
 

P-wave dibaryon resonances in pp elastic scattering
and near-threshold pion production
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It is demonstrated within the dibaryon-induced model for NN interaction that pp scattering in P waves
is governed mainly by the production of the intermediate dibaryon resonances. Two dibaryon resonances
with a mass of about 2200 MeV discovered recently by the ANKE-COSY Collaboration are shown to
determine both elastic pp phase shifts and inelasticities in the 3P0 and 3P2–3F2 channels from zero energy
up to Tp ¼ 0.7–0.9 GeV. It is also demonstrated clearly that the 3P0 dibaryon plays a decisive role in
near-threshold neutral pion production in pp collisions which is poorly understood to date. The missing
dibaryon contribution is found to be the very possible reason for the failure of traditional approaches to
explain near-threshold π0 production.
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I. INTRODUCTION

Meson production in NN collisions is a long-standing
problem in nuclear physics because such processes include
rather high momentum transfers and thus the production
mechanism is tightly interrelated to short-range NN
dynamics which is poorly understood to date. One of
the most challenging processes in this area has been the
neutral pion production in pp collisions near threshold.
Thus, in the early attempts to describe this process, a
surprising result was attained, i.e., the theoretical cross
section was found to underestimate the respective exper-
imental data by about 5 times [1,2,3].
On the other hand, in the 1990s and later, rather accurate

and complete data on the near-threshold total cross section
[3–5] as well as the polarization observables [6] in the
pp → ppπ0 reaction appeared. In the experiments [6],
scattering of a spin-polarized beam off a spin-polarized
target was measured. The new high-precision data stimu-
lated numerous calculations in this area (see reviews [7,8]).
The calculations within the phenomenological models (see,
e.g., [9–14]) supposed various model-dependent explan-
ations for the observed discrepancies, such as heavy meson
exchanges or off-shell corrections to the πN amplitude, and
were therefore inconclusive. Then the substantial progress
in treating pion production was achieved within the chiral
perturbation theory (ChPT) [15–17] indicating that some
sizable contributions to the pp → ppπ0 cross section
can come from the next-to-next-to-leading order terms of

the chiral perturbation series. However, a quantitative
description of neutral pion production has not been
obtained to date.
It seems that the true reason for the above discrepancies

was that the conventional mechanisms used to describe the
data did not include some important ingredients. Thus, in
Fig. 1 the direct production mechanism is shown. The pion
rescattering term is small here, because, contrary to the
charged pion production, the intermediate Δ contribution
is suppressed due to conservation laws. In fact, for the
diagrams shown in Fig. 1, there is a strong mismatch in the
NN relative momenta in the initial and final states, so that,
the pion production operator should include the high-
momentum components. This means high sensitivity of
the respective matrix elements to the πNN vertex form
factor and especially to the short-range cutoff parameter
ΛπNN . It is known that in the conventional meson-exchange
approaches to the NN interaction potential, the value of
ΛπNN is usually taken rather high, i.e., ΛπNN ≃
1–1.7 GeV=c (like in the Bonn family of NN potentials
[18]), and the same high values of this parameter are used
for the meson-exchange currents as well as for the NN
wave functions employed for the initial state interaction
(ISI) and final state interaction (FSI) treatment. Contrary
to this, all microscopic meson-nucleon dynamics including
πN → Δ → πN on-mass-shell scattering employs much
lower values of the cutoff parameters, i.e., ΛπNN ≃
0.5–0.9 GeV=c and ΛπNΔ ≃ 0.3–0.4 GeV=c [19,20]. The
soft cutoff values are also consistent with the lattice-QCD
calculations [21]. It is evident that an artificial increase of
these parameters by 2–3 times leads immediately to the
strong enhancement of the pion production cross sections.
We should emphasize in this regard that just the high cutoff
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values probably explain the success of some phenomeno-
logical models in describing near-threshold neutral pion
production. E.g., the authors of Ref. [9] achieved good
agreement with experimental data on the near-threshold
pp → ppπ0 cross section by introducing the short-range
axial exchange charge operator with ΛπNN ¼ 1.3 GeV=c
taken from the Bonn NN potential.
However, when the physically justified (soft) values

for the cutoff parameters are chosen, the proposed short-
range contributions get considerably reduced and the
meson production cross sections, in particular, in the
near-threshold region, turn out to be strongly underesti-
mated. Moreover, there are conceptual questions about
the heavy meson exchange contributions (analogous to the
contact terms in ChPT) which should dominate the neutral
pion production near threshold as proposed in, e.g.,
Refs. [9,10,13]. From the modern viewpoint, t-channel
exchange of a meson heavier than the pion between the
isolated nucleons at the distances less than the nucleon size
is a pure phenomenology not relevant to the real physical
picture [22]. The most doubtful point seems the concept of
scalar meson exchange, since the lightest scalar (σ) meson
is a very broad resonance which cannot be effectively
exchanged between the nucleons. The detailed discussion
of these conceptual issues can be found in, e.g., [23].
So, we propose here an alternative short-range mecha-

nism of the NN interaction which is also relevant for pion
production. In view of the above arguments, it seems
natural to take into account the formation of the inter-
mediate dibaryon resonances in pp collisions, which
effectively increase the meson production cross sections
due to the long lifetime of the resonances. The relatively
long-lived dibaryon states are produced largely due to the
effect of hidden color suggested by Brodsky et al. in the
1980s [24] which prevents the resonance decay into
hadronic channels. In our case, the effect of hidden color
is evident when the 4q–2q quark-cluster model for dibary-
ons is used (see Sec. Vof the present paper). It is important
for the whole our approach that a number of dibaryon
resonances in NN system have been discovered to date
(see the recent review [25]).
A good illustration to these points can be found in the

charged pion production process pp → dπþ at intermedi-
ate energies. In the conventional approaches, this process is

