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Different decompositions (sum rules) for the protonmass have been proposed in the literature. All of them
are related to the energy-momentum tensor in quantum chromodynamics. We review and revisit these
decompositions by paying special attention to recent developments with regard to the renormalization of the
energy-momentum tensor. The connection between the sum rules is discussed as well. We present numerical
results for the various terms of themass decompositions up to three loops in the strong coupling, and consider
their scheme dependence. We also elaborate on the role played by the trace anomaly and the sigma terms.
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I. INTRODUCTION

The most important properties of hadrons are global
quantities such as their mass and spin. It is therefore natural
to ask how these properties can be understood in quantum
chromodynamics (QCD), the microscopic theory of the
strong interaction. In this context, the QCD energy-momen-
tum tensor (EMT) plays a key role. The matrix elements of
the EMT give direct access to the mass, spin [1], angular
momentum [2–4], and even pressure and shear distributions
inside hadrons [5–9]. Extracting information on the EMT
from experiments is difficult, though first proof-of-princi-
ple studies exist [10,11]. The EMT form factors, which
parametrize the matrix elements of the EMT, have been
computed in different models (see Ref. [12] for a review)
and from first principles in lattice QCD (LQCD) [13–18].
In the present study, we will focus on the mass of the

proton and how it could be decomposed into contributions
from the mass and the energies of the partons. Starting from
the pioneering work in Refs. [19,20], different decompo-
sitions (sum rules) of the proton mass have been discussed
in the literature [21–24]. All of them are related to the EMT
and focus on either its 00-component (energy component)
or its trace, including the EMT trace anomaly [25–27].
From the experimental point of view, input on the relevant
matrix elements comes from the parton momentum frac-
tions and, potentially, from photo- and electro-production
of quarkonia close to the kinematical threshold [28–36].

Specifically, we explore the following mass sum rules:
(i) a decomposition by Ji into four terms [19,20]; (ii) two
decompositions by Lorcé, one with two terms and one with
four terms [22]; and (iii) a decomposition by Hatta, Rajan,
Tanaka into two terms [23,24]. We review and, to some
extent, revisit these sum rules. An important element of the
discussion is the decomposition of the trace of the EMT
into quark and gluon contributions for which a renormal-
ization scheme must be chosen [23,24]. The EMT renorm-
alization leads to the fact that perturbative QCD enters the
decomposition of the proton mass. By taking the analytical
results for the relevant renormalization constants of the
EMT from the literature—see [24] and references therein—
we have obtained numerical results for the sum rules up to
three loops in the strong coupling, where perturbation
theory enters because of the renormalization of the EMT.
The mentioned scheme dependence influences the
numerics of all the mass decompositions. For the analytical
part of our work, we follow closely our recent paper in
which we have explored these mass sum rules for an
electron target in QED [37]. We also refer to [38] for a
related early study of the electron mass decomposition.
We discuss the differences and the similarities of the

various sum rules. In fact, using suitable and properly
renormalized operators fully reveals the overlap between
the mass decompositions. We also emphasize that different
(partial) operators showing up in the EMT provide the same
forward matrix elements, which makes it difficult to
quantify the contribution of a specific operator to the mass
decomposition. This feature also applies to the operator
associated with the EMT trace anomaly. Related to that
point, we argue that any potential decomposition of the
proton mass can at most have two independent terms.
This is due to the fact that, in the forward limit, the EMT
has two independent form factors only, as has already been
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emphasized in Ref. [22]. While the numerical values of the
sum rules are quite stable upon including higher-order
terms in perturbation theory, we observe a considerable
scheme dependence of the results. We also discuss the role
played by the quark mass terms (sigma terms) for the
proton mass. Nonzero sigma terms are a consequence of the
Higgs mechanism. According to current phenomenology,
the proton mass receives a sizable contribution from the
sigma term for charm quarks (and even heavier quarks).
The paper is organized as follows: in Sec. II, we review

the EMT in QCD by paying particular attention to its
renormalization. In Sec. III, we discuss the different mass
sum rules for the proton and present numerical results for
the various terms up to three loops in the strong coupling.
We summarize our work in Sec. IV. In the Appendix, we
give a brief account of the decomposition of the EMT trace
into quark and gluon contributions in the minimal sub-
traction (MS) and modified minimal subtraction (MS)
renormalization schemes.

II. THE ENERGY-MOMENTUM TENSOR

For any field theory, the (canonical) EMT is the Noether
current associated with the space-time translational invari-
ance of the Lagrangian. It therefore satisfies the continuity
equation

∂μT
μν
C ðxÞ ¼ 0 ð1Þ

for an arbitrary space-time point x ¼ ðt; xÞ. Generally, the
canonical EMT is not symmetric under the exchange
μ ↔ ν. However, the Belinfante-Rosenfeld procedure
allows one to symmetrize the EMT by adding a super-
potential [39–41]. Here we focus on the symmetric EMT in
QCD since the antisymmetric part of the EMT does not
contribute to forward matrix elements which matter for the
mass sum rules.
The (symmetric) EMT of QCD is decomposed into a

quark and gluon part according to

Tμν ¼ Tμν
q þ Tμν

g ; with ð2Þ

Tμν
q ¼ i

4
ψ̄γfμD

↔
νgψ ; ð3Þ

Tμν
g ¼ −FμαFν

α þ
gμν

4
FαβFαβ; ð4Þ

where in Eq. (3) a summation over quark flavors is
understood, and in Eq. (4) a summation over gluon

colors is understood. In Eq. (3), we have used γfμD
↔

νg ¼
γμD

↔
ν þ γνD

↔
μ as well as D

↔
μ ¼ ∂⃗μ − ∂⃖μ − 2igAμ

aTa, with

αs ¼ g2

4π and the SU(3) color matrix Ta. Because of the
covariant derivative, the quark part of the EMTalso contains
a gluonic component. Note that in Eqs. (3) and (4)

renormalization of the parameters of the QCD Lagrangian
is implied. The (conserved) total EMT is not renormalized,
that is, it requires no renormalization beyond the one of the
Lagrange density. On the other hand, the individual quark
and gluon parts of the EMT must be renormalized. For the
discussion of this point, we follow closely Refs. [23,24] and
introduce the following operators/notation1:

O1 ¼ −FμαFν
α; O2 ¼ gμνFαβFαβ; ð5Þ

O3 ¼
i
4
ψ̄γfμD

↔
νgψ ; O4 ¼ gμνmψ̄ψ ; ð6Þ

which allows us to write

Tμν ¼ O1 þ
O2

4
þO3: ð7Þ

The four operators in Eqs. (5) and (6) mix under renorm-
alization. Specifically, one has

