN was
measured only for a subset of the fermion masses,

am0 ∈ f0.012; 0.015; 0.02; 0.03; 0.04; 0.06; 0.08g; ð3:2Þ

which leaves out am0 ¼ 0.05, 0.07, and 0.1. Keeping only
the five lightest masses, we found that a fit of MN=Fπ to a

constant has a p value of 0.07. This suggests that for larger
fermion masses, higher-order corrections in dChPT (other
than a varying γm) would be needed to fit these ratios. In
addition, discretization effects could be playing a bigger
role (see below). We will thus focus in this paper on the
pion sector, considering M2

π=F2
π and aFπ in Secs. III B

and III C, and adding taste splittings in Sec. III D.
Information on the systematic errors of aMπ and aFπ is

incomplete. Mostly, they were measured on at least two
different volumes, and we estimate the finite-volume error
by taking the difference between the results at the largest
two volumes. For am0 ¼ 0.012 only one volume is
available. In this case we took the finite-volume errors
to be the same as for am0 ¼ 0.015. The latter was simulated
on the same volume as am0 ¼ 0.012, as well as on a
somewhat smaller volume. We note that, since am0 ¼
0.012 is the lightest fermion mass, this procedure may
underestimate its finite-volume errors. A single volumewas
reported also for am0 ¼ 0.08 and 0.1. For these fermion
masses, the two largest ones,MπL is very large, and finite-
volume corrections should be very small. We thus took the
finite-volume errors for these two masses to vanish. We
added the statistical error and the finite-volume error of
aMπ and aFπ in quadrature. These errors were propagated
to the ratio M2

π=F2
π , and correlations between this ratio and

aFπ were kept.19

As the simulations of Ref. [4] were done at a single bare
coupling, no direct information is available on the lattice
spacing dependence, and it is not possible to take the
continuum limit. We are thus forced to ignore scaling
violations in our fits, but it should be kept in mind that these
affect our results in an unknown way. Generally speaking,
Mρ andMN are larger thanMπ , and are thus prone to larger
discretization effects. Also, as an example, for am0 ¼ 0.08
Ref. [4] finds the central values aMπ ¼ 0.51, aMρ ¼ 0.68,
and aMN ¼ 1.02; hence, at the largest fermion masses
discretization effects could be significant for the pions as
well. We will briefly mention evidence for scaling viola-
tions in the determination of the gradient flow scale t0 in
Sec. III E. The only other information on lattice spacing
effects comes from pion taste splittings. The masses of
taste-split pions, which were measured only on the seven
ensembles with bare masses (3.2), will be considered in
Sec. III D.

B. Window fits

We begin with fitting M2
π=F2

π and aFπ to the predictions
of LO dChPT, Eqs. (2.8a) and (2.8b). We consider sets of
five successive fermion masses, taking first the lightest five
masses from the set (3.1), then the second to the sixth
masses, etc., for a total of six quintets. The results are

18The pions are too heavy for the ρ to decay.

19Correlations between aMπ and aFπ on each ensemble are not
available. We note that, in Ref. [33], we found that these
correlations are small in the LSD data.
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shown in Table I.20 All the fits are good. However, the
parameter values change with the partial mass range, more
than allowed by their errors. In particular, the lowest mass
range (fit 1A) and the highest mass range (fit 1F) do not
overlap; hence their parameter errors are statistically
independent. These fits are thus not consistent with each
other. A simultaneous fit of LO dChPT to all ten masses has
a p value of order 10−11. Clearly, the whole KMI mass
range cannot be fit to LO dChPT.
As dChPT admits a systematic expansion, the failure to

describe a set of data at LO means that higher orders in the
expansion are needed. However, already at LO, dChPT
contains more parameters than ordinary ChPT. Depending
on the observables being fitted, many more would be
needed for an NLO fit. We believe that much better data are
required for ameaningfulNLO fit.As discussed in Sec. III A,
the LSD and KMI datasets both contain only a single lattice
spacing, leaving discretization errors as an uncontrolled
source of systematic uncertainty. In addition, it may well
be that more refined data, for additional bare masses and/or
with smaller statistical errors, would be needed to determine
all the parameters in the NLO fit.

C. Fits with a varying γm
Being unable to carry out a full NLO fit at present, we are

left with the option of partially extending LO dChPT by
exploring different “directions” in “higher-order parameter
space.” By its very nature, no such extension is fully
systematic, and each extension should thus be considered a
model. Our assumption is that our model, γ-dChPT,
captures the relevant physics better than other extensions
of LO dChPT.
As we have discussed in Sec. II B, the physical mecha-

nism that underlies the behavior of the LSD data is
hyperscaling. The KMI mass range is higher than the
LSD one, which motivates us to consider a minimal
modification of this physical picture. We assume that the
KMI mass range is still governed by the same principles
that produce hyperscaling in the LSD mass range, except

that, because of the diminishing influence of the IRFP, we
now have to allow the mass anomalous dimension to vary.
That consideration has led us to the framework of γ-dChPT,
developed in Sec. II C.
In this subsection, we will thus consider fits of the KMI

data to γ-dChPT. Specifically, we consider fits of M2
π=F2

π

and aFπ to Eqs. (2.50) and (2.8b), where γm is quadratic in
v; cf. Eq. (2.46). We begin with a technical issue. The
independent variable in these equations is v, which, in turn,
can be determined in terms of am0 using Eq. (2.47).
However, unlike in LO dChPT discussed in Sec. II A,
Eq. (2.47) cannot be analytically inverted.21 Instead, in
addition to the parameters defining the γ-dChPT
Lagrangian, we introduce new parameters vi, one per
ensemble.22 We fit the corresponding bare mass am0;i to
Eq. (2.47), while simultaneously also fitting ðM2

π=F2
πÞi and

ðaFπÞi, all as functions of the same parameter vi.
Artificially introducing a tiny error for am0;i, the fit in
effect solves Eq. (2.47) numerically for vi in terms of am0;i.
Thus, for given values of the γ-dChPT parameters, vi is
equal to vðam0;iÞ with numerical precision set by the
“error” of the “data” am0;i. We have varied the errors on
am0;i between 10−6 and 10−7, finding no discernible
differences in the results of our fits. χ2 values remain
equal to four decimal places, whether one includes the
“am0 part” in the computation of χ2 or not.
As in Ref. [33], we can calculate ðaB̂πÞi on each

ensemble using Eq. (2.49) and our fit result for vi. In all
cases studied in this paper the so-obtained values of ðaB̂πÞi
are equal within error. This confirms the self-consistency of
our assumption that the lattice spacing a is independent of
the fermion mass.
The results of our fits are shown in Table II. Fit 2A

includes all ten ensembles, fit 2B leaves out the am0 ¼ 0.1

TABLE I. Fits of the KMI data to Eqs. (2.8a) and (2.8b), using selections of five successive fermion masses from the set (3.1). All
parameter errors reported in this paper are Hessian.

A B C D E F

Range 0.012–0.04 0.015–0.05 0.02–0.06 0.03–0.07 0.04–0.08 0.05–0.1

χ2=dof 9.37=6 9.85=6 4.81=6 4.38=6 4.56=6 3.83=6
p value 0.15 0.13 0.57 0.63 0.60 0.70

γ� 0.608(8) 0.589(10) 0.543(10) 0.534(12) 0.527(8) 0.498(13)
af̂π 0.0050(7) 0.0067(6) 0.0089(8) 0.010(2) 0.011(1) 0.011(1)

d̃1 0.0716(44) 0.0629(28) 0.0545(23) 0.0512(56) 0.0500(28) 0.0484(28)
− logðad2Þ 10.5(3) 10.0(2) 9.5(2) 9.2(4) 9.1(2) 9.0(2)

20We will label fits with a number for the table, and a letter for
the fit in the table. For example, fit 1A refers to fit A in Table 1.