dominated by the pion rescattering term with the Δ-isobar
excitation in the intermediate state, while the direct
production mechanism analogous to that shown in Fig. 1
gives only a small background. However the intermediate
Δ excitation turns out to be strongly sensitive to the short-
range cutoff parameters ΛπNN and especially ΛπNΔ. As we
have shown in Refs. [26,27], the above conventional
mechanisms with the soft cutoff parameters consistent
with πN elastic scattering give only a half cross section
of the pp → dπþ reaction in two dominating partial waves
1D2p and 3F3d at Tp ¼ 400–800 MeV.1 Nevertheless, it
was demonstrated [26,27] that one can still employ quite
moderate meson-baryon cutoffs for the accurate description
of this process at intermediate energies, however a non-
conventional short-range mechanism for pion production
should be introduced. In this novel mechanism, the basic
NN interaction at short distances is driven by generation
of intermediate dibaryon resonances in respective partial
waves [28,29] and thus pions are emitted from the
decay of the intermediate dibaryon resonance state which
drives the interaction in the given NN partial-wave
channel. Thus, when the excitation of the known isovector
dibaryon resonances 1D2ð2150Þ and 3F3ð2220Þ near the
NΔ threshold2 (in S and P waves, respectively) is added
coherently to the t-channel Δ excitation, we achieve a
very good description of the partial cross sections in the
respective channels [26,27].
The situation is even more crucial for P-wave pp

scattering with the pion emitted in d wave (the 3P2d partial
channel). Here we have an analogy with the near-threshold
π0 production, where the contributions of both direct and
rescattering mechanisms are strongly suppressed. In this
channel, the conventional mechanisms give only a minor
(ca. 2.5%) contribution which is only moderately depen-
dent on the cutoff parameters. On the other hand, the
accurate description of just the 3P2d amplitude is crucial
for reproducing the experimental data on the polarization
observables like Axx, Ayy, etc., in pp → dπþ reaction.
Hence, the contribution of the P-wave dibaryon 3P2ð2200Þ
(which is located also near the NΔ threshold in the relative
P-wave) appears to be the dominant one in the 3P2d partial
channel and is clearly necessary for reproducing the
polarization observables near the resonance peak energies
Tp ≃ 600 MeV. In Fig. 2 the partial cross section in this
channel is shown in comparison with the partial-wave
analysis (PWA) of the SAID group [30,31]. It is very
important that the 3P2 dibaryon parameters found from the
analysis of the pp → dπþ reaction turned out to be very

FIG. 1. The direct one-nucleon mechanism for near-
threshold pion production in NN collisions.

1We use here the standard notation 2Sþ1LJl for the partial-wave
channels of the pp → dπþ reaction, where S, L and J denote the
spin, orbital and total angular momenta of the initial NN system,
while l denotes the orbital angular momentum of the final pion.

2Here and below we denote the dibaryon states according to
the NN channel 2Sþ1LJ to which it may couple.
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close to those found in a recent experiment of the
ANKE-COSY Collaboration [32] on a similar reaction
pp → fppgsπ0, where fppgs is a near-threshold diproton
in the 1S0 state.
A quite similar situation takes place also for the isoscalar

double-pion production reactions pn → dðππÞ0 [26,33].
For now, this is the most bright example of meson
production through excitation of intermediate dibaryons,
namely, the d�ð2380Þ resonance discovered in a series of
experiments of the WASA-at-COSY Collaboration [25].
While the energies for the d� excitation in pn collisions
Tp ≃ 1.1–1.2 GeV are higher than the double-pion pro-
duction threshold, some interesting near-threshold phe-
nomenon known as the ABC effect [34] also takes place
here in a sense that the ABC enhancement is located near
the threshold of the dipion invariant-mass spectrum [25]. In
Ref. [33] we interpreted this enhancement as being due to
the scalar sigma-meson production with the mass close
to 2mπ , which is emitted from the d� dibaryon and than
decays into two final pions. This interpretation finds
support in the measured isospin dependence of the isoscalar
dipion production in pn collisions [35,36]. On the other
hand, it is generally accepted that the near-threshold dipion
production in NN collisions at energies TN < 1 GeV goes
mainly through the excitation of the intermediate Roper
resonance N�ð1440Þ [37]. However it was shown recently
[38,39] that the formation of the dibaryon resonance
located near the NN�ð1440Þ excitation threshold

ffiffiffi
s

p
≃

2300 MeV (corresponding to TN ≃ 900 MeV) is the most
likely mechanism for both single- and double-pion pro-
duction in the S-waveNN collisions. Following these lines,

one could suggest the dibaryon resonances located near
(almost) all nucleonic resonance thresholds to be res-
ponsible for the large portion of the meson production
processes which are poorly reproduced by conventional
theoretical models, especially near the respective produc-
tion thresholds. For instance, the puzzling near-threshold
η-meson production in pp and pd collisions (see, e.g.,
[40]) might be explained by the intermediate dibaryon
excitation near the threshold of NN�ð1535Þ. Some experi-
mental indications of this dibaryon have already been
obtained [41,42].
It has been shown further in Refs. [23,38,43,44] that

the dibaryon generation mechanism supplemented by the
peripheral one-pion exchange gives an accurate description
of NN phase shifts and inelasticities in various partial
channels in a broad energy range from zero to about 1 GeV
(lab.) and also leads to the dibaryon resonance states
with parameters very close to their experimental values.
The most prominent effect is seen in the 3D3–3G3 coupled
channels where the decisive role of the known d�ð2380Þ
dibaryon has been shown at all energies until TN ≃
1.25 GeV [44].
In the present study we consider NN scattering in the