O1;R ¼ ZTO1 þ ZMO2 þ ZLO3 þ ZSO4; ð8Þ

O2;R ¼ ZFO2 þ ZCO4; ð9Þ

O3;R ¼ ZψO3 þ ZKO4 þ ZQO1 þ ZBO2; ð10Þ

O4;R ¼ O4: ð11Þ

The renormalization of the full EMT involves ten renorm-
alization constants. Note that the operator O4 is not
renormalized. The constants ZF and ZC are associated with
the renormalization of the EMT trace, which is given by the
well-known result [25–27,42]

Tμ
μ¼ðTRÞμμ¼ðTμ

μÞR¼ð1þγmÞðmψ̄ψÞRþ
β

2g
ðFαβFαβÞR;

ð12Þ

with the anomalous dimension for the quarkmass γmðgÞ and
the QCD beta function βðgÞ. Taking the trace of the EMT
in Eq. (2) within classical chromodynamics and applying
the equation of motion ðiγμDμ −mÞψ ¼ 0 leads to mψ̄ψ .
Hence, the additional terms on the rhs of Eq. (12) are pure
quantum effects and denoted as trace anomaly. The renorm-
alization constants ZL;T;Q;ψ are given by the evolution
equations for the second moment of the flavor-singlet
unpolarized parton distributions. This leaves us with
ZM;S;B;K which, in dimensional regularization, can be
computed through the other six renormalization constants
via [24]

1To simplify the notation, we omit the tensor indices in the
operators Oi.
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ZM ¼ ZT

d
−
ZF

d

�
1 −

β

2g
þ x

�
; ð13Þ

ZS ¼ −
ZL

d
−
ZC

d

�
1 −

β

2g
þ x

�
−
y − γm

d
; ð14Þ

ZB ¼ ZQ

d
þ x
d
ZF; ð15Þ

ZK ¼ −
Zψ

d
þ x
d
ZC þ 1þ y

d
; ð16Þ

with the space-time dimension d ¼ 4 − 2ϵ. The finite parts
of ZM;S;B;K are not uniquely fixed, which is reflected by the
parameters x and y in Eqs. (13)–(16). The expressions for all
the renormalization constants satisfy the conditions

ZT þ ZQ ¼ 1; ð17Þ

ZL þ Zψ ¼ 1; ð18Þ

ZM þ ZB þ ZF

4
¼ 1

4
; ð19Þ

ZS þ ZK þ ZC

4
¼ 0; ð20Þ

which follow from the fact that the total EMT is invariant
under renormalization.
Note that Eqs. (17)–(20) do not impose any constraint on

x and y. These two parameters show up in the trace of
the renormalized quark part Tq;R and gluon part Tg;R of
the EMT,

ðTq;RÞμμ ¼ ð1þ yÞðmψ̄ψÞR þ xðFαβFαβÞR; ð21Þ

ðTg;RÞμμ ¼ðγm−yÞðmψ̄ψÞRþ
�
β

2g
−x

�
ðFαβFαβÞR: ð22Þ

In other words, choosing x and y corresponds to a choice
for the traces of the quark and gluon contributions of the
EMT. Generally, fixing the finite parts of the renormaliza-
tion constants is equivalent to selecting a renormalization
scheme. The MS and MS schemes with the standard
implementation (hereafter, referred as MS-like schemes)
were picked in Refs. [23,24]. Here we will consider the
following four schemes:

(i) MS scheme: See the Appendix for details about
fixing x and y.

(ii) MS scheme, using the implementation of Ref. [43]:
See the Appendix for more details.

(iii) D1 scheme (see Ref. [37]): x ¼ 0, y ¼ γm. In this
scheme, Eqs. (21) and (22) become diagonal.

(iv) D2 scheme: x ¼ y ¼ 0. In this scheme, the entire
trace anomaly is attributed to the trace of the
renormalized gluon part Tg;R of the EMT.

In the two D-type schemes, one finds the most natural
decompositions of the total trace in Eq. (12) into the quark
and gluon contributions in Eqs. (21) and (22). Note also
that the MS schemes in the standard implementation and in
the implementation of Ref. [43] lead to the same results for
any renormalized quantity (see, e.g., Ref. [44]).

III. DECOMPOSITIONS OF THE PROTON MASS

We now proceed to discuss the sum rules for the proton
mass. To this end, we consider the (forward) matrix element
of the total EMT, and of its quark and gluon contributions.
For the full EMT, we have

hTμνi≡ hPjTμνjPi ¼ 2PμPν; ð23Þ

where the proton state is characterized by the 4-momentum
Pμ ¼ ðP0;PÞ (with P2 ¼ M2). The forward matrix
element of the EMT neither depends on the proton
spin nor on the space-time point x at which Tμν is
evaluated. Note that Eq. (23) holds in this form provided
that the single-particle state is normalized according to
hP0jPi ¼ 2P0ð2πÞ3δð3ÞðP0 − PÞ. For the individual contri-
butions to the EMT, one finds [1]

hTμν
i;Ri ¼ 2PμPνAið0Þ þ 2M2gμνC̄ið0Þ; ð24Þ

with the EMT form factors Aið0Þ and C̄ið0Þ (i ¼ q; g)
evaluated at vanishing momentum transferΔ¼ðP0−PÞ2¼0.
The general form of the decomposition in Eq. (24) is valid
for both the matrix element of the renormalized operators,
hTμν

i;Ri, and the one of the bare operators, hTμν
i i. [For ease of

notation, we write AiðC̄iÞ instead of Ai;RðC̄i;RÞ throughout
this work.] The conservation of the total EMT imposes the
following constraints on these form factors:

Aqð0Þ þ Agð0Þ ¼ 1; C̄qð0Þ þ C̄gð0Þ ¼ 0: ð25Þ

In other words, the relations in (25) must be satisfied so that
the sum of the quark and gluon contribution provides the
rhs of Eq. (23).
According to Eq. (23), the matrix elements of both the

trace of the EMTand the component T00 are directly related
to the proton mass. Specifically, we find

1

2M
hTμ

μi ¼ M; ð26Þ

as well as

M
2ðP0Þ2 hT

00i ¼ M; ð27Þ

where Eqs. (26) and (27) hold in any reference frame of the
proton. However, when considering T00, people normally
use the proton rest frame, in which the prefactor on the lhs
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of Eq. (27) (also) becomes 1=ð2MÞ. The component T00 is
the Hamiltonian density HQCD of QCD so that

HQCD ¼
Z

d3xHQCD ¼
Z

d3xT00: ð28Þ

Therefore, in the rest frame of the proton, Eq. (27) is
equivalent to the intuitive relation

hHQCDi
hPjPi

����
P¼0

¼ M; ð29Þ

that is, the mass is just the expectation value of the QCD
Hamiltonian.2 Note that in Eq. (29) the delta-function
divergence of the norm hPjPi is canceled by a correspond-
ing divergence in the numerator which arises from the
spatial integral in Eq. (28).
We repeat that we will review the following mass sum

rules for the proton: a four-term decomposition proposed
by Ji in Refs. [19,20], a two-term and a four-term decom-
position by Lorcé [22], as well as a two-term decompo-
sition by Hatta, Rajan, Tanaka [23,24]. All these sum rules
take as starting point either Eq. (26) or (27) [the latter being
equivalent to Eq. (29)]. For some more details on these sum
rules, we also refer to our previous study in Ref. [37]. We
note in passing that very recent work on the mass structure
of the nucleon as function of the parton momenta can be
found in Refs. [45,46].