21In principle, the formal inverse function m ¼ mðvÞ may not
be single valued. In practice, we found that v is monotonically
increasing with m over the entire KMI mass range.

22The total number of parameters increases by the number of vi
parameters, i.e., by the number of ensembles included in the fit.
The number of data increases by the same amount (the am0;i),
leaving the number of degrees of freedom unchanged.
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ensemble, and fit 2C leaves out both am0 ¼ 0.1 and 0.08.
All the fits are good, but fits 2B and 2C are better than fit
2A. We also carried out fits setting c ¼ 0, i.e., taking γm in
Eq. (2.46) to be a linear function of v. Fits with c ¼ 0
including all ten ensembles, or omitting the am0 ¼ 0.1
ensemble, have very low p values, 0.001 and 0.01,
respectively. We do not show them in the table.
However, if we omit both the am0 ¼ 0.1 and 0.08 ensem-
bles, we obtain fit 2D, which is a good fit. The parameters
af̂π , d̃1, and logðad2Þ are relatively stable between the fits

with c as a free parameter, and fit 2D, where c ¼ 0. By
contrast, the parameters defining the function γm change
substantially: Fit 2D yields much smaller values for both γ0
and b than the other fits of Table II.
The results of fits 2B and 2D are shown in Fig. 1. The

black points are data that were included in the fits, whereas
the magenta points were excluded. The lower left panel
shows that if we simplify our ansatz for γm to be linear in v,
then the am0 ¼ 0.08 and 0.1 ensembles must be excluded.
We have proposed in Sec. II C that the exponential factor

e−FðvÞ may originate from a resummation of the dominant
contributions from all orders in the expansion in nf − n�f.
According to the hypothesis (2.43), b is an NLO parameter,
while c is an NNLO parameter. One way to test this
scenario is to examine the effect of truncating the Taylor
expansion of the exponential factor. The range of values we
find for v in the fits to the KMI data is 1.5 ≤ v ≤ 2.5.
Considering first fit 2B, we can compare the numerical
values of exp ð1

2
bv2 − 1

3
cv3Þ, and its version truncated at

NNLO, namely 1þ 1
2
bv2 þ 1

8
b2v4 − 1

3
cv3. When we vary

v from 1.5 to 2.5, the exponential and its truncated version
take values ranging from 3.4 to 15, respectively, 3.4 to 13.
The differences (taking the correlations into account) are
−0.05ð8Þ and 2(4), respectively, so that the exponential
and truncated forms are consistent with each other. The
situation is somewhat different for fit IID, where the
smallness of both b and its relative error allows for a more

TABLE II. Fits ofM2
π=F2

π and aFπ to γ-dChPT, the extension of
LO dChPT discussed in Sec. II C. The “omitted” row shows bare
mass values from the set (3.1) which are not included in the fit, if
any.

A B C D

Omitted � � � 0.1 0.1, 0.08 0.1, 0.08

χ2=dof 20.7=14 11.5=12 10.0=10 14.8=11
p value 0.11 0.48 0.44 0.19

f̂π 0.0104(4) 0.0102(5) 0.0101(9) 0.0085(5)

d̃1 0.0506(10) 0.0512(12) 0.0516(23) 0.0559(17)
− logðad2Þ 10.1(2) 10.4(2) 10.6(3) 9.9(1)
γ0 1.69(23) 2.11(31) 2.29(57) 0.85(5)
b 0.97(22) 1.38(31) 1.57(67) 0.12(2)
c 0.20(5) 0.30(8) 0.35(16) � � �

FIG. 1. Upper panels: Fit results forM2
π=F2

π (left panel) and aFπ (right panel) using fit 2B. Lower panels: similar, using fit 2D. Black
points are fitted data, while magenta points were not included in the fit.
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precise comparison. Varying again v from 1.5 to 2.5,
exp ð1

2
bv2Þ varies from 1.15 to 1.48, while the expansion

to NLO, 1þ 1
2
bv2, varies from 1.14 to 1.39. The (corre-

lated) differences are 0.010(4) and 0.09(3), respectively.
Thus, while the behavior of both forms is qualitatively
similar, the differences are statistically significant. Fits with
the truncated version give results consistent with fits 2B
and 2D, but with lower p values.
Without more data it is difficult to decide which fit in

Table II is the preferred one. Clearly, unless the two
heaviest masses are dropped, c must be kept in the fit.
Given its (conjectural) role as an NNLO parameter, it is to
be expected that eventually c will be needed to describe the
data as the mass range is increased. Still, we cannot rule out
that the main reason why fit 2D does not accommodate the
two heaviest masses is large scaling violations at those
mass values.
In all fits where the parameter c is present, it is always

small compared to b, consistent with the conjectured
hierarchy (2.43). However, in the same fits, one cannot
say that b is small compared to γ0. By contrast, in fit 2D,
where c ¼ 0, also b is clearly small compared to γ0. The
most appealing scenario thus appears to be the following.
We exclude the two largest fermion mass values, because
they require going to (at least) NNLO in the EFT
expansion, and/or because they are afflicted by too large
scaling violations. The remaining mass range may be
amenable to an NLO dChPT fit,23 for which fit 2D is our
closest substitute.

D. Taste splittings

We now turn to fits which also include the taste splittings
(2.52), i.e., fits of M2

π=F2
π , aFπ , and ΔA;T;V;S to γ-dChPT,

augmented by Eq. (2.53). Our fits are limited to the smaller
ensemble set (3.2), where the taste-split pion masses were
measured.
We show five different fits in Table III. Fit 3A includes

all the parameters: the basic γ-dChPT parameters of
Sec. III C, namely af̂π, d̃1, logðad2Þ, γ0, b, and c, as well
as all eight taste-splitting parameters of Eq. (2.53). Data
from all seven ensembles in the set (3.2) are included in
the fit. The p value is very high. The results for the six basic
γ-dChPT parameters are consistent with fit 2B.24 As for the
taste-splitting parameters, most of them, namely, γ1;3;6 and
logC1;3;6, are not well determined by the fit. We conclude
that fit 3A gives an excellent description of the data, but the
data are not precise enough to determine all parameters in
the fit.
We next consider fits omitting poorly determined param-

eters. Among the taste-splitting parameters, only logC4 and
γ4 were determined with good precision. As for C1, C3, and
C6, if we take their errors seriously, using them as 1σ
bounds, these parameters are “allowed” to be very small
relative to C4 (by factors ∼2 × 103, ∼10, and ∼105,
respectively). Setting C1 ¼ C3 ¼ C6 ¼ 0, we obtain fit
3B. This is a good fit, even though its p value is much
smaller than fit 3A, as one would expect. The results of
fits 3A and 3B are in very good agreement. The dominance
of the taste splittings generated by the C4Eðγ4Þ term is
consistent with the results we obtained for the LSD

TABLE III. Fits ofM2
π=F2

π , aFπ , and taste splittings to γ-dChPT. The “omitted” row shows bare mass values from
the set (3.2) which are not included in the fit, if any. For description see text.