3P0, 3P1 and 3P2–3F2 partial-wave channels. In two of these
channels, viz., 3P0 and 3P2, the diproton resonances with a
mass of about 2200 MeV have been found in the recent
experiment of the ANKE-COSY Collaboration [32] (the
3P2 resonance was also predicted in the PWA [30,45]). Here
we study the impact of these P-wave dibaryons on both
elastic and inelastic pp scattering, with a special emphasis
on the near-threshold neutral pion production which is
governed mainly by the 3P0 pp initial state.
We especially emphasize here that we do not introduce

the dibaryon resonances ad hoc to describe the particular
meson production processes but instead we use the recent
experimental data [32] on the P-wave dibaryons and the
model developed in the earlier work [23,38,43,44] which
describes NN scattering at intermediate energies to analyse
near-threshold pion production in pp collisions. Thus, our
main goal is to reveal a connection between the NN
interaction and fundamental QCD, and neutral pion pro-
duction near threshold may be considered as an illustration
of our general approach.
It should be also noted that the near-threshold charged

pion production with the isoscalar np pair (or the deuteron)
in the final state goes mainly via the 3P1 pp collisions.
However, the experimental situation with the 3P1 dibaryon
is not quite clear for now. In particular, it is not seen as a
clear resonance in the respective partial channel of pp
elastic scattering or the pp → dπþ reaction and cannot be
excited at all in the pp → fppg0π0 process due to the
angular momentum and parity conservation [32]. However,
some indications of its existence can be found in the
literature (see, e.g., Refs. [46–49]). Thus, for consistency of
our study of P-wave pp scattering within the dibaryon

FIG. 2. Partial cross section of the reaction pp → dπþ in the
3P2d channel. Shown are the summed contribution of two
conventional mechanisms—pion rescattering with the intermedi-
ate Δ excitation and direct one-nucleon exchange (dash-dotted
curve), the full calculation including an intermediate dibaryon
formation with parameters Mð3P2Þ ¼ 2211 MeV, Γð3P2Þ ¼
195 MeV (solid curve) and the SAID PWA solutions [30,31]:
C500 (dashed curve), SP96 (dotted curve) and single-energy data
(filled circles).
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model, we present below the results of calculations for the
3P1 partial channel as well.
The structure of the paper is as follows. In Sec. II, we

outline the basic formalism of the dibaryon-induced model
for the NN interaction and its extension for treatment of
inelastic processes. In Sec. III, we present the results of the
calculations for the pp elastic scattering phase shifts and
inelasticities in the P-wave partial channels. In Sec. IV, we
discuss in detail the near-threshold neutral pion production
within the framework of the dibaryon model. Sec. V is
dedicated to the feasible microscopic structure of the
P-wave dibaryon resonances. Sec. VI summarizes the basic
results of the present work.

II. DIBARYON-INDUCED MODEL
FOR NN INTERACTION

A. Basic formalism of the model

In the dibaryon model [23,38,43,44], the total Hilbert
space includes two channels: an external channel corre-
sponding to the relative motion of two nucleons and an
additional internal channel which describes the formation
of the six-quark (or dibaryon) state. In the simplest case, the
internal space is one-dimensional, and a single internal state
is associated with the “bare dibaryon” having the energy ED.
The external Hamiltonian is represented as a sum of

three terms:

hNN ¼ h0NN þ VOPEP þ Vorth; ð1Þ

where h0NN is the two-nucleon kinetic energy operator,
VOPEP is the one-pion exchange potential which determines
the peripheral interaction of two nucleons, and Vorth is an
orthogonalizing potential needed to exclude the fully
symmetric six-quark component from the internal state
wave function (see below).
Here we use the same form and the same parameters

of VOPEP as in Refs. [23,44]:

VOPEP ¼ −
f2π
m2

π
ðτ1 · τ2Þ

ðσ1 · qÞðσ2 · qÞ
q2 þm2

π

�
Λ2
πNN −m2

π

Λ2
πNN þ q2

�
2

:

ð2Þ

In the calculations below, we employ the soft cutoff value
ΛπNN ¼ 0.65 GeV=c [23,44]. This value is consistent with
the microscopic quark-model [19,20] and the lattice-QCD
[21] calculations, as well as with the values commonly
used in calculations of pion production (see [26] and
references therein).
The potential Vorth has the separable form

Vorth ¼ λ0jϕ0ihϕ0j: ð3Þ

This term corresponds to an effective repulsion and reflects
the six-quark symmetry requirements. In particular, the

total microscopic six-quark wave functions for the S-wave
NN interaction include two different (mutually orthogonal)
six-quark Young schemes: js6½6�i and js4p2½42�i in the
quark shell model language. It was shown in a number
of works (see, e.g., [50]) that while the fully symmetric
component js6½6�i describes a baglike structure with the
hidden-color components, the mixed-symmetry component
js4p2½42�i is projected mainly onto the NN channel. So
that, to exclude the nonclustered baglike component js6½6�i
from the NN relative-motion wave functions, one employs
the orthogonalizing projection operator λ0jϕ0ihϕ0j with a
large constant λ0 [51]. This orthogonalization of the
physical NN channel to the fully space-symmetric six-
quark channel immediately leads to the nodal NN radial
wave functions in the lower partial waves with a stable
radial node against change of the collision energy [52]. It
was argued in Ref. [38] that the coupling constant λ0 should
be finite for the S-wave NN interaction to take into account
the strong coupling between NN and NN�ð1440Þ channels
near the Roper resonance N�ð1440Þ excitation threshold.
On the other hand, the term (3) leads to an appearance of
some excited states in the total six-quark system.
After excluding the internal channel by the standard

projection technique (see details in Refs. [23,44]), one
gets an effective Hamiltonian in the NN channel with the
main attraction given by the energy-dependent pole-like
interaction VDðEÞ:

HeffðEÞ ¼ hNN þ VDðEÞ; VDðEÞ ¼
λ2

E − ED
jϕihϕj;

ð4Þ

where λ is a strength of coupling between the external
and internal channels and jϕi is a transition form factor.
According to the symmetry requirements, the radial parts
of the form factors jϕ0i and jϕi are taken as the lowest and
the first excited harmonic oscillator wave functions for the
given orbital angular momentum L and the same effective
range r0:

ϕL
0 ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0ðkr0Þ2Lþ2

ΓðLþ 3
2
Þ

s
e−

1
2
ðkr0Þ2 ; ð5Þ

ϕLðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0ðkr0Þ2Lþ2

ΓðLþ 5
2
Þ

s �
Lþ 3

2
− ðkr0Þ2

�
e−

1
2
ðkr0Þ2 ; ð6Þ

where ΓðLþ 3
2
Þ and ΓðLþ 5

2
Þ are the Gamma-functions.

