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We investigate the shear viscosity η of the classical Yang-Mills (CYM) field on a lattice by using the
Green-Kubo formula, where the shear viscosity is calculated from the time-correlation function of the
energy-momentum tensor in equilibrium. Dependence of the shear viscosity ηðg; TÞ on the coupling g and
temperature T is represented by a scaling function fηðg2TÞ as ηðg; TÞ ¼ Tfηðg2TÞ due to the scaling-

invariant property of the CYM. The explicit functional form of fηðg2TÞ is successfully determined from the

calculated shear viscosity: It turns out that ηðg; TÞ of the CYM field is proportional to 1=g1.10–1.88 at weak
coupling, which is a weaker dependence on g than that in the leading-order perturbation theory but
consistent with that of the “anomalous viscosity” η ∝ 1=g1.5 under the strong disordered field. The obtained
shear viscosity is also found to be roughly consistent with that estimated through the analysis of the
anisotropy of the pressure of the CYM dynamics in the expanding geometry with recourse to a
hydrodynamic equation.

DOI: 10.1103/PhysRevD.102.114503

I. INTRODUCTION

It is widely believed that the initial stage of relativistic
heavy-ion collisions is well described by the classical
Yang-Mills (CYM) field [1–3]. The real-time lattice sim-
ulations of the CYM field have provided important insights
into the nonequilibrium dynamics of this dense gluon
matter, which is known as glasma. The instabilities
[2–7] and the chaoticity [8–11] of the CYM field lead to
a rapid thermalization of the glasma, so that a hydro-
dynamic description makes sense [12]. The event-by-event
CYM description combined with the impact parameter
dependent saturation (IP-Sat) model [13] has been widely
used to obtain the initial condition for the hydrodynamics
(IP-glasma model) [14]. For a complete description of the
thermalization process, we may need further intermediate
processes linking the rapidly evolving classical field stage
with the viscous fluid stage [15,16].
The hydrodynamic analyses showed that the created

matter may be almost perfect fluid whose shear viscosity is
close to the lower bound predicted by superstring theories
with an Einsteinian classical limit [17]. The mechanism that

leads such a near-minimal shear viscosity has been studied
from various points of view [18–23].
Then a natural question that arises here is how the

equilibrium transport properties of the CYM field are
reflected in the initial condition of hydrodynamics. It
was shown in Ref. [24] that the system reaches a quasista-
tionary state and the entropy increases slowly after a rapid
isotropization of pressure. In Ref. [3], the shear viscosity is
deduced through the fitting of the time dependence of the
energy density of the CYM field with that expected as a
solution of the viscous hydrodynamics equation, while the
pressure anisotropy still remains. These analyses suggest
that the CYM field may be relaxed by the intrinsic
dynamics to a quasilocal equilibrium state. Hence it should
make sense to explore its transport properties such as the
viscosities.
One of the ways to extract the shear viscosity of the

CYM field is to fit the hydrodynamic parameters to the
nonequilibrium time evolution of the CYM field as done in
Ref. [3]. Another, more standard way is to use the Green-
Kubo formula obtained in the linear response theory. The
latter approach has been successfully applied to the
classical scalar theory [22,23].
In this article, we investigate the real-time dynamics of

the CYM field close to thermal equilibrium and extract the
shear viscosity of the CYM field at thermal equilibrium.
We employ the Green-Kubo formula in order to investigate
the shear viscosity arising from the CYM field’s dynamics.
In the Green-Kubo approach, the shear viscosity can be
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extracted from the thermal expectation value of the time-
correlation function of the energy-momentum tensor. We
evaluate the expectation value as the ensemble average
measured with thermally equilibrated CYM field configu-
rations. We also make a detailed analysis of the time-
correlation function and the power spectrum (the Fourier
transform of the time-correlation function) in order to gain
deeper insight into the relaxation of the energy-momentum
tensor and the origin of the shear viscosity.
It is worth noting that our analysis is based on the scaling

property of the CYM theory [23]. The classical equation of
motion of the CYM theory is invariant under the scale
transformation, g → γg, A → A=γ and E → E=γ. As the
thermal classical gauge theory must be regulated on a
lattice with spacing a, this scale invariance implies that
intensive quantities in the thermal CYM theory, such as the
shear viscosity, are functions of the dimensionless quantity
g2Ta. Setting a ¼ 1, any intensive quantity thus becomes a
function of the product of the squared coupling g2 and the
temperature T measured in lattice units. One of the main
results of the present work thus is to determine the scaling
function of the shear viscosity, fηðg2TÞ, over a wide range
of the scaling variable g2T. While the classical field theory
suffers from the Rayleigh-Jeans divergence in equilibrium
and has cutoff dependence, the scaling property allows
us to circumvent the cutoff dependence by performing
calculations at the temperature where the classical field
description can be justified as an effective theory of low
momentum modes. Yet the shear viscosity is a high-
dimensional observable and the CYM theory may not
suffice to evaluate shear viscosity. It would be necessary to
properly take account of the high momentum contributions
by using, for example, a lattice calculation [25] and dia-
grammatic approaches [18,19]; see also a recent attempt [26].
This article is organized as follows: In Sec. II, we

introduce the lattice formulation of the CYM field, the
Green-Kubo formula for the shear viscosity, the classical
field ensemble, and some properties of the CYM field on a
lattice. In Sec. III, we show the numerical results of the
time-correlation function of the energy-momentum tensor,
the power spectrum, and the shear viscosity. We discuss the
g and T dependence of the obtained shear viscosity in terms
of the lattice unit by using the scaling functions. In Sec. IV,
we summarize our work.

