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We compute the magnetic-field-induced modifications to the boson self-coupling and the boson-fermion
coupling, in the static limit, using an effective model of QCD, the linear sigma model with quarks. The
former is computed for arbitrary field strengths as well as using the strong field approximation. The latter is
obtained in the strong field limit. The arbitrary field result for the boson self-coupling depends on the
ultraviolet renormalization scale, and this dependence cannot be removed by a simple vacuum subtraction.
Using the strong field result as a guide, we find the appropriate choice for this scale and discuss the physical
implications. The boson-fermion coupling depends on the Schwinger phase, and we show how this phase
can be treated consistently in such a way that the magnetic-field-induced vertex modification is both gauge
invariant and can be written with an explicit factor corresponding to energy-momentum conservation for
the external particles. Both couplings show a modest decrease with the field strength.
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I. INTRODUCTION

The effects of magnetic fields on the properties of
strongly interacting matter have gathered a great deal of
interest over the last several years. The main driving
motivation is the lattice QCD (LQCD) discovery of the
inverse magnetic catalysis (IMC) phenomenon [1],
whereby for temperatures above that of chiral restoration,
the quark-antiquark condensate decreases and the chiral
restoration temperature itself also decreases, as a function
of the field intensity. The origin of IMC has been
intensively studied; see, for example, Refs. [2—-15].

In addition, much effort has also been devoted to studying
the basic properties of magnetized hadronic degrees of
freedom. The subject is important—e.g., for systems such
as cold neutron stars and heavy-ion collisions. As is well
known, the nuclear equation of state is affected by baryon
and meson masses and couplings, which motivates studies
aimed to understand how these parameters change in the
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presence of electromagnetic fields [16-28]. Different effec-
tive QCD models [29-56] and LQCD simulations [57-63]
as well as holographic QCD models [64—67] have been used
to describe the behavior of light meson masses. More
recently, efforts have also been carried out to describe
the behavior of light baryons in the presence of magnetic
fields [68—71]. In particular, the recent LQCD results for
the magnetic-field-driven modifications of neutral and
charged mesons show that the neutral pion mass monoton-
ically decreases, whereas the mass of the charged pions
monotonically increases, both as functions of the field
intensity [57,72]. The former cannot be fully reproduced
by calculations within effective models that do not consider
accounting for magnetic field modifications of the
couplings [73,74].

When the linear sigma model with quarks (LSMq) is
used as an effective QCD model, it has been shown that the
IMC can be reasonably well described when temperature,
as well as magnetic field corrections, are incorporated into
self-energies and couplings [6,8]. The decreasing of the
neutral pion mass with the magnetic field strength can also
be understood when, in the weak field limit, the meson self-
coupling is dressed to include magnetic field effects [75]. In
order to find out whether or not the behavior of the pion
masses can be described over a wider range of magnetic
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field intensities in the LSMq, it is important to compute
the magnetic-field-induced corrections to the interaction
vertices.

In this work, we address this question and compute the
one-loop magnetic field corrections to the boson self-
coupling and the boson-fermion coupling in the LSMq.
In doing so, we address some important details involving
the effects introduced by the renormalization scale, as well
as those introduced by the Schwinger phase in calculations
involving three particles propagating within loops in the
presence of magnetic fields. The work is organized as
follows: In Sec. II, we introduce the LSMq, writing the
Lagrangian in terms of the charged pion degrees of freedom
and including an explicit symmetry-breaking term. In
Sec. III, we recall the way the magnetic field effects are
introduced for the propagators of charged bosons and
fermions. In Sec. IV, we compute the modification to
the boson self-coupling in the presence of a magnetic field.
We show that the modification depends on the renormal-
ization scale, and that for this to match the result obtained in
the strong field limit, one needs to resort to a suitable choice
for this scale. In Sec. V, we compute the magnetic-field-
induced modification to the boson-fermion coupling and
discuss in detail the effect of the Schwinger phase. We
show that this leads to a plausible result respecting energy-
momentum conservation for the external particles when
these are described as plane waves, and thus when we
neglect propagation over large space-time intervals. Finally,
we summarize and provide an outlook of our results in
Sec. VI, leaving for the appendixes the details of the
calculation of the boson self-coupling and the boson-
fermion coupling.

II. THE LSMq

The LSMq is an effective theory that captures the
approximate chiral symmetry of QCD. It describes the
interactions among small-mass mesons and quarks. We
work with a Lagrangian invariant under SU(2), x SU(2)g
chiral transformations

c=toertomp+ L) -ty
2TH 2K 2 4
+ iyt Oy — gy T -y — gy, (1)

where 7 = (7, 7, 73) are the Pauli matrices,

via=(1) @)

is a SU(2),, doublet, ¢ is a real scalar field, and
7 = (my,m, m3) is a triplet of real scalar fields. 73 corre-
sponds to the neutral pion, whereas the charged ones are
represented by the combinations

1 _ 1 .
7. =—(m +im), n, =—(m —im). (3)

V2 V2

A is the boson’s self-coupling, and g is the fermion-boson
coupling. a*> > 0 is the mass parameter. Equation (1) can be
written in terms of the charged and neutral-pion degrees of
freedom as

1 2
L= 5 [(8”0)2 + (6,/%)2] + 8ﬂﬂ_a”ﬂ+ + % (6? + 71-(2))

A
+a*n_m, — ) (6* +dc’n_n + 20%my + 4’ a2
+dn_m 7} + 1)) + iy — giyo — gy (T,
+ T n_ + 1370, (4)
where we introduce the combination of Pauli matrices

! j *i T —IT
T+:\/—§(71+ﬂz), T—_\/j(l 2)- (5)

After chiral symmetry is spontaneously broken, the field
o acquires a nonvanishing vacuum expectation value
6 — o + v, which breaks the SU(2), x SU(2), symmetry
down to SU(2), , . resulting in the Lagrangian

1 1
L= 3 0,00'c + 3 Oymomy + Oym_'m .

1 1 .
- §m362 - Em,z,lr% —min_m, + Py
- mfl/_/l// + ‘cint - Vtreev (6)

where the interaction Lagrangian is defined as

L = — 1 ot — e — e — Ae*n_n, — 2dvon_z..