In principle, these form factors can be found from the
microscopic calculations within the six-quark models as it
was done, e.g., in Refs. [28,29]. However the full and
consistent six-quark calculations are still beyond our
capabilities, so that, we have to consider the scale param-
eters r0 of the form factors and also the coupling constants λ
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and λ0 as adjustable parameters fitted to the data.
Nevertheless, we tried to keep these parameter values
(see Tables I and III) as near as possible to the six-quark
model and physical estimations.3

B. Treatment of inelastic processes

In general, the internal six-quark state is able to decay
into all possible inelastic (other than NN) channels,
including meson and isobar production. In our model, this
internal state is considered as a “bare” dibaryon resonance
state. Being coupled to the NN channel, this initial state
gets to be additionally “dressed” by the NN loops in some
analogy with the field theory.
To take into account the possible inelastic decay chan-

nels, we introduce the width Γinel for the internal state
energy ED. We suppose here the energy dependence
ΓinelðEÞ according to the phase space of the dominant
decay channel and the relative orbital angular momenta of
the final particles. This dibaryon width has been introduced
in our previous work [23,44] to allow for the treatment of
both elastic and inelastic NN scattering within the frame-
work of the unified model.
Thus, the internal-state energy becomes complex-valued:

ED ¼ E0 − iΓinel=2: ð7Þ

Generally, the width for the given decay channel can be
written in the form:

Γinelð
ffiffiffi
s

p Þ ¼
(
0;

ffiffiffi
s

p
≤ Ethr;

Γ0
Fð ffiffi

s
p Þ

FðM0Þ ;
ffiffiffi
s

p
> Ethr

; ð8Þ

where
ffiffiffi
s

p
is the total invariant energy of the decaying

resonance, M0 is the bare dibaryon mass related to the
energy E0 as M0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðE0 þmÞp

(with m being the
proton mass), Ethr ¼ 2mþmπ is the threshold energy and
Γ0 defines the decay width at the resonance position. The
function Fð ffiffiffi

s
p Þ depends on the type of the decay process.

For the NN channels in question, the dominant decay
process close to the pion production threshold should be

just the emission of the neutral or charged pion, i.e.,
D → NNπ. The explicit expression for the function F
for such a three-body decay can be taken in the following
form [23]:

FNNπð
ffiffiffi
s

p Þ¼1

s

Z ffiffi
s

p
−mπ

2m
dMNN

q2lπþ1k2LNNþ1

ðq2þΛ2Þlπþ1ðk2þΛ2ÞLNNþ1
;

ð9Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −m2

π −M2
NNÞ2 − 4m2

πM2
NN

p
=2

ffiffiffi
s

p
is the

pion momentum in the total center-of-mass frame,
k ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

NN − 4m2
p

is the momentum of the nucleon in
the center-of-mass frame of the final NN subsystem with
the invariant mass MNN , and Λ is the high-momentum
cutoff parameter which prevents an unphysical rise of the
width Γinel at high energies. The orbital angular momenta of
the emitted pion lπ and the nucleon in the NN subsystem
LNN may take different values in accordance with the total
angular momentum and parity conservation. For the 3P0

initial channel, we parameterize the dibaryon width accord-
ing to the dominant near-threshold Ss final state with
LNN ¼ lπ ¼ 0, while for the 3P2 channel we take LNN ¼ 0
and lπ ¼ 2 which correspond to the final Sd configuration.
It should be noted that for the 3P2 and 3P1 channels, the

decay process D → dπ with the final deuteron is also
important near the inelastic threshold. In such a case,
the function F takes a simple form corresponding to the
two-body decay:

Fdπð
ffiffiffi
s

p Þ ¼ q2lπþ1

ðq2 þ Λ2
dπÞlπþ1

; ð10Þ

where q is the pion momentum and Λdπ is the high-
momentum cutoff parameter. It can be shown that the
general three-body expression (9) can be reduced to the
two-body form similar to Eq. (10) in the case of small
relative momenta of two emitted nucleons due to the
close values of the deuteron mass md and the two-nucleon
threshold energy MNN ¼ 2m. Thus, one can use the three-
body parametrization of Γinel (8) for all three isovector
P-wave NN channels [with the function F defined by
Eq. (9)] as the most common form of the decay width
which effectively takes into account the possible inelastic
processes for these channels near the inelastic threshold.
For the description of NN scattering phase shifts at higher
energies, the energy behavior of the dibaryon decay width
is much less important, so that, Eq. (9) can be used to
represent the width also above the threshold region.
The bare dibaryon mass M0 and width Γ0 are renor-

malized in the course of dressing by the NN loops, i.e.,
when solving the scattering equations with the effective
Hamiltonian (4), thus resulting in the “dressed” dibaryon
mass Mth and width Γth which can be compared to the
experimental dibaryon position. The inelastic width at the

TABLE I. Parameters of the dibaryon model potential for the
NN partial-wave channels 3P0 and 3P2–3F2.

λ0 MeV r0 fm λ MeV M0 MeV Γ0 MeV
3P0 450 0.425 35 2200 92
3P2 0 0.7 63 2205 100
3F2 105 0.45 1.5

3See, e.g., Ref. [29] where a direct comparison of the potential
parameters found from the fit of the phase shifts with their
microscopic estimations was given for the lowest NN partial
channels 3S1–3D1 and 1S0 within the initial version of the
dibaryon model.
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resonance point ΓinelðMthÞ determines the coupling of the
dibaryon resonance in question to the inelastic channels,
the main one being the NNπ channel. Accordingly,
the elastic decay width of the dibaryon can be found as
ΓðD → NNÞ ¼ Γth − ΓinelðMthÞ (see details in Ref. [23]).