A. Two-term decompositions

We start with the two-term decomposition in
Refs. [23,24], which is based on Eq. (26) and the decom-
position of the trace of the EMT into its quark and gluon
parts according to Eqs. (21) and (22),

M ¼ M̄q þ M̄g ¼
hðTq;RÞμμi þ hðTg;RÞμμi

2M
: ð30Þ

The quark and gluon contributions in this sum rule have a
simple relation to the form factors of the EMT,

M̄i ¼ MðAið0Þ þ 4C̄ið0ÞÞ: ð31Þ

In contrast, the two-term sum rule of Ref. [22] focuses on
T00 and decomposes this component of the EMT into the
individual parton contributions,

M ¼ Uq þ Ug ¼
hT00

q;Ri þ hT00
g;Ri

2M
: ð32Þ

In terms of the EMT form factors, one finds

Ui ¼ MðAið0Þ þ C̄ið0ÞÞ ð33Þ

for the quark and gluon energies, which shows that M̄i ≠
Ui (unless C̄i ¼ 0). On the other hand, the constraints in
Eq. (25) guarantee the validity of both mass decomposi-
tions when summing over all partons. The (renormalized)
operators associated with the Ui have been identified in
Ref. [37]. They read

T00
q;R ¼ ðmψ̄ψÞR þ ðψ†iD · αψÞR; ð34Þ

T00
g;R ¼ 1

2
ðE2 þ B2ÞR; ð35Þ

where the first term on the rhs of Eq. (34) is the quark mass
(the so-called sigma term) contribution to M. The second
term in that equation is typically referred to as kinetic plus
potential energy of the quarks [19,20], while the operator in
Eq. (35) represents the (total) energy stored in the gluon
field.3 Comparing both two-term decompositions in
Eqs. (30) and (32) and the underlying operators, we find
the relation

�
ðψ†iD · αψÞR þ 1

2
ðE2 þ B2ÞR

�

¼
�
γmðmψ̄ψÞR þ β

2g
ðFαβFαβÞR

�
; ð36Þ

that is, the sum of the quark energy and the gluon field
energy coincides with the anomaly contribution to the
proton mass.

B. Four-term decompositions

We now turn our attention to the four-term sum rules of
the nucleon mass and begin with the one proposed in
Refs. [19,20]. In that case, the focus is on the Hamiltonian
density T00, and the EMT is decomposed into a traceless
part and trace part according to

Tμν ¼ T̄μν þ T̂μν; ð37Þ

with the trace term given by T̂μν ¼ 1
4
gμνTα

α. This immedi-
ately implies

M ¼ 1

2M
hT00i ¼ 1

2M
hT̄00i þ 1

2M
hT̂00i: ð38Þ

By means of Eq. (26), one finds that the second term on the
rhs of Eq. (38), that is, the trace term, contributes just 1

4
M.

Hence, it is tempting to conclude that the trace of the

2From here on, all expectation values are understood in the rest
frame, even though some equations also hold in an arbitrary
frame.

3For simplicity, we will refer to those terms also as quark
energy and gluon energy, respectively. For the quark sector,
however, the interpretation is not straightforward as we discuss in
more detail below.
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EMT—which numerically is largely given by the trace
anomaly (see below for more discussion)—provides just
25% of the proton mass. On the other hand, according to
Eq. (26), the entire proton mass can be attributed to the
trace of the EMT. However, there is no contradiction
between these two results. Recall that, due to Eq. (23),
the expectation values of the trace of the EMT and of the
Hamiltonian density are identical in the proton rest frame—
see Eqs. (26) and (27). Put differently, the expectation
values of the spatial components of the EMT trace vanish,
hTxxi ¼ hTyyi ¼ hTzzi ¼ 0. Therefore, the expectation
value of the traceless part in Eq. (38), which contributes
75% to the proton mass, can be expressed through the
expectation value of the EMT trace.
Following Refs. [19,20], we use the decomposition into

traceless and trace parts of the EMT in (37) also for
individual partons,

Tμν
i ¼ T̄μν

i þ T̂μν
i : ð39Þ

Because of Eqs. (21) and (22), for both quarks and
gluons, the trace and the traceless part of the EMT involve
mixing and an additional scheme dependence [23,24,37].
We repeat that this is a new development which was not
taken into account in Refs. [19,20], even though the final
form of the sum rule does not depend on this point.
Using the expressions in Eqs. (21) and (22), the quark
and gluon contributions to the traceless and trace parts of
00-component of the EMT read

H0
q ¼ T̄00

q;R ¼ ðψ†iD · αψÞR þ ðmψ̄ψÞR
−
1þ y
4

ðmψ̄ψÞR −
x
4
ðFαβFαβÞR; ð40Þ

H0
m ¼ T̂00

q;R ¼ 1þ y
4

ðmψ̄ψÞR þ x
4
ðFαβFαβÞR; ð41Þ

H0
g ¼ T̄00

g;R ¼ 1

2
ðE2 þ B2ÞR þ y − γm

4
ðmψ̄ψÞR

−
1

4

�
β

2g
− x

�
ðFαβFαβÞR; ð42Þ

H0
a ¼ T̂00

g;R ¼ γm − y
4

ðmψ̄ψÞR þ 1

4

�
β

2g
− x

�
ðFαβFαβÞR:

ð43Þ

The four terms in Eqs. (40)–(43) look simplest in the D1
scheme or D2 scheme discussed above. Their sum gives the
proton mass according to

M ¼ M0
q þM0

m þM0
g þM0

a; ð44Þ

with

M0
i ¼

hH0
ii

hPjPi
����
P¼0

; i ¼ q;m; g; a: ð45Þ

However, in the spirit of Refs. [19,20], we want to form
suitable linear combinations in order to recover the intuitive
expressions of the quark and gluon energies from Eqs. (34)
and (35). To this end, we consider

Hq ≡ ½ðT̃00
q ÞR� ¼ H0

q þ cqmH0
m þ cqaH0

a; ð46Þ

Hm ≡ ½ðŤ00
q ÞR� ¼ ð1 − cqmÞH0

m þ cmaH0
a; ð47Þ

Hg ≡ ½ðT̃00
g ÞR� ¼ H0

g þ cgaH0
a; ð48Þ

Ha ≡ ½ðŤ00
g ÞR� ¼ ð1 − cqa − cma − cgaÞH0

a; ð49Þ

with the constants

cqm ¼
ð−3þ yÞ β

2gþ xð3− γmÞ
ð1þ yÞ β

2g− xð1þ γmÞ
;

cqa ¼ −cma ¼
4x

ð1þ yÞ β
2g− xð1þ γmÞ

; cga ¼ 1: ð50Þ

By construction, the sum of the four terms in Eqs. (46)–(49)
agrees with the sum of the four terms in Eqs. (40)–(43).
Then we can write

