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In a recent work [J. Lenz et al., Phys. Rev. D 101, 094512 (2020)] we studied the phase structure of
the Gross-Neveu (GN) model in 1þ 1 dimensions at finite number of fermion flavors Nf ¼ 2; 8; 16,
finite temperature and finite chemical potential using lattice field theory. Most importantly, we found an
inhomogeneous phase at low temperature and large chemical potential, quite similar to the analytically
solvable Nf → ∞ limit. In the present work we continue our lattice field theory investigation of the
finite-Nf GN model by studying the formation of baryons, their spatial distribution and their relation
to the chiral condensate. As a preparatory step we also discuss a linear coupling of lattice fermions to the
chemical potential.
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I. INTRODUCTION

In recent years experiments provided many interesting
insights concerning strongly interacting matter at high
density (see e.g., Ref. [1] for a comprehensive review).
On the theoretical side our present understanding of the
QCD phase diagram at nonzero chemical potential μ is
to a large extent based on conjectures relying on physical
intuition, on model calculations and on effective low
energy descriptions [2,3], while reliable ab initio results
are still missing, mostly due to the infamous sign problem
in lattice QCD. Even though there are a number of
interesting approaches, which led to considerable progress
to mitigate or solve the sign problem, such as using
complex Langevin algorithms [4–7] or thimble methods
[8–10], finding more suitable variables [11–13] or refining
the density of states approach [14–18], a better understanding
of lattice QCD at finite baryon density is certainly an urgent
problem. Urgent, for example, since our colleagues from

gravitational wave astronomy and astrophysics are in need of
more reliable equations of state of strongly interacting matter
at baryon density nB up to several times the nuclear
density n0 ≈ 0.17 fm−3.
It has been conjectured that in QCD at low temperature

and large baryon density there is an inhomogeneous
crystalline phase. This conjecture is based on mean-field
calculations in various effective four Fermi theories
indicating the existence of such an inhomogeneous phase
[19–23]. The underlying mean-field (or Hartree-Fock-like)
approximation becomes exact in the limit of an infinite
number of fermion flavors Nf , since in this limit quantum
fluctuations are negligible.
Mean-field approximations are also common in con-

densed matter physics. For example, for the Gross-
Neveu (GN) model considered in the present work, the
mean-field phase diagram with homogeneous and inho-
mogeneous phases has been known in the condensed matter
community [24,25] long before it has been rediscovered in
particle physics [19,26].
More recently, interesting models implementing the

breaking of translational invariance—for example by
charge density waves, dynamical defects or by magnetic
fields—have been proposed and studied within the holo-
graphic framework [27,28].
At present it is largely unknown whether crystalline

phases exist in effective four Fermi theories at finite
number of fermion flavors, or whether quantum fluctua-
tions lead to a qualitatively different phase structure. In a
recent work [29] we performed lattice field theory
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simulations of the GN model in 1þ 1 dimensions with
Nf ¼ 2; 8; 16 and found clear evidence for the existence
of an inhomogeneous phase, qualitatively similar to that in
the limit Nf → ∞. In the present work we continue our
investigation of the GN model in 1þ 1 dimensions at a
finite number of fermion flavors and focus on baryonic
excitations at low temperature and large chemical potential.
We investigate their spatial distribution as well as their
relation to the chiral condensate.

II. CHEMICAL POTENTIAL
FOR LATTICE FERMIONS

The continuum Lagrangian density of the (Euclidean)
GN model with vanishing bare mass is given by

Lψ ¼ ψ̄ ið=∂ þ μγ0Þψ þ g2

2Nf
ðψ̄ψÞ2; ð1Þ

where μ denotes the chemical potential for the conserved
baryon number. To be able to perform the fermion
integration one follows Hubbard and Stratonovich by
introducing a fluctuating auxiliary scalar field σ to linearize
the operator ψ̄ψ in the interaction term

Lσ ¼ ψ̄ iDψ þ Nf

2g2
σ2; D ¼ ð=∂ þ σ þ μγ0Þ: ð2Þ

The four Fermi term in Eq. (1) is recovered after elimi-
nating σ by its equation of motion or equivalently by
integrating over σ in the functional integral. Translation
invariance of dσx in the (well-defined) functional integralQ

dσx for the lattice model implies the Ward identity

Nf

g2
hσxi ¼ hðψ̄ψÞxi: ð3Þ

Keeping as many global symmetries of the continuum
model as possible in a discretization can be crucial to obtain
a lattice model with the correct continuum limit. Thus we
shall discretize the operator D using the chiral and doubler-
free SLAC derivative [30,31]. While nonlocal SLAC
fermions must not be used to discretize a field theory with
local gauge symmetries [32–34], they have been used
successfully in various scalar-field theories and fermionic
theories with global symmetries only [35–40]. In addition
to using SLAC fermions to simulate the GN model at finite
Nf , we have cross-checked our results with a discretization
based on naive fermions. This fermion species is chiral as
well but describes 2d doublers in d dimensions. More
details can be found in Ref. [29].
Besides our preceding paper [29], we are not aware of

any work, in which SLAC fermions have been used to
study fermion systems at finite density. Thus, we begin
with comparing the thermodynamics of a gas of free
massive fermions in a spatial box of size L in the continuum

and on the lattice with different fermion discretizations.
A straightforward calculation yields the grand partition
function at inverse temperature β and chemical potential μ
in the continuum

lnZc ¼
X
k

ðβEk þ ln ð1þ e−βðEk−μÞÞ þ μ → −μÞ ð4Þ

with single-particle energies E2
k ¼ k2 þm2 depending on

the spatial wave number k ¼ 2πn=L, n ∈ Z and mass m.
The corresponding baryon density is

nB;c ¼
d lnZc

dμ
¼ 1

L

X
k

�
1

1þ eβðEk−μÞ −
1

1þ eβðEkþμÞ

�
: ð5Þ

Note that the sum over all Matsubara frequencies has
already been performed; i.e., the continuum limit in
(imaginary) time direction is already implied, while trun-
cating the sum over k is conceptually similar to a finite
lattice spacing in spatial direction. Since the SLAC deriva-
tive discretizes the continuum dispersion relation up to the
maximal momentum given by the inverse lattice spacing,
the finite (truncated) sum is also the result for free, massive
SLAC fermions discretized in the spatial direction only.
This is not what is implemented in lattice Monte Carlo

simulations where also the (imaginary) time is discretized.
Asymptotically, the error in truncating the Matsubara sum
after Nt terms (with Matsubara frequencies symmetrically
about the origin) is ∼βðEk � μÞ=π2Nt. Letting the lattice
constant in time direction β=Nt → 0 at fixed k, we can
neglect this error. However, Ek will eventually become
large in the sum over k and higher order corrections will
contribute, if the temporal “cutoff” Nt=β is not sent to
infinity before taking the limit L=Ns → 0. In the particular
case of a uniform continuum limit Nt ¼ Ns → ∞, we pick
up the following correction terms in 1þ 1 dimensions:

lim
Ns¼Nt→∞

lnZ ¼ lnZc −
μ2

4π
; ð6Þ

lim
Ns¼Nt→∞

nB ¼ nB;c −
μ

2π
: ð7Þ

As argued above, the expressions on the left correspond to
the continuum limit of free massive SLAC fermions,1 for
which the chemical potential enters the Lagrangian linearly
via iμψ̄γ0ψ as it does in the continuum; see e.g., Eq. (1). We
conclude that introducing the chemical potential linearly as
in the continuum theory yields the correct partition function
up to a (μ-dependent) constant and can thus be used in