III. DESCRIPTION OF pp SCATTERING
IN P WAVES

A. Partial phase shifts and inelasticities
in the channels 3P0 and 3P2–3F2

Below we consider the results of calculations using the
above formalism for the pp partial-wave channel 3P0 and
the coupled channels 3P2–3F2. The parameters of the model
used in the present calculations are listed in Table I. Here a
single internal state for the coupled channels 3P2 and 3F2 is
introduced (see the details below). The mass mπ has been
taken to be equal to the neutral pion mass. The main
parameters of the P-wave dibaryon resonances in the
effective Hamiltonian (4), i.e., the mass M0 and width
Γ0 of the bare resonance, have been fitted to reproduce the
partial phase shifts and inelasticity parameters in a broad
energy interval up to the resonance positions for the given
NN channels.
With these model parameters, one gets the “dressed”

resonance states in both configurations with the massesMth
and widths Γth shown in Table II. We emphasize that these
values occur to be fully consistent with the experimental
ones found in Ref. [32].4 So, these two basic parameters of
the dibaryon resonances in our model can be fixed by the
experimental data.
Using Eqs. (8), (9) and the values of the dibaryon

mass and width given in Table II, one can estimate the
branching ratio for the dibaryon decay into the NN
channel: BRðD → NNÞ ¼ ðΓth − ΓinelðMthÞÞ=Γth [23].
Thus, we obtain this branching ratio to be about 7%
and 13% for the 3P0 and 3P2–3F2 dibaryons, respectively.
These values are consistent with the value of 10%
obtained for the P-wave dibaryons from the PWA of
pp scattering [46,47]. So, these dibaryons are highly
inelastic as well as other known dibaryons above the pion
production threshold [25].

1. The channel 3P0

The partial phase shifts for the pp channel 3P0 are
displayed in Fig. 3 in comparison with the PWA results of
the SAID group [31].
As is clearly seen from the figure, we have achieved

almost perfect agreement with the results of PWA in a very
broad energy range from zero energy to about 1 GeV. To
make the result more evident, we have also shown on Fig. 3
the phase shifts corresponding to the pure OPEP (dashed
curve). This comparison makes clear the fact that the
dibaryon formation in our model provides the dominant
part of the NN interaction in the whole energy region
considered.
To take an effective account of inelastic processes, we

have used here Eqs. (8) and (9) for the internal state decay
width corresponding to the single-pion production. The
resulted inelasticity parameters are shown in Fig. 4. Again,
a very good agreement with the PWA results is seen up to
the energies near the resonance position. Further, the total
inelasticity continues to increase signaling about other
inelastic processes (such as double-pion production, etc.)
while the inelasticity predicted by the dibaryon model
decreases.
We emphasize here that the excellent description of both

elastic phase shifts and inelasticities shown in Figs. 3 and 4
has been attained using the same pole parameters, i.e.,
within a unified model.

2. The coupled channels 3P2–3F2

The preliminary study of the NN scattering phase shifts
and inelasticity parameters in the 3P2 channel within the
dibaryon model has already been published in Ref. [23].
Here they are explored in a more detail with inclusion of

FIG. 3. Partial phase shifts for the pp channel 3P0 found
within the dibaryon model (solid curve) in comparison with the
single-energy SAID PWA [31] (filled circles), the SAID SM16
solution [31] (dash-dotted curve) and results for the pure OPEP
(dashed curve).

TABLE II. Comparison of the experimental values for the
resonance masses and decay widths with those found in the
dibaryon model for the NN partial-wave channels 3P0 and
3P2–3F2.

Mth MeV Γth MeV Mexp MeV Γexp MeV
3P0 2200 99 2201(5) 91(12)
3P2–3F2 2221 168 2197(8) 130(21)

4The F-wave admixture to the 3P2 state was not considered in
the experimental work [32].
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coupling with the 3F2 channel and focusing on the
description of inelastic processes. Due to account of the
PF coupling, the dibaryon part of the interaction in Eq. (4)
should have the following form:

VDðEÞ ¼
1

E − ED
jΦihΦj; jΦi ¼

�
λPjϕPi
λFjϕFi

�
; ð11Þ

where jΦi contains two form factors corresponding to
coupling of the internal state with two partial NN channels
in question. Equation (11) results in the following matrix
form of the interaction:

VDðEÞ ¼
1

E − ED

�
λ2PjϕPihϕPj λ2PFjϕPihϕFj
λ2PFjϕFihϕPj λ2FjϕFihϕFj

�
; ð12Þ

where λPF ¼ ffiffiffiffiffiffiffiffiffiffi
λPλF

p
and the nondiagonal parts give impact

to the tensor component of the total interaction.
In Eq. (11), the partial form factors are taken again as the

harmonic oscillator functions corresponding to the orbital
angular momentum L and the effective range r0. However,
in contrast to the 3P0 channel, the 3P2 partial phase shifts
are positive and do not show any repulsion until the energy
of about 1 GeV. Hence, the orthogonalizing potential is
needed in the F-wave channel only. So that, the form factor
jϕPi represents the lowest harmonic oscillator wave func-
tion given by Eq. (5) with L ¼ 1, while the form factors
jϕ0i and jϕFi represent the lowest and the first excited
harmonic oscillator functions defined in Eqs. (5) and (6),
respectively, with L ¼ 3. The model parameters for these
coupled channels are collected in Table I.
The 3P2 and 3F2 pp scattering phase shifts and the

mixing angle ε2 are shown in Fig. 5 in comparison with the

SAID PWA [31] and the pure OPEP contribution. It is seen
that the phase shift 3F2 is represented quite well up to
1 GeV. However, the good description of the partial phase
shifts in the 3P2 channel is obtained until ca. 700 MeV (i.e.,
up to the resonance position) only. The coupling between
the P and F waves is small here which results in a rather
small mixing angle. As is seen from Fig. 5(c), this mixing
angle is defined essentially by the tensor part of the OPEP.
At the same time, the tensor part of the dibaryon potential
gives the required correction near the resonance position.
However, its contribution turns out to be slightly overesti-
mated in the intermediate energy region.
The respective inelasticity parameters found within the