M ¼ Mq þMm þMg þMa; ð51Þ

where

Mi ¼
hHii
hPjPi

����
P¼0

; i ¼ q;m; g; a; ð52Þ

with the individual operators given by [37]

Hq ¼ ðψ†iD · αψÞR; ð53Þ

Hm ¼ ðmψ̄ψÞR; ð54Þ

Hg ¼
1

2
ðE2 þ B2ÞR; ð55Þ

Ha ¼ 0: ð56Þ

We argue that Eqs. (53)–(55) are the appropriate operators
for the mass sum rule if one follows the general logic of Ji’s
original work [19,20], which is (ultimately) based on a
decomposition of the full 00-component of the EMT. The
(renormalized) operators associated with this mass decom-
position formally coincide with what one would find
without renormalizing T00. We have arrived at a decom-
position with three nontrivial terms only. Since the focus is
on T00, the operators related to the trace, and in particular
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the trace anomaly, drop out from the final result. Let us
briefly discuss this point which may be surprising at
first sight. In dimensional regularization, the entire
anomaly derives from the bare gluon operator—see, for
instance, Ref. [23]. The time dimension, however, is left
untouched in dimensional regularization, which implies
that T00 is rather special compared to the spatial compo-
nents of the EMT trace. In fact, a careful analysis reveals
that the anomaly is entirely contained in the spatial part of
the EMT.
The main difference with regard to the work in

Refs. [19,20] is the following. As mentioned in the previous
paragraph, a priori, the trace anomaly should not show up
in T00. In Refs. [19,20], the total trace in Eq. (12) was used
for computing the trace term T̂μν in Eq. (37). On the other
hand, Eq. (12) was not used when subtracting the trace in
order to find T̄μν in Eq. (37). As a consequence, at the
operator level, the results in Refs. [19,20] and those in
Eqs. (53)–(55) differ by 1

4
of the trace anomaly—see

also Ref. [37].
If one is just concerned with expectation values of the

operators, which in principle is sufficient, then one could
replace Hq þHg (or part of it) in the sum rule through the
anomaly operator by making use of Eq. (36). Based on our
discussion above in relation to Eqs. (26) and (27) and (37)
and (38), one could also just use the traceless part or the
trace part of the EMT for writing down a mass sum rule. In
the former case, all the operators in (53)–(56) plus the
operator of the trace anomaly emerge (with appropriate
weight factors), while in the latter case, one just finds the
relation between the proton mass and the EMT trace based
on Eqs. (12) and (26).
The three-term decomposition defined through the oper-

ators in Eqs. (53)–(55) can be considered a more detailed
version of the two-term sum rule by Lorcé that is given by
Eqs. (34) and (35). The gluon sector is actually identical in
both cases, but T00

q;R in (34) is split into the quark energy
term given byHq and the quark mass term given byHm. In
Ref. [22], it has been emphasized that only the T00

i;R have a
clean interpretation as energy densities, whereas the trace-
less parts T̄00

i;R and the trace parts T̂00
i;R, which underly Ji’s

mass sum rule, get admixtures from pressure contributions.
To see this, recall that according to Eq. (33) the T00

i;R are
related to the form factor combinations Aið0Þ þ C̄ið0Þ.
On the other hand, the spatial diagonal elements of the
EMT, that are associated with pressure, have the expect-
ation value

1

2M
hTjj

i;Ri ¼ −MC̄ið0Þ; ð57Þ

where the index j is not summed over. The form
factors C̄ið0Þ are thus directly related to pressures. We
also have

1

2M
hT̄00

i;Ri ¼
3

4
MAið0Þ ¼

3

4
MðAið0Þ þ C̄ið0ÞÞ −

3

4
MC̄ið0Þ;

ð58Þ

1

2M
hT̂00

i;Ri ¼
1

4
MðAið0Þ þ 4C̄ið0ÞÞ

¼ 1

4
MðAið0Þ þ C̄ið0ÞÞ þ

3

4
MC̄ið0Þ ð59Þ

for the individual traceless and trace parts of the EMT.
Clearly, the expressions on the rhs of Eqs. (58) and (59)
are linear combinations of energy densities and
pressures. When performing the linear combinations in
Eqs. (46)–(49), on the gluon sector we actually add the
traceless part and the trace part to recover T00

g;R, so thatHg in
(55) has a clean interpretation as operator for the gluon
energy density. However, the same does not apply for the
quark sector, so that bothHq in (53) andHm in (54), strictly
speaking, indeed describe mixtures of energy densities and
pressures. Nevertheless, it appears meaningful to split T00

q;R

in (34) into Hq and Hm. In this context, recall also that the
quark mass term Hm has been studied intensively in lattice
QCD and other approaches.
Finally, we address the four-term decomposition that has

been discussed in Ref. [22],

M ¼ Ũq þ Ǔq þ Ũg þ Ǔg: ð60Þ

This sum rule also starts from the separation of the T00
i;R into

traceless and trace parts, and uses linear combinations in
the spirit of Eqs. (46)–(49). However, in contrast to the
four-term sum rule discussed above, one picks from the
traceless and the trace parts just the (fractional) contribution
to the total energy density which, according to Eqs. (58)
and (59), is 3

4
in the case of the T̄00

i;R and 1
4
for the T̂00

i;R. From
the rhs of Eqs. (46)–(49), one then readily obtains the
expressions

Ũq ¼ ð3þ cqmÞ
Uq

4
þ cqa

Ug

4
; ð61Þ

Ǔq ¼ ð1 − cqmÞ
Uq

4
þ cma

Ug

4
; ð62Þ

Ũg ¼ ð3þ cgaÞ
Ug

4
¼ Ug; ð63Þ

Ǔg ¼ ð1 − cqa − cma − cgaÞ
Ug

4
¼ 0; ð64Þ

with the Ui given in Eq. (33). For the gluon sector, this
logic just leads to the same result we have seen before for
the two-term sum rule of Ref. [22] and the four-term sum
rule expressed through Eqs. (53)–(56). The situation is
different though for the quark sector with Ũq and Ǔq.
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While by construction these two terms can be interpreted as
energy contributions, they merely represent linear combi-
nations of total parton energies that are given by the two
operators T00

i;R in Eqs. (34) and (35). Also, the (total)
operators associated with Ũq and Ǔq contain the scheme-
dependent coefficients cqm and cqa ¼ −cma given in (50).
For example, there is a nonzero contribution of Ug to Ũq

and Ǔq in both the MS and MS schemes, which cancels out
when summing the two terms. In contrast, simple expres-
sions emerge in the D-type schemes,