A A
2.2 2 2.2 2 4
—50 - Mory — An_nl — An_m my — 170

+ a*vo — gpyo — igY (v, + T + 1370 )y,
(7)
and the tree-level potential can be expressed as

2
a5 Ay
VtI‘CC - 2 v +4U * (8)
As can be seen from Egs. (6), (7), and (8), there are new
terms which depend on v. In particular, the fields develop
dynamic masses given by

2

m2 =3 —a?, 2

m2 = ? — a?, m;=gv. (9)
The tree-level potential develops a minimum, called the
vacuum expectation value of the ¢ field, namely
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Vo = 2 . (10)
Notice that when v = v, the linear term in ¢ vanishes and
the pions become massless. However, the ¢ and quark fields
remain massive.

In order to include a finite vacuum pion mass, one adds
an explicit symmetry-breaking term in the Lagrangian of

Eq. (6) such that

2
c—>£':£+%v(a+v). (11)

This term modifies the tree-level potential. In particular, the
minimum is shifted such that

a* + m2

1 (12)

vy = Uy =

Correspondingly, the expressions for the masses, evaluated
at the minimum obtained after the explicit breaking of the
symmetry, are given by

a? + m?
() = Z 'z
m(vp) 9\/ T

2(v)) = 2a* + 3m2,
2(vg) = mz. (13)

m
m

Furthermore, from Eq. (9), we can get an expression for the
parameter a, which is given by

2_3 2
a:,/w_ (14)

Setting m, = 140 MeV and m, = 400-600 MeV, we
get a = 225-390 MeV.

We conclude this section by listing the Feynman rules
deduced from the Lagrangian density in Eq. (7). After
accounting for the number of permutations for a set of

>< .= —6iA > = —2i1

3¢ = —6il
PN
p .
” .
N .
R NN \ o
W i=—id b =—-2id =-2il
A AN / "

/{/ I'//
< =2 < = —2ilv — 1= —6ilv
L3

FIG. 1. Meson interactions in the LSMq. Dashed lines are used
to represent the neutral and charged pions, whereas double lines
represent the o.

------ < = —gr° +< = 2gr® +< = VZgy®

FIG. 2. Quark-meson interactions in the LSMq. Dashed lines
represent the neutral and charged pions, whereas the double
lines represent the o. Solid lines represent the quarks. Thin solid
lines represent the d quark, and thick solid lines represent the u
quark.

equivalent lines and a factor of i coming from the action,
these are displayed in Figs. 1 and 2. Figure 1 shows the
vertices arising in the meson sector, and Fig. 2 shows the
quark-meson vertices. Dashed lines represent the neutral
and charged pions, and double lines represent the o,
whereas thin solid lines represent the d quark and thick
solid lines represent the u quark.

III. MAGNETIC-FIELD-DEPENDENT BOSON
AND FERMION PROPAGATORS

In order to consider the propagation of the charged
modes within a magnetized background, we make the
minimal substitution

d, = D, =0, +iqA,, (15)

where ¢ is the particle’s electric charge and A, is the vector
potential. Choosing the magnetic field to point in the
direction of the Z axis, namely B= BZ, and working in
an arbitrary gauge, we have

At (x) = %be”” + O*A(x), (16)

where A is a well-behaved function which describes a
gauge transformation from the symmetric gauge to an
arbitrary gauge.

Notice that the ordinary derivative becomes the covariant
derivative only for particles with a nonvanishing electric
charge. As a consequence, the propagation of charged bosons
and fermions is described by propagators in the presence of a
constant magnetic field. Using Schwinger’s proper time
representation, the fermion propagator can be written as

S(x, x') = @) §(x — i), (17)

where ®(x, x') is the Schwinger phase given by

o) =q ["dg @+ gree-x)] 09
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and represents the translationally and gauge noninvariant part
of the propagator in the presence of a magnetic background.
Using Eq. (16) with Eq. (18), the Schwinger phase can be
computed using the expression

D(x,x)=¢q Bx"Fﬂbx’” +AX)=Ax)|. (19)

The translationally and gauge-invariant part of the propagator
is provided by S(x — x), which can be expressed in terms of
its Fourier transform as

a4 . /
S(x—x') = /QTI;;S(PV_W(X_”’ (20)
where
o un(\q B\A)_
o1 [t sl
o cos(lg/Bls) ¢
X [(cos(|qu|s) + 7172 sin(|qB|s)sign(q,B))
7L
x (mf+ﬂ||)—m} 1)

In a similar fashion, for a charged scalar field we have

D(x,x') = ¥ D(x — x'),

d*p ,
= / —w-(x—x ), (22)

with

2 lnn(\qu\J)

o ds is(p>—p —m?+ie)
D = _ I L TapBls b , 23
0= [ e =

where the boson and fermion masses and electric charges are
my, q, and my, q;, respectively.

The propagators in Egs. (21) and (23) can also be
expanded as a sum over Landau levels. In this last
representation, the expressions for the charged scalar and
fermion propagators are given by

2 ® ny0(20r]
iD(p) = 2ie %Z ( D" L (g, 1)
2 — (2n+ 1)|q,B| + i€’
(24)
D,(p)
iS(p) =ie “’f“‘ (25)
;pH mf—2n|qu|—|—l€

respectively, where

2p? )
D,(p) =2 O*LY L
(p) = 20 + my) (qu|

2
— Z(p/H + mf>0_L2_] (21’l )

|(] fB |
2p2
+4p,L)_, <—l)’

q7B] (26)

and L"(x) are the generalized Laguerre polynomials. In
Eq. (26), the operators OF are defined as

OF == (1 £ iy y,sign(gB)). (27)

l\J\P—‘

We now proceed to use the interaction vertices and the
magnetic-field-dependent propagators to find the one-loop
corrections to the boson self-coupling and boson-fermion
coupling in the presence of a magnetic field.