dibaryon model are shown in Fig. 6. Although some
overestimation of the inelasticity is seen in 3P2 channel
in the intermediate energy region, one can get a reasonable
average description of the inelastic processes in both P
and F partial waves.
To summarize the comparison with the PWA data, it

should be emphasized that a rather simple form of the
interaction with a single internal state allows us to repro-
duce quite well all five scattering parameters (i.e., the
phase shifts, the inelasticities and mixing angles) corre-
sponding to the coupled NN channels 3P2–3F2 and simul-
taneously gives the resonance position (see Table II) which
is very close to the experimental one [32]. At the same time,
some deviations from the PWA results are seen which
should stimulate some further improvements of the model.
In particular, small discrepancies between our calcula-

tions and the PWA data in the near-threshold region might
be explained by the more involved structure of the dibaryon

(a)

(b)

(c)

FIG. 5. Partial phase shifts for the coupled pp channels 3P2 (a)
and 3F2 (b) and the mixing angle ε2 (c). The notations are the
same as in Fig. 3.

FIG. 4. Inelasticity parameters for the pp channel 3P0 found
within the dibaryon model (solid curve) in comparison with the
single-energy SAID PWA [31] (filled circles), SAID SM16
solution [31] (dash-dotted curve) and results for the pure OPEP
(dashed curve).
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decay width in the 3P2 channel compared to the 3P0 one,
where the final Ss configuration dominates the near-
threshold pion production. For the 3P2 initial channel,
the Sd, Ds and Pp final configurations can give compa-
rable contributions, while we take into account the Sd
configuration only (which is appropriate for the dπþ final
state). Thus, the correct description of the total inelasticities
in the 3P2–3F2 partial channels requires a detailed dynami-
cal model for the dibaryon decay in various final states
instead of our simple width parametrization. Such a
dynamical description of all dibaryon decay channels is
beyond the scope of the present work.

B. Partial phase shifts and inelasticities
in the channel 3P1

For consistency of our study of the P-wave pp scattering
within the dibaryon model, we should examine the model
in the 3P1 partial channel as well. Though the 3P1 dibaryon
resonance has not been detected in experiments to date,
different estimations from the PWA of pp scattering can
be found in the literature. In particular, in Ref. [46], the
resonance state with the mass Mð3P1Þ ¼ 2179 MeV and
the width Γð3P1Þ ¼ 86 MeV was found from the PWA of
pp scattering. At the same time, the hypothetical 3P1

dibaryon state with the mass Mð3P1Þ ≃ 2.07 GeV can be
considered as a member of the Regge trajectory for
isovector dibaryons [48]. The resonance with the same
mass was also mentioned in Ref. [49].
Below we show the results of the calculations of the 3P1

pp phase shifts within the dibaryon model for one of the
possible parameter sets (see Table III). Here, the effective
range r0 of the dibaryon part of the interaction is the same
as for the channel 3P0 (see Table I).

The partial phase shifts and inelasticity parameters for the
channel 3P1 are shown in Figs. 7 and 8, respectively, in
comparison with the SAID PWA data. Similarly to the 3P0

case, one obtains the good description of these quantities up
to laboratory energies of about 1 GeV. Moreover, with the
parameters chosen, the model allows us to reproduce the
peak that appears in the SAID single-energy data near T lab ¼
0.75 GeV. It should be noted however, that the energy-
dependent SAID solution does not reveal such a peak.
Finally, the suggested dibaryon potential results in the

“dressed” dibaryon resonance with the mass Mthð3P1Þ ¼
2230 MeV and the width Γthð3P1Þ¼52.5MeV. Thus, the

FIG. 7. Partial phase shifts for the pp channel 3P1. The
notations are the same as in Fig. 3.

FIG. 8. Inelasticity parameters for the pp channel 3P1. The
notations are the same as in Fig. 4.

(a)

(b)

FIG. 6. Inelasticity parameters for the coupled pp channels 3P2

(a) and 3F2 (b). The notations are the same as in Fig. 4.

TABLE III. Parameters of the dibaryon model potential for the
NN partial-wave channel 3P1.

λ0 MeV r0 fm λ MeV M0 MeV Γ0 MeV
3P1 270 0.425 20 2230 50

RUBTSOVA, KUKULIN, and PLATONOVA PHYS. REV. D 102, 114040 (2020)

114040-8



total width of the 3P1 dibaryon in our model turns out to be
narrower than those for other P-wave dibaryons. For the
branching ratio of the 3P1 dibaryon decay into the NN
channel we obtain the value of about 5% which is some-
what smaller than for the other P-wave dibaryons as well.
We should note however, that the parameters of the model
potential and the resulted dibaryon resonance which allow
us to describe reasonably pp scattering in the 3P1 channel
are not unique. So, additional support from the experi-
mental side is needed to draw unambiguous conclusions
about the existence of the 3P1 dibaryon.

IV. DESCRIPTION OF NEAR-THRESHOLD
NEUTRAL PION PRODUCTION

In Sec. III A above, we have shown within the dibaryon
model that the resonance 3P0ð2200Þ found clearly in the
experiment [32] determines the pp inelasticity in the
3P0 channel from the inelastic threshold to about
T lab ¼ 700 MeV. In turn, the near-threshold inelasticity
here is mainly due to the neutral pion production, since the
process pp → ppπ0 in the near-threshold region is by far
dominated by the 3P0 initial state of the pp pair which is
coupled to the 1S0 pp final state with an s-wave emitted
pion (the so-called Ss partial amplitude) [5].5 On the other
hand, the total inelastic pp cross section in the 3P0 channel
consists of two parts corresponding to the above neutral
pion production process and also the charged pion pro-
duction reaction pp → pnπþ. Due to the different dynam-
ics of these processes, including the different final state
interaction of the pp and np pairs with the small relative
momenta, it seems nontrivial to extract these amplitudes
separately. However, the threshold of the charged pion
production is shifted by about 10 MeV (in the lab. energy)
from that of the neutral pion production. Thus, one has a
unique situation in the small energy interval just above the
neutral pion production threshold, where the total cross
section of the pp → ppπ0 reaction should closely coincide
with the total inelastic cross section in the pp partial
channel 3P0. Thus, the dibaryon resonance which governs
pp scattering in the 3P0 channel, should determine also
near-threshold π0 production in pp collisions.
The proposed dibaryon mechanism for near-threshold π0