A B C D E

Omitted � � � � � � � � � � � � 0.08

χ2=dof 17.5=28 38.2=34 29.5=29 50.1=35 22.9=29
p value 0.94 0.28 0.44 0.05 0.78

f̂π 0.0102(5) 0.0105(4) 0.0095(4) 0.0099(4) 0.0085(6)

d̃1 0.0512(12) 0.0503(10) 0.0526(12) 0.0514(10) 0.0562(20)
− logðad2Þ 10.3(2) 10.2(2) 9.68(8) 9.65(7) 9.98(13)
γ0 1.85(27) 1.81(26) 0.82(3) 0.86(2) 0.92(3)
b 1.12(28) 1.09(27) 0.121(17) 0.142(10) 0.154(17)
c 0.24(7) 0.23(7) � � � � � � � � �
− logC1 10(10) � � � −6ð45Þ � � � � � �
γ1 4(6) � � � 14(29) � � � � � �
− logC3 11(4) � � � 8(8) � � � � � �
γ3 3(2) � � � 5(5) � � � � � �
− logC4 12.3(3) 12.1(2) 12.6(3) 12.3(2) 12.5(3)
γ4 1.29(10) 1.36(8) 1.26(10) 1.34(8) 1.42(11)
− logC6 18(6) � � � 18(4) � � � � � �
γ6 0(2) � � � 0(2) � � � � � �

23With the caveats discussed in Sec. III B. 24Note that the ensemble set (3.2) does not include am0 ¼ 0.1.
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data [33], as well as with the familiar taste splittings found
in QCD.
In Sec. III C we saw that the parameter c can be omitted

if the fermion masses am0 ¼ 0.1 and 0.08 are not included
in the fit. While am0 ¼ 0.08 is present in the ensemble set
(3.2), we also repeated fits 3A and 3B while setting c ¼ 0,
obtaining fits 3C and 3D, respectively. Finally, fit 3E is
similar to fit 3D, except that the am0 ¼ 0.08 ensemble is
not included. Fit IIIC, where we set c ¼ 0 but keep all the
taste-splitting parameters, is very good. Setting both c ¼ 0
and C1 ¼ C3 ¼ C6 ¼ 0 leads to a relatively low p value in
fit 3D. After dropping the am0 ¼ 0.08 ensemble, in fit 3E
the p value is again very high.
Our results for af̂π, d̃1, and logðad2Þ are fairly consistent

in all the fits reported in Tables II and III. The values of the
parameters defining the function γm are consistent among
the fits where c ≠ 0: fits 2A, 2B, 2C, 3A, and 3B. In the fits
with c ¼ 0 the values of γ0 and b are different, but again
consistent across this group: fits 2D, 3C, 3D, and 3E. The
values of the taste-splitting parameters logC4 and γ4 are
consistent in all the fits of Table III, while the (poorly
determined) values of the remaining taste-splitting param-
eters are consistent between fits 3A and 3C.
In fit 3C, LO dChPT has been minimally extended

(within the framework of γ-dChPT) to include an NLO
correction to the function γm. This fit gives an excellent
description of the ensemble set (3.2) with taste splittings
included; the parameter c is not needed. We thus consider
fit 3C to be the preferred fit from Table III. We plot the taste
splittings of this fit in Fig. 2. A caveat is that, even though all
the taste-split pion masses were measured in Ref. [4], the
data are not precise enough to determine all taste-splitting
parameters.25 We recall that the QCD taste splittings are

essentially independent of the fermion mass [34,40].26

By contrast, as for the LSD data [33], also in the KMI mass
range the taste splittings vary with the fermion mass. This
behavior can be successfully described in dChPT, where
the scale dependence of the taste-breaking operators gives
rise to mass dependent tree-level taste splittings, through the
factors EðγiÞ in Eq. (2.53).

E. Scale dependence of γm
The anomalous dimension function γm obtained from

two of the fits of Table II is shown in Fig. 3. The blue band
represents fit IIB, where γm ¼ F0ðvÞ is quadratic in v
[Eq. (2.46)], while the magenta band represents fit 2D,
where γm is linear in v. With Eq. (2.8b), we take the
argument of γm to be v ¼ logðaFπ=af̂πÞ, and then we
plot γm as a function of aFπ . The two γm functions agree
well in most of the interval containing the fitted data,
0.045≲ aFπ ≲ 0.12. The good agreement deteriorates
toward the lower end of the interval, below which these
functions diverge from each other. If we would overlay the
(constant) results of each window fit from Sec. III B as a set
of horizontal bands (each stretching over its corresponding
range of aFπ), these bands would be consistent with the
blue and magenta bands in that interval.27

Figure 3 also shows the value γ� ¼ 0.936ð19Þ obtained
from our fits of the LSD data to LO dChPT [33], as a gray
horizontal band. The LSD mass range is lower than the
KMI range, and the (generalized) hyperscaling behavior we

FIG. 2. Fit 3C of the taste splittings ΔA;T;V;S of Eq. (2.53), as a
function of am0. From top to bottom: ΔS, ΔV , ΔT , and ΔA.

0.02 0.04 0.06 0.08 0.10 0.12
0.0

0.5

1.0

1.5

2.0

FIG. 3. The running mass anomalous dimension γm, obtained
from fit 2B (blue band) and fit 2D (magenta band), plotted as a
function of aFπ (see text). The gray horizontal band is
γ� ¼ 0.936� 0.019, from our fit to the LSD data [33]. The
fitted KMI data have values of aFπ between 0.045 and 0.12.

25By contrast, the LSD data, which we fitted in Ref. [33],
contains only Mμ5 and Mμν [3].

26Thanks to the dominance of C4, the QCD taste splittings are
also roughly equal to each other.

27We do not show window fits in Fig. 3 because the different
bands become visually difficult to see.

EXPLORATIONS BEYOND DILATON CHIRAL PERTURBATION … PHYS. REV. D 102, 114507 (2020)

114507-13



have observed implies that the LSD range of Fπ should also
be lower than the corresponding KMI range, in physical
units. Equivalently, the LSD values of aFπ , properly
converted to KMI lattice units, should lie to the left of
the KMI range of aFπ in Fig. 3.
Since the LSD data are successfully described by a

constant γm ¼ γ�, we expect that also in the chiral limit γm
will remain constant, at a value consistent with γ�. The
continuity of γm as a function of Fπ thus requires that, as Fπ

is lowered from the KMI range into the LSD range, γm will
rise to a value consistent with γ�, and then stay roughly
constant all the way to the chiral limit. It is intriguing that
the strong dynamics of theNf ¼ 8 system might induce this
behavior of γm.