1When letting Nt ¼ Ns → ∞ at fixed box size. A detailed
calculation of the correction term at finite lattice spacing, possibly
different in temporal and spatial direction, can be found in the
Appendix.
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Monte Carlo simulations. In fact, since SLAC fermions
couple fermion fields at well-separated lattice sites it would
be difficult to introduce an exponentially coupled μ for all
hopping terms in the Lagrangian. In the Appendix we show
Eq. (7); i.e., that the baryon density computed from a lattice
action with linearly coupled μ has to be corrected by the
constant þμ=2π. This is actually not a defect of SLAC
fermions but just expresses the fact that conventionally
one first performs the continuum limit in the time direction
and afterward in the spatial directions to arrive at the well-
known expression for the thermodynamic potentials at
finite temperature and density. A comparison of free
massive baryon densities for various commonly used lattice
discretizations is depicted in Fig. 1. The (properly cor-
rected) SLAC result is almost indistinguishable from the
continuum result. In passing, we note the following:

(i) A similar analysis for naive fermions reveals that
introducing a chemical potential as an additive linear
term requires the same correction as for SLAC
fermions (when β=Nt and L=Ns approach zero
simultaneously) and thus could also be used.

(ii) For d > 2 spacetime dimensions the known correc-
tion term diverges in the continuum limit. In four
spacetime dimensions it diverges quadratically [41].
A practical renormalization scheme on the lattice
could then be to determine the constant c via

0 ¼ dðnB − 2cμÞ
dμ

����
μ¼0

ð8Þ

(c is finite at finite lattice spacing a) and subtracting
cμ2 from the partition function. It has been dem-
onstrated in Ref. [42] that this method of divergence
removal works in (quenched) QCD. This is different
from earlier attempts to eliminate the divergences by
suitably modifying the lattice action [43–45].

(iii) The standard exponential coupling of the chemical
potential for naive fermions has significantly larger
discretization errors than the linear coupling (if
corrected properly). In particular, a linearly coupled
chemical potential yields quite accurately the posi-
tion of the first step, i.e., the fermion mass.

(iv) In the Appendix we explicitly calculate the correc-
tion term for Nt ≈ Ns ≫ 1 for noninteracting fer-
mions. We have observed that this correction is
insensitive to the interaction and hence it is sufficient
to subtract the same term in the GN model [29].
It seems that this statement holds true in higher
dimensions as well, where the correction terms are
UV divergent. This has been observed in numerical
simulations [42], but a general proof of this inter-
esting observation in QCD and interacting GN
models appears to be still missing.

We emphasize once more, that the μ-dependent correction
terms are not lattice artifacts—they may also appear in
continuum theories, depending on how divergent integrals
are treated [cf. the detailed discussion below Eq. (7)].
We have cross-checked results obtained within this project
using naive fermions with a conventional exponentially
coupled chemical potential (see Ref. [29]) as this is the
established method of introducing a chemical potential in
lattice field theory. Since the exponentially coupled μ
couples to the exactly conserved charge on the lattice,
no correction terms are needed [43].

III. BARYONIC MATTER

In a recent paper [29] we studied the phase structure of
the GN model in 1þ 1 dimensions for Nf ¼ 8 using lattice
field theory and SLAC fermions with exact chiral sym-
metry. The resulting phase diagram is shown in Fig. 2 in
units of

σ0 ¼ lim
L→∞

hjσ̄jijμ¼0;T¼0 ð9Þ

with

σ̄ ¼ 1

NtNs

X
t;x

σðt; xÞ: ð10Þ

As expected, we identified a homogeneously broken phase
with nonzero constant chiral condensate at small chemical
potential and low temperature and a symmetric phase at

FIG. 1. Baryon density nB as a function of μ for free massive
fermions discretized on an Nt × Ns ¼ 64 × 10 lattice of extent
Lm ¼ 10, βm ¼ 64. Note that the baryon density nB is normal-
ized by multiplication with a factor 1=Nf, where Nf also includes
possible doublers. For the depicted fermion discretizations we use
different couplings of the chemical potential: For SLAC fermions
the additive linear coupling according to Eq. (7) has been used,
for Wilson fermions and for staggered fermions only exponential
coupling has been used and for naive fermions we used the
conventional exponential coupling (exp) as well as the additive
linear coupling (lin). Note that staggered fermions and naive
fermions with exponential coupling lead to identical results.
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high temperature.2 Most interestingly, however, we also
found a phase, where the spatial correlator

CðxÞ ¼ hcðxÞi; cðxÞ ¼ 1

NtNs

X
t;y

σðt; yþ xÞσðt; yÞ

ð11Þ

is an oscillating function [see e.g., Fig. 4(b), bottom]. As a
simple observable to distinguish the three phases we used

Cmin ¼ min
x
CðxÞ; ð12Þ

where

Cmin

8<
:

≫ 0 inside the homogeneously broken phase;

≈ 0 inside the symmetric phase;

< 0 inside the inhomogeneous phase

ð13Þ
(see Fig. 2).
The GN model can be solved analytically in the semi-

classical approximation or, equivalently, in the limit
Nf → ∞ (see e.g., Refs. [19,26,46,47]) and it is known
that extrema of the effective action