production is depicted in Fig. 9.
The fundamental difference between the traditional

mechanism for the π0 production displayed in Fig. 1 and
the dibaryon-induced mechanism for this process shown in
Fig. 9 is as follows. The dominating NN channel leading to
the π0 near-threshold production is 3P0 which is odd with
respect to the two-nucleon permutation. So that, for the
single-nucleon contributions to the π0 production from the

3P0 initial channel of the type shown in Fig. 1 a strong
mutual cancellation between the production on the first
and second nucleons takes place, while the dibaryon
mechanism shown in Fig. 9 has no such mutual single-
particle cancellation.
In Fig. 10 we compare the total inelastic cross section

found for the 3P0 channel within our model with the
existing experimental data for the near-threshold π0

production [3,4].
Very good agreement between our calculations and

experimental data is seen in the energy interval Tp ¼
280–290 MeV just above the neutral pion production
threshold. It should be emphasized that although some
small discrepancies with the data are visible in some
experimental points, the general behavior of the cross
section as a function of the collision energy is reproduced
quite well. On the one hand, it is not surprising to have
a good description of the near-threshold π0 production
provided the total inelasticity of pp scattering is fitted in
the 3P0 channel. On the other hand, it was not evident at all
that a simple model with a single dibaryon pole located

FIG. 9. The dibaryon-induced mechanism for near-
threshold π0 production in the 3P0 pp channel which leads to
the 1S0 pp final state. The microscopic interpretation of the
production mechanism in terms of the 4q–2q six-quark model is
presented in Sec. V.

FIG. 10. The total inelastic pp cross section in the 3P0 channel
found within the dibaryon model (solid curve) in comparison
with experimental data on the total pp → ppπ0 cross section
from Refs. [3] (triangles) and [4] (squares).

5For the initial pp pair in the 3P0 state, there is also a small
admixture of the 3P1p (or Pp) final configuration which is rising
with the collision energy [5].
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rather far from the πNN threshold could reproduce the pp
inelasticity in a broad energy range, including a very good
description of the near-threshold region. At higher energies,
above the charged-pion production threshold, the total
inelastic pp cross section overestimates the experimental
data on the neutral pion production, due to the rising
contribution of the process pp → pnπþ.
It has been demonstrated already in Ref. [3] that the

qualitative behavior of the near-threshold neutral pion
production cross section can be understood in terms of
the three-body phase space multiplied by a FSI factor.
On the other hand, in the current version of the dibaryon
model, an account of inelastic processes is done by
incorporating the decay width Γinel. Thus, the success of
the model in the description of the near-threshold pion
production cross section is due to the proper behavior of the
function (9) at small pion momenta q. For the Ss channel,
this function indeed behaves as a three-body phase space
with a cutoff factor, which effectively takes into account the
FSI between the final protons. However, our results are
more general since this width parametrization allows us to
reproduce the pp inelasticity not only near the pion
production threshold but in a wide energy interval up to
the dibaryon resonance position.
Thus, within the model suggested, we have a good

description of pp elastic scattering in the 3P0 partial
channel from zero energy up to about 1 GeV and the
correct near-threshold behavior of the neutral pion pro-
duction cross section as well. We can conclude therefore
that pp scattering in this channel is determined almost
completely by the 3P0 dibaryon resonance with a mass of
about 2200 MeV.
The 3P2 pp channel also plays an important role in the

neutral pion production process [32]. However, the respec-
tive amplitude is small in the near-threshold region due
to the angular momentum barrier. At the same time, at
energies where it becomes larger, our theoretical total
inelastic amplitude includes effectively not only the
ppπ0 channel but also pnπþ and dπþ ones. Thus, we
cannot extract the contribution of the 3P2 dibaryon to the
particular inelastic processes within the current version of
the model. However, we have got a reasonable description
of the elastic phase shift and the total inelasticity in the 3P2

channel as well. Besides that, our study of the reaction
pp → dπþ by inclusion the dibaryon resonances into the
leading partial-wave amplitudes has shown the dominance
of the 3P2 dibaryon in the respective partial cross section
(see Ref. [27] and Fig. 2 of the present paper). These results
allow us to suppose the leading role of the dibaryon
mechanism in pp elastic scattering and pion production
processes in the 3P2 channel from threshold up to the
resonance position.
Finally, the 3P1 dibaryon, if it exists, should determine

the near-threshold charged pion production processes in pp
collisions with the isoscalar np (or the deuteron) final

state, i.e., pp → fpngI¼0π
þ and pp → dπþ. However, it is

nontrivial to separate these processes with the very near
thresholds having just the total inelastic cross section in the
3P1 channel. So, we restrict ourselves to the reasonable
description of the scattering phase shift and the total
inelasticity in this channel as well.