28 Figure 3 shows that, when extrapolated
below the KMI range, the quadratic γm of fit 2B overshoots
γ�, while the linear γm of fit 2D undershoots it. The desired
behavior of γm over the combined KMI and LSD ranges
cannot be described by simple ansatzes such as the ones we
have used. One cannot rule out, however, that the combined
LSD and KMI mass ranges could be described by including
higher orders in dChPT systematically.
Clearly, an investigation of the combined LSD and KMI

mass ranges would be extremely interesting. However, this
is just not possible with the existing datasets. We already
pointed out that the LSD and KMI datasets were each
produced at a single lattice spacing. Moreover, the lattice
actions used by LSD and by KMI differ in their details, and
scaling violations can potentially differ significantly
between the two lattice actions and axial currents. This
means that the only way to reliably compare these results is
by first taking the continuum limit separately for the LSD
lattice action and for the KMI lattice action. The minimal
requirement to make this possible is a second set of data at a
different lattice spacing, for each lattice action.29

We have attempted a comparison of the LSD and KMI
lattice scales, using t0;ch, the chiral-limit value of the
gradient-flow scale t0 [42], which we have determined
for the LSD dataset in Ref. [33]. The comparison is
deficient for several reasons. First, unlike in ordinary
ChPT [43], dChPT does not predict the behavior of t0
as a function of the fermion mass [33], so the best we can
do is a phenomenological fit. Second, usually the gradient
flow scale (or its chiral limit) is used to compare the lattice
spacings of ensembles generated with different bare cou-
plings, but with the same lattice action. By contrast, here
we are comparing results obtained using two different
lattice actions, hence the meaning of the comparison is
less clear. Finally, there are also scaling violations in the
lattice observables used to extract t0, as well as in the

gradient-flow equation. KMI used two lattice definitions
for t0 which should agree in the continuum limit, but which
consistently differ by some 15% over the entire KMI mass
range; we do not have equivalent information about
uncertainties associated with the LSD data. With all these
caveats in mind, our findings suggest that the ratio r ¼
aðKMIÞ=aðLSDÞ is smaller than one. Using Eq. (3.1)
together with Eq. (4.5) below, it follows that the KMI
mass range is indeed higher than the LSD mass range, in
agreement with the physical picture reflected in Fig. 5 of
Ref. [2]. But, we are unable to turn this conclusion into a
more quantitative statement.
We close this sectionwith a comment.As discussed above,

our experimentation with t0 (and its chiral extrapolation)
suggests that r < 1. Now, an alternative way to estimate r
would be to take advantage of the fact that f̂π , the chiral-limit
value of the pion decay constant, is a physical observable.
Expecting

ffiffiffi
2

p
f̂πðLSDÞ ≈ f̂πðKMIÞ in physical units,30 it

follows that af̂πðKMIÞ=ð ffiffiffi
2

p
af̂πðLSDÞÞ ≈ r. The reason

why we only expect an approximate equality betweenffiffiffi
2

p
f̂πðLSDÞ and f̂πðKMIÞ is the different scaling violations

of the two lattice actions. In reality, using the value of
af̂πðLSDÞ from Ref. [2], and taking af̂πðKMIÞ ∼ 0.01, we
find af̂πðKMIÞ=ð ffiffiffi

2
p

af̂πðLSDÞÞ ∼ 10, in stark conflict with
the estimate r < 1 obtained from the gradient flow scale. It is
unlikely that scaling violations per se can account for this
inconsistency. The problem must be related to the long
extrapolation to the chiral limit inherent in the extraction of
af̂π . It does not necessarily imply that (γ-)dChPT cannot be
trusted. The factor evðmÞ ¼ Fπ=f̂π is very sensitive to m,
which makes a long extrapolation to the chiral limit much
more difficult than in the case of QCD. For at least one of the
datasets our fit result for af̂π is likely to contain a large, and
unaccounted for, source of systematic error. A comparison of
the values of ad2 obtained from the two datasets reveals a
similar and, in fact, more severe problem, which presumably
has a similar source, given thatd2 ¼ f̂2π=ð2B̂πÞ.We comment
that in order to compare aB̂π between the LSD and KMI
lattice scales we have to apply an RG transformation, but
once again, it is hard to see how such a transformation would
suffice tomatch thevalues ofd2 found in the two simulations.

IV. THE Δ CLASS OF DILATON POTENTIALS

So far, we have considered a model modification of the
LO dChPT form of Lm, based on the observation that the
coupling of the underlying theory may start running at
the physical scale determined by a growing fermion mass,
thereby inducing a varying mass anomalous dimension as
well. In this section we turn to a class of modifications to
the dilaton-potential term Ld. Alternate forms of the dilaton

28A γm function that saturates to a constant value at strong
coupling was observed in the SU(2) theory with two adjoint Dirac
fermions [41].

29To make sure that the same physical mass range is covered,
one can, for example, monitor the values of some observable,
such as a hadron mass or a decay constant, in units of

ffiffiffiffi
t0

p
.

30The factor of
ffiffiffi
2

p
is due to different normalization con-

ventions.
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potential were first applied to the LSD data in Ref. [28].
In Ref. [32] a class of dilaton potentials LΔ was proposed,
defined by [compare Eq. (2.6)]

LΔðτÞ ¼ f̂2τ B̂τe4τVΔðτÞ; ð4:1aÞ

VΔðτÞ ¼
c1

4 − Δ

�
1 −

4

Δ
eðΔ−4Þτ

�
; ð4:1bÞ

where Δ is a new free parameter.31 We have translated the
notation of Ref. [32] to our notation. In the limit Δ → 4, the
potential Ld of Eq. (2.6a) is recovered. For Δ ¼ 2, LΔ
becomes the linear σ-model potential considered in
Ref. [8]. We will refer to the low-energy Lagrangian with
Ld replaced by LΔ as Δ-dChPT.
Applying Δ-dChPT to the LSD data, Ref. [32] con-

cluded that these data appear to favor a value of Δ around
3.5, with a large uncertainty. Correlations in these data were
not taken into account [32]. Moreover, correlations which
occur because of the appearance of Fπ in all three equations
fitted in Ref. [32], as well as the appearance ofMπ in two of
them, apparently were not taken into account either. In
Sec. IVAwe begin by collecting the expressions needed to
fitΔ-dChPT. In Sec. IV B we revisit the determination of Δ
using the LSD data, taking all correlations into account.
This analysis departs from the framework of LO dChPT
(Sec. II A) only by replacing the dilaton potential Ld by LΔ.
At this stage the mass anomalous dimension is held fixed;
cf. Eq. (2.2b). Then, in Sec. IV C, we explore fits of the
KMI data to the Δ class of potentials. As in the previous
section, we consider both fixed-γm fits to subsets of the
KMI data, as well as fits with a varying γm to the entire
KMI dataset. We summarize our findings in Sec. IV D.
Unlike the modification of Lm to accommodate a

running γm, we are not aware of a concrete physical
motivation to replace Ld by the more general form LΔ.
A closely related question is whether Δ-dChPT is the
leading order in a systematic low-energy expansion for an
arbitrary value of Δ.
The potential Ld, Eq. (2.6), is based on the systematic

power counting developed in Ref. [17]. Since Ld corre-
sponds to the limit Δ → 4 in Eq. (4.1), it follows by
continuity that there must exist a neighborhood of Δ ¼ 4
where the dChPT systematic expansion is still applicable.
For arbitrary Δ, a power counting was proposed in
Ref. [32]. We prove in Appendix B that the arguments
given in Ref. [32] are not correct. Δ-dChPT, i.e., the low-
energy Lagrangian consisting of Eq. (2.1) with Ld replaced
by LΔ, should thus be considered to be a model.

A. Fitting data to LΔ

For the case of a constant γm ¼ γ�, combining Eq. (4.1)
with Lm of Eq. (2.2b), one finds the saddle-point equation
relating v to m,

m ¼ d2
d1

1 − eðΔ−4Þv

4 − Δ
eð1þγ�Þv: ð4:2Þ

It is then straightforward to derive the relations

M2
π

F2
π
¼ 1

d1

1 − eðΔ−4Þv

4 − Δ
≡ hΔðmÞ; ð4:3aÞ

Fπ ¼ f̂πev ð4:3bÞ

¼
�

d0m
hΔðmÞ

� 1
1þγ�

; ð4:3cÞ

M2
τ

F2
π
¼ d3ð1þ ðΔþ γ� − 3Þd1hΔðmÞÞ; ð4:3dÞ

where we used the definitions (2.10).
In the case of a varying γm, Eq. (4.3b) is still applicable,

while combining Eq. (4.1) with Lm of Eq. (2.42), Eqs. (4.2)
and (4.3a) generalize to

m ¼ d2
d̃1

1 − eðΔ−4Þv

4 − Δ
evþFðvÞ

3 − γm
; ð4:4aÞ

M2
π

F2
π
¼ 1

d̃1ð3 − γmÞ
1 − eðΔ−4Þv

4 − Δ
; ð4:4bÞ

where γm is given in Eq. (2.45) and d̃1 is defined
in Eq. (2.48).
We now turn to fits of the LSD and KMI data, in order to

explore to what extent they constrain the value of Δ. We
emphasize again that this investigation is empirical, as no
systematic power counting is available for this model for
arbitrary values of Δ.