II. CLASSICAL YANG-MILLS FIELD AND ITS
SHEAR VISCOSITY

A. Classical Yang-Mills field theory on lattice

We consider the CYM theory on a L3 lattice in the
temporal gauge, Aa

0ðxÞ ¼ 0. Its Hamiltonian in the non-
compact formalism is given as (using a ¼ 1)

H ¼ 1

2

X
x;a;i

ðEa
i ðxÞ2 þ Ba

i ðxÞ2Þ: ð1Þ

Here the electric and magnetic gauge fields, ðEa
i ðxÞ;

Ba
i ðxÞÞ, are given by

Ea
i ðxÞ ¼ _Aa

i ðxÞ; ð2Þ

Ba
i ðxÞ ¼ εijkFa

jkðxÞ; ð3Þ

Fa
jkðxÞ ¼ ∂F

i A
a
j ðxÞ − ∂F

j A
a
i ðxÞ

−
g2

4
εabc½Ab

i ðxÞ þ Ab
i ðxþ ĵÞ�½Ac

jðxÞ þ Ac
jðxþ îÞ�;

ð4Þ

where ðAa
i ðxÞ; Ea

i ðxÞÞ are the canonical variables and ∂F
i is

the forward difference operator. The time evolution of the
CYM field is obtained by solving the Hamilton equation of
motion,

_Aa
i ðxÞ ¼

∂H
∂Ea

i ðxÞ
; _Ea

i ðxÞ ¼ −
∂H

∂Aa
i ðxÞ

: ð5Þ

By solving this equation of motion, we calculate the time
evolution of the space-averaged off-diagonal matrix ele-
ments of the energy-momentum tensor defined as

τijðtÞ≡ 1

L3

X
x;a

½E0a
i ðxÞE0a

j ðxÞ þ B0a
i ðxÞB0a

j ðxÞ�; ð6Þ

on the lattice. Here ðE0a
i ðxÞ; B0a

i ðxÞÞ are the electric and
magnetic fields defined at a shifted spatial point,

E0a
i ðxÞ≡ ðEa

i ðxÞ þ Ea
i ðx − îÞÞ=2; ð7Þ

B0a
i ðxÞ≡ ðBa

i ðxÞ þ Ba
i ðxþ îÞÞ=2: ð8Þ

It should be noted that the electric and magnetic fields
ðE0a

i ðxÞ; B0a
i ðxÞÞ are defined at the same spatial position for

different i because Aa
i ðxÞ resides on the link between x

and xþ î. Therefore, ðE0a
i ðxÞ; B0a

i ðxÞÞ make the matrix
elements more symmetric in the space directions than
ðEa

i ðxÞ; Ba
i ðxÞÞ.

We here comment on the gauge invariance, which is not
exact in the present noncompact formalism. In Ref. [10],
the magnitude of the Gauss’ law violation in the non-
compact formalism was investigated and found to grow as
∼t0.3. This growth rate is weaker than that from random
diffusion, which grows as t0.5. The small growth rate of the
Gauss’ law violation may be explained by the zero
Lyapunov exponents associated with the gauge degrees
of freedom. The Lyapunov exponent is defined as the
exponential growth rate of the distance between two
trajectories starting from two adjacent points in phase
space, and characterizes the chaoticity and instability of
the system. One third of the Lyapunov exponents, which
may correspond to the gauge degrees of freedom, are found
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to be zero in the compact CYM formalism on a 23 lattice [9]
and also in the noncompact CYM formalism on an 83

lattice [11]. Therefore, the gauge invariance violation is
expected to be negligible compared with the real-time
dynamics inherent in the CYM theory, which may be
represented by the chaoticity and instability associated with
the nonzero Lyapunov exponents.

B. Green-Kubo relation

The shear viscosity in any systems close to equilibrium
can be evaluated by means of the Green-Kubo formula
[27]:

η ¼ 1

T

Z
∞

0

dtCðtÞ; ð9Þ

CðtÞ ¼ 1

3

X
i<j

VhτijðtÞτijð0Þi; ð10Þ

where T and V denote temperature and volume in lattice
units, respectively. τijðtÞ is the space-averaged off-diagonal
matrix element of the energy-momentum tensor, and h� � �i
denotes the expectation value in equilibrium. CðtÞ is the
direction-averaged time-correlation function of τijðtÞ.
While the correlation disappears in the long time-

separation limit t → ∞, and thus CðtÞ is expected to
approach Vhτijð0Þi2eq ¼ 0 in this limit, the integral in (9)
converges only when the correlation function falls off faster
than 1=t or exhibits oscillatory behavior with a decreasing
amplitude. We will check the convergence in Sec. III C. We
will also compute the Fourier transform of CðjtjÞ,

ρðωÞ ¼
Z

∞

0

dt cos ωtCðtÞ ¼ 1

2

Z
∞

−∞
dteiωtCðjtjÞ; ð11Þ

and discuss the structure of ρðωÞ in comparison with that in
the scalar theory in the Appendix B.