V. MICROSCOPIC STRUCTURE OF P-WAVE
DIBARYON RESONANCES

In the previous section, we demonstrated that the 3P0 and
3P2 isovector dibaryon resonances discovered recently by
the ANKE-COSY Collaboration [32] govern both NN
elastic and inelastic scattering in the respective partial-
wave channels from zero energy until at least 700 MeV.
We have also shown that the near-threshold production of
neutral pions is determined mainly by the 3P0 dibaryon
resonance.
On the other hand, we discussed in Ref. [26] some

possible realization of the Nijmegen–ITEP quark-cluster
model [53,54] for the well-known isovector dibaryon
resonance trajectory 1D2, 3F3, 1G4, etc. The feasible
realization of the general 4q–2q model for the straight-
line isovector dibaryon trajectory is the six-quark structure
shown in Fig. 11. In the figure, S and T denote the spin and
isospin of the tetraquark 4q, while the respective values for
the diquark 2q are denoted as S0 and T 0. In the six-quark
model proposed here, i.e., with ST ¼ 01 and S0T 0 ¼ 00,
the total angular momentum is equal to the orbital angular
momentum, i.e., J ¼ L, and the total isospin T tot ¼ 1. In
this way, we can describe the whole isovector trajectory 1S0,
3P1, 1D2, 3F3, 1G4, etc., considered in Ref. [48] as rotational
excitations in the NN system, by a rotating color string
between the 4q and 2q clusters with the orbital angular
momenta L ¼ 0; 1; 2;…, respectively.6

Most of the above isovector dibaryons have been
detected to date, except for the 3P1 resonance which should
have the mass of about 2.07 GeV to fit into the above

FIG. 11. The tetraquark-diquark model for the dibaryon state
with the color string connecting two quark clusters.

6Note that in Ref. [26] the quantum numbers ST and S0T 0 were
selected in a different way which did not allow for a description
of two lowest members of the isovector dibaryon trajectory, i.e.,
1S0 and 3P1. The 3P0 and 3P2 resonances also did not fit into that
classification, so the three-diquark structure was suggested for
them in Ref. [27].
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1trajectory [48]. On the other hand, in the present study we
have obtained the 3P1 dibaryon resonance with the mass
Mthð3P1Þ ¼ 2230 MeV, i.e., close to the 3P0 and 3P2

resonances found experimentally. So, one can suppose
that the 3P1 resonance is shifted somehow by the spin-
orbital forces which mix three P-wave states with different
J, or, alternatively, that there are two 3P1 dibaryons
separated by about 150 MeV. However, since no one of
these resonances has been detected to date, we restrict the
following consideration to the 3P0 and 3P2 states.
Then the important question arises, i.e., could the

microscopic structure within the framework of the above
4q–2q model be relevant also for the isovector dibaryon
resonances 3P0 and 3P2? In fact, one can suggest for the 3P0

and 3P2 states a similar 4q–2q microscopic structure but
now with ST ¼ 01, S0T 0 ¼ 11 and L ¼ 1. This corresponds
to the plausible quantum numbers of the 6q state, i.e.,
Stot ¼ 1, T tot ¼ 1 and J ¼ L� 1 ¼ 0, 2. In such a case,
two P-wave dibaryons 3P0 and 3P2 should have just the
N–Δ hadronic structure with the relative P wave between
the nucleon and the Δ-isobar. So, we have here an analogy
with the structure of the well-known 1D2ð2150Þ dibaryon
lying very near to the N–Δ threshold with a relative S-wave
between N and Δ.
Assuming further the above 4q–2q structure for the 3P0

and 3P2 dibaryons (with ST ¼ 01, S0T 0 ¼ 11 and L ¼ 1),
one may explain the π0 emission from these dibaryons
leading to a final 1S0 diproton as a two-step process:

pp → Dð3PJ¼0;2Þ → fppgs þ π0jlπ¼0;2: ð13Þ

This process goes through a conventional quark spin-isospin
flip inside the axial-vector diquark: S0T 0 ¼11→00, with an
accompanying deexcitation of the colour string L ¼ 1 → 0
to compensate the parity change in the pion emission with
lπ ¼ 0 or 2.
Thus, the suggested six-quark picture gives at least a

qualitative explanation for the pion emission induced by the
intermediate 3P0 and 3P2 dibaryons.

VI. CONCLUSION

In the present work, we studied the impact of the recently
discovered [32] P-wave dibaryon resonances with a mass
of about 2200 MeV on pp elastic scattering and pion
production in pp collisions. Within the dibaryon-induced
model for NN interaction, we have demonstrated that these
P-wave dibaryons give a quite reasonable description of the

pp scattering phase shifts and inelasticities in the 3P0 and
3P2–3F2 partial channels from zero energy to at least
700 MeV (lab.). Furthermore, we have shown that the
3P0 dibaryon resonance determines almost completely
the neutral pion production process pp → fppgsπ0 in
the near-threshold region. It should be stressed that the
respective cross section does not find a satisfactory explan-
ation within the conventional approaches. So, within the
dibaryon model proposed, the amplitude of near-threshold
π0 production in pp collisions is reproduced consistently
with the pp elastic scattering amplitudes in the above
partial-wave channels. The 3P2 dibaryon resonance also
gives an important contribution to both neutral and charged
pion production in a broad energy range, though its
contribution is suppressed near threshold by the angular
momentum barrier.
We have also achieved a very good description of the pp

scattering phase shift and inelasticity in the 3P1 partial
channel at T lab ¼ 0–700 MeV, using the dibaryon with a
mass Mð3P1Þ ¼ 2230 MeV, i.e., rather close to that of the
3P0 and 3P2 resonances found experimentally [32]. If this
dibaryon exists, it should determine the charged pion
production processes pp → dπþ and pp → fpngI¼0π

þ
near threshold. In fact, it seems natural to have three
almost degenerate P-wave dibaryons with J ¼ 0; 1; 2
coupled with the spin-orbit force. It should be borne in
mind however, that the 3P1 dibaryon has not been detected
to date, though some indications of its existence can be
found in the literature. So, an additional experimental
confirmation of these results is needed.
The results of the present work should be considered

jointly with our previous conclusions [27] about dominance
of the 3P2 dibaryon resonance in the charged pion pro-
duction process pp → dπþ in the 3P2d partial wave and the
crucial role of the dibaryon in the proper description of
polarization observables in this process. A good description
of both neutral and charged pion production as well as NN
elastic scattering within the unified dibaryon model gives a
strong argument in favour of the decisive role of dibaryon
resonances in NN collisions at intermediate energies in
general.
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