B. The LSD data

Data reported in Ref. [3] includes results at five different
fermion masses,

ami ∈ f0.00125; 0.00222; 0.005; 0.0075; 0.00889g: ð4:5Þ

All ensembles have the same bare coupling, and, in a mass-
independent scheme, the same lattice spacing [33]. We
fitted the LSD data to LO dChPT in Ref. [33]. Here, we
repeat some of those fits replacing Ld by LΔ, keeping Δ as
a free parameter. Our results are shown in Table IV. These
fits correspond to four fits presented in Ref. [33]: Fits 4A
and 4B are to be compared to the fits shown in Table 1 of
Ref. [33], while fits 4C and 4D are to be compared with the31LΔðτÞ is bounded from below for any −∞ < Δ < ∞.
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third column of Table 3 and the second column of Table 4
in Ref. [33].
As discussed in great detail inRef. [33], it is not possible to

fit all parameters in the taste-breaking sector with the
available LSD data. Here we kept those taste-breaking
parameters that gave rise to the best fits of Ref. [33].
Furthermore, in Ref. [33] we argued that four-ensemble fits,
which exclude the ensemble with the largest fermion mass,
are better behaved. While the five-ensemble fits reported in
Table IV already have good p values, again we find that p
values for the four-ensemble fits are significantly better.
Parameter values for γ� and logd0 are in good agreement

with the corresponding fits in Ref. [33]. The parameters d1
and d3 are very poorly determined by the fits; especially by
those with four ensembles. This is no surprise, as d1 and d3
relate directly to the dilaton potential LΔ, in which now a
new parameter, Δ, has been introduced. The results for the
taste-breaking parameters are in reasonable agreement with

Ref. [33] for the five-ensemble fit and in good agreement
for the four-ensemble fit. By holding Δ fixed in the fit, we
verified that in the limit Δ → 4 the results of Ref. [33] are
reproduced.
The parameter Δ itself is reasonably well determined by

each fit. However, there is a visible difference between the
four-ensemble and five-ensemble fits. From the four-
ensemble fits, we conclude that Δ ¼ 3.5ð7Þ. This is
consistent with the hypothesis that dChPT, which predicts
Δ → 4, is the correct low-energy EFT. The linear σ-model
value,Δ ¼ 2, is disfavored. By contrast, the values found in
the five-ensemble fits average to 2.8(7). This is 1.7σ away
from Δ → 4, and, in fact, between the two options, it
slightly favors the linear σ-model value.

C. The KMI data

We next turn to fits of the KMI data, with LΔ replacing
Ld. We first consider again window fits similar to those of
Table I, but now withΔ as an additional free parameter. The
results are reported in Table V. The fits are reasonably
consistent with Δ ¼ 4, while the other parameters are
generally consistent between Tables V and I. As before,
a constant γm is not sufficient to describe the KMI data over
the full mass range. However, while γ� varies with the mass
range selected in the fit, Δ does not. If we compare the
values of Δ between two of the fits in Table V, these values
are always consistent within the smaller of the two errors
(with the exception of the second fit, for which Δ has an
anomalously small error). The first and last values, 3.8(5)
and 4.0(6), coming from the lowest and highest mass
ranges, are statistically independent, in agreement with
Δ ¼ 4 and with each other.
As in Sec. III, our next step is to consider fits to all, or

most, of the KMI data, with Lm of Eq. (2.42), and a varying
γm as defined in Eq. (2.46). As before, this introduces two
more parameters (b and c) into the fits, for a total of seven
parameters. We will refer to this flavor of the low-energy
Lagrangian as γΔ-dChPT.
In Table VI we show a scan in Δ: at each chosen value of

Δ, we fit the other six parameters. The fit for Δ ¼ 3.9999
coincides with fit 2A, as one would expect. If we decrease
Δ, we find that the p value rapidly decreases, dipping

TABLE IV. Fits of the LSD data to Δ-dChPT. Fits C and D
include taste breaking, while fits A and B do not. The “omitted”
row shows bare mass values from the set (4.5) which are not
included in the fit, if any.

A B C D

Omitted � � � 0.00889 � � � 0.00889

χ2=dof 8.72=9 2.50=6 15.18=13 5.52=8
p value 0.56 0.87 0.30 0.70

Δ 2.8(7) 3.5(7) 2.7(6) 3.5(7)
γ� 0.935(19) 0.936(19) 0.933(19) 0.937(19)
log d0 1.94(6) 1.93(6) 1.94(6) 1.93(6)
d1 0.042(20) 0.083(84) 0.037(15) 0.073(66)
− logðad2Þ 11.6(9) 12.9(2.5) 11.3(7) 12.6(2.1)
d3 17(9) 9(9) 20(8) 10(9)
− logC1 � � � � � � � � � � � �
γ1 � � � � � � � � � � � �
− logC3 � � � � � � 9.7(6) 10(2)
γ3 � � � � � � 2.0(1) 2.4(7)
− logC4 � � � � � � 8.3(7) 10(2)
γ4 � � � � � � 1.96(6) 2.1(4)
− logC6 � � � � � � 36(7) 17(11)
γ6 � � � � � � −11ð4Þ 0(3)

TABLE V. Fits of the KMI data to Δ-dChPT (with a constant γm ¼ γ�), with selections of five successive fermion
masses in Eq. (3.1), shown in the top row.

Range 0.012–0.04 0.015–0.05 0.02–0.06 0.03–0.07 0.04–0.08 0.05–0.1

χ2=dof 9.16=5 8.11=5 4.81=5 3.42=5 3.69=5 3.82=5
p value 0.10 0.15 0.44 0.64 0.59 0.57

Δ 3.8(5) 4.4(1) 4.0(5) 3.2(8) 3.3(8) 4.0(6)
γ� 0.608(8) 0.590(10) 0.543(12) 0.535(12) 0.524(9) 0.498(13)
af̂π 0.008(7) 0.0000(2) 0.009(10) 0.025(12) 0.027(13) 0.013(18)

d̃1 0.047(35) 2(15) 0.056(59) 0.019(12) 0.019(12) 0.044(56)
− logðad2Þ 9.7(1.3) 20(24) 9.5(1.7) 7.8(7) 7.7(8) 8.8(2.1)
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below 0.01 for Δ < 3.8. We verified that the p value keeps
decreasing down to Δ ¼ 2 (where the p value is of order
10−30). If we increaseΔ above 4, the p value increases until
Δ reaches 4.5, where the p value appears to start decreasing
again. However, we found that fits with Δ ≥ 4.5 become
very difficult. This is reflected in the very large errors in the
six fit parameters: for Δ ¼ 4.5, essentially all of them are
not determined by the fit. We have repeated the fits of
Table VI omitting the am0 ¼ 0.1 ensemble, or the am0 ¼
0.1 and 0.08 ensembles, and we have also redone such fits
setting c ¼ 0 (as in fit 2D). The conclusions are always the
same as for the fits shown in Table VI. The fit at Δ ¼
3.9999 is consistent with the corresponding fit in Table II;
values of Δ below roughly 3.8 are strongly disfavored; and
the fit starts to deteriorate at Δ ¼ 4.5. If we attempt to
includeΔ as a parameter in the fit itself (instead of scanning
over Δ) fits appear to be unstable.
Given the difficulty fitting the KMI data with the LΔ

potential, we have not attempted to include taste splittings
in the KMI case.