C. Classical field ensemble

For the calculation of the shear viscosity via the Green-
Kubo formula, we need the thermal expectation value of the
time correlation of the energy-momentum tensor. We
evaluate the expectation value from the ensemble average
of the classical field configurations in thermal equilibrium
as

hOi ≃ 1

Nconf

XNconf

i¼1

Oi; ð12Þ

where Nconf is the total number of configurations used in
the evaluation, and Oi is the observable measured with the
ith configuration. Statistical errors of the expectation
values, which are of the order of 1=

ffiffiffiffiffiffiffiffiffiffiffi
Nconf

p
, are estimated

and taken into account. We prepare the ensemble of
thermally equilibrated CYM field configurations by the
long time evolution of the classical CYM field starting from
the random initial configurations. The procedure we have
used is explained in detail in Sec. III A.

D. Equipartition of electric field energy

The electric field strength can be utilized to examine
thermalization and also to measure the temperature. In
equilibrium, the distribution of canonical variables ðA;EÞ is
given by the canonical partition function Z,

Z ¼
Z

DEDA expð−H=TÞ

¼ ZB½A� ×
Y
x;a;i

Z
dEa

i ðxÞe−ðEa
i ðxÞÞ2=2T

¼ ZB½A� ×
Y
k;a;i

Z
dEa

i ðkÞe−jEa
i ðkÞj2=2T; ð13Þ

where ZB ¼ R
DA expð−HB=TÞ is the magnetic field part

of the partition function:

HB ¼
X
x;a;i

ðBa
i ðxÞÞ2=2: ð14Þ

From the second line in (13), the average squared
electric field is found to be equal to the temperature,
hðEa

i ðxÞÞ2i ¼ T at each spatial position x. From the third
line, we find that the same relation

hjEa
i ðkÞj2i ¼ T; ð15Þ

applies to the mean square Fourier component of the
electric field

Ea
i ðkÞ ¼

X
x

Ea
i ðxÞe−ik·x=

ffiffiffiffiffiffi
L3

p
; ð16Þ

for each lattice momentum k ¼ 2πðnx; ny; nzÞ=L (ni ¼ 0;
1;…; L − 1). Note that Ea

i ðkÞ and Ea
i ð−kÞ are not inde-

pendent but related as Ea
i ð−kÞ ¼ ðEa

i ðkÞÞ�, since Ea
i ðxÞ is

real. Note that, while Ea
i ðkÞ itself is not gauge invariant, the

property (15) does not depend on the chosen gauge. In
Sec. III A, we will examine thermalization from the
momentum independence of hjEa

i ðkÞj2i and obtain the
temperature from hjEa

i ðkÞj2i.

E. Scaling property

Here we explain the scaling property of the CYM theory,
which plays an important role in our analysis of the shear
viscosity. The equation of motion of the CYM field is
invariant under the following scaling transformation:
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Aa
i ðxÞ → Aa

i ðxÞ=γ; Ea
i ðxÞ → Ea

i ðxÞ=γ; g → γg:

ð17Þ

Then, the lattice temperature defined in Eq. (15) scales as

Tg ¼ hjEðkÞj2ig ¼ γ2hjEðkÞ=γj2ig
¼ γ2hjEðkÞj2iγg ¼ γ2Tγg; ð18Þ

where we have omitted the color and vector indices. This
relation can be rewritten as ðγgÞ2Tγg ¼ g2Tg. Thus, once
we prepare the ensemble at a given value of g2T, we can
obtain the thermal average of observables at various values
of ðg; TÞ having the same g2T by simply rescaling the
observables. For example, the time-correlation function
CðtÞ, its power spectrum [the Fourier transform of CðtÞ]
ρðωÞ, and the shear viscosity η are given as

Cðt; g; TÞ ¼ γ4Cðt; γg; T=γ2Þ; ð19Þ

ρðω; g; TÞ ¼ γ4ρðω; γg; T=γ2Þ; ð20Þ

ηðg; TÞ ¼ γ2ηðγg; T=γ2Þ; ð21Þ

where we have used the scaling property of the energy-
momentum tensor,

TμνðA0 ¼ A=γ; E0 ¼ E=γÞ ¼ TμνðA;EÞ=γ2: ð22Þ

These relations show that there exist scaling functions of
g2T:

fCðt; g2TÞ ¼ Cðt; g; TÞ=T2; ð23Þ

fρðω; g2TÞ ¼ ρðω; g; TÞ=T2; ð24Þ

fηðg2TÞ ¼ ηðg; TÞ=T: ð25Þ

These scaling functions are related with each other as
follows:

fηðg2TÞ ¼ lim
ω→0

Z
∞

0

dteiωtfCðt; g2TÞ: ð26Þ

fρðω; g2TÞ ¼
Z

∞

0

dt cos ωt fCðt; g2TÞ: ð27Þ

When multiplied by appropriate powers of T, these scaling
functions give the values of Cðt; g; TÞ, ρðω; g; TÞ, and
ηðg; TÞ. In this study, we perform calculations at several
values of g with T ≈ 1. Results will shown in terms of the
above scaling functions.