IV. MAGNETIC CORRECTIONS
TO THE BOSON SELF-COUPLING

The magnetic-field-induced corrections to the boson
self-coupling 4 can be obtained at one-loop order from
the Feynman diagram depicted in Fig. 3, where the loop
pions are the charged ones. In our approximation, the
external particles are taken as plane waves—that is, the
states they represent do not experience the effects of
the magnetic field. The only particles affected by the
magnetic background are the charged loop particles.
With this approach, we intend to capture the distinction
between the modification of the interaction, that in a
perturbative approach is a short-distance effect, from the
asymptotic propagation of the external particles, which
corresponds to a long-distance effect. Therefore, since the
correction we look for is, in this sense, independent of
whether the external bosons are charged or neutral, the
electric charge of the external particles is irrelevant. Thus,
the correction we look for is written as

Sr s

FIG. 3. Feynman diagram representing the magnetic correction
to the boson self-coupling at one loop. The loop particles are
considered as electrically charged, whereas the external ones can
be either charged or neutral.
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_i6Ar? — / % (=2i2)iD,,- (K)(=2i)

X iD,-(k+ p +r) + CC, (28)

where CC denotes the charge conjugate term, and the
subindex in the boson propagator indicates the propagating
species. Notice that since the loop involves the same
propagating particle, the Schwinger phase vanishes.
According to the explicit computation shown in

-

Appendix A and in the static limit py, rp — 0, p =7 =0,
we obtain

2 g, B + m2
B — 2 |l 1 In(dn) -0 922
P72 L ve+n(dz) -y ( 219,B]
2
u
+1n< )} (29)
2|q,B]|

where y/ is the digamma function and |q,B| = |eB|. In the
modified minimal subtraction scheme MS, the first three
terms in Eq. (29) are associated with the corresponding vertex
counterterm. Therefore, the finite magnetic correction to the
boson self-coupling is given by

r5— —_* | w —y0 g, B| + mz (30)
’ 127 2|q,B| 2|q,B| .

Notice that the result in Eq. (30) depends on the ultraviolet
renormalization scale y. In order to gain some insight on the
appropriate choice of this scale, we can compare this result
with the one obtained in the strong field limit, where, as a
good approximation, one can consider just the lowest Landau
level (LLL) contribution, n = 0, for the charged boson
propagators of Eq. (24), namely

A
Die Tl

iD**(p) = —.
P = —lauBl + ie

(31)

Therefore, using Eq. (31) with Eq. (28), and working also in
the static limit, the magnetic correction to the boson self-
coupling in the LLL is given by

e _ _* 0Bl (32)
’ 67 |qyB| + mz’

which is independent of x. On the other hand, in the absence
of a magnetic field, it is easy to show that the one-loop
correction to the boson self-coupling is given by

A u
r=——_1(*). 33
A 12ﬂ2n<m,2,> (33)

Notice that in order to obtain the limits when |g;,B| — 0 in
Eq. (33), and when | ¢, B| — oo in Eq. (32), from the arbitrary

field strength result of Eq. (30), it is necessary that ¢ depends
on |g,B|. In fact, the match is obtained when ? is explicitly
chosen as y? = m2 + 2|q,B|, for which the arbitrary field
strength result becomes

FB _ A 1 m,2,+2|qu| 0 |QbB| +m721
i 7 | AT AR
12z 2|q,B| 2|q, B

(34)

With this choice, the result reproduces the behavior of the
coupling in both extreme limiting values of |g,B|, and it is
also compatible with the behavior of the coupling found in
Ref. [75] for the weak field case. This behavior is shown in
Fig. 4, where we plot the effective magnetic-field-dependent
boson self-coupling A°T = A(1 +TI'?) as a function of the
field strength. In contrast, when y is taken at a fixed value, the
arbitrary field result does not match the LLL case. We
interpret this result as signaling that when the field strength
is the largest energy scale, 4 needs to be taken also as this large
scale, since otherwise the computation is not consistent when
the strength of the magnetic field surpasses a given fixed
scale. At the same time, when the field strength vanishes, the
only remaining energy scale is the pion mass, and y needs to
be taken solely as this energy scale. Furthermore, notice that
2|q,,B| corresponds to the square of the energy gap between
Landau levels, and thus that in order for 4 to correspond to the

0510 ———————7———————————————————
1 S 1
0.506} bt 1
[ R - Arbitrary B, p?=2|qpB|+m 2
= 0.504F 7 , )
'-é b I,' -------- Arbitrary B, p2=2|q,B|
& 0.502 T ettt Arbitrary B, p?=m,? 1
< H ]
0.500F ¢ Lowest Landau Level 3
0.498% 3
v ]
0.496 [ ~~=-
0 1 2 3 4 5

|95BI[GeV?]

FIG. 4. Comparison of the magnetic field dependence of
the effective boson self-coupling A% = A(1 +T%) in the
arbitrary field approach and the strong field limit, both computed
in the static limit. For the calculation, we use A= 0.5 and
m, = 0.140 GeV. Shown are the cases where for the arbitrary
field intensity calculation, the ultraviolet renormalization scale >
is taken as m2 + 2|q,B| (red dashed line), u> = 2|q,B| (green
dotted line), and a fixed value u> = m2 (purple dashed line).
Notice that, although the choice u?> = 2|g,B| does give a good
description of the LLL result for large field strengths, when
|g;,B| = O the effective coupling diverges, which signals that this
choice is not appropriate. For the rest of the cases, the self-
coupling relative change from the vacuum value is rather small, of
order 0.8%.
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largest energy scale, it is important that for large values of the
field strength, 4 is taken as the square of this energy gap. In
contrast, as also shown in Fig. 4, the usual prescription
[34,76], whereby one just subtracts the vacuum correction,
represented by the purple dashed line computed with
u> = m2, behaves opposite to what is expected from the
result obtained using the LLL propagator. Since the latter
provides a reliable approximation for large field strengths, we
conclude that a simple vacuum subtraction prescription leads
to a nonreliable limit for large values of the field strength.

V. MAGNETIC CORRECTIONS
TO THE BOSON-FERMION COUPLING

The magnetic corrections to the coupling constant g at
one-loop level can be obtained from the sum of the three
Feynman diagrams depicted in Fig. 5. Since the correction
can be obtained from the sum of the allowed Feynman
diagrams coupling one boson and two quarks, here we
consider the magnetic correction to the boson-fermion
coupling for the choice of external particles shown in
Fig. 5. Also, as discussed in the previous section, since the
use of propagators in the LLL approximation provides a
reliable description in the case of the strong field limit, we
hereby restrict ourselves to this case using the LLL
approximation, Eq. (31), for the boson propagator and
the fermion propagator also in the LLL, given by

We start by computing the contribution from the diagram
in Fig. 5(a). We first compute the quantity 1% o Which is
given explicitly by

B _b
s Y
.

