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The effect of quark anomalous magnetic moment (AMM) to chiral restoration and deconfinement phase
transitions under magnetic fields is investigated in a Pauli-Villars regularized Polyakov-extended Nambu—
Jona-Lasinio model. A linear-in-B term for quark anomalous magnetic moment is introduced to the
Lagrangian density of our model, and it plays the role of inverse catalysis to the phase transitions. With
fixed magnetic field, the critical temperature decreases with quark AMM. When fixing quark AMM, the
critical temperature increases with magnetic field for a small quark AMM, but decreases with magnetic
field for a large quark AMM. The critical temperature of chiral restoration and deconfinement phase
transitions is determined by the two competing factors, the catalysis effect of magnetic field and inverse

catalysis of quark anomalous magnetic moment.
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I. INTRODUCTION

Chiral symmetry restoration and quark deconfinement are
the two most important quantum chromodynamics (QCD)
phase transitions at finite temperature and baryon density.
Motivated by the strong magnetic field in the core of compact
stars and in the initial stage of relativistic heavy ion collisions,
the study on QCD phase structure is recently extended to
including external electromagnetic fields, see reviews [ 1-5].
From recent lattice QCD simulations with a physical pion
mass, while the chiral condensate is enhanced in vacuum, the
critical temperature of the chiral restoration phase transition
drops down with increasing magnetic field, which is the
inverse magnetic catalysis effect [6—10]. On the other hand,
lattice simulations on the Polyakov loop also support the
inverse magnetic catalysis for deconfinement phase transi-
tion, with a decreasing critical temperature as the magnetic
field grows [9,10]. How to understand the inverse magnetic
catalysis phenomena is still an open question [11-36].

In the presence of a uniform external magnetic field B,
the energy dispersion of charged fermions takes the form

E = \/p3 + 2eBl + m? due to the Landau quantization of
the cyclotron frequencies characterized by the Landau level

[=0,1,2,... [37]. Due to this fermion dimension reduc-
tion, a magnetic catalysis effect on chiral symmetry break-
ing is expected in both vacuum and finite temperature in
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almost all model calculations at mean field level [1-5,
38—40]. Besides, the magnetic field also affects the radi-
ative corrections of the fermion self-energy, which corre-
sponds to the coupling between the field and the fermion
anomalous magnetic moment (AMM) [41-49]. This gives

rise to a new term %aGWF #¥ in the Dirac Hamiltonian, with

field tensor F* and spin tensor o,, = %[y,.7,], and the
coefficient a is identified as the fermion AMM, which is
generally a function of magnetic field. The AMM term in
the Hamiltonian changes the energy spectrum of fermions
by removing the spin degeneracy and affects the properties
of magnetized systems [34-36,49-51].

In this paper, we will focus on the quark AMM effect on
chiral restoration and deconfinement phase transitions. One
of the models that describes well both the chiral restoration
and deconfinement phase transitions is the Polyakov-
extended Nambu—Jona-Lasinio (PNJL) model [52-58].
One problem in the (P)NJL model is the regularization.
Since the model with contact interaction among quarks is
nonrenormalizable, it requires a regularization scheme to
avoid the divergent momentum integrations. By using the
hard/soft cutoff regularization scheme, quark AMM effects
on chiral restoration and deconfinement phase transitions
have been studied in Ref [50,51]. When the external
magnetic field is turned on, the quark energy becomes
discrete and the phase space becomes anisotropy. In order
to avoid nonphysical oscillations under magnetic field
[12,50,51,59-62], we will apply a gauge covariant Pauli-
Villars regularization scheme and investigate the chiral
restoration and deconfinement phase transitions in this
PNIJL model. Different from the catalysis effect of magnetic
field, the quark AMM plays the role of inverse catalysis to
the critical temperature of phase transitions.
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II. THE MODEL

The two-flavor PNJL model in external electromagnetic
and gluon fields is defined through the Lagrangian density
[52-58] in chiral limit,

czzz/(x)(zyw a0, )w<>

+§{[1/7(X)W(X)]2+[W(X)iys?w(X)]z}—U@@)- (1)