ŨqjD1 ¼
γm

1þ γm
Uq; ǓqjD1 ¼

1

1þ γm
Uq; ð65Þ

ŨqjD2 ¼ 0; ǓqjD2 ¼ Uq: ð66Þ

According to (66), in the D2 scheme, this decomposition
actually coincides with the two-term decomposition of
Ref. [22].
We conclude this subsection with a brief discussion

about how many terms are actually independent for the
various sum rules. For the two-term sum rule in Eq. (30),
that is based on the trace of the EMT, there is of course
just one independent term—once the quark contribution to
this sum rule is known, the gluon contribution is fixed as
well and vice versa. The same applies to the two-term sum
rule in Eq. (32) and even the four-term decomposition in
Eq. (60), since the rhs of Eqs. (61)–(63) contain justUq and
Ug along with calculable coefficients. The decomposition
in Eq. (51) is the only one that contains two independent
terms. This is actually the maximum possible number of
independent contributions for any mass decomposition one
could think of because the EMT in the forward limit is fully
fixed by the form factors Aið0Þ and C̄ið0Þ, which are subject
to the constraints in (25). This means, there are two
independent form factors only. A closely related discussion
can be found in Ref. [22].

C. Numerical results

The previous paragraph implies that two independent
numerical inputs suffice to fix all the terms of the different
sum rules. One input/constraint comes from the parton
momentum fractions ai in the proton through [19,20]

3

2
M2aq ¼ hH0

qi;
3

2
M2ag ¼ hH0

gi; ð67Þ

where aq is a shorthand notation for the sum of the
momentum fractions of all active quark flavors. The ai
therefore determine the expectation values of the traceless
operators T̄00

i;R in Eqs. (40) and (42). They satisfy the sum
rule aq þ ag ¼ 1, which is equivalent to the constraint for
the form factors Aið0Þ in (25). We take the quark mass term

as the second independent input. Specifically, we define a
parameter b according to

2M2b ¼ ð1þ γmÞhðmψ̄ψÞRi: ð68Þ

Using Eqs. (12) and (26), we then find for the gluon
operator of the trace anomaly

2M2ð1 − bÞ ¼ β

2g
hðFαβFαβÞRi: ð69Þ

We also refer to [47] for a recent attempt to directly
compute the gluon contribution to the EMT trace in lattice
QCD. With these ingredients, the terms in Eq. (44) can be
written as

M0
q ¼

3

4
Maq; ð70Þ

M0
m ¼ 1

4
M

�ð1þ yÞb
1þ γm

þ xð1 − bÞ 2g
β

�
; ð71Þ

M0
g ¼

3

4
Mag; ð72Þ

M0
a ¼

1

4
M

�
1 −

ð1þ yÞb
1þ γm

− xð1 − bÞ 2g
β

�
; ð73Þ

while the three nonzero terms of Eq. (51) read

Mq ¼
3

4
Maq þ

1

4
M

�ðy − 3Þb
1þ γm

þ xð1 − bÞ 2g
β

�
; ð74Þ

Mm ¼ M
b

1þ γm
; ð75Þ

Mg ¼
3

4
Magþ

1

4
M
�ðγm−yÞb

1þ γm
þ
�
1−x

2g
β

�
ð1−bÞ

�
: ð76Þ

The two terms of the decomposition in Eq. (30) are given
by the parameter b only [see Eqs. (21), (22), (68), and (69)],

M̄q ¼ M

�
bð1þ yÞ
1þ γm

þ xð1 − bÞ 2g
β

�
; ð77Þ

M̄g ¼ M

�
bðγm − yÞ
1þ γm

þ
�
1 − x

2g
β

�
ð1 − bÞ

�
: ð78Þ

The numerical values of the Ui in (32) follow immediately
from Eqs. (34), (35) and the expressions in Eqs. (74)–(76),

Uq ¼Mq þMm ¼ 3

4
Maq þ

1

4
M

�
bð1þ yÞ
1þ γm

þ xð1− bÞ2g
β

�
;

ð79Þ
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Ug ¼Mg

¼ 3

4
Magþ

1

4
M

�ðγm−yÞb
1þ γm

þ
�
1−x

2g
β

�
ð1−bÞ

�
: ð80Þ

Finally, the decomposition in Eqs. (61)–(64) reads

Ũq ¼
3

4
Maq þ

1

4
M

�
xð1 − bÞ 2g

β
þ by
1þ γm

þ 3x − 3aq
β
2g

ð1þ yÞ β
2g − xð1þ γmÞ

�
; ð81Þ

Ǔq ¼
1

4
M

�
b

1þ γm
−

3x − 3aq
β
2g

ð1þ yÞ β
2g − xð1þ γmÞ

�
; ð82Þ

Ũg ¼
3

4
Mag þ

1

4
M

�ðγm − yÞb
1þ γm

þ
�
1 − x

2g
β

�
ð1 − bÞ

�
;

ð83Þ

Ǔg ¼ 0: ð84Þ
Our numerical results are for the scale μ ¼ 2 GeV. We

take the parton momentum fractions from the CT18NNLO
parametrization [48], which in the case of four active quark
flavors gives

aq ¼ 0.586�0.013; ag ¼ 1−aq ¼ 0.414�0.013: ð85Þ
Other phenomenological fits of parton distributions provide
very similar numbers—see, for instance, Refs. [49–53]. In
order to fix the parameter b in Eq. (68), we use input for the
quark mass term (sigma term), up to and including charm
quarks,

σu þ σd ¼ σπN ¼ hPjm̂ðūuþ d̄dÞjPi
2M

;

σs ¼
hPjmss̄sjPi

2M
; σc ¼

hPjmcc̄cjPi
2M

; ð86Þ

with m̂ ¼ ðmu þmdÞ=2. For b, we actually consider two
cases. In the first, we take the sigma terms from an analysis
in chiral perturbation theory in Refs. [54,55] for the three
lightest quark flavors,

σπN jChPT ¼ ð59� 7Þ MeV;

σsjChPT ¼ ð16� 80Þ MeV: ð87Þ
The independent phenomenological determination in
Ref. [56] gives a very similar value for the pion-nucleon
sigma term, namely, σπN jRef: ½54� ¼ ð59.1� 3.5Þ MeV. We
also refer to [57] for more discussion of this work and
how it relates to the chiral perturbation theory (ChPT)
analysis of Refs. [54,55]. In the second scenario, we use
results from LQCD which also include a sigma term for
charm quarks [58],

σπN jLQCD ¼ ð41.6� 3.8Þ MeV;

σsjLQCD ¼ ð39.8� 5.5Þ MeV;

σcjLQCD ¼ ð107� 22Þ MeV: ð88Þ

Other LQCD calculations, performed at (nearly) physical
quark masses, mostly provide similar results for the
sigma terms of the light quarks [59–62]. Early pioneering
calculations of the charm sigma terms can be found in
Refs. [63,64], where the central values are smaller and the
errors are larger compared to the value quoted in Eq. (88).
The numerical values for σπN and σs are quite different for
ChPT and LQCD (see also Ref. [65]). However, the
difference for the sum σπN þ σs is small and irrelevant
for our purpose. On the other hand, including or not σc
has a clear impact on our numerics for the mass sum rules.
To summarize this discussion, we consider numbers for the
mass decompositions for the following two scenarios:

(i) Scenario A: ai from Eq. (85); b from ChPT sigma
terms in Eq. (87) and the flavor number nf ¼ 3.