. Li

a g >
t 7 e

r €

(©)

FIG.5. Feynman diagrams that contribute to the boson-fermion
coupling at one-loop order. The diagrams show the case with a
neutral pion and two u quarks as the external particles.

d*s d*tr d*k . )
15 = d*xd*vd* / i®y; ,—ipy
/ YR ] o a2y

X (V2g7°) e 0iS y(5) (—gp°) e e =)
X iS,(1)(V2gy°)e*0=9iD - (k)e"* + CC.  (36)

The information from the Schwinger phases is contained in
the function @;;(x,y,z). This function depends on the
space-time points located at the vertices. For the calculation
to have a solid physical meaning, this phase should be a
gauge-invariant quantity. We proceed to show this fact
explicitly.

Notice that the fotal Schwinger phase ®;, associated
with the Feynman diagram in Fig. 5(a) contains not only the
information of the space-time points at the interaction
vertices x, y, z, but also the information coming from the
external space-time points a, b, c. Therefore @, is given
explicitly by

D, = Dy(x,y) + Py (. 2) + Py(z, x) + D, (y. b)
+®@,(c,2). (37)

Using Eq. (19) with Eq. (37), we have

1 1
P = =54aF, (y”X”JrX"Z”)—Eqn—F,,DZ"y”

1
5 unﬂu(bﬂyv + Zﬂcv) +q. [A(b)

: S GINNED

Notice that terms depending on A evaluated at the internal
space-time points add up to zero. Therefore, the integration
over the configuration space becomes independent of the
gauge choice. However, this would not be the case were we
just to consider the phase factors associated with the
particles within the loop, since the result of the integration
would then become gauge dependent. This observation is
essential, since otherwise one faces a nonconservation of
electric charge at each vertex when just considering the
phases within the loop. On the other hand, Eq. (38) contains
a mixing between the phases associated with loop particles,
®, ;, and the phases from external particles, ®.,,, where the
last term is associated with the external charged lines in the
diagram and can be written as

L G Fu (0 + ) + g A(D) — A(C)). (39)

q)ext = )

In order to separate these contributions, we write

Dy =Dy + Dy (40)
We resort to considering that the external particles can be
described as plane waves. Physically, this means that

we consider the propagation of the external particles
during short distances and times. In this manner, we neglect

114038-6
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long-distance effects introduced when the magnetic field
acts over the external particles. Therefore, we can take y* =~
b* and z* = c* such that

1
q)l.t = _Eunﬂu(b”xD + xﬂcl/) + Qu[A(b) - A(C)]v

—%qﬂfFW(y”x” + Y+ XM, (41)
Using this approximation, we can separate the phase factors
coming from external and internal loop particles. Thus, for
the computation of the magnetic field correction for the
coupling g, we need only to account for the last term in
Eq. (41), whereas the first and second terms in Eq. (41) are
associated with the external phase given by Eq. (39).
Therefore, we have

1
O, = —iqn—Fﬂy(y”x” + 2y xt). (42)

It is important to note that the contribution from the
Schwinger phase is gauge invariant. Using the fact that
F,y = —F, = |B| and ¢q,- = —|e|, we get

1 .

D, = 5 leBle;j(x;y; + yiz; + z:x;), i,j=12, (43)

where ¢;; is the Levi-Civita symbol. Having identified the

Schwinger phase contribution, we can perform the inte-

gration over coordinates. Upon doing so, we obtain the

energy-momentum conservation for the external particles,
and can write

18, = (2n)'6Y (p—r—q)gr’rT% . (44)

where gy5F1.g is identified as the contribution to the

magnetic field correction to the vertex, given explicitly by

d*s | d*t, d*k )
gy, = /#—4(\/5975)1511(]‘ +py-sL)

=*|eB* (2x)
X (=gr°)iSq(ky + 7|, t,)(V2gy°)iD,- (kyj, k)
X eiﬁgij(S—q—f)f(S—P—k)/ 4 CC. (45)

Following the procedure explicitly shown in Appendix B
and the static limit py = ry =m; and p =7 = 0, we get

TLLL — g2|eB| !
Ly 16z°m3 Jo — w® +a(l - u)
(2—u)u
1+, 46
X[ +u2—|—a(1—u) (46)

where a = (m3 + [eB|)/m7.

Next, we compute the contribution from the Feynman
diagram depicted in Fig. 5(b). This contribution can be
obtained from the function /3, which is given by

d's d*t dk ., .
8 = dxd*vd* / iy, —ipy
o / MYEL | o eyt 2t ¢
X (gr°)e S, (5) (gr) e e =)
x iS,(1)(gr*)e™*=2)iD o (k)™= + CC. (47)

In a similar fashion, we first compute the Schwinger phase
associated with the whole diagram in Fig. 5(b)—namely,

q)2,t:(Du<xvy)+q)u(zvx)+q)u(y7b)+q)u(c’z)' (48)

Using Eq. (19) with Eq. (48), we get

1
Doy = =5 Fluqu (' + by" + 52" + )

+ qu[A(b) = Alc)]. (49)

Once again, terms that depend on A, evaluated at internal
points, vanish. On the other hand, the Schwinger phase
associated with the tree-level diagram is given by Eq. (39).
Adding and subtracting the first term from this equation
and Eq. (49), we have

1
Doy = =5 Fluqu (¥ + by" + 52" 4 )

1
+qulAb) = A(€)] =5 4uFu (B'3* + 2c")

1
+ 5 quF (D' X" + xHc"). (50)

Assuming that y* =~ b* and z¥ = c* (short space-time
interval propagation after the interaction), we can write

1
Doy = =5 qub (D3 +2¢*) + q,[A(b) = Alc)]. - (51)
This result coincides with Eq. (39). Therefore, we can
conclude that the Schwinger phase associated with the loop
particles vanishes:
q)qu = 0 (52)
Upon integration over configuration space, we can identify

the contribution to the magnetic correction from this
diagram, gy°T’, ,, as

15, = 2n)*6W(p —r—q)gr’To,. (53)