For the chiral section in the Lagrangian, the covariant
derivative D¥ = 0" + iQA* — iA* couples quarks to the
two external fields, the magnetic field B = V x A and the
temporal gluon field A* = §§.A° with A° = gA%2,/2 =
—iA, in Euclidean space. The gauge coupling ¢ is
combined with the SU(3) gauge field A%(x) to define
A#(x), A, are the Gell-Mann matrices in color space, and
0 = diag(Q,. Q) = diag(2¢/3, —e/3) is the quark charge
matrix in flavor space. The quark anomalous magnetic
moment (AMM) is introduced by the term %LIO'W,F m with
spin tensor 6, = £[y,.7,], the Abel field strength tensor

w =0 A,, and the quark AMM a = Ok and « =
diag(k,, k) in flavor space. To simplify calculations, we
assume a constant magnetic field B = (0,0, B) along the
z-axis and constant quark AMM « (or a). G is the coupling
constant in the scalar and pseudo-scalar channels. The
order parameter to describe chiral restoration phase tran-
sition is the chiral condensate () or the dynamical quark
mass m = —G{py).

The Polyakov potential U(®, ®) is related to the Z(3)
center symmetry and simulates the deconfinement at finite
temperature [53]

b by -
U_ _brgg_ . (4 @)

by -
2 (PD)?, 2

where the Polyakov loop is defined as ® = (Tr.L)/N,,
with  L(x) = Pexpli [! drAy(x,7)] = exp|ifA;] and
B =1/T, the coefficient b,(t) = ag + a,t + a,t*> + a3t
with t = T/T is temperature dependent, and the other
coefficients b5 and b, are constants. Polyakov loop @ is
considered as the order parameter to describe the decon-
finement process, since it satisfies @ — 0 in confined phase
at low temperature and ® — 1 in deconfined phase at high
temperature [52-58]. Note that there is ® = d at vanishing
baryon density.

Taking mean field approximation, the thermodynamic
potential contains the mean field part and quark part

2

dp, |Q/B|
[BE
Z/Zﬂ.’ 2 !

+ 2T In (1 + 3®e~PEr + 3De=PEr 4 e73PEr)],  (3)

with quark energy

Ey= \/P? + (\/(2n+ 1= s&)|QB| + m? —SKfoB>2

for flavor f, longitudinal momentum p,, Landau level n,
spin s and sign factor £, = sgn(QB).

Note that the quark energy dispersion E is straightfor-
wardly derived from the modified Dirac equation (y - IT —
m+3ac*F,,)y(x) =0 with II, = id, — QA, by using
the Ritus eigenfunction method [63-65]. In the lowest-
Landau-level approximation, we have quark energy E;=

v/ P2+ mZy, with effective quark mass mey =m—x|Q/B|.
The quark AMM affects the system through the contribu-
tion to the effective quark mass. With vanishing quark
AMM «k; =0, the magnetic field causes the catalysis
effect to the quark mass m = mg, and thus to the critical
temperature of chiral restoration phase transition [1-5,
38-40]. For positive ky, the effective quark mass mcg will
be smaller than quark mass m, which indicates that the
quark AMM might induce an inverse catalysis effect to the
chiral restoration phase transition. Therefore, the competi-
tion between the inverse catalysis effect of quark AMM and
the catalysis effect of magnetic field determines the critical
temperature of phase transition.

The ground state is determined by minimizing the thermo-
dynamic potential, 0Q,;/0m =0 and 0Q.;/0D =0,
which leads to the two coupled gap equations for the two
order parameters m and ®,

1 0Q,
<2G * a—> =0 “)
o 0Q,

From Eq. (4), we can always find a solution m = 0. The
chiral restoration phase transition happens when non-
vanishing quark mass m turns into zero. At this time, the
two coupled gap equations Eq. (4) and Eq. (5) become
decoupled. In the chiral restoration phase with m = 0, we
only need to solve Polyakov loop ®@ from Eq. (5). Thus, we
obtain the same critical temperature for chiral restoration and
deconfinement phase transitions in chiral limit [12].
Because of the contact interaction among quarks, NJL
models are nonrenormalizable, and it is necessary to
introduce a regularization scheme to remove the ultraviolet
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divergence in momentum integrations. The magnetic field
does not cause extra ultraviolet divergence but introduces
discrete Landau levels and anisotropy in momentum space.
The usually used hard/soft momentum cutoff regularization
schemes do not work well in magnetic field, since the
momentum cutoff together with the discrete Landau levels
will cause some nonphysical results [12,50,51,59—-62,66],
such as the oscillations of chiral condensate and critical
temperature and density, tachyonic pion mass, and the
breaking of law of causality for Goldstone mode. In this
work, we take into account the gauge covariant Pauli-
Villars regularization scheme [12,67], where the quark
momentum runs formally from zero to infinity, and
the nonphysical results are cured [61,62]. Under the
Pauli-Villars scheme, one introduces the regularized

quark energy E;; = P2+ M+ ai A with M =

\/(2n + 1 —5&)|QsB| +m?* — sk;Q;B and the summa-

tion and integration ), [dp./(2z)F(Ey) is replaced by
S [dp./(2x) YN c;F(Ey;). The coefficients a; and ¢;
are determined by constraints ay =0, ¢y =1, and