Seff ¼
1

2g2

Z
d2xσ2 − ln detD; ð14Þ

which one obtains by using Lσ from Eq. (2) and integrating
over the fermions in the partition function, are not only
given by σ ¼ const. For example in Ref. [19] it was shown

that at large chemical potential and small temperature a
spatially oscillating function σðxÞ minimizes the free
energy. For each cycle of the oscillation Nf fermions or
antifermions, which can be interpreted as baryons, are
located in the region of minimal σ2, i.e., where the sign of σ
changes. This implies breaking of translational symmetry
and a crystal of baryons (as shown in Fig. 3).
In the presentworkwe investigatewhether traces of such a

baryonic crystal are also present in the GN model with a
finite number of fermion flavors. For all plots shown in
the following we performed computations with Nf ¼ 8
flavors of SLAC fermions, lattice spacing a ≈ 0.410=σ0
and Ns ¼ 63 lattice sites in spatial direction, corresponding
to a periodic spatial direction of extent L ¼ Nsa ≈ 25.8=σ0.
We use the same lattice setup and rational Hybrid
Monte Carlo (HMC) algorithm as in our preceding paper
and refer for technical details to Ref. [29] and to Appendix C
in Ref. [48], where the same setup was used. Not addressed
in these references is the issue of possibly existing excep-
tional configurations with zero modes of the Dirac operator,
which cannot be ruled out.We note, however, that we are not
considering a gauge theory, where such zero modes are
protected by topology. Indeed we did not encounter any
problems in our simulations, which indicate the presence of
exceptional configurations in our ensembles. Note that there
is also no sign problem, even for μ ≠ 0, because the
determinant of the Dirac operator D in Eq. (2) for Nf ¼ 8
is always real and non-negative (see Ref. [29] for details).
From the extensive set of simulations we carried out in

Ref. [29] for different a and L, we expect that both lattice
discretization errors and finite volume corrections are
small. In particular we observed that the size and shape
of the inhomogeneous phase is stable, even when varying
the lattice spacing by a factor of ≈2 and the spatial volume
by a factor of ≈4 (see Fig. 8 in Ref. [29]). This clearly
indicates that the inhomogeneous phase is not an artifact of
either the finite lattice spacing or the finite spatial volume.
Note that in Ref. [29] we also performed computations with

FIG. 2. Phase diagram of the 1þ 1-dimensional GN model for
Nf ¼ 8 (SLAC fermions, a ≈ 0.410=σ0, Ns ¼ 63; figure taken
from Ref. [29]). The homogeneously broken phase, the sym-
metric phase and the inhomogeneous phase are colored
in red, green and blue, respectively. For comparison also the
Nf → ∞ phase boundaries are shown as gray lines.

FIG. 3. Nf → ∞ results from Ref. [47] for the condensate σðxÞ
and the baryon density nBðxÞ at ðμ=σ0; T=σ0Þ ¼ ð0.700; 0Þ,
i.e., inside the inhomogeneous phase [see Ref. [47], Eqs. (54)
and (80)].

2Note that our numerical results did not allow us to decide
whether these regions in the μ-T plane are phases in a strict
thermodynamical sense or rather regimes, which strongly re-
semble phases. In any case, throughout this paper we denote these
regions as “phases.”
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Nf ¼ 8 flavors of naive fermions, to check and to confirm
our numerical results.

A. Correlation of the baryon density
and the condensate

We start by investigating the location of the fermions
relative to the spatially oscillating condensate inside the
inhomogeneous phase. It is important to note that the
effective action (14) is invariant under spatial translations.
Therefore, field configurations, which are spatially shifted
relative to each other, i.e., σðt; xÞ and σðt; xþ δxÞ, con-
tribute with the same weight e−Seff to the partition function
and, thus, should be generated with the same probability by
the HMC algorithm. Consequently, simple observables like
hσðxÞi or hnBðxÞi, where

nB ¼ iψ̄γ0ψ
Nf

ð15Þ

are not suited to detect an inhomogeneous condensate or
baryon density in a lattice simulation, because destructive
interference should lead to hσðxÞi¼0 and hnBðxÞi ¼ const,
even in cases where all field configurations exhibit spatial
oscillations with the same wavelength. An observable,
which does not suffer from destructive interference and
is able to exhibit information about possibly present
inhomogeneous structures, is the spatial correlation func-
tion of σðxÞ, as defined in Eq. (11) (for a more detailed
discussion see Sec. 4.3 of Ref. [29]). Similarly, the spatial
correlation function of the baryon density and the squared
condensate,

CnBσ2ðxÞ ¼
�

1

NtNs

X
t;y

nBðt; yþ xÞσ2ðt; yÞ
�
; ð16Þ

can provide insights into the location of the fermions
relative to the extrema of the condensate inside an

inhomogeneous phase. For Nf → ∞ the maxima of
σ2ðxÞ coincide with the minima of nBðxÞ and vice versa,
as one can read off from Fig. 3. Thus, for Nf → ∞ the
correlator CnBσ2ðxÞ has minima at nλ=2 and maxima at
ðnþ 1=2Þλ=2, where λ is the wavelength of both σ2ðxÞ
and nBðxÞ [see Fig. 4(a), where CnBσ2ðxÞ and CðxÞ are
shown for ðμ=σ0; T=σ0Þ ¼ ð0.700; 0.038Þ]. Our corre-
sponding lattice results for Nf ¼ 8 at the same chemical
potential and temperature exhibit an almost identical
behavior [see Fig. 4(b)]. We interpret this as a clear signal
that baryons are centered at the roots of the condensate σ,
where σ is a periodically oscillating function (we have
investigated the latter in detail in our preceding work [29]).
Thus separations between neighboring baryons should all
be similar, which is reminiscent of the baryonic crystal
found at Nf → ∞.

B. Baryon number and its relation
to the condensate

In this section we study the baryon number

B ¼
�Z

dx nB

�
ð17Þ

with the baryon density nB as defined in Eq. (15) and
investigate its relation to the average number of cycles of
the oscillating condensate σ. Inside the finite periodic
lattice with extent L we have defined and computed

νmax ¼
Lhjkmaxji

2π
: ð18Þ

By kmax we denote the dominant momentum of cðxÞ [see
Eq. (11)], i.e., that k, which maximizes the absolute value
of the Fourier transform c̃ðkÞ.
The central result of this subsection is that B and νmax are

almost identical on each field configuration, i.e., even when

FIG. 4. The spatial correlation functions CnBσ2ðxÞ (top) and CðxÞ (bottom) as defined in Eqs. (16) and (11). The vertical gray lines
indicate the roots of CðxÞ. (a) Analytical results for Nf → ∞ and ðμ=σ0; T=σ0Þ ¼ ð0.700; 0.038Þ according to Refs. [29,49], (b) Lattice
field theory results for Nf ¼ 8 and ðμ=σ0; T=σ0Þ ¼ ð0.700; 0.038Þ.
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omitting the average h…i over all generated field configu-
rations in the definitions (17) and (18). In particular at small
T there is almost perfect agreement. This is illustrated in
Fig. 5, where we show Monte Carlo histories of B and of
νmax at ðμ=σ0; T=σ0Þ ¼ ð1.10; 0.038Þ after thermalization.
We interpret this as a strong indication that the GN model
with Nf ¼ 8 behaves very similar to the GN model in the
limit Nf → ∞, where B ¼ νmax.
In the following we elaborate on this further by present-

ing and discussing results obtained at two different values
for the temperature, T=σ0 ≈ 0.076 and T=σ0 ≈ 0.038.