Again, notice that by using this approximation, we recover
the energy-momentum conservation for the external
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particles, whereas the magnetic correction is associated
with the loop and can be expressed as

4
a'rt, = | (‘j—’)‘ (@7)iSu(k + p)(gr)iS,(k + )

x (gr°)iDp (k) + CC. (54)

The computation of this quantity is explicitly performed in
Appendix B in the strong field limit and can be expressed as

3k2

1
FIZ‘LL = — du ko_kJ_e ‘(B‘
0
u (2—u)u
1 , 55
] e v S
where f# = (K1 + mz)/m7.

The diagram in Fig. 5(c) can be computed from the
quantity %, given explicitly by

d*s d*t d*k
IB _ d4 d4 d4 /
39 / HEYEE ] ryt 2a) 2a)
x (—ig)e " iS, (5)(gy®) e emit ()
X iS,(1)(—ig)e=*0=2)iD, (k)e"* 4 CC. (56)

i®3; p=ipy

In a similar fashion, one can compute the Schwinger phase
from this loop, @5 ,(x, y, z). It is easy to see that this phase
satisfies @3, = @, ,, and therefore, the internal Schwinger
phase vanishes when considering short-range propagation
of the external particles—namely,

(I)3,l == 0 (57)

After performing the integration over the configuration
space, we obtain the relation between IB and the con-
tribution to the magnetic correction to the boson fermion
coupling, gy F3‘g, given by

= (2n)*W(p —r—q)grTs,, (58)
with
T8 = / % (—ig)iSulk + p)(gr*)iSa(k + )
x (=ig)iD, (k) + CC. (59)

Once again, using the LLL propagators and following the
explicit procedure shown in Appendix B, we get

0.500 e
i o LLL, g=0.5, my=0.4 GeV
04991 - LLL, g=0.5, my=0.6 GeV
: . ]
0'498f 0000<>o<><>QQ<><>oo<>ooooooooooooooooooooooog
=y E ]
2 0497} ]
£ i ]
c’ [ k""rrr o4
0.496} “000,, ]
0.495f ©0000000006000,
o494 v s ]
0 1 2 3 4 5
leB|[GeV?]

FIG. 6. Magnetic field dependence of the effective boson-
fermion coupling ¢*" = g(1 +T'%) in the static limit and the
strong field approximation. For the calculation we used g = 0.5,
m, = 0.140 GeV, my = 0.3 GeV, and the two values m, = 0.4,
0.6 GeV. In both cases, ¢° monotonically decreases in an interval
|eB| = 1-5 GeV?2. Notice that the relative change with regard to
the vacuum is of order 0.5% and 1%, respectively.

92 1 %kz
[CLLE = d / dk ke T
v 27r2m}A u 9k Le
(2—u)u
w? +y(1—u)

Xu2+y(1—u) { . (60)

where y = (ki +mg)/m7.

The total magnetic correction to the boson-fermion
coupling in the strong field limit is given by the sum of
the three contributions—namely,

FgLL — F%’LL + FLLL + FLLL' (61)

The effective boson-fermion coupling, ¢°, is thus given by
¢ = g(1 + L), (62)

Figure 6 shows the behavior of the boson-fermion coupling
as a function of the field strength. For the calculation we set
m, = 0.140 GeV, my = 0.3 GeV and m, = 0.4, 0.6 GeV.
Notice that the coupling decreases monotonically over a
large range of the field strength. However, the relative
change is rather small.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have computed the magnetic-field-
induced corrections to the boson self-coupling and to the
boson-fermion coupling in the LSMgq, in the static limit.
For the former, we have performed the computation for an
arbitrary field strength, as well as in the strong field
approximation. For the latter, we worked in the strong
field limit. We have shown that the full magnetic field
corrections for the boson self-coupling depend on the
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ultraviolet renormalization scale, and that this dependence
cannot be removed by the usual vacuum subtraction. The
reason for this behavior is that for a fixed ultraviolet
renormalization scale, the calculation is not valid any
longer when the field strength surpasses that fixed value,
thus becoming the largest energy scale. Taking as a guide
the result in the strong field limit, we have found the
appropriate choice for the renormalization scale that
produces the expected behavior for the two extreme
limits—namely, when the field vanishes, or when this
becomes very large.

For the calculation of the effective boson-fermion
coupling, we have shown that when considering that the
external charged particles propagate only during short
space-time intervals, the effects coming from the
Schwinger phase become gauge invariant, and that the
usual energy-momentum conservation can be factored out
from the vertex function.

Recall that vertex corrections are functions of arbitrary
values of the external particle’s momenta. In this work, we
have considered the static limit approximation whereby the
vertices are computed for vanishing external momenta. We
emphasize that this approximation goes in hand with the
short-distance approximation whereby the motion of these
particles is considered to happen during very short times, so
as to also neglect the magnetic field effects that would
otherwise build up during large times, deviating the motion
of external charged particles from free propagation. Within
these approximations, the effective boson self-coupling
and boson-fermion coupling show a modest monotonic
decrease over a large interval of magnetic field strengths.

The results of this work can now be used to find the
corrections to the mass of neutral and charged pions
introduced by magnetic field effects. Other possible sce-
narios of physical interest where the findings of this work
can have a potential impact include the properties of the
nuclear equation of state within dense and compact
astrophysical objects, such as the cores of neutron stars,
which are affected by magnetic-field-dependent baryon and
meson masses and couplings, and the shear and bulk
viscosity in quark-meson matter. The first of these topics
is currently being actively pursued and will be soon
reported elsewhere.
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APPENDIX A: MAGNETIC CORRECTIONS
TO THE BOSON SELF-COUPLING

To compute the magnetic correction to the boson self-
coupling, we start from the Landau level representation of
the charged boson propagator in Eq. (24) and use it in the
expression for the magnetic correction to 4 given by

—i6AIB = / é&(—%@)ibﬁ_ (k) (=2i)

x iDE (k+ p+r)+ CC. (A1)
Performing a Wick rotation in k and s = r + p, such that
ko — ik, and sy — isy, then

K= =k (k+ 9)F - (A2)

i —(k+ 8)3. d'k = id*kg.