(ii) Scenario B: ai from Eq. (85); b from LQCD sigma
terms in Eq. (88) including charm and the flavor
number nf ¼ 4.

Using different nf values for the two scenarios is in the
spirit of Ref. [66], according to which adding or subtracting
a heavy quark in the quark mass term in Eq. (12) is largely
compensated by a corresponding change of nf in the beta
function in front of the F2 term. This interesting result
follows from heavy-quark effective theory.
Wewill show results at one-loop, two-loop, and three-loop

accuracies. For this, we need the QCD beta function and the
anomalous dimension of the quark mass through Oðα3sÞ,
βðgÞ
2g

¼ −
β0
2

�
αs
4π

�
−
β1
2

�
αs
4π

�
2

−
β2
2

�
αs
4π

�
3

þ…; ð89Þ

γmðgÞ ¼ γm0

αs
4π

þ γm1

�
αs
4π

�
2

þ γm2

�
αs
4π

�
3

þ…; ð90Þ

where the explicit expressions for the coefficients βi and γmi
are given inRefs. [67,68].We find the following values forαs
by using the Mathematica package of Ref. [69]:

αs;one-loop¼0.269; αs;two-loop¼0.299; αs;three-loop¼0.302:

ð91Þ
In Table I, we show the results for the parameter b, based on
the sigma terms from ChPTand LQCD. The numbers differ

TABLE I. Parameter b for different orders in αs, obtained from
input for the sigma terms from ChPT and LQCD.

Oðα1sÞ Oðα2sÞ Oðα3sÞ
bjChPT 0.094� 0.100 0.101� 0.108 0.103� 0.110
bjLQCD 0.235� 0.029 0.252� 0.031 0.256� 0.031
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by about 10% between the one-loop and the three-loop
analysis. The significant difference between the ChPT and
LQCD results is caused by the (large) charm sigma term
from LQCD.
The numerical input for the parameters ai and b is in

the MS scheme.4 However, as discussed in Sec. II, the
numerics for the mass sum rules also depends on the
choice (scheme) used for the parameters x and y which,
according to Eqs. (21) and (22), fix the individual con-
tributions to the trace of the EMT. As an example, the
scheme dependence of the terms of the mass decomposition
in Eq. (51) is shown in Table II. The contribution Mm does
not depend on x and y, but the quark and gluon energiesMq

and Mg do so. In fact, their numerical values change
significantly when switching schemes, with the largest
discrepancies between the MS scheme(s) and the other
three schemes. (As discussed in the Appendix, we have
explored two commonly used MS subtractions. They
lead to somewhat different numbers for the proton mass
decomposition.)
There is a conceptual difference between the MS scheme

and the D-type schemes in the context of our study. In
principle, a fully consistent calculation in the MS scheme
could be done, since all the numerical input that we use
could be obtained in the MS scheme. (Comparing the
numerics for the MS scheme and, in particular, the MS
scheme(s) should therefore be done with care.) In contrast,
the D-type schemes have no meaning beyond fixing x and
y, which means that the numbers in these two schemes
cannot be “improved.” However, according to Table II,
the numerical values obtained in the MS scheme and the
D-type schemes are not very different. All the following
results in Tables III–VI are in the MS scheme.
In Tables III–VI, we present the numerical results for the

sum rules for the one-loop, two-loop, and three-loop
analyses. Generally, the dependence of the numbers on
the loop order is very mild. Strictly speaking, our results do
not reflect the full dependence on the loop order since in
each case we have taken the parton momentum fractions ai from the two-loop analysis of Ref. [48]. On the other hand,

we do not expect this point to have a significant impact
on the qualitative outcome of a mild sensitivity to the
loop order.

TABLE II. Scheme dependence of the (nonzero) terms of the mass sum rule in Eq. (51). [In Eqs. (74)–(76), the terms of the sum rule
are expressed through the input parameters ai and b.] All the results are in units of GeVand forOðα3sÞ accuracy. The errors are obtained
by standard error propagation. The definition of the MS1 and MS2 schemes is given in the Appendix.

MS MS1 MS2 D1 D2

Scenario A Mq 0.309� 0.054 0.195� 0.043 0.178� 0.042 0.362� 0.055 0.357� 0.060
Mm 0.074� 0.080 0.074� 0.080 0.074� 0.080 0.074� 0.080 0.074� 0.080
Mg 0.555� 0.028 0.669� 0.038 0.686� 0.040 0.502� 0.027 0.507� 0.022

Scenario B Mq 0.215� 0.017 0.135� 0.015 0.110� 0.014 0.285� 0.018 0.272� 0.020
Mm 0.187� 0.023 0.187� 0.023 0.187� 0.023 0.187� 0.023 0.187� 0.011
Mg 0.536� 0.012 0.616� 0.014 0.641� 0.015 0.466� 0.012 0.479� 0.015

TABLE III. Numerics for the sum rule in Eq. (30) for one-loop,
two-loop, and three-loop analyses. [In Eqs. (77) and (78), the
terms of the sum rule are expressed through the input parameter
b.] All the results are in units of GeV.

Oðα1sÞ Oðα2sÞ Oðα3sÞ
Scenario A M̄q −0.113�0.102 −0.119�0.105 −0.115�0.106

M̄g 1.051�0.102 1.057�0.105 1.053�0.106

Scenario B M̄q −0.038�0.032 −0.047�0.033 −0.041�0.034
M̄g 0.977�0.032 0.985�0.033 0.980�0.034

TABLE IV. Numerics for the sum rule in Eq. (32) for one-loop,
two-loop, and three-loop analyses. [In Eqs. (79) and (80), the
terms of the sum rule are expressed through the input parameters
ai and b.] All the results are in units of GeV.

Oðα1sÞ Oðα2sÞ Oðα3sÞ
Scenario A Uq 0.384� 0.027 0.383� 0.028 0.384� 0.028

Ug 0.554� 0.027 0.556� 0.028 0.555� 0.028

Scenario B Uq 0.403� 0.012 0.401� 0.012 0.402� 0.012
Ug 0.535� 0.012 0.538� 0.012 0.536� 0.012

TABLE V. Numerics for the sum rule in Eq. (51) for one-loop,
two-loop, and three-loop analyses. All the results are in units of
GeV. (See caption of Table II for more details.)