Noci(m*+a;A>)l =0 for L=0,1,...N—1. In the
chiral limit there are two parameters, the quark coupling
constant G and Pauli-Villars mass parameter A. By fitting
the pion decay constant f, = 93 MeV and chiral conden-
sate () = (=250 MeV)? in vacuum, the two parameters
are fixed to be G =7.04 GeV~2 and A = 1127 MeV in
Pauli-Villars scheme with number of regulated quark
masses N = 3. On the Polyakov potential, its temperature
dependence is from the Ilattice simulation, and the
parameters are chosen as [53] ay = 6.75, a; = —1.95,
a, =2.625, ay=-744, b3;=0.75 by=75 and
Ty =270 MeV. To evaluate the effect of quark AMM,
we consider two typical sets of parameters k,

kY = 0.00995 Gev~!,
) =0.07975 Gev~!, (6)

and

2 = 0.29016 GeV~!,
k) = 0.35986 GeV~!, (7)

which are phenomenologically determined by fitting the
nucleon magnetic moments [46,50,51]. In our numerical
calculations, we consider all the Landau levels and longi-
tudinal momenta.

III. NUMERICAL RESULTS

We firstly discuss the quark AMM effect on chiral
restoration and deconfinement phase transitions, and plot
in Fig. 1 the quark mass m and Polyakov loop ® as
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FIG. 1. The quark mass m and Polyakov loop @ as functions of
temperature 7 with fixed external magnetic field (eB = 10m2
and m, = 134 MeV) and different sets of quark AMM, « =0
(black solid lines), x = k; (red dashed lines), x = k, (blue
dot-dashed lines).

functions of temperature with different sets of quark
AMM and fixed external magnetic field (eB = 10m2
and m, = 134 MeV), where the black solid lines are for
vanishing quark AMM « = 0, red dashed lines for small
quark AMM «k = k; and blue dot-dashed lines for large
quark AMM « = k,. Temperature melts the chiral con-
densate and causes the chiral restoration phase transition.
The critical temperature 7., determined by zero quark
mass, decreases with increasing x, which indicates the
inverse catalysis effect of quark AMM. For vanishing quark
AMM k = 0, we observe a second order chiral restoration
phase transition with quark mass continuously approaching
to zero. For nonvanishing quark AMM (k/, k,), the chiral
restoration turns into a first order phase transition, and
quark mass jumps to zero. In chiral breaking phase, the
quark mass m decreases with quark AMM k. However, the
mass jump at 7', increases with k. The Polyakov loop @ in
the lower panel grows with temperature from zero to
nonzero value, due to the deconfinement process. The
critical temperature of deconfinement phase transition is
defined by the fastest change of Polyakov loop ®. We
obtain the same critical temperature for deconfinement and
chiral restoration phase transitions. Since at critical temper-
ature T,., we have m =0, and the two coupled gap
equations Eq. (4) and Eq. (5) become decoupled. For
T > T, we separately solve quark mass m = 0 from gap
equation Eq. (4) and Polyakov loop @ from Eq. (5). For
vanishing quark AMM k = 0, a slower increase of @ is
observed at 7 > T,.. For nonvanishing quark AMM
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FIG. 2. The quark mass m and Polyakov loop ® as functions of
temperature with fixed quark AMM « = k; (upper panel) and
k = k, (lower panel) and different magnetic field, eB = 10m?
(black solid lines), eB = 15m2 (red dashed lines), and eB =
20m2 (blue dot-dashed lines).

(k1,k2), Polyakov loop @ shows a finite jump at T,
indicating a first order deconfinement phase transition.
When approaching the critical point 7., ® shows apparent
dependence on quark AMM «. With larger «, Polyakov
loop @ and its jump at T, are larger.