We now introduce two Schwinger parameters, x;, X,
d’>x = dx,dx,, such that the magnetic correction can be
written as

16 d*k
rf=- / E/d2 iy Ly (s1) Ly, (s2)
n,m=0
ki (

« e_‘qb_g‘_‘qh—g‘_xl[ (kgy)+qpBll=x2 [p (kg )+ g, Bl] (A3)
where
s1 = 2k3/|qyBl, s2 = 2(k + 5)7 /|q,B|.
a(kg)) = k%” +m2 —ie
and r; = —e 2Bl j =1, 2. Using the generating func-
tion of Laguerre polynomials
= o( 1 i
> rLs e (43)
n=0 — T
we obtain
16 e~ (x1x2)[qB|
M=—-—1[ &dx———1(x;,0)J(x, %),
LT T / (1-r)(1=r) (x1,22)J (x1, %)

(A6)

where we define
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2

+9%
I(-xlyx2) :/(d;k) ¢ ‘be‘(l zr](XI)) (l‘c ;‘ (1 2]7(XZ))5
T

First, to find /(x;, x,), we consider the change of variables

d ZkE” 1- 21’]<X )
J(x1,%7) =/,t4_d/ e x1alkg))=x:f (k) g, =k, + 2 S, A9
2y SR Sy A
1
(%) = g (A7)
e 4 and the identity
with i = 1, 2 and € — 0. To carry out the integrals, we use
dimensional regularization, namel
s Y 1= 2p(x;) = tanh(|q, B|x;). (A10)
d*kg 4—d d2kp) [ dky
) 7 T H 3 7)d-2 2 (A8) .
(27) (27) (27) Completing the square, we have
|
B|/4 tanh(|q,B|x; ) tanh(|g,B
I(x),%,) = |q,,B|/4n exp |— anh(|q,B|x, ) tanh(|q,B|x;) 2. (A1)
tanh(|g,B|x;) + tanh(|g,B|x,) lq,B|(tanh(|g,B|x,) + tanh(|g, B|x;))
Next, J(x;,x;) can be found using the change of variables
= kg + SE- Al2
qE| E| X+ X E| ( )
Carrying out the integral and using d = 4 — 2¢, we obtain
b2 Ar(x + xy)
Using the identities
—xilq,B| 1
e
= Al4
1—r;  2cosh(|g,Bl|x;)’ (A14)
1 B 1 1 (A15)
sinh (|g,B|(x; + x2))  tanh(|g,B|x;) + tanh(|g,B|x,) cosh (|g,,B|x, ) cosh (|g,B|x,)
together with Eqs. (Al1) and (A13), we get
B __* 2y (4mu) |q,B| {_ tanh(|g,B]x, ) tanh(|g,B|x,) 2
Yo (x1 +x2)!7* sinh (|g, B| (x; + x5)) |9,B| (tanh(|g,B|x, ) + tanh(|g, Blx2)) "+
1X2
X exp [ — SEH (x1 +x2)m ] (A16)
We perform the change of variables
x =s(1-y), X, = 8y, dx,dxy = sdsdy. (A17)
These variables have the domains 0 < y < 1 and s > 0. Substituting these new variables, we obtain
tanh(|q,B|s(1 — y)) tanh(|g, B
s — 2/ ds/ dy(dmps)e 958 __ tanh(lg,B|s(1 —y)) tanh(|g,B|sy) 2
12 sinh (|g,B]s) | I¢,Bl(tanh(|g,B]s(1 - y)) + tanh(]q, B[sy))
x exp [-sy(1 — )SEH sm2]. (A18)
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Equation (A18) is the general expression for the magnetic
correction to the boson self-coupling. Notice that this
expression contains a divergence that should be regular-
ized. Considering the static limit in Eq. (A18), which
implies that s2 B~ 0 and s3 =0, the general magnetic
correction reduces to

A & 9,B] 2

18 = =27 ds(ampts) — 221k (A19
P Ty, S B (A19)

Notice that in this limit, both integrals can be solved
analytically:

o s€ e 1 I ye
ds - = F I + 1
/0 sinh (|g,Bls)  |q,B] <2|Clh3|> ( )

|QhB|+m;21>
xle+1,—=], (A20
( 2|‘1hB’ ( )

where ¢ is the Hurwitz zeta function. Considering an
expansion for e — 0, we have

4 2\ e 4 2
<l> zl—f—eln(l),
2|q,B| 2|q,B|

Tle+1)~1-eyg,

e+ q,B| + m? zl—llfo lq,B| + m3 (A21)
" 2[q,B] € 2|g,B| )’

where y' is the digamma function. Therefore, we finally

obtain
<|Cle| + m721>
2|g,B|

(A22)

A |1
B 2[ —ye+1In(4rn) -

2
u
#n(gem)|
2|q,B|

where |g,B| = |eB].

y

APPENDIX B: MAGNETIC CORRECTIONS TO
THE BOSON-FERMION COUPLING IN THE
STRONG FIELD LIMIT

We start writing the contribution from the diagram in
Fig. 5(a), which can be obtained from the expression

d*s d*t dk
IB — d4 d4 d4
/ ey / (2x)" (22)° (22)* ¢
X (V297°)e iy (5) (=gr”) el e
x i8,(1)(V2gy®)e~*0=9iD - (k)ei™* + CC,

i®yp=ipy

(B1)

where the Schwinger phase contribution is finite and is
given by

1 ..
D, = §|€B|8ij(xi)’j + yizj + z2ix;), i,j=12. (B2)

The integration over configuration space can be performed
using the factorization between parallel and perpendicular
components. Recall that for four-vectors a, and b,

Clﬂbﬂ = aobo — albl — a2b2 — Cl3b3 = Cl” . bH —aj - bJ_.
(B3)
Thus, integrating over configuration space and taking into

account Eq. (B3) to include the Schwinger phase contri-
bution, we obtain

d*s  d* d*k 4
Iﬁg =5(p—gq- r)L/ 27) (2n;4 22y B (27)'0
x 82 (s —q - t)”5(2>(p -5+ k)H5(2>(t —k=r1)
x (V2g7°)iS4(s)(—gr®)iSq(t)(V2gy°)iD,- (k)

« iRrE=a=0i=p=K); | cc.