III. NUMERICAL RESULTS

A. Calculation setup and initial configuration

Our calculations were performed on 163, 243 and 323

lattices with periodic boundary conditions for the SU(2)
Yang-Mills field keeping the average energy per degree of
freedom at unity, which corresponds to the CYM system
with the temperature of T ≈ 1. The coupling constant was
varied in the wide range g ¼ 0.15–20. The equation of
motion is solved by leapfrog integration with Δt ¼ 0.01.
The thermal expectation value of an observable is evaluated
from the ensemble average using Nconf ¼ 1000 thermal
configurations.
Here we explain the procedure for generating a set of

thermally equilibrated gauge field configurations. First, we
generate totally Nconf field configurations, ðAðiÞ; EðiÞÞ
ði ¼ 1; 2;…; NconfÞ, at initial time t ¼ tini, as

AðiÞ;a
j ðt ¼ tini; xÞ ¼ 0 ðj ¼ 1; 2; 3Þ; ð28Þ

EðiÞ;a
⊥ ðt ¼ tini; xÞ ¼ RðiÞ;a

⊥ ðx1; x2Þ∂B
3R

ðiÞ;a
3 ðx3Þ=NE; ð29Þ

EðiÞ;a
3 ðt ¼ tini; xÞ ¼ −RðiÞ;a

3 ðx3Þ∂B⊥ · RðiÞ;a
⊥ ðx1; x2Þ=NE; ð30Þ

where ∂B
i is the backward difference operator, RðiÞ;a

j ðxÞ is a
Gaussian random number with unit variance,

hRðiÞ;a
j ðxÞRði0Þ;a0

j0 ðyÞi ¼ δii0δaa0δjj0δxy; ð31Þ

and NE is a normalization factor chosen to make the
average energy per each degree of freedom equal to unity.
This initial configuration satisfies the lattice Gauss law:

∂B · EaðxÞ − fabc

2
½AbðxÞ · EcðxÞ

þ Abðx − îÞ · Ecðx − îÞ� ¼ 0: ð32Þ

Next, we evolve each configuration with the classical
equation of motion until it equilibrates. We confirm the
equilibration by checking for equipartition of the energy
given in Eq. (15). In Fig. 1, we show the time evolution of
the reduced chi-square of the fit hjE1

1ðkÞj2i ¼ Tfit with Tfit
as fitting parameter using the Nconf ¼ 1000 configurations
with g ¼ 1 and L ¼ 32. The reduced chi-squared value
reaches unity for t − tini > teq ∼ 200, which indicates that
Eq. (15) holds after this time. We can consider the
configurations at t − tini > teq ∼ 200 to be in thermal
equilibrium for t − tini > teq. In Appendix A, we confirm
the equilibration using another quantity, the local electric
energy distribution.
Finally, we extract the temperature of the thus prepared

configurations via Eq. (15). In Fig. 2, we show hjE1
1ðkÞj2i

as a function of the lattice frequency ωk,
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ωk ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðk1=2Þ þ sin2ðk2=2Þ þ sin2ðk3=2Þ

q
; ð33Þ

at g ¼ 1 on the 323 lattice. The expectation value has
been evaluated from the configurations at t − tini ¼ 200.
It appears that hjE1

1ðkÞj2i is around unity at any ωk as
we expected. By fitting a constant Tfit to the result, we
obtain

Tfit ¼ 1.16 ðχ2r ¼ 1.00Þ: ð34Þ

The reduced chi-squared is around unity (χ2r ∼ 1), and
thus we can consider the fitted value of Tfit ¼ 1.16 as
the temperature of the system with ðg; LÞ ¼ ð1; 32Þ.
In Table I further below, we summarize the values of
g2T used in our calculations; they cover the range
0.0256 ≤ g2T ≤ 499.

B. Time correlation function of
energy-momentum tensor

We shall now discuss the time-correlation function of the
energy-momentum tensor, CðtÞ, evaluated in the thermally
equilibrated CYM field.
In Fig. 3, we show the normalized time-correlation

functions, fCðtÞ ¼ CðtÞ=T2, in the short time range,
t < 5. The time-correlation function is seen to decrease
rapidly over the interval 0 < t < 1.5, showing damped-
oscillator-like behaviors. In fact, in this time interval, it can
be well described by the sum of two damped oscillators,

1.10

1.15

1.20

 0.5  1  1.5  2  2.5  3

L=32

<
|E

1 1(
k)

|2 >

k

g=1
Fit

FIG. 2. Thermal expectation value of jE1
1ðkÞj2 as a function of

frequency, ωk, at g ¼ 1 on the L ¼ 323 lattice. The black dashed
line shows the constant fit function, Tfit

 1

10

100

 0  100  200  300  400  500

L=32
r

t-tini

g=1

FIG. 1. The time evolution of the reduced chi-squared from the
fit to the ensemble average, hjE1

1ðkÞj2i ¼ Tfit, at g ¼ 1 on the 323

lattice.