D. Discussion

Taking the fits of the LSD and KMI data together, it is
clear that no very precise statement about the value ofΔ can
be made. The KMI data appear to exclude the σ-model
value Δ ¼ 2. dChPT, which corresponds to Δ → 4 with
fixed γm ¼ γ�, is consistent with the fits shown in Tables IV
and V. An exception is the second window fit, fit 5B, which
yields a result with a rather small error, Δ ¼ 4.4ð1Þ. But
clearly, this result does not account for the variation of Δ
across all fits shown in Tables IV, V, and VI.
Our results are consistent with those of Ref. [32]. The

main difference is that the KMI data, which were not
considered in Ref. [32], present a much stronger lower
bound on Δ.
As we show in Appendix B, for values of Δ not close to

4, no power counting exists for the low-energy theory with
Ld replaced by LΔ of Eq. (4.1). However, we do not wish to
imply that attempts to understand data in terms of models
are not interesting. Fits to models, including Δ-dChPT
(with Δ not constrained to be close to 4), can provide a

valuable “stress test” of dChPT. This is why we considered
fits of the LSD and KMI data to Δ-dChPT; Ref. [32] can be
seen as a similar exploration of only the LSD data.
Fits of the LSD data, comparing, in particular, the values

Δ ¼ 2 and Δ → 4, were considered also in Ref. [8].32

There, it was found that both dChPT and Δ-dChPT with
Δ ¼ 2 provide good fits to data using all five of the LSD
ensembles. This finding agrees with our fits in Table IV: fits
4A and 4C are consistent with Δ ¼ 2, but are less than ∼2σ
away from Δ ¼ 4.
In summary, a precise determination of the favored value

of Δ is not possible with presently available data. Taking
the results based on fits to both the LSD and KMI data
together, we arrive at an estimated range for Δ,

3.5 < Δ < 4.5: ð4:6Þ

Our lower bound is based on the four-ensemble fits to the
LSD data, which favor a value around Δ ∼ 3.5, combined
with the γΔ-dChPT scan of Table VI, which strongly
disfavors values below 3.8. Any fit of the KMI dataset must
somehow account for the running of γm. Including higher
orders systematically is not an option here, because, as we
prove in Appendix B, the claim of Ref. [32] that Δ-dChPT
admits a systematic expansion is incorrect. The model
alternatives are to use a fixed value of γm while limiting the
mass range as in the “window” fits, or else to use an
explicitly varying γm function. As for the window fits,
Table V shows that Δ is rather insensitive to the mass range
in the fit. Also, while both the five-ensemble fits to the LSD
data and some of the window fits to the KMI data allow for
Δ < 3.5, the fits of Table VI to the KMI data strongly
disfavor Δ < 3.8. Based on all fits together, the σ-model
value Δ ¼ 2 appears to be excluded. Once again, the
caveats discussed in the previous section regarding the
LSD and KMI datasets, and, in particular, the lack of

TABLE VI. Fits ofM2
π=F2

π and aFπ to γΔ-dChPT, for fixed values of Δ. All fits have 14 degrees of freedom. The fit with the asterisk
may not have fully converged, and its χ2 value is an upper bound to the true minimum.

Δ χ2 p value af̂π d̃1 − logðad2Þ γ0 b c

4.5 11.0* 0.69 0.00004(10) 2.2(2.9) 19(17) 0.2(8.0) −0.3ð2.1Þ −0.03ð12Þ
4.4 10.2 0.75 0.00159(31) 0.237(23) 15(1) 2.33(79) 0.73(41) 0.07(5)
4.3 12.0 0.61 0.00384(39) 0.123(6) 12.6(5) 2.04(49) 0.81(32) 0.11(5)
4.2 14.4 0.42 0.00613(42) 0.084(3) 11.4(3) 1.88(35) 0.87(28) 0.14(5)
4.1 17.3 0.24 0.00831(43) 0.063(2) 10.6(2) 1.78(28) 0.93(25) 0.17(5)
3.9999 20.7 0.11 0.01034(43) 0.051(1) 10.1(2) 1.69(23) 0.97(22) 0.20(5)
3.9 24.7 0.04 0.01222(42) 0.0423(7) 9.7(1) 1.62(20) 1.00(21) 0.23(5)
3.8 29.3 0.01 0.01396(41) 0.0363(5) 9.4(1) 1.56(17) 1.03(19) 0.26(5)

32See also Ref. [9] for related studies of the SU(3) theory with
two sextet fermions, which also has a light flavor-singlet scalar.
We recall, however, that dChPT is strictly speaking not applicable
to this theory, as the Veneziano limit can be taken only for
fermions in the fundamental representation.
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information about scaling violations, apply also to our
conclusions in this section.

V. CONCLUSION

Our main goal in this paper was to confront the EFT
framework provided by dChPT with the KMI data for the
eight-flavor SU(3) gauge theory [4]. The KMI simulations
were performed at larger fermion masses than the LSD ones
[3], taking the theory further away from conformality.
Hence, even with the successful application of LO dChPT
to the LSD data, which we reported on in Ref. [33], there is
no guarantee that LO dChPT can also be applied to the
KMI data.
Indeed, we found that the full fermion-mass range of the

KMI data cannot be fitted to LO dChPT. The natural next
step would be to attempt an NLO fit in dChPT. However, as
we explained in Sec. III, this is not feasible with presently
available data. First, the large number of parameters
involved in any NLO dChPT fit requires extensive pre-
cision data for a successful fit. Moreover, the KMI dataset
(and, likewise, the LSD dataset) has only a single lattice
spacing, making a continuum extrapolation impossible.
Instead, we introduced γ-dChPT, a model extension of

LO dChPTwith a scale-dependent mass anomalous dimen-
sion, which can be interpreted as arising from partially
resumming higher orders in the EFT expansion. We found
that γ-dChPT provides a successful description of the KMI
data over the entire mass range.
Given the success in describing the LSD data using LO

dChPT [33], and the KMI data using γ-dChPT with a
relatively simple ansatz for the γm function, the question
arises whether γ-dChPT can be used to fit the LSD and
KMI data simultaneously. Over the KMI mass range, γm
would then have to increase as the fermion mass is
decreased, eventually saturating to a constant when reach-
ing the lower LSD mass range (see Fig. 3). Once again,
however, the inability to take the continuum limit makes it
impossible to carry out this program at this time. The lack
of information on the lattice spacing dependence is even
more severe when trying to consider the LSD and KMI
datasets together, because they were produced with differ-
ent lattice actions, and thus, their scaling violations for any
given physical observable are different functions of the
corresponding lattice spacing.
We also considered Δ-dChPT—another generalization

of LO dChPT in which the dilaton potential is replaced by a
class of potentials depending on a new parameter Δ. We
emphasize that Δ-dChPT does not allow for a systematic
power counting, and should thus be considered a model,
except in the limit Δ → 4 where dChPT is recovered.
Δ-dChPTwas applied to the LSD data before [32], where it
was found that it is difficult to determine the parameter Δ
from these data. We confirmed this result, but found that the
KMI data allow us to better constrain the value of Δ. We
used both the “window” fits in which Δ-dChPT is applied

to subsets of the KMI ensembles, as well as a combination
of the two extensions of LO dChPT, with the Δ class of
dilaton potentials together with a varying γm. We concluded
that the preferred range of our combined analysis of the
LSD and KMI data is 3.5 < Δ < 4.5. This is centered
around Δ ¼ 4, where Δ-dChPT reduces to LO dChPT.
Recently, LO dChPT has also been successfully applied

to the light sector of the SU(3) gauge theory with four light
and six heavy flavors [10]. dChPT provides for a systematic
treatment of the pNGBs, the pions and the dilaton, of a
near-conformal gauge theory, but it does rest on certain
assumptions [17,20]. These initial successes are thus
encouraging. We hope that, in the future, more extensive
and refined data will become available, allowing for further
and more stringent tests of dChPT.
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APPENDIX A: SCALE SETTING PRESCRIPTION