1. Temperature T=σ0 ≈ 0.076

For temperature T=σ0 ≈ 0.076 we show both B and

Σ2 ¼ hσ̄2i
σ20

ð19Þ

with σ0 and σ̄ as defined in Eqs. (9) and (10) as functions of
the chemical potential μ in Fig. 6. At μ=σ0 ≈ 0.51 both

quantities indicate in a consistent way the phase transition
between the homogeneously broken and the inhomo-
geneous phase. While B ≈ 0 for small μ, B suddenly starts
to increase at μ=σ0 ≈ 0.51. At roughly the same μ value Σ2

rapidly drops from around 1 to 0. Note that B is quite
similar to nBjNf ;L→∞L (the green solid line in Fig. 6), where
nBjNf ;L→∞ is the analytical infinite volume result for the
Nf → ∞ baryon density according to Ref. [19]. However,
the phase transition for Nf ¼ 8 takes place at smaller
μ=σ0 ≈ 0.51 compared to μ=σ0≈2=π≈0.64 for Nf → ∞,
where (at T ¼ 0) a baryon corresponds to a kink-antikink
field configuration σ with energy 2σ0=π per fermion (see
e.g., Refs. [46,50]). This can also be seen in the phase
diagram shown in Fig. 2 and implies that the baryon mass
(per fermion flavor) is somewhat smaller compared to
Nf → ∞. Note that at finite Nf a smaller homogeneously
broken phase is expected, because of fluctuations in σ,
which increase disorder (see the detailed discussion in our
preceding work [29]).
The careful reader might already note the remnants of

the stairlike low temperature behavior discussed later on in
Sec. III B 2. Moreover, at large μ the Nf ¼ 8 result and the
Nf → ∞ result for the baryon number B are very similar,
where the latter approaches the corresponding result for
free fermions, as noted in Ref. [26].
In Fig. 7 we show B and νmax as functions of the

chemical potential μ. The two curves are quite similar,
which is a strong indication that the finite-Nf theory is
qualitatively well described by the semiclassical Nf → ∞
picture. Note that νmax is slightly below B for μ=σ0 ≳ 0.51.
The reason can be seen in Fig. 8, where thermalized
Monte Carlo histories of B and νmax are shown for μ=σ0 ¼
1.20 (analogous plots for other values of μ=σ0 ≳ 0.51 are
similar). On the majority of generated field configurations
B and νmax agree rather well. However, B is an extremely
stable quantity, while νmax exhibits sizable fluctuations on
around 25% of the generated field configurations, mostly
fluctuations toward small values, significantly below the
median of νmax. Such fluctuations are more common for

FIG. 5. Monte Carlo histories of B and of νmax at
ðμ=σ0; T=σ0Þ ¼ ð1.10; 0.038Þ after thermalization.

FIG. 6. Baryon number B and Σ2 as functions of the chemical
potential μ at temperature T=σ0 ≈ 0.076. The green curve
represents nBjNf ;L→∞L. The dashed vertical line indicates the
phase transition at μ=σ0 ≈ 0.51.

FIG. 7. B and νmax as functions of the chemical potential μ
at temperature T=σ0 ≈ 0.076. The green curve represents
nBjNf ;L→∞L.
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larger values of μ. This is expected from the Fourier
transformed spatial correlation function, which we inves-
tigated in Ref. [29] in detail, and also reflected by the
corresponding histogram for νmax shown in the right part of
Fig. 8. To summarize, Fig. 7 indicates that the baryon
number B is quite similar to the number of cycles of the
spatial oscillation of the condensate σ, as for Nf → ∞. This
observation supports our conclusions above that, also at
finite Nf , baryons are the relevant excitations of the GN
model and that their number is closely related to the shape
of the condensate σ.

2. Temperature T=σ0 ≈ 0.038

Autocorrelations at T=σ0 ≈ 0.038 turned out to be rather
large in our simulations, in particular near the boundary
of the homogeneously broken phase and the inhomo-
geneous phase, in the region 0.40≲ μ=σ0 ≲ 0.65. This is
illustrated in Fig. 9, where we compare Monte Carlo
histories of B at μ=σ0 ¼ 0.65 for a cold start [each field

variable σðt; xÞ ¼ 1] and a hot start (each field variable
drawn randomly from a Gaussian distribution with mean
0). After around 1500 Monte Carlo sweeps the two
Monte Carlo histories eventually converge and the simu-
lations seem to have thermalized. Nevertheless the auto-
correlation time is quite large, of the order of the average
number of Monte Carlo sweeps needed to create or
annihilate a baryon, i.e., ≳500. This is sizable compared
to the typical number of Monte Carlo sweeps, between
2000 and 10000, we are able to carry out for each
simulation with our available HPC resources. Thus, for
μ=σ0 ≈ 0.65 the errors we show for our results might be
somewhat underestimated.
For larger μ=σ0, i.e., farther away from the phase

boundary, autocorrelation times become smaller. For exam-
ple, in Fig. 5 we show the Monte Carlo histories of B and
of νmax at μ=σ0 ¼ 1.10 after thermalization. For almost all
field configurations B ≈ νmax and their values are either
close to 8 or close to 9. Even though we only show 150
Monte Carlo sweeps, there are many transitions between
B ≈ νmax ¼ 8 and B ≈ νmax ¼ 9, indicating that the HMC
algorithm is able to frequently increase or decrease the
number of cycles of the spatial oscillation of the condensate
σ. In Fig. 10 we show B and νmax as functions of μ in the
range 0.80 ≤ μ=σ0 ≤ 1.20. Both quantities exhibit a very
clear stairlike behavior with the steps corresponding to
integers. The steps of νmax (which are more pronounced at
low temperature due to less thermal fluctuations) are
explained by the semiclassical commensurability con-
straint, namely that the wavelength of the periodic con-
densate must divide the box length L. In the limit Nf → ∞
the baryon number is equal to the cycles of the condensate.
Thus, a second baryon appears at chemical potential
μ2 > μc ≈ ð2=πÞσ0, a third baryon at μ3 > μ2, etc. Hence,
with increasing μ the mean separations of baryons decrease
which leads to more interaction. That the semiclassical

FIG. 8. Left plot: Monte Carlo histories of B and of νmax at
ðμ=σ0; T=σ0Þ ¼ ð1.20; 0.076Þ after thermalization. Right plot:
histograms of B and of νmax approximating their probability
distribution.

FIG. 9. Monte Carlo histories of B at ðμ=σ0; T=σ0Þ ¼
ð0.65; 0.038Þ for a cold start and a hot start. For the sake of
readability, only every 50th measurement is shown.