TABLE I. Shear viscosity obtained at g2T ¼ 0.0256–499 on
the 163, 243 and 323 lattices. In actual calculations, we choose the
coupling constant in the range of g ¼ 0.15–20 and set the average
energy per degree of freedom as unity, which corresponds to
T ≈ ð1.14–1.25Þ.
g T g2T η=T (L ¼ 16) η=T (L ¼ 24) η=T (L ¼ 32)

0.15 1.14 0.0256 2.28� 0.22 1.75� 0.22 1.89� 0.23
0.2 1.14 0.0457 1.50� 0.15 1.46� 0.16 1.44� 0.16
0.25 1.14 0.0715 1.39� 0.13 1.33� 0.12 1.22� 0.12
0.5 1.15 0.288 0.670� 0.055 0.663� 0.056 0.728� 0.057
0.75 1.15 0.649 0.549� 0.034 0.436� 0.034 0.467� 0.034
1 1,16 1.16 0.369� 0.025 0.347� 0.026 0.380� 0.025
1.5 1.16 2.62 0.303� 0.020 0.310� 0.022 0.316� 0.022
2 1.17 4.68 0.349� 0.020 0.257� 0.019 0.254� 0.018
3 1.18 10.6 0.189� 0.016 0.228� 0.017 0.238� 0.016
4 1.18 18.9 0.203� 0.016 0.197� 0.016 0.212� 0.015
5 1.19 29.7 0.150� 0.015 0.150� 0.014 0.201� 0.014
10 1.22 122 0.157� 0.012 0.134� 0.011 0.171� 0.012
15 1.24 278 0.116� 0.008 0.130� 0.008 0.119� 0.008
20 1.25 499 0.123� 0.006 0.116� 0.006 0.105� 0.006

-0.5

0.0

0.5

1.0

1.5

 0  1  2  3  4  5

L=32

f C
(t

)=
C

/T
2

t

g=0.5(g2T=0.288),Data
Fit

1(1.16),Data
Fit

2(4.68),Data
Fit

FIG. 3. Time correlation functions of the energy-momentum
tensor normalized by T2, fCðtÞ ¼

P
i<j VhτijðtÞτijð0Þi=3T2 in

the short time range (t < 5). We show the results at g ¼ 0.5, 1.0
and 1.5 (g2 ¼ 0.288, 1.16 and 4.68) on the 323 lattice by symbols.
Dashed lines show the fitting results in the form of FDOðxÞð¼P

i¼1;2 aie
−bix cos ðcixþ diÞÞ þ const.
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FDOðxÞ ¼
X
i¼1;2

aie−bix cos ðcixþ diÞ; ð35Þ

superimposed on a constant, as shown by the dashed lines.
The number of the independent damped oscillators in the
fitting function is chosen so that the reduced χ2 is the
closest to unity in this case. Therefore, the rapid decrease in
the short time range is found to come from the two damped
oscillatory motions.
In Fig. 4, we show fCðtÞ in the long-time range,

5 < t < 50. The remaining correlation is found to decay
more slowly in this later time period, and the decay time
scale significantly depends on the value of g2T.

C. Power spectrum

Before discussing the shear viscosity, we consider the
Fourier transform of the time-correlation function CðjtjÞ,
referred to as the power spectrum, whose low-frequency
limit gives the shear viscosity. The power spectrum of
CðjtjÞ is given by

ρðωÞ ¼
Z

∞

0

dt cos ωtCðtÞ

¼ 1

2
lim

tcut→∞

Z
tcut

−tcut
dteiωtCðjtjÞ

∼ lim
Δt→0;Nt→∞

Δt
2

XNt−1

n¼−Nt

eiωnΔtCðjnΔtjÞ; ð36Þ

where Δt is the time step size and Nt is the total number of
steps in the time evolution, and is half of the data points in
summation. In the last line, we represent the integration
over the interval of ½−∞;∞� by the discrete Fourier
transformation with the period 2Nt, in which the power
spectrum ρðωÞ has entries at each discrete frequency ω ¼
2πn=ð2NtΔtÞ (n ¼ −Nt;−Nt þ 1;…; Nt − 1).
In actual calculations, the upper bound of the integration,

tcut ¼ NtΔt, is finite but must be large enough so that the

integral (summation) in (36) converges. As an example of
the convergence check, we show in Fig. 5 the integral of the
normalized time-correlation function CðtÞ=T2 over the
interval 0 ≤ t ≤ tcut ¼ NtΔt, which is directly related to
the shear viscosity η via (9) and corresponds to ρð0Þ in (36).
The integral at each value of g2T shows convergent
behavior at large tcut, while small oscillations around a
constant are still visible. Thus, the integral in Eq. (36) can
be approximated by the integral over the finite interval as
long as Nt is large enough. This is in contrast with the
classical ϕ4 theory case, in which a very long tail appears in
the time-correlation function and must be subtracted in
advance [23].
In Fig. 6, we show the normalized Fourier spectra,