Oðα1sÞ Oðα2sÞ Oðα3sÞ
Scenario A Mq 0.311� 0.053 0.309� 0.053 0.309� 0.054

Mm 0.073� 0.078 0.073� 0.079 0.074� 0.080
Mg 0.554� 0.027 0.556� 0.028 0.555� 0.028

Scenario B Mq 0.220� 0.017 0.216� 0.017 0.215� 0.017
Mm 0.183� 0.022 0.185� 0.023 0.187� 0.023
Mg 0.535� 0.012 0.538� 0.012 0.536� 0.012

4This statement does not hold for the sigma terms from ChPT
though [54,55].
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The impact of including a sigma term for charm quarks,
that is, going from Scenario A to Scenario B, is clearly
visible for all the sum rules. In the first place, by definition,
this switch affects the quark mass term Mm of the sum rule
in Eq. (51)—see Table V for the corresponding numbers. It
is often asked how much of the proton mass can be
attributed to the Higgs mechanism. What seems clear is
that Mm is entirely due to the Higgs mechanism, as this
contribution would vanish if the quark masses were zero. In
that case, the entire mass of the proton could be associated
with either the gluon contribution to the trace anomaly,
or the sum of what we have called the quark and gluon
energies. In Scenario A, less than 10% of the proton
mass are due to the Higgs mechanism, while in
Scenario B, this number is close to 20%. Also, it is known
that the numerical values for the sigma terms of the charm,
bottom, and top quarks should be similar, which can be
derived using a heavy-quark expansion [66,70]. This is
compatible with lattice results according to which the
heavy-quark condensate hðψ̄ψÞRi behaves like 1=mQ for
quark masses mQ larger than about 500 MeV [64]. A direct
calculation of the expectation value hðFαβFαβÞRi could
provide further information about the role played by the
Higgs mechanism for the numerics of the proton mass
decomposition.
The contribution of the gluon energy Mg to the proton

mass is at least 50%. However, we repeat that the precise
number depends on the renormalization scheme. We also
find some negative contributions to mass sum rules,
namely, the quark term M̄q in Table III and Ũg in
Table VI. But these terms can become positive when
changing the scenario and/or the scheme. For instance,
Eqs. (65) and (66) show that Ũq is non-negative in the
D-type schemes. We repeat that the quark mass term Mm
does not depend on the choice of x and y. It is the only term
from the various sum rules showing that feature and, since
the operator ðmψ̄ψÞ is not renormalized, this contribution
has no renormalization scheme dependence at all.

IV. SUMMARY

This work deals with the phenomenology of the decom-
position of the proton mass in QCD.We have reviewed and,
to some extent, revisited several sum rules for the proton
mass from the literature. All of them are based on forward
matrix elements of certain components of the EMT in
QCD. A key ingredient is the recently discussed decom-
position of the EMT trace into quark and gluon contribu-
tions, which exhibits an additional dependence on a
renormalization scheme [23,24]. We have obtained numeri-
cal results for the sum rules up to three loops in the strong
coupling, where we have used results for the renormaliza-
tion constants of the EMT from the literature—see
Ref. [24] for more information. The mentioned scheme
dependence influences the numerics of all the mass
decompositions. The analytical part of the present work
is closely related to our recent paper in which we studied
the very same mass sum rules for an electron in QED [37].
The following are the most important findings of our

work: first, there is a close connection between the various
sum rules, provided that properly constructed and renor-
malized operators are used—see also Ref. [37]. Second,
different operators can be used for the sum rules as they
give the same expectation value. In particular, thanks to the
relation in Eq. (36), all the decompositions could be
considered different ways of splitting the matrix element
of the EMT trace (anomaly). Third, the numerics of all the
sum rules depends on the renormalization scheme. In
particular, there is presently a (numerically significant)
dependence on the aforementioned decomposition of the
EMT trace into individual terms. Fourth, the numerical
values for the sum rules are, generally, very stable when
going to higher orders in perturbation theory. Fifth, based
on current knowledge, the value for the quark mass term
Mm (sigma term contribution), which has a direct con-
nection to the Higgs mechanism, depends strongly on the
contribution from charm (as well as bottom and top
quarks). Last, most of the sum rules have one independent
term only. The only exception is the (modified) Ji sum rule
in Eq. (51), which has two independent terms. Any sum
rule for the proton mass one could think of has at most two
independent contributions since, for forward kinematics,
the EMT has only two form factors.
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APPENDIX: DECOMPOSITION OF THE EMT
TRACE INTO QUARK AND GLUON

CONTRIBUTIONS

Here we discuss the decomposition of the trace of the
EMT into individual contributions from quarks and gluons,
which requires to fix x and y that show up in Eqs. (21) and
(22). In the D-type schemes presented in Sec. II, we make
motivated choices for these two parameters. The focus of
this Appendix is on finding x and y in the MS-like schemes
and the MS scheme as implemented in Ref. [43], where for
the former we just outline the essential steps that were
already given in Refs. [23,24].
We repeat that, according to Eqs. (8)–(11), fully renorm-

alizing the EMT requires to determine ten renormalization
constants ZX, with X ¼ T;M; L; S; F; C;ψ ; K;Q; B. While
ZF and ZC are associated with the renormalization of the
EMT trace, ZT;L;ψ ;Q are needed for the renormalization of
the traceless part of the EMT. The remaining constants
ZM;S;B;K are then constrained through the Eqs. (13)–(16),
which contain x and y. In other words, to fix the finite
contributions to ZM;S;B;K requires to fix x and y.
In the MS scheme, the renormalization constants take the

form

ZX ¼ δX;T þ δX;ψ þ δX;F þ aX
ϵ
þ bX

ϵ2
þ cX

ϵ3
þ…; ðA1Þ

where δX;X0 denotes the Kronecker symbol, and aX, bX, cX
are constants depending on αs, the number of quark flavors
and color factors. In order to fix the values of x and y by
means of Eqs. (13) and (14), we need the results of the four
renormalization constants ZT;F;L;C which can be found in
Ref. [24] through Oðα3sÞ. By taking the Laurent expansion
of both sides of Eqs. (13) and (14) about ϵ ¼ 0, and
collecting the Oðϵ0Þ terms, we find the relations

1

32

�
ð8þ4aT þ2bT þcT þ…Þ

−
�
1þx−

β

2g

�
ð8þ4aFþ2bFþcFþ…Þ

�
¼ 0; ðA2Þ

1

32

�
−ð4aLþ2bLþcLþ…Þ

−
�
1þx−

β

2g

�
ð4aCþ2bCþcCþ…Þþ8ðγm−yÞ

�
¼ 0;

ðA3Þ

from which follow x and y in the MS scheme. Note that
using Eqs. (15) and (16) [instead of Eqs. (13) and (14)]
provides the same results.