FIG. 10. B and νmax as functions of the chemical potential μ
at temperature T=σ0 ≈ 0.038. The green curve represents the
corresponding Nf → ∞ lattice field theory result for B at
spatial lattice extent L ≈ 25.8=σ0 (the same extent used in our
simulations), while the purple curve is the analytically known
Nf → ∞ continuum result for nBjNf ;L→∞L.
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picture explains the simulations sowell is a further indication
that theGNmodel atNf ¼ 8 is quite similar to theGNmodel
forNf → ∞; i.e., quantum fluctuations atNf ¼ 8 seem to be
rather weak.
We note that the stairlike behavior is a consequence of

the finite spatial extent L. To support this we minimized the
SLAC regularized GN action with a specific ansatz for the
chiral condensate,

σðxÞ ¼ A cos

�
2π

L
qx

�
; q ∈ N; ð20Þ

in the variables A and q. This ansatz is a reasonable
approximation for the considered values of μ as the
analytically known chiral condensate in the Nf ; L → ∞
case rapidly reduces to a cos-shape for increasing chemical
potential. This enables us to calculate B for Nf → ∞ and
finite L. The result for a ≈ 0.410=σ0 and Ns ¼ 63 corre-
sponding to L ¼ Nsa ≈ 25.8=σ0 (i.e., the same lattice
spacing and extent used in our simulations) exhibits clear
steps as shown in Fig. 10. The steps disappear for L → ∞
as shown by nBjNf ;L→∞L, which is also plotted in Fig. 10.
For μ=σ0 ≲ 0.65 autocorrelation times are extremely

large and we were not able to reach thermal equilibrium
in our simulations. This is shown in Fig. 11, where we
present results for B obtained from cold starts and from hot
starts. For 0.4≲ μ=σ0 ≲ 0.65 the cold and the hot curves
differ and the largest discrepancy is observed close to the
phase transition around μ=σ0 ≈ 0.51. We expect the true
result for BðμÞ to be somewhere between the two curves;
i.e., the cold and the hot results represent lower and upper
bounds for BðμÞ. This is also supported by our simulation
results for BðμÞ at T=σ0 ≈ 0.076 (see Sec. III B 1), which
is bounded by the cold and the hot curves obtained at
T=σ0 ≈ 0.038 in this range. Figure 11 as well as the
exceedingly long autocorrelation times remind us of

hysteresis effects near a first order transition. From the
good agreement with the semiclassical picture, one could
conjecture that in a finite volume the probability distribu-
tion e−Seff=Z has two peaks (due to the commensurability
constraint) which leads to the observed hysteresis effects.
The problem will probably go away for very large volumes,
but for high-precision simulations on finite lattices near the
transition improved algorithms are needed, which support
the creation and annihilation of extended baryons.
We remark that consequences of the large autocorrela-

tions are also visible in the phase diagram shown in Fig. 2.
In the problematic region, i.e., for 0.40≲ μ=σ0 ≲ 0.65 and
T=σ0 ≲ 0.05, the boundary between the homogeneously
broken phase and the inhomogeneous phase suddenly turns
toward the origin, which amounts to an inhomogeneous
phase larger than expected and qualitatively different from
the Nf → ∞ boundary. Knowing that all simulations for
this phase diagram were started with hot field configura-
tions, this behavior can now be understood as a thermal-
ization problem [see Fig. 11, where the result for BðμÞ
obtained with a hot start incorrectly indicates the phase
boundary at a rather small value for μ].

IV. CONCLUSIONS

In this work we investigated the distribution of the
baryon density nB in the Nf ¼ 8 GN model enclosed in a
finite box of size L at finite chemical potential μ. The
simulations were performed with chiral SLAC fermions.
We compared with recent results on the spatial inhomo-
geneities in the 1þ 1-dimensional GNmodel [29], which is
interpreted as modulation of baryonic matter density as
observed in the Nf → ∞ limit of the model [19] and which
is well known in solid state physics [24,25]. Since trans-
lation symmetry is inherent to Monte Carlo simulations on
finite lattices (the phase of a quasiperiodic configuration is
a collective parameter) we could not measure the baryon
density nBðxÞ directly. Instead we found a strong correla-
tion between the dominant wave number of the spatial
inhomogeneities and the baryon number. This is clear
evidence for a region in the phase diagram corresponding
to a regime of modulated baryonic matter. Via this detour
we explicitly circumvented the question about the breaking
of translation symmetry. The delicate question whether we
found a rigid baryon crystal (as seen in the large-Nf limit)
or rather a baryonic liquid [51], where the baryons have a
preferred separation locally, but are disordered on large
scales, has been addressed in Ref. [29] and needs further
investigations with improved algorithms.
Our results shed further light on what can happen in

quantum field theories at large fermion densities. In par-
ticular, it shows that mean-field and large-Nf approximations
may contain more (hidden) information on the physics at
finite Nf than one would expect. This is reassuring, since in
particle physics and even more so in solid state physics we
often rely on these approximations. Our results may also be

FIG. 11. B as a function of μ for T=σ0 ≈ 0.038 obtained from
cold starts and from hot starts. For comparison we also show the
corresponding result at T=σ0 ≈ 0.076, where thermalization and
large autocorrelations do not cause problems.
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of relevance in condensed matter systems, e.g., for large,
almost one-dimensional polymers [52].
However, it is still unclear if the above results are relevant

for QCD. On the one hand, we established that the inter-
pretation as baryonic matter is not spoiled by taking quantum
fluctuations into account. On the other hand, although recent
numerical lattice studies of theGNmodel in 2þ 1 dimensions
and for Nf → ∞ spotted inhomogeneous condensates, the
spatial modulation is related to the cutoff scale and disappears
in the continuum limit [53,54]. Clearly, if this happens in the
limitNf → ∞, thenwe cannot expect a breaking of translation
invariance for a finite number of flavors. Thus, extending our
numerical studies and simulations to fermion systems in
higher dimensions is an important task. Interesting candidates
are for example the Nambu-Jona-Lasinio model or the quark-
meson model in 3þ 1 dimensions.
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APPENDIX: CONTINUUM LIMIT FOR FREE
FERMIONS WITH LINEARLY COUPLED

CHEMICAL POTENTIAL μ

In this appendix we calculate the correction term, which
must be added to the baryon density, when using a linearly

coupled chemical potential and removing the lattice cutoff
as it is typically done in lattice field theory.
We consider noninteracting fermions linearly coupled

to μ enclosed in a (d − 1)-dimensional spatial box of linear
extent L subject to periodic boundary conditions. The
allowed wave numbers of the corresponding fermion field
at finite temperature T ¼ 1=β are

k ∈ fðk0; kÞg ¼
��

ωn;
2π

L
n

��
; ðn; nÞ ∈ Zd ðA1Þ

with Matsubara frequencies

ωn ¼
2π

β

�
nþ 1

2

�
: ðA2Þ

The corresponding eigenvalues of the free Dirac operator
with chemical potential are