Fig. 2 focuses on the magnetic field effect to the chiral
restoration and deconfinement phase transitions with finite
quark AMM. With nonvanishing quark AMM (k;, k5 ), the

chiral restoration and deconfinement are both first order
phase transitions under finite magnetic field, with quark
mass and Polyakov loop jumping at the same critical
temperature 7'.. For a small quark AMM « = k; shown
in the upper panel, the quark mass increases with magnetic
field in the chiral breaking phase, and the Polyakov loop
increases with magnetic field in the whole temperature
region. The critical temperature 7. for chiral restoration
and deconfinement phase transitions increases with mag-
netic field. This magnetic catalysis effect is similar as
the case of vanishing quark AMM «k =0 [1-5,38-40].
However, when we consider a large quark AMM k = «»,
although the quark mass and Polyakov loop increases with
magnetic field, the critical temperature 7, for chiral
restoration and deconfinement phase transitions decreases
with magnetic field, which shows the inverse magnetic
catalysis. With the increase of quark AMM, the magnetic
catalysis effect turns into the inverse magnetic catalysis

effect, and the critical values of quark AMM are K,(f> =

0.05072 GeV~! and &Y =0.12422 GeV~'. The physics
can be understood as follows. The critical temperature
T.(x, B) is determined by the two competing factors, the
inverse catalysis effect of quark AMM « and catalysis effect
of magnetic field B. Therefore, with small quark AMM
K = ki, the catalysis effect of magnetic field dominates and
the critical temperature increases with magnetic field, but
with large quark AMM «k = k,, the inverse catalysis effect
of quark AMM dominates and the critical temperature
decreases with magnetic field.

Phase diagram in eB — T plane is summarized in Fig. 3,
where the phase transition lines of chiral restoration and
quark deconfinement are depicted with fixed quark AMM
k = 0,k,k,. In low (high) temperature region, the chiral
symmetry is spontaneously broken (restored) and quarks
are confined (deconfined). The critical temperatures 7. of
chiral restoration and deconfinement phase transitions
coincide in chiral limit. The quark AMM plays the role
of inverse catalysis to the critical temperature, which
leads to a lower T, and the magnetic field takes the role

FIG. 3. The phase diagram of chiral restoration and deconfine-
ment phase transitions in eB — T plane for different sets of «. In
chiral limit, the two critical temperatures coincide.
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of catalysis, which leads to a higher 7'.. The competition
between them determines the phase structure. When fixing
magnetic field, the critical temperature decreases with
quark AMM. The stronger the magnetic field is, the faster
the critical temperature decreases with x. With fixed quark
AMM « = 0, the critical temperature increases with mag-
netic field. For a small quark AMM «x =k, critical
temperature still increases with magnetic field, but with
a slower increase ratio compared with vanishing quark
AMM «k = 0 case. For a large quark AMM « = k,, the
critical temperature decreases with magnetic field. With
vanishing quark AMM (x = 0), the chiral restoration and
deconfinement phase transitions are of second order. But,
with nonvanishing quark AMM (ki,k,), the phase tran-
sitions are of first order.

IV. CONCLUSION

The effect of quark anomalous magnetic moment
(AMM) to chiral restoration and deconfinement phase
transitions under magnetic fields is investigated in frame
of a Pauli-Villars regularized PNJL model. Different from
the catalysis effect of magnetic field, quark AMM plays the
role of inverse catalysis to the phase transitions. With fixed
magnetic field, the critical temperature decreases with
quark AMM. For a large enough quark AMM, the critical

temperature decreases with magnetic field, while for
vanishing or small quark AMM, critical temperature
increases with magnetic field. The chiral restoration and
quark deconfinement becomes first order phase transitions
with nonvanishing quark AMM, and the critical temper-
atures 7', coincide with each other.

From the comparison with the cutoff regularization
[50,51], the covariant Pauli-Villars regularization plays
an important role in avoiding the oscillations. To see if
the covariance controls the calculation, one needs to
compare with other regularization schemes, such as the
magnetic field independent regularization (MFIR)
[61,68,69], which successfully separates the magnetic
contribution from the vacuum thermodynamic potential
and also efficiently avoids the nonphysical oscillations.
Since the quark AMM « reduces the effective quark mass
with mes = m — x;|QB|, the quark AMM induced inverse
catalysis effect will be independent of the regularization
scheme.
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