fρðωÞ ¼ ρðωÞ=T2, at g ¼ 0.5, 1.0, 2.0 (g2T ¼ 0.288, 1.16,
4.68) as solid curves. Dashed curves show the Fourier
transform of the damped oscillator part of the fitting
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323 lattice at g ¼ 0.5, 1.0, 2.0 (g2T ¼ 0.288, 1.16, 4.68).
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by solid curves. The dashed curves depict the Fourier transform
of the damped oscillatory part of the fitting function in Fig. 3,
FDOðjtjÞ.
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function, FDOðjtjÞ, shown in Fig. 3. The damped oscillator
part corresponds to the broad bump of the spectral function,
which has large strength in the high frequency region,
4 ≤ ω ≤ 6. The remaining part of the power spectrum
corresponds to the long-time decay part of the time-
correlation function and shows the peaks at ω ≤ 1. The
number of peaks decreases and the peak heights become
smaller with increasing g2T. The peak at ω ¼ 0 remains
even at large g2T, and is the highest peak in the g2T region
shown here. The ω ¼ 0 peak is sharp at small g2T but
seems to be a continuous function of ω. This supports the
convergence of the integral in (36) at ω → 0. It would be
interesting to discuss origin of the peaks other that at
ω ¼ 0, which may be due to collective modes in the low
frequency region. However this is beyond the scope of this
work, which is concerned with the shear viscosity. At larger
values of g2T, the power spectrum becomes smoother and
is increasingly dominated by the damped oscillator part. In
Appendix B, we show fρðωÞ in the extremely large g2T
region.
The broad bump in the high frequency region is caused

by the damped oscillatory behavior in the time-correlation
function. It was also found and was conjectured that the
damped oscillatory behavior is caused by the propagation
of two modes having momenta of k and −k (two-
momentum mode) in the scalar field theory [23]. Let us
explain the discussions given in [23]. In the scalar field
theory, the space-averaged matrix element τ12 is given as
τ12 ¼

P
xð∂xϕÞð∂yϕÞ=V, then the time-correlation func-

tion is obtained as

C12ðtÞ ∼
2

V

X
k

k2xk2yhϕkðtÞϕ�
kð0Þihϕ−kðtÞϕ�

−kð0Þi

∼
2T2

V

X
k

k2xk2y
ω4
k

cos2ωkt ðfree field caseÞ; ð37Þ

where ϕk denotes the Fourier transform of the classical
scalar field and h� � �i denotes the thermal expectation value.
In the free field case, the propagator of the classical field in
equilibrium is given as hϕkðtÞϕ�

kð0Þi ¼ T=ω2
k × cosωkt

with ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
for a field with mass m. Then we

obtain the second line in Eq. (37), which implies that a
two-momentum mode, composed of two single-momentum
modes with k and −k, contributes to the power spectrum at
ω ¼ 2ωk. For a massless field, the frequency of the single-
momentum mode is in the range 0 ≤ ωk ≤ 2

ffiffiffi
3

p
∼ 3.5, and

the number of modes per frequency has a peak at ωk ≃ 2–3
in the lattice unit. With the 1=ω4

k factor in C12ðtÞ, a peak at
ω ∼ 5 appears in the power spectrum for the classical
massless field. The frequency difference between different
two-momentum modes, ωk ≠ ωk0 with jk0j ≠ jkj, causes the
phase decoherence and the damping of the time-correlation
function in C12ðtÞ. While the above discussion is limited to

the free classical field cases, propagation of two single-
momentum modes with k and −k should contribute to
C12ðtÞ in the same manner, and similar behavior is expected
also in interacting fields. Since the damped oscillations in
the CYM field have shapes similar to those in the ϕ4 theory,
the damped oscillation in the early stage and the bump
around ω ∼ 5 may be also caused by the contributions and
interference of the two-momentum modes.

D. Shear viscosity

We now discuss the shear viscosity. The shear viscosity η
is obtained by taking the low frequency limit of the
power spectrum, η ¼ limω→0 ρðωÞ=T. In Table I, we
summarize the g2T dependence of the normalized shear
viscosity, fηðg2TÞ ¼ η=T on the 163, 243 and 323 lattices.
As shown in (25), η=T is invariant under the scaling
transformation given in (17) and a function of the single
parameter g2T.
In Fig. 7, we show fη as a function of g2T. The results on

the 163, 243 and 323 lattices are consistent with each other.
We find that fηðg2TÞ is a rapidly falling function at small
values of g2, but flattens out in the region g2T > 1. This
weaker falloff is readily understood from the behavior of
fCðtÞ and fρðωÞ. The damped oscillation in fCðtÞ is
insensitive to g2T as seen in Fig. 3, and its contribution
to fρðωÞ in the low frequency region, which is responsible
for the viscosity, becomes more dominant and remains even
in the larger g2T region.
Next we analyze the functional form of fηðg2TÞ and

understand the g2T dependence of fηðg2TÞ in the range,
0.0256 < g2T < 499, by fitting our results to a polynomial
function with parameters α, β, γ and δ,