λ�k ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ ik0Þ2 − k2

q
; ðA3Þ

such that

λþk λ
−
k ¼ ðk0 − iμÞ2 þ E2

k; E2
k ¼ k2 þm2: ðA4Þ

Because of spin, the degeneracy of the eigenvalues is
C ¼ 2½d=2�−1, where [x] denotes the greatest integer less than
or equal to x.
The logarithm of the grand partition function ZðμÞ

divided by βV is the pressure p. The μ-derivative of p
is the baryon density,

nB ¼ ∂p
∂μ ¼ ∂

∂μ
lnZðμÞ
βV

¼ C
βV

X
k

vðEkÞ; ðA5Þ

with

vðEkÞ ¼
∂
∂μ

X
ωn

ln λþk λ
−
k : ðA6Þ

The sum defining vðEkÞ is convergent for any fixed k.
But when we sum over the spatial momenta, Ek (which is
the positive square root of E2

k) becomes arbitrarily large and
we will show that removing the cutoffs in frequency space
and momentum space does not commute.
To this end, we regularize the sum over the Matsubara

frequencies (A6) by only admitting Nt frequencies. It is
convenient to choose these frequencies symmetric to the
origin (which is only possible for even Nt); i.e., we restrict
ωn according to

jωnj ≤
2πN0

t

β
; N0

t ¼
Nt − 1

2
: ðA7Þ
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To calculate the truncated series over the ωn denoted by
vðEk; NtÞ, we combine terms with �ωn and obtain

vðEkk;NtÞ¼
X

jnþ1
2
j≤N0

t

μ−Ek

ω2
nþðμ−EkÞ2

þðEk→−EkÞ; ðA8Þ

where ðEk → −EkÞ represents the previous term with
opposite sign of the energy. vðEk; NtÞ is finite for
Nt → ∞ and can be calculated,

vðEkÞ ¼ vðEk;∞Þ ¼ β

eβðEk−μÞ þ 1
− ðμ → −μÞ: ðA9Þ

Inserting (A9) into (A5) yields the baryon density

nB ¼ C
V

X
k

�
1

1þ eβðEk−μÞ −
1

1þ eβðEkþμÞ

�
: ðA10Þ

An integration with respect to the chemical potential gives
the pressure of the Fermi gas. The integration constant is
the divergent contribution of the quantum fluctuations at
zero temperature and zero chemical potential,

pV
C

¼
X
k

�
Ekþ

1

β
lnð1þe−βðEk−μÞÞþðμ→−μÞ

�
: ðA11Þ

To summarize: If we first perform the continuum limit in
the Euclidean time direction, which means we sum over all
n ∈ Z in Eq. (A6), then we get the sum

P
Ek at μ ¼ T ¼ 0

plus the finite sum known from quantum statistics.
Since the sum over the Matsubara frequencies is only

conditionally convergent and the sum over the k is
divergent, we get a different result when we remove the
cutoff in the Matsubara frequencies together with the cutoff
in the spatial momenta, as one does in lattice field theory.
To show that, we consider the difference between the
series (A9) and the finite sum (A8),

ΔvðEk; NtÞ ¼ vðEkk;∞Þ − vðEkk; NtÞ

¼ β

π
FNtþ1

2

�
βðμ − EkÞ

2π

�

−
β

π
FNtþ1

2

�
βðμþ EkÞ

2π

�
; ðA12Þ

where we introduced the function

FκðzÞ ¼
X∞
n¼0

z
z2 þ ðnþ κÞ2 ¼

X∞
n;m¼0

ð−1Þmz2mþ1

ðnþ κÞ2mþ2
ðA13Þ

with κ ¼ ðNt þ 1Þ=2. For large κ the sum over n is
approximately given by

X∞
n¼0

1

ðnþ κÞsþ1
¼ 1

sκs
−

1

2κsþ1
þ… ðA14Þ

In the following we focus on free fermions in 1þ 1
dimensions, where only the first term gives a finite
contribution to the error. The other terms are suppressed
by inverse powers of Nt. Thus, keeping the relevant term
we arrive at

FκðzÞ ¼
X∞
m¼0

ð−1Þm
2mþ 1

�
z
κ

�
2mþ1

: ðA15Þ

For large spatial momenta we have μ ≪ Ek and

ðμþ EkÞ2mþ1 þ ðμ − EkÞ2mþ1 ∼ 2ð2mþ 1ÞμE2m
k ; ðA16Þ

such that

ΔvðEk; NtÞ ¼
2βμ

π

X∞
m¼0

ð−1Þm
�

β

2πκ

�
2mþ1

E2m
k : ðA17Þ

To study the error for the baryon density

ΔnB ¼ 1

βL

X
k

ΔvðEk; NtÞ ðA18Þ

(in two spacetime dimensions C ¼ 1) as a function of
the temporal and spatial cutoffs, we cut off the spatial
momenta as

jk1j ≤
2πN0

s

L
; N0

s ¼
Ns − 1

2
: ðA19Þ

For convenience we choose the spatial momenta symmetric
to the origin. Inserting Eq. (A17) into the regularized
sum (A18) we can calculate the leading term with the
help of

XN0
s

n¼−N0
s

E2m
k ∼

2

2mþ 1

�
2π

L

�
2m
�
Ns

2

�
2mþ1

: ðA20Þ

This way we end up with

ΔnB ¼ 2μ

π2
X∞
m¼0

ð−1Þm
2mþ 1

�
Nsβ

NtL

�
2mþ1

¼ 2μ

π2
atan

�
Nsβ

NtL

�
:

ðA21Þ

If we regularize the system on a lattice with the same lattice
constant a in temporal and spatial direction then the
argument of atan is equal to 1 and we obtain
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ΔnB ¼ μ

2π
: ðA22Þ

To summarize: If we use a linearly coupled chemical
potential for free fermions on the lattice, then we must
subtract from the resulting baryon density nB a term linear
in μ, in order to recover the result obtained in a conven-
tional continuum calculation. In spacetime dimensions
d > 2 the correction term actually is UV divergent, since
an analogous estimate reveals that the suppression by

inverse powers of κ ∝ Nt does not balance the sum over
the spatial momenta anymore.
Finally, we note that higher order terms in this correction

(vanishing forNt → ∞) are now straightforward to compute.
For future reference, we just show the OðaÞ correction on a
hypercubic latticewith lattice spacinga (β ¼ aNt; L ¼ aNs):

ΔnB ¼ μ

2π

�
1 −

4a
πβ

�
þOða2Þ: ðA23Þ

In higher orders in a, also terms ∼μ2nþ1; n ∈ N, appear.

[1] B. Friman, C. Höhne, J. Knoll, S. Leupold, J. Randrup, R.
Rapp, and P. Senger, The CBM Physics Book. Compressed
Baryonic Matter in Laboratory Experiments, Vol. 814
(Springer-Verlag, Berlin, 2011).