Any analysis of lattice data requires a scale setting
prescription, and the basic choice is between mass-
independent or mass-dependent prescriptions. In this paper,
as in Ref. [33], we opted for a scale-independent prescrip-
tion, and confirmed the self-consistency of this choice by
checking that the values of aB̂π on all ensembles agree
within error (see Sec. III).
Here we discuss the alternative of using a mass-depen-

dent prescription. In QCD simulations it is common
nowadays to use the gradient flow scale t0 for scale setting
[42]. In particular, the ensemble value of t0 can be used for
a mass-dependent prescription. What makes t0 particularly
convenient for setting the scale is that it can be determined
with high precision, and it admits a chiral expansion, with
nonanalytic terms in the quark mass entering only at NNLO
[43]. By contrast, as we showed in Ref. [33], in dChPT
there is no (useful) chiral expansion for t0. This implies that
one cannot derive expansions for dimensionless quantities
such as

ffiffiffiffi
t0

p
Mπ and

ffiffiffiffi
t0

p
Fπ using dChPT.

If we are interested in dChPT fits, we are thus unable to
use t0 for scale setting. Instead, we may consider using a
physical quantity such as Fπ for a mass-dependent scale
setting prescription. As explained in Sec. II D, with our
mass-independent scale setting, the basic fit has six
parameters, two of which, namely d2 and f̂π , have a mass
dimension equal to one. On each ensemble, we fit aFπ and
M2

π=F2
π to Eqs. (2.8b) and (2.50), respectively. In addition,

we treat the fermion mass am as a data point with a small
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fictitious error, in order to determine the expectation value v
of the dilaton field on each ensemble, via Eq. (2.47).
If we use Fπ for mass-dependent scale setting, we may

still fit M2
π=F2

π to Eq. (2.50) as before. In addition,
combining Eqs. (2.8b) and (2.47), we may fit m=Fπ as

m
Fπ

¼ d2
f̂π

1

d̃1ð3 − γmÞ
veFðvÞ; ðA1Þ

and use it to determine v, now as a function of m=Fπ . This
procedure gives us access only to the ratio d2=f̂π , instead of
to ad2 and af̂π separately, as in the fitting procedure of
Sec. II.D.
We tried to repeat the fits from Table II, using Eqs. (2.50)

and (A1). The result was that almost all fit parameters
remained completely undetermined. The nominal fit quality
was always very high (p value ≥ 0.97), consistent with the
failure of the fits to resolve the parameters.
We believe the problem is caused by the much smaller

number of degrees of freedom which are available for the
mass-dependent fitting procedure. As an example, consider
fit 2A, which uses all 10 ensembles and has 2 × 10 − 6 ¼
14 degrees of freedom. As noted in Sec. III C, since the vi’s
are determined in terms of the ami’s using Eq. (2.47), this
does not change the number of degrees of freedom. By
contrast, within the mass-dependent fitting procedure, we
have in total only 20 relations to determine both the five fit
parameters and the ten auxiliary vi’s. This leaves us with
just 5 degrees of freedom, which apparently is just not
enough to resolve the fit parameters.
Although we were unable to actually perform a fit with a

mass-dependent prescription for scale setting, we may
consider the following “thought experiment.” Assume that
the data allowed for fits with a mass-dependent prescrip-
tion, and that the results of those fits are in agreement with
Table II. This would mean, in particular, that the value of
the new dimensionless fit parameter, d2=f̂π, obtained from
fitting Eq. (A1) is consistent with the results for af̂π and
ad2 reported in Table II. Now, while we determine all
parameters in the large-mass regime, which is where both
the LSD and KMI data are, f̂π and d2 are LECs that
characterize the massless theory. As we discussed in
Sec. III E, the values of af̂π and ad2 extracted from the
LSD and the KMI datasets appear to be in conflict, both
with the chiral limit values of t0 (determined from a
phenomenological fit) and with each other. It is interesting
to check what is the situation for the dimensionless ratio
d2=f̂π . Comparing the value of this ratio using the results in
Table II to those from Ref. [33] reveals that there is still a
significant conflict, of roughly the same size as for af̂π,
though smaller than for ad2. We conclude that restricting
ourselves to a mass-dependent scale setting prescription
would not by itself alleviate the problem of the long
extrapolation from the large-mass regime to the chiral limit.

APPENDIX B: POWER COUNTING

In Ref. [32] it was proposed that Δ-dChPT—in which
the potential Ld of Eq. (2.6a) is replaced by LΔ of Eq. (4.1),
with Δ a new free parameter—admits a systematic power
counting. In this Appendix, we show that the arguments
given in Ref. [32] are not correct.
The potential (4.1) was already considered in

Refs. [24,25]. In those papers it was assumed that the
Lagrangian of the underlying theory contains an operator
with scaling dimension Δ, with some unspecified value of
Δ, and a coupling which may be small. This naturally leads
to the consideration of potentials such as Eq. (4.1) in the
EFT describing the same theory at low energy.
By contrast, here the underlying theory is known: it is the

asymptotically free SU(3) gauge theory with Nf ¼ 8 Dirac
fermions in the fundamental representation. This theory
does not fall into the class of theories considered in
Refs. [24,25].
It is instructive to briefly recall how the breaking of scale

invariance is introduced into the (massless) quantum theory,
and then, how this breaking translates to theEFT [17].As can
be seen in Eq. (2.16), regularizing the bare Lagrangian
requires the introduction of a scale factor, μd−40 , with the limit
d − 4 → 0 to be taken after renormalization. By letting μ0
transform according to Eq. (2.17b), we may promote μ0 to a
spurion, formally restoring scale invariance.
In making the transition to the EFT, we will want to use

the well-known fact that the EFT Lagrangian must be
analytic in the spurion fields, if the underlying Lagrangian
is analytic in the (same set of) spurions. Correlation
functions can then be generated by differentiating the
partition function of the EFT with respect to the spurion
fields and compared with their counterparts in the under-
lying theory by applying the same derivatives again. This
matching procedure fixes the LECs of the EFT order by
order, according to the power counting.
A technical obstacle is that the action (2.16) is nonana-

lytic in the spurion μ0. To overcome this problem, we
introduce a new spurion field σðxÞ and replace

μ0 ⇒ μ̂0eσðxÞ: ðB1Þ

The new scale transformation rules replacing Eq. (2.17b)
are

σðxÞ → σðλxÞ þ log λ; ðB2aÞ

μ̂0 → μ̂0: ðB2bÞ

Now μ̂0 is invariant under a scale transformation, which
in turn is “carried” by the constant mode of the new spurion
field. Writing σðxÞ ¼ σ0 þ δσðxÞ, with the constraintR
ddxδσðxÞ ¼ 0, it follows that
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σ0 → σ0 þ log λ: ðB3Þ

With this replacement, the bare action (2.16) becomes

S ¼ μ̂d−40

Z
ddxeðd−4ÞσðxÞLðxÞ: ðB4Þ

Classically, the σðxÞ dependence vanishes for d → 4,
showing that any dependence of the renormalized theory
on σðxÞ represents quantum breaking of scale invariance
[17,19,38]. Since the underlying theory is now analytic in
the spurion field σðxÞ, so must be the EFT [17]. Note that if,
instead, one were to use μ0 as a scale spurion, there would
be no reason for the EFT to be analytic in μ0, for the simple
reason that the underlying theory (2.16) is nonanalytic
in μ0.