(B4)

We first integrate over d”s| and d’1, using the Dirac delta
distributions to get

Ps | Pt, dk
— (2@ (p— g — /# 50
2r)*6W(p—q-r) ZieB] (2ﬂ>4(fgﬂ

X iSq(ky + py.s1)(=gr°)iSa(ky + 7). 1) (V2g7%)
X iD- (K, kp )@= =06=r=0; L cc. (BS)
Notice that with this procedure, we can identify the Dirac

delta distribution for energy-momentum conservation in
Eq. (BS5) such that

= (2n)*W (p —r—q)gr’T%,. (B6)

The contribution to the magnetic correction to the boson-
fermion coupling, gy51“37 ;> 18 thus given by

d%s | d*t, d*k
5TB L%
art, = | Z[eBP (22)"
x (=gr)iSy(ky + ry. 1) (V2g7°)iD (k. k1)
(B7)

—— (V2gr°)iSa(ky + py.s1)

« eiﬁe,j(s—q—t)i(s—p—k)j + CC.

Equation (B7) is general enough and could be computed
using either the complete propagators or approximations to
them. In this work, we consider the propagators in the
strong field limit. Substituting Eqgs. (31) and (35) and
adding the charge conjugate contribution, we have
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) 4 52 2 kz
’ -|e T
% Nl P i B‘eu(s q—1);(s=p=k); (BS)
AB,C, ’

where we have defined for convenience the quantities

Ny = () + p) +mg)(mq =¥ = 1))
Ay = (kj + pH)2 —m3 + ie,
Bl = (k” + rH)2 —mfi—ﬁ— i€,

C, :kﬁ—m,z,—|eB|+ie. (B9)

We also resort to work in the static limit, setting the
perpendicular coordinates of external momenta to zero. On

doing so, we can integrate over the perpendicular coor-
dinates relative to the magnetic field. The result is given by

igz|eB| d2k|| N,

FLLL —
4 (2”)2A131C1 ’

(B10)

introducing the Feynman parametrization

/1 /l—x 2dy
= dx 5 -
0 o (Ax+By+C(l1-x-y))

(B11)

The denominator of Eq. (B11) can be expressed as

Ax+Biy+C(1-x—y) = (kj+xp+yr))*—A+ie,
(B12)
where
A= (xp+yr) - xpﬁ + xm3 — yrﬁ + ym3
+ (1 =x—y)(m2 + |eB]). (B13)

On the other hand, it is useful to consider the change of
variables as k” = l” —Xp| =7 dkH = le Then the
numerator, A/, can be written as

N] = —lﬁ —2)CypH | + mdﬂ”
—y(y=1Drj-

= mgf| = x(x = 1)pj
(I =x=y)p# + m3. (B14)

where we have already discarded linear terms of /. At this
point, we can use the Dirac equation for outgoing states,
assuming that they are not affected by the external magnetic
field. This means that the spinors satisfy the Dirac equation
in vacuum:

(B15)

u(p))p) = ulp))m Yju(r)) = muu(ry).

Here, it is worth noting that in this computation, we assume
that the values of the quark masses remain fixed to just their
vacuum values, my; = m, = my. Then, taking the static
limit, p3 = r; =0 and py = ro = my, we get

a(p )N u(ry) = a(py)(=1f + 2m3(x + )

- mj%(x +y)?)u(r)). (B16)

Thus, once we consider i(p | )I'T4" u(r)) and use Eq. (B16),

we get
2
rLee _ 19 |€B|/ /"‘ d ln —
ho 2L - A+ ie)?
2m7(x +y) = m3(x +y)
— : (B17)
(l” A + ie)

where with the above assumptions, A is simplified to
become
A =mi(x+y)*+ (1= (x+y))(m; +[eB]). (BI8)

In order to integrate over d21||, we consider the following
equations:

d*21 1 i11
4—d Il - B1
s / (27)2 (17 = A)? d2ar Ofe).  (B19)
a2y I 11
4—-d Il I _ L__ B20
a / (20)72 (I - A) dz2a O (B20)

According to Egs. (B19) and (B20), we get

FLLL g |€B| / /1 x
L9~ 1622m x+y)2+a(1—<x+y))

2x+y) (x+y)? ]
(x+y)? +a(l=(x+y)))*

(B21)
where a = (m2 + |eB|)/ mj%. With the purpose of finding

the integral over Feynman parameters, consider the follow-
ing linear transformation:

u=x+y, v=1-x. (B22)

The Jacobian satisfies det(J) =1, and the region of
integration becomes u € [0, 1] and v € [1 — u, 1]. Thus,

FLLL

|eB|/ /
d
Ly 1671’ 1—u U

<1458

l—u)

u? + a(l - u)} (B23)
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Performing the integration over dv, we get the final
expression for this contribution:

Lo 7 16n2m?2

uuz—i—a(l—u)

(2 - u)u }

[1 + m (B24)

We now proceed with 7, ;,, which is given by
d*s d*t dk

IB _ d4 d4 d4 /

1= [ dudve's 2n)* 2n)* 2n)*

x (gr°)e” > iS, (5) (gr%) el e
x iS,(1)(gr>) e *0=9iD o(k)e'* + CC.

i@y p=ipy

(B25)

Performing the integration over configuration space, we
have

d*s d*t d*k
Igg - / (27:)4 (2ﬂ§4 (271)4 (2ﬂ)125(4) (s=1-4)
x 8W (p = s+ k)W (1 — k= r)(gr°)iS,(s)

x (gr°)iS,(1)(gy°)iDy (k) + CC. (B26)
Integrating over d*s and d*t, we obtain
d4
— @aye(p=r-a) [ 55 )isc+ p)
(27)
x (gr°)iS, (k + r)(gy®)iD o (k) + CC. (B27)

At this point, we can identify the contribution to the
magnetic correction from this diagram, gySFg s> Which
can be expressed as

= (2n)*6YW(p—r—q)gr’T5,.  (B28)

where

SFB
gy (27[)

= [ Sk oisc+ paisy k)
X (gys)iDno(k) + CC.

(B29)

Using Egs. (31) and (35) to account for the strong field
limit, we have

d*k e e}
F%%JL — _4192/ (2 )46 lquBl  |quB|
K T

where we define

2
— B30
AyByCy (B30)

No = (f) + ) + ma) (mu = fy + 1)
(k‘—l-pH) —m2 + ie,
\+V||) —m? + ie,
,2,+t€.