[2] A.M. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov,
and J. J.M. Verbaarschot, On the phase diagram of QCD,
Phys. Rev. D 58, 096007 (1998).

[3] K. Fukushima and T. Hatsuda, The phase diagram of dense
QCD, Rep. Prog. Phys. 74, 014001 (2011).

[4] G. Parisi, On complex probabilities, Phys. Lett. 131B, 393
(1983).

[5] J. R. Klauder, Coherent state Langevin equations for canoni-
cal quantum systems with applications to the quantized Hall
effect, Phys. Rev. A 29, 2036 (1984).

[6] P. H. Damgaard and H. Huffel, Stochastic quantization,
Phys. Rep. 152, 227 (1987).

[7] G. Aarts, E. Seiler, and I.-O. Stamatescu, The complex
Langevin method: When can it be trusted? Phys. Rev. D 81,
054508 (2010).

[8] M. Cristoforetti, F. Di Renzo, and L. Scorzato (Aurora
Science Collaboration), New approach to the sign problem
in quantum field theories: High density QCD on a Lefschetz
thimble, Phys. Rev. D 86, 074506 (2012).

[9] M. Cristoforetti, F. Di Renzo, A. Mukherjee, and L.
Scorzato, Monte Carlo simulations on the Lefschetz thim-
ble: Taming the sign problem, Phys. Rev. D 88, 051501
(2013).

[10] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu, and
T. Sano, Hybrid Monte Carlo on Lefschetz thimbles—A
study of the residual sign problem, J. High Energy Phys. 10
(2013) 147.

[11] R. Savit, Duality in field theory and statistical systems, Rev.
Mod. Phys. 52, 453 (1980).

[12] P. de Forcrand, J. Langelage, O. Philipsen, and W. Unger,
Lattice QCD Phase Diagram In and Away from the Strong
Coupling Limit, Phys. Rev. Lett. 113, 152002 (2014).

[13] C. Gattringer, New developments for dual methods in lattice
field theory at non-zero density, Proc. Sci., LATTICE2013
(2014) 002.

[14] A. Gocksch, Simulating Lattice QCD at Finite Density,
Phys. Rev. Lett. 61, 2054 (1988).

[15] A. Gocksch, P. Rossi, and U.M. Heller, Quenched hadronic
screening lengths at high temperature, Phys. Lett. B 205,
334 (1988).

[16] C. Gattringer and K. Langfeld, Approaches to the sign
problem in lattice field theory, Int. J. Mod. Phys. A 31,
1643007 (2016).

[17] K. Langfeld, Density-of-states, Proc. Sci., LATTICE2016
(2017) 010 [arXiv:1610.09856].

[18] C. Gattringer, M. Mandl, and P. Törek, New density of states
approaches to finite density lattice QCD, Phys. Rev. D 100,
114517 (2019).

[19] O. Schnetz, M. Thies, and K. Urlichs, Phase diagram
of the Gross-Neveu model: Exact results and condensed
matter precursors, Ann. Phys. (Amsterdam) 314, 425
(2004).

[20] P. de Forcrand and U. Wenger, New baryon matter in
the lattice Gross-Neveu model, Proc. Sci., LAT2006
(2006) 152.

[21] D. Nickel, Inhomogeneous phases in the Nambu-
Jona-Lasino and quark-meson model, Phys. Rev. D 80,
074025 (2009).

[22] S. Carignano, D. Nickel, and M. Buballa, Influence of
vector interaction and Polyakov loop dynamics on inho-
mogeneous chiral symmetry breaking phases, Phys. Rev. D
82, 054009 (2010).

[23] M. Buballa and S. Carignano, Inhomogeneous chiral con-
densates, Prog. Part. Nucl. Phys. 81, 39 (2015).

[24] P. Fulde and R. A. Ferrell, Superconductivity in a strong
spin-exchange field, Phys. Rev. 135, A550 (1964).

[25] A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of
superconductors, Sov. Phys. JETP 20, 762 (1965).

[26] M. Thies and K. Urlichs, Revised phase diagram of the
Gross-Neveu model, Phys. Rev. D 67, 125015 (2003).

[27] M. Ammon, M. Baggioli, and A. Jimnez-Alba, A unified
description of translational symmetry breaking in hologra-
phy, J. High Energy Phys. 09 (2019) 124.

[28] M. Baggioli, S. Grieninger, and L. Li, Magnetophonons &
type-B Goldstones from hydrodynamics to holography,
J. High Energy Phys. 09 (2020) 037.

[29] J. Lenz, L. Pannullo, M. Wagner, B. Wellegehausen, and A.
Wipf, Inhomogeneous phases in the Gross-Neveu model in

BARYONS IN THE GROSS-NEVEU MODEL IN 1þ 1 … PHYS. REV. D 102, 114501 (2020)

114501-11

https://doi.org/10.1103/PhysRevD.58.096007
https://doi.org/10.1088/0034-4885/74/1/014001
https://doi.org/10.1016/0370-2693(83)90525-7
https://doi.org/10.1016/0370-2693(83)90525-7
https://doi.org/10.1103/PhysRevA.29.2036
https://doi.org/10.1016/0370-1573(87)90144-X
https://doi.org/10.1103/PhysRevD.81.054508
https://doi.org/10.1103/PhysRevD.81.054508
https://doi.org/10.1103/PhysRevD.86.074506
https://doi.org/10.1103/PhysRevD.88.051501
https://doi.org/10.1103/PhysRevD.88.051501
https://doi.org/10.1007/JHEP10(2013)147
https://doi.org/10.1007/JHEP10(2013)147
https://doi.org/10.1103/RevModPhys.52.453
https://doi.org/10.1103/RevModPhys.52.453
https://doi.org/10.1103/PhysRevLett.113.152002
https://doi.org/10.22323/1.187.0002
https://doi.org/10.22323/1.187.0002
https://doi.org/10.1103/PhysRevLett.61.2054
https://doi.org/10.1016/0370-2693(88)91674-7
https://doi.org/10.1016/0370-2693(88)91674-7
https://doi.org/10.1142/S0217751X16430077
https://doi.org/10.1142/S0217751X16430077
https://doi.org/10.22323/1.256.0010
https://doi.org/10.22323/1.256.0010
https://arXiv.org/abs/1610.09856
https://doi.org/10.1103/PhysRevD.100.114517
https://doi.org/10.1103/PhysRevD.100.114517
https://doi.org/10.1016/j.aop.2004.06.009
https://doi.org/10.1016/j.aop.2004.06.009
https://doi.org/10.22323/1.032.0152
https://doi.org/10.22323/1.032.0152
https://doi.org/10.1103/PhysRevD.80.074025
https://doi.org/10.1103/PhysRevD.80.074025
https://doi.org/10.1103/PhysRevD.82.054009
https://doi.org/10.1103/PhysRevD.82.054009
https://doi.org/10.1016/j.ppnp.2014.11.001
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRevD.67.125015
https://doi.org/10.1007/JHEP09(2019)124
https://doi.org/10.1007/JHEP09(2020)037


1þ 1 dimensions at finite number of flavors, Phys. Rev. D
101, 094512 (2020).