FðxÞ ¼ αx−β=2 þ γx−δ=2 ð38Þ

ðβ > δÞ; ð39Þ
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FIG. 7. g2T dependence of the shear viscosity normalized by
1=T, fη ¼ η=T, on the 163, 243 and 323 lattices.
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where x ¼ g2T. The form of FðxÞ is motivated by the
results shown in Fig. 7. We expect that the first term of FðxÞ
describes the contribution from the long-time tail in fCðtÞ,
which seems to increase like an inverse power of g2T and
dominates at small g2T. The second term of FðxÞ is
expected to describe the contribution from the damped
oscillation in fCðtÞ, which is less sensitive to g2T. The fit to
the fηðg2TÞ obtained from the Green-Kubo formula in
Eq. (9) on the 323 lattice yields the following parameters:

FðxÞ∶ α ¼ 0.09� 0.07; β ¼ 1.49� 0.39;

γ ¼ 0.33� 0.06; δ ¼ 0.35� 0.07: ð40Þ

In Fig. 8, we compareFðg2TÞ and fηðg2TÞ on the 323 lattice.
The fit function FðxÞ describes fηðg2TÞ in this g2T range
well. These results imply that the shear viscosity
of the CYM field is proportional to 1=g1.10–1.88 at weak
coupling, which indicates that the shear viscosity in the
classical limit depends more weakly on g compared with the
leading-order perturbative theory result, η ∝ 1=½g4 lnðg−1Þ�.
Such a weak dependence on g is consistent with the g
dependence of the “anomalous viscosity” under the strong
disordered field, η ∝ 1=g1.5 [20].

E. Comparison with previous estimates

We now compare our results with those of previous
estimates obtained by analyzing the CYM field evolution in
terms of the viscous hydrodynamic equation [3]. Since we
have evaluated the shear viscosity using the Green-Kubo
formula based on the linear response theory, the so-
obtained shear viscosity characterizes the relaxation proc-
ess around the equilibrium and is not sensitive to the initial
conditions.
In Ref. [3], Epelbaum and Gelis deduced the shear

viscosity of the CYM field from the anisotropy of the
pressure by comparing the energy density evolution in the

expanding geometry to first-order viscous hydrodynamics.
The shear viscosity in Ref. [3] was obtained for a lattice
spacing a−1 ¼ Qs ¼ 2 GeV and g ¼ 0.5 using the phe-
nomenological glasma initial condition on a 64 × 64 × 128
lattice. The authors of Ref. [3] obtained the result
η=ε3=4 ≃ 0.3, where ε is the energy density.
In Fig. 9, we show the shear viscosity normalized

by ε3=4 with ε ≈ 3ðN2
c − 1ÞT ¼ 9T at lattice spacing a ¼

ð2 GeVÞ−1 for the physical temperatures Tphys ¼ T=
a ¼ 0.2, 0.4, and 0.8 GeV as a function of g. These
temperatures in physical units are in the range of temper-
atures reached in relativistic heavy-ion collisions at RHIC
and LHC at the start of the hydrodynamical evolution. The
ratio η=ε3=4 in the present work is smaller than the value
obtained in Ref. [3] at g ¼ 0.5 by around 30%–40%. These
differences may reflect the effect of a partial persistence of
the initial condition and incomplete thermalization in the
approach of Ref. [3]. However, we find it encouraging that
our results obtained in equilibrium lie in the same numeri-
cal range as the shear viscosity value deduced from
nonequilibrium dynamics in Ref. [3].
It is worth noting that these values of the shear viscosity

are much smaller than the leading-order perturbative result
ηpert=T3 ≈ 1200 for g ¼ 0.5 [18]. This difference is con-
jectured [3] to be the manifestation of the anomalously
small viscosity for systems made of strong disordered fields
[20], an effect that is not included in the perturbative
calculation.

IV. SUMMARY

We calculated the shear viscosity of the classical Yang-
Mills (CYM) field on a lattice by applying the Green-Kubo
formula to the time-correlation function CðtÞ of the energy-
momentum tensor in equilibrium. The time evolution of the
CYM field was calculated for several values of the coupling
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FIG. 8. Analytical fit to the shear viscosity normalized by 1=T,
fη ¼ η=T, on the 323 lattice with the fit function FðxÞ ¼
αx−β=2 þ γx−δ=2ðβ > δÞ.
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HIDEFUMI MATSUDA et al. PHYS. REV. D 102, 114503 (2020)