Now we proceed to discuss the process of finding the
renormalization constants in the MS scheme when taking
results in the MS scheme as starting point. We follow the
procedure of Ref. [43], where, at variance with the standard
MS implementation, we do not introduce any rescaling
factor in the scale μ2. As a result, the counterterms do
acquire a nonvanishing finite part that is absent in the
standard MS scheme. As shown in Ref. [44], the present
implementation and the standard implementation of MS
lead to identical renormalized results. The same procedure
can also be adapted to compute the counterterms in any
scheme where the counterterms have nonvanishing finite
parts.
We first write the generic structure of a renormalization

constant in the MS scheme as

ZjMS ¼ð1;0Þþαs
a1
ϵ
þα2s

�
b2
ϵ2

þb1
ϵ

�
þα3s

�
c3
ϵ3
þc2
ϵ2
þc1

ϵ

�
:

ðA4Þ

The corresponding formula in the MS scheme reads

ZjMS ¼ ð1; 0Þ þ αs
ā1
ϵ
Sϵ þ α2s

�
b̄2
ϵ2

þ b̄1
ϵ

�
S2ϵ

þ α3s

�
c̄3
ϵ3

þ c̄2
ϵ2

þ c̄1
ϵ

�
S3ϵ ; ðA5Þ

where different conventions for the quantity Sϵ can be
found in the literature. The definition in Ref. [43], to which
we refer as MS1 scheme, is given by

SϵjMS1
¼ ð4πÞϵ
Γð1− ϵÞ

¼ 1þ ϵðlogð4πÞ− γEÞ

þ ϵ2
6γ2E−π2−12γE logð4πÞþ6log2ð4πÞ

12
þOðϵ3Þ

≡1þ ϵδUVþ ϵ2
δ2UV
2

− ϵ2
π2

12
þOðϵ3Þ: ðA6Þ

Another frequently used convention, which we call MS2
scheme [71], is

SϵjMS2
¼ ð4πe−γEÞϵ ¼ 1þ ϵδUV þ ϵ2

δ2UV
2

þOðϵ3Þ: ðA7Þ

Comparing Eqs. (A6) and (A7) shows that both schemes
differ at Oðϵ2Þ (and higher), which causes numerical
differences for the present study of the proton mass
decomposition—see the results for the MS1 and MS2
schemes in Table II. In the following, we present the main
steps that are needed to get x and y in a MS scheme, by
showing the relevant equations for just the MS1 scheme.
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In general, using as starting point the results for the
renormalization constants in the MS scheme from
Ref. [24], it is easier to find x and y in the MS scheme
than in a MS scheme.
We first note that the divergent terms on the rhs of

Eqs. (A4) and (A5) must be identical, which implies

ā1 ¼ a1; b̄1 ¼ b1 − 2b2δUV; b̄2 ¼ b2;

c̄1 ¼ c1 − 3c2δUV þ c3
4
ð18δ2UV þ π2Þ;

c̄2 ¼ c2 − 3c3δUV; c̄3 ¼ c3: ðA8Þ

The parameters x and y appear in the constant term of
renormalization constants, which in the MS1 scheme take
the general form

CjMS1
¼ αsā1δUV þ α2s

�
2b̄1δUV þ 2b̄2δ2UV þ π2

6
b̄2

�

þ α3s

�
3c̄1δUV þ 9

2
c̄2δ2UV þ 9

2
c̄3δ3UV −

π2

4
c̄2

−
3π2

4
c̄3δUV þ 1

2
c̄3ψ ð2Þð1Þ

�
; ðA9Þ

with the polygamma function ψ ðnÞðzÞ ¼ dnþ1

dznþ1 logΓðzÞ.
Using the relations in (A8), we can express the constant
term in Eq. (A9) through the coefficients of the renorm-
alization constants in the MS scheme,

CjMS1
¼ αsa1δUV þ α2s

�
2b1δUV − 2b2δ2UV −

π2

6
b2

�

þ α3s

�
3c1δUV −

9

2
c2δ2UV þ 9

2
c3δ3UV −

π2

4
c2

þ 3π2

4
c3δUV þ 1

2
c3ψ ð2Þð1Þ

�
: ðA10Þ

The renormalization constants ZM;S;B;K in Eqs. (13)–(16)
do not right away appear in the form of Eq. (A10) if they
are computed by combining the finite terms on the rhs of
these equations. Here we pick one example to illustrate
this point. For the parameter x, we use the perturbative
expansion

x ¼ αsx1 þ α2sx2 þ α3sx3; ðA11Þ

and consider the constant ZB. In fact, we find

OðαsÞ∶
1

8
ðā1;Q þ 2ā1;QδUV þ 2x1Þ;

Oðα2sÞ∶
1

48
ð6b̄1;Qð1þ 4δUVÞ þ b̄2;Qð3þ 12δUV þ 24δ2UV − 2π2Þ þ 6ðā1;FδUVx1ð1þ 2δUVÞ þ 2x2ÞÞ;

Oðα3sÞ∶
1

32

�
c̄3;Q þ 6c̄3;QδUV þ 18c̄3;Qδ2UV þ 36c̄3;Qδ3UV þ 4c̄1;Qð1þ 6δUVÞ

− c̄3;Qπ2 − 6c̄3;QδUVπ2 þ 2c̄2;Qð1þ 6δUV þ 18δ2UV − π2Þ þ 4b̄1;Fx1 þ 2b̄2;Fx1

þ 16b̄1;FδUVx1 þ 8b̄2;FδUVx1 þ 16b̄2;Fδ2UVx1 −
4

3
b̄2;Fπ2x1 þ 4ā1;Fx2

þ 8ā1;FδUVx2 þ 8x3 þ 4c̄3;Qψ ð2Þð1Þ
�
; ðA12Þ

instead of

OðαsÞ∶
1

4
ā1;QδUV;

Oðα2sÞ∶
1

24
ð12b̄1;QδUV þ b̄2;Qð6δUV þ 12δ2UV − π2Þ þ 12ā1;FδUVx1Þ

Oðα3sÞ∶
1

32
ð24c̄1;QδUV þ 6c̄3;QδUV þ 18c̄3;Qδ2UV þ 36c̄3;Qδ3UV − c̄3;Qπ2 − 6c̄3;QδUVπ2

þ 2c̄2;Qð6δUV þ 18δ2UV − π2Þ þ 24b̄1;FδUVx1 þ 12b̄2;FδUVx1 þ 12b̄2;Fδ2UVx1

− 2b̄2;Fπ2x1 þ 24ā1;FδUVx2 þ 4c̄3;Qψ ð2Þð1ÞÞ: ðA13Þ

By equating the terms for a given order in αs for the expressions in Eqs. (A12) and (A13), we obtain a system of equations
that fix the xi in Eq. (A11). Applying the same procedure for ZK, we obtain the values for the corresponding expansion
coefficients for y. Using the same method, one can compute x and y from ZM;S instead of ZB;K .
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