[30] S. Drell, M. Weinstein, and S. Yankielowicz, Strong
coupling field theories. 2. Fermions and gauge fields on
a lattice, Phys. Rev. D 14, 1627 (1976).

[31] G. Bergner, T. Kaestner, S. Uhlmann, and A. Wipf, Low-
dimensional supersymmetric lattice models, Ann. Phys.
(Amsterdam) 323, 946 (2008).

[32] L. H. Karsten and J. Smit, Axial symmetry in lattice
theories, Nucl. Phys. B144, 536 (1978).

[33] L. H. Karsten and J. Smit, The vacuum polarization with
SLAC lattice fermions, Phys. Lett. B 85, 100 (1979).

[34] L. H. Karsten and J. Smit, Lattice fermions: Species dou-
bling, chiral invariance, and the triangle anomaly, Nucl.
Phys. B183, 103 (1981).

[35] Y. Cohen, S. Elitzur, and E. Rabinovici, A Monte Carlo study
of the Gross-Neveu model, Nucl. Phys. B220, 102 (1983).

[36] C. Wozar and A. Wipf, Supersymmetry breaking in low
dimensional models, Ann. Phys. (Amsterdam) 327, 774
(2012).

[37] R. Flore, D. Korner, A. Wipf, and C. Wozar, Supersym-
metric nonlinear O(3) sigma model on the lattice, J. High
Energy Phys. 11 (2012) 159.

[38] B. H. Wellegehausen, D. Schmidt, and A. Wipf, Critical
flavor number of the Thirring model in three dimensions,
Phys. Rev. D 96, 094504 (2017).

[39] T. C. Lang and A. M. Läuchli, Quantum Monte Carlo
Simulation of the Chiral Heisenberg Gross-Neveu-Yukawa
Phase Transition with a Single Dirac Cone, Phys. Rev. Lett.
123, 137602 (2019).

[40] J. Lenz, B. Wellegehausen, H. Björn, and A. Wipf, Absence
of chiral symmetry breaking in Thirring models in 1þ 2
dimensions, Phys. Rev. D 100, 054501 (2019).

[41] P. Hasenfratz and F. Karsch, Chemical potential on the
lattice, Phys. Lett. 125B, 308 (1983).

[42] R. V. Gavai and S. Sharma, Divergences in the quark
number susceptibility: The origin and a cure, Phys. Lett.
B 749, 8 (2015).

[43] N. Bilic and R. V. Gavai, On the thermodynamics of an ideal
Fermi gas on the lattice at finite density, Z. Phys. C 23, 77
(1984).

[44] P. Hasenfratz and F. Karsch, Chemical potential on the
lattice, Phys. Lett. 125B, 308 (1983).

[45] R. Gavai, Chemical potential on the lattice revisited, Phys.
Rev. D 32, 519 (1985).

[46] R. F. Dashen, B. Hasslacher, and A. Neveu, Semiclassical
bound states in an asymptotically free theory, Phys. Rev. D
12, 2443 (1975).

[47] M. Thies, From relativistic quantum fields to condensed
matter and back again: Updating the Gross-Neveu phase
diagram, J. Phys. A 39, 12707 (2006).

[48] J. Lenz, B. H. Wellegehausen, and A. Wipf, Absence of
chiral symmetry breaking in Thirring models in 1þ 2
dimensions, Phys. Rev. D 100, 054501 (2019).

[49] M. Thies (unpublished).
[50] F. Karsch, J. B. Kogut, and H. Wyld, The Gross-Neveu

model at finite temperature and density, Nucl. Phys. B280,
289 (1987).

[51] D. Chandler, Introduction to Modern Statistical Mechanics
(Oxford University Press, New York, 1987).

[52] A. Chodos and H. Minakata, The Gross-Neveu model as an
effective theory for polyacetylene, Phys. Lett. A 191, 39
(1994).

[53] M. Winstel, J. Stoll, and M. Wagner, Lattice investigation of
an inhomogeneous phase of the 2þ 1-dimensional Gross-
Neveu model in the limit of infinitely many flavors,
arXiv:1909.00064.

[54] R. Narayanan, Phase diagram of the large N Gross-Neveu
model in a finite periodic box, Phys. Rev. D 101, 096001
(2020).

JULIAN J. LENZ et al. PHYS. REV. D 102, 114501 (2020)

114501-12

https://doi.org/10.1103/PhysRevD.101.094512
https://doi.org/10.1103/PhysRevD.101.094512
https://doi.org/10.1103/PhysRevD.14.1627
https://doi.org/10.1016/j.aop.2007.06.010
https://doi.org/10.1016/j.aop.2007.06.010
https://doi.org/10.1016/0550-3213(78)90385-1
https://doi.org/10.1016/0370-2693(79)90786-X
https://doi.org/10.1016/0550-3213(81)90549-6
https://doi.org/10.1016/0550-3213(81)90549-6
https://doi.org/10.1016/0550-3213(83)90136-0
https://doi.org/10.1016/j.aop.2011.11.015
https://doi.org/10.1016/j.aop.2011.11.015
https://doi.org/10.1007/JHEP11(2012)159
https://doi.org/10.1007/JHEP11(2012)159
https://doi.org/10.1103/PhysRevD.96.094504
https://doi.org/10.1103/PhysRevLett.123.137602
https://doi.org/10.1103/PhysRevLett.123.137602
https://doi.org/10.1103/PhysRevD.100.054501
https://doi.org/10.1016/0370-2693(83)91290-X
https://doi.org/10.1016/j.physletb.2015.07.036
https://doi.org/10.1016/j.physletb.2015.07.036
https://doi.org/10.1007/BF01558043
https://doi.org/10.1007/BF01558043
https://doi.org/10.1016/0370-2693(83)91290-X
https://doi.org/10.1103/PhysRevD.32.519
https://doi.org/10.1103/PhysRevD.32.519
https://doi.org/10.1103/PhysRevD.12.2443
https://doi.org/10.1103/PhysRevD.12.2443
https://doi.org/10.1088/0305-4470/39/41/S04
https://doi.org/10.1103/PhysRevD.100.054501
https://doi.org/10.1016/0550-3213(87)90149-0
https://doi.org/10.1016/0550-3213(87)90149-0
https://doi.org/10.1016/0375-9601(94)90557-6
https://doi.org/10.1016/0375-9601(94)90557-6
https://arXiv.org/abs/1909.00064
https://doi.org/10.1103/PhysRevD.101.096001
https://doi.org/10.1103/PhysRevD.101.096001