114503-8



constant g starting from equilibrated configurations pre-
pared at temperature T ≈ 1, and CðtÞ was evaluated as
the ensemble average. The shear viscosity as a function of
the coupling and temperature ηðg; TÞwas obtained from the
low-frequency limit of the power spectrum of CðtÞ. The
dependence of the shear viscosity on g and T was
represented as ηðg; TÞ=T ¼ fηðg2TÞwith a scaling function
fη in accordance with the scaling property of the CYM
theory. The functional form of the scaling function fηðg2TÞ
was extracted as a polynomial fit function.
The time-correlation function CðtÞ was found to exhibit

damped oscillatory behavior at early times followed by a
slow decay. The damped oscillatory behavior is reflected in
a broad bump around ω ≈ 5 in the power spectrum and may
be caused by the decoherence among the two-momentum
modes, as observed in the case of the classical ϕ4

theory [23].
The slowly decaying part of CðtÞ produces a sharp peak

at ω ¼ 0 in the power spectrum. With decreasing g2T, the
height of the peak at ω ¼ 0 increases and its width narrows.
Thus the ω ¼ 0 peak suggests the appearance of a
collective mode with long lifetime, which is most naturally
identified with the hydrodynamic mode.
The scaling function fη rapidly increases with decreas-

ing g2T at small g2T and its dependence on the coupling,
fη ∝ 1=g1.10–1.88, is found to be much weaker than the
perturbative estimate. This weaker dependence may show
the realization of anomalous viscosity under the strong
disordered field [20]. The value of the shear viscosity in
thermal equilibrium obtained in our analysis is found to be
roughly consistent with that obtained from the glasma
energy density evolution in the boost-invariant expanding
geometry [3]. Thus the validity of the estimate of the shear
viscosity from the energy density is confirmed.
While the transport properties of the CYM field around

equilibrium may be relevant to the small shear viscosity in
high-energy heavy-ion collisions, there still remain problems
to be considered in order to discuss the shear viscosity
around equilibrium in a more rigorous way. The behavior of
high-dimensional observables such as the time-correlation
function of the energy-momentum tensor,CðtÞ, is dominated
by hard thermal particles with momenta of order temperature
and is sensitive to the ultraviolet cutoff in the classical field
theory. In addition, the equipartition property of classical
fields leads to the Rayleigh-Jeans divergence in the con-
tinuum limit, a → 0. It should be remembered, however, that
the scaling function allows us to evaluate the shear viscosity
in the low momentum region by using the classical Yang-
Mills field simulation at large lattice temperatures, where the
classical field description is justified.
There are several sophisticated ways to circumvent these

problems on the contribution of high-momentum contri-
bution, such as renormalizing the theory by introducing
counterterms in the classical field [28], applying the
effective dynamics obtained by integrating hard particles

[29], taking account of the explicit coupling of fields and
particles [30], and switching to dynamics described by the
kinetic theory [31]. Applying the classical field theory with
quantum statistical nature [26] would be another interesting
direction to be studied.
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APPENDIX A: LOCAL ELECTRIC DENSITY
DISTRIBUTION

We here discuss the equilibration of the configurations
used as an ensemble by checking the distribution of the
local electric density defined as

εEðxÞ ¼
1

2

X
a

Ea
1ðxÞ2: ðA1Þ

If the configurations reach equilibrium, the distribution of
εEðxÞ in the configurations is given by the following
functional form:

P½εEðxÞ� ∝
ffiffiffiffiffiffiffiffiffiffiffi
εEðxÞ

p
exp½−εEðxÞ=T�: ðA2Þ

This thermal distribution function can be obtained from
the canonical partition function in Eq. (13), ðQa dE

a
1Þ×

expð−εE=TÞ ¼
ffiffiffiffiffiffiffi
2εE

p
dεEdΩ expð−εE=TÞ, where Ω is the

solid angle in the three-dimensional color space.
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FIG. 10. Distribution of εEðxÞ in the configurations at t − tini ¼
200 with g ¼ 1 on the 323 lattice. The black dashed line shows
the thermal distribution function with T ¼ 1.16ðg2T ¼ 1.16Þ
in Eq. (A2).
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In Fig. 10, we show the distribution of εEðxÞ in the
configurations at t − tini ¼ 200 with g ¼ 1 on the 323

lattice. This numerical distribution agrees with the thermal
distribution whose temperature is 1.16ðg2T ¼ 1.16Þ). From
this agreement, we conclude that the configurations are
sufficiently thermalized at t − tini ¼ 200.

APPENDIX B: POWER SPECTRUM FOR g2T ≫ 1

The power spectra in the very large g2T region also
show interesting features. In Fig. 11, we show the nor-
malized power spectrum, fρðωÞ ¼ ρðωÞ=T2 at g ¼ 1, 3, 10
(g2T ¼ 1.16, 10.6, 122) by solid curves. In this g2T ≫ 1
region, fρðωÞ consists of the peak at ω ¼ 0 and the bump
at ω ¼ ð5–7Þ.
This structure is well described by the Fourier transform

of the exponential decay and damped oscillations,

FexpþDOðtÞ ¼ a0e−b0t þ
X
i¼1;2

aie−bit cos ðcitþ diÞ: ðB1Þ

Dashed curves show the Fourier transform of
FexpþDOðtÞ, which almost completely agrees with the
numerical results and thus is hard to discern in the figure.
In particular, the result obtained at the strongest coupling,

g ¼ 10 (g2T ¼ 116), agrees well with the fit. This agree-
ment of the functional form may be due to the dominance of
the four-point interaction both in the large g2T region of the
CYM theory and in the classical massless ϕ4 theory.
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