33

In Ref. [32], the starting point of the argument was to
assume that the Lagrangian of the low-energy theory
depends analytically on a spurion field μ̃ðxÞ, with the
scale transformation rule34

μ̃ðxÞ → λ4−Δμ̃ðλxÞ: ðB5Þ

It is clear from the previous discussion that the underlying
gauge theory does not accommodate such a spurion.
Comparing transformation rules, one can, however, make
the identification

μ̃ðxÞ≡ eð4−ΔÞσðxÞ: ðB6Þ

As we have just shown, the correct EFT must be analytic in
σðxÞ, but not in eσðxÞ (nor in any power of eσðxÞ). It follows
immediately that the EFT must be analytic in log μ̃ðxÞ, but
not in μ̃ðxÞ itself. This proves that the arguments of
Ref. [32] are not valid, because the incorrect assumption
that the EFT is analytic in μ̃ðxÞ served as their starting
point.
While this proves that the power counting claimed in

Ref. [32] is unfounded, several comments are in order.
First, we draw the reader’s attention to Sec. II C where

we made use of the original spurion μ0, instead of σðxÞ. The
reason is that our goal in Sec. II C was to derive the
extension of LO dChPT to the case of a running γm. This
requires mainly the consideration of renormalization-group
and scale transformation properties, and, for this purpose,
using μ0 as a (constant) scale spurion is sufficient.35

The γ-dChPT framework developed in Sec. II C does
deviate from the strict power counting of dChPT [17],

though it can be viewed as a resummation of contributions
from all orders under the assumption that these dominate.
As for establishing the power counting itself, this neces-
sitates the replacement of μ0 by μ̂0eσðxÞ; cf. Eq. (B1).
Correspondingly, the transformation rules (B2) take over
the transformation rule of μ0 in Eqs. (2.17) and (2.32). For
the actual proof of the power counting, and a detailed
discussion of the assumptions that it requires, we refer to
Refs. [17,20].
A key step in constructing a power-counting scheme is

the identification, in the underlying theory, of a small
parameter in terms of which the EFT expansion is to be
organized. In ordinary ChPT, the small parameter is the
fermion mass m, which is also the “expectation value” of
the chiral spurion, hχðxÞi ¼ m. Chiral symmetry is restored
for m → 0, which in turn allows one to establish that the
pion mass is parametrically small.
By contrast, in Ref. [17], the small parameter controlling

the hard breaking of scale invariance was identified as
nf − n�f, serving as a proxy for the β function at the chiral
symmetry breaking scale. More precisely, the hypothesis
made in Ref. [17] is

β̃ ∼ jnf − n�fjη; nf↗n�f; ðB7Þ

for some η > 0, where

β̃ ¼ μ

4α

∂α
∂μ ; ðB8Þ

and α is the ’t Hooft coupling, α ¼ g2N=ð4πÞ, evaluated at
the chiral symmetry breaking scale. While we often assume
η ¼ 1 for simplicity, including earlier in this paper, this
assumption is not essential. The power counting is valid for
any fixed η > 0; the η dependence is restored trivially via
the substitution jnf − n�fj ⇒ jnf − n�fjη.
The small parameter jnf − n�fjη does not appear explic-

itly in the underlying Lagrangian, and, in particular, it is not
identified with the expectation value of σðxÞ. Indeed, unlike
chiral symmetry, which is restored for m ¼ 0, there is no
fixed value of σðxÞ for which scale invariance is not broken.
Rather, the expansion of correlation functions in powers
of σðxÞ corresponds to an expansion in the number of
insertions of the trace anomaly. In the massless limit, every
such insertion is proportional to the β function at the chiral
symmetry breaking scale, hence to jnf − n�fjη. For this
argument to work, it is crucial to use the spurion field σðxÞ,
and not μ0 or μ̃ðxÞ. The role of σðxÞ, or of its constant mode
σ0, is analogous to that of the θ parameter in the large-Nc
limit of ChPT in which the Uð1ÞA symmetry is restored. For
a detailed comparison, we refer to Ref. [17]. The upshot is
that one cannot establish a relation between the expectation
value of μ0 or μ̃ðxÞ and the β function of the underlying
theory. Hence, even if one were to allow the low-energy

33The same statement applies if the constant spurion μ0 is
promoted to a field.

34The spurion μ̃ðxÞ is denoted as λðxÞ in Ref. [32]; see Eq. (A1)
therein. We have reserved λ for the scale transformation param-
eter, which in turn is denoted as eρ in Ref. [32].

35In accordance with our general reasoning, in Eq. (2.28), Lm
indeed depends on log μ0.
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theory to depend only on integer powers of the μ̃ðxÞ
spurion, as was postulated in Ref. [32], there is no reason
to assume that its expectation value should tend to zero
when the conformal window is approached. Both assump-
tions of Ref. [32], analyticity in the spurion μ̃, and its
smallness in the conformal limit, are thus in conflict with
the properties of the underlying theory, and, in general,
not valid.
This concludes our discussion of the claims made in

Ref. [32] with regard to power counting. But, a little more
can be said about the connection of the potential LΔ with
dChPT, which corresponds to the limit Δ → 4. According
to the dChPT power counting developed in Ref. [17], the
scale invariant dilaton potential e4τ is multiplied by a
potential ṼdðτÞ that breaks scale invariance,

ṼdðτÞ ¼
X∞
n¼0

c̃n
n!

τn: ðB9Þ

The LECs c̃n scale as c̃n ∼ jnf − n�fjnη, and with the power
counting [compare Eq. (2.3)]

p2 ∼m ∼ jnf − n�fjη ∼ 1=N; ðB10Þ

it follows that the term c̃n
n! τ

n can appear only at Nn−1LO in
dChPT. In particular, the tree-level potential VdðτÞ of
Eq. (2.6b) obtained after the τ shift corresponds to
c1 ¼ c̃1 ¼ −4c̃0.
When Δ is close to 4, we may identify ṼdðτÞ ¼ VΔðτÞ,

which, using Eq. (4.1b), implies that c̃0 ¼ −c1=Δ and

c̃n ¼ ð4c1=ΔÞðΔ − 4Þn−1; n ≥ 1: ðB11Þ

The first two terms in the expansion reproduce the LO
potential VdðτÞ.36 It follows that, for any fixed value of Δ
such that jΔ − 4j ∼ jnf − n�fjη with any η > 0, the VΔðτÞ
potential will inherit the power counting of dChPT. The
same is not true for values of Δ not close to 4, and thus, it is
also not true for the low-energy Lagrangian in which Δ is
treated as a free parameter.
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