B, *(
C, =k (B31)

We now introduce a Feynman parametrization in the same
fashion of Eq. (B11). The denominator can be written as

Apx +Byy + Co(1 = x—y) = (ky +xpy +yr)* = AL +ie,
(B32)
where
Ay = (xp) +yr))?* = xpj + (x +y)mg = yri
+ (1 =x=—y)(m2+k%). (B33)

Let us consider the change of variable k| = [ — xp| — yr|,
dkH =dl B then, in terms of these variables, the numerator
N, can be written as

Ny = =I5 =2xypy - 1y + m,p = m,f =
_Y(y ) H

x(x=1)pj
—(L=x=y)p ) + ma, (B34)

where we have already discarded linear terms in /). We
now use the Dirac equation for outgoing states once
we set p;, =r; =0, i = 1, 2 and assume that these states
are not affected by the external magnetic field, according to
Eq. (B15). Finally, setting p; = r; = 0 and py = ry = m,,,
we get

iw(p) )N u(r))
= a(p)) (=1} + 2m(x +y) — my(x + y)*)u(ry).

(B35)

Thus, once we have considered #(p )55 u(r)), we have

lx d*k aal _
i s [ [y [0

{ i 2m (X+y) m2(x + y)?
X7 3 — 3 .
(I — AL + ie) (l“ A, +ie)

(B36)

where A | is simplified according to the previous assump-
tions to become
Ay =mp(x+y)P?+ (1= (x+y) (kI +m3). (B37)

The integral over d?[ | 1s found to be
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—x 2%2

F%gL / dX/ / o ) e \tu\
2m2(x + m(x +

X{ L 2marty) - - a(x +y)?

A A

Using the change of variables given in Eq. (B22), the
integral over dv can be performed to get

] . (B38)

riit — aak > ;k—%
am?
9 _
x [1 C-wu_ | g
u? —I—ﬁ(l—u) u? + B(1 —u)
where = (k3 + m2)/m?2. We write the integration using

polar coordinates:

dsz_ - dkldkz — kJ_ko_dH, (B40)
where k; = \/k? + k5 and 0 € [0,2x]. Performing the
integral over df and substituting |q,B| = 2|eB|/3 and
m, = my, we have

92 1 3k%
~5 33 / du/ dkLkLe “’B‘
2w mf 0 0

LLL _
Iy =

u (2—u)u
1 . B41
] IRt ML)
Finally, 7§, can be written as
d*s d*t d*k . .
IB — d4 d4 d4 / i®3, ,—ip-y
/ MR ] @ 2y <2n>4e ‘
X (—ig)e W )iS, (5)(gr°) e+ e )
x iS,(t)(=ig)e”*02)iD,(k)e" + CC.  (B42)

After integration over configuration space, we get

d*s d*t dk
8 = 20V 126@) (s — 1 —
3,9 / (2][)4 (2][)4 (27[)4 ( 7[) (S q)

X8 (p =5+ k)W (t —k —r)(=ig)iS,(s)
x (gr°)iS,(1)(=ig)iD,(k) + CC.

(B43)

Integrating over d*s and d*t, we have

d4

(2n)*
J(k+ ) (—ig)iD, (k) + CC,

(—ig)iS,(k + p)

(B44)

18, =@2r)*sW(p-q-r) /
x (gr°)iS

from which we can identify the contribution to the
magnetic correction according to the expression

15, = (22)*6® (p = r = q)gr°T . (B45)
where
STB d'k DN s\
985 = | Gy TSl + P)(gr)iSulk + 1)
x (=ig)iD, (k) + CC. (B46)

We now use the propagators for the charged particles in the
LLL. After simplifying and adding the contribution from
the charge conjugate diagram, we get

d*k kR i AS
[LLL — 4; 2/ Bl B EH B47
> Y (2m)* ¢ A3B3C; (B47)
where we define
N3 = (m, =¥ =)k + 1) +m,),
Az = (kH + pH>2 —m2 + ie,
By = (ky + ry)* — mj, + i,
k* —m2 + ie. (B43)
The denominator can be written as
Asx+Byy+Cy(1—x—y) = (ky+xp|+yr))* — A, +ie,
(B49)
where
Ay = (xpy+yr)? —xpf+ (x+ y)mi - yr
+(1=x—=y)(m2+k37). (B50)

Using the change of variable kj =1 —xpj—yr),
dk| = dl,, the numerator, N3, can be written as

N5 = —lﬁ —2xyp| -7
-y - ) u

- muﬂll + mu/H - x(x - l)pﬁ
(1 o y)m/” + mu, (B51)
where we have neglected linear terms of /. We proceed as

for the previous cases. We use Eq. (B15) and work in the
static limit, p = ¥ =0 and py, = ry = m,, to obtain

114038-14



MAGNETIC CORRECTIONS TO THE BOSON SELF-COUPLING ...

PHYS. REV. D 102, 114038 (2020)

w(p))Nsu(r))
= a(py) (=L} +2my(x +y) = my(x + y)*)u(r)).

(B52)
Thus, the integral can be written as

2 —x 42 %2
FLLL 8ig? /d kl/ / dy/ i 5e Tl

2my(x 4 y) —my(x +y)? }
(ZH—AJ_‘FZ(:') ’

{(lﬁ - ALH+ i€)?
(B53)

where
Ay =my(x+y)*+ (1= (x+y))(k] +mg). (B54)

Now, we can perform the integration over d21|| to get

d’k W
LLL _ (2ﬂl/ / dye Taub]

m>(x —m>(x 2
X{Al+2 i +y)AzL i +y)]. (B55)

The last expression can be simplified if we consider the
change of variables given by Eq. (B22). After integration
over dv, we have

2 2
riL / / IR
5 _
x [ Q=wu_ | s
u —|—y(1—u) w? +y(1—u)
where y = (k3 +m3)/m%. We can now perform

another integration after switching to polar coordinates
according to Eq. (B40). Performing the integration for df
and substituting |q,B| = 2|eB|/3 and m, = m;, we have
the final result

1 o
FLLL du dklkle “’B‘
0 0
2
X — 2( we_ | sy
u*+y(1—u) u”+y(1—u)
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