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We present a new computation in a field-theoretical model of Coulomb-gauge QCD of the first radial and
angular excitations of a qqq system in an SUð3Þ flavor-singlet state, ΛS. The traditional motivation for the
study is that the absence of flavor singlets in the lowest-lying spectrum is a direct consequence of the color
degree of freedom. [The calculation is tested with decuplet baryons Δð1232Þ and Ωð1672Þ.] We also
analyze decay branching fractions of the flavor-singlet baryon for various masses with the simplest
effective Lagrangians.
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I. INTRODUCTION

A. Color confinement and the three-quark
baryon singlet ΛS

When one examines the empirical basis for “confine-
ment,” it is easy to come across studies of “quark confine-
ment” since fractional charges are a feasible target for
searches in Millikan-type experiments [1] or at high-energy
accelerators [2]. However, the theoretical concept that
makes sense is rather “color confinement” (for which the
experimental evidence is not so unquestionable [3], since
color leaks by neutral gluons have, surprisingly, not been
purposefully constrained).
Though color is not a useful quantum number for hadron

classification, as we believe they are all color singlets, there
are effects due to color in hadron spectroscopy. For
example, the predicted Regge trajectories of meson and
baryon resonances have different slopes, which can be
traced to the 4=3 versus 2=3 color factors in gluon exchange
between qq and qq̄ pairs. Another example is the π0 → γγ
decay, sensible to Nc.
This article is driven by our curiosity about the following

classic statement at the root of the quark model and QCD,
for which we collect extant evidence from experiment

and theoretical computations, including new ones. A qqq
baryon configuration must be a color singlet, if color
is confined; this is achieved by the antisymmetricffiffiffi

1
3!

q
ϵijkB

†
i B

†
jB

†
kjΩi color wave function (the quark crea-

tion operators B† and color vacuum state jΩi will be
modeled in BCS approximation in Sec. IV below).
The antisymmetry of the color wave function forces the

visible degrees of freedom (spin, orbital angular momen-
tum, quark flavor, and eventually, radial-like excitations),
due to the fermionic nature of spin-1

2
quarks, to be in a

totally symmetric wave function, quite unlike nucleon
wave functions in nuclei or electron wave functions in
atomic, molecular, or solid-state physics.
Chromomagnetic interactions are large in QCD, so one

expects (as is typical in hadron physics) that states with
lower total angular momentum J have smaller masses. The
energy of qqq baryon configurations should be smallest if
the spatial degrees of freedom could all be in an s wave, and
also in the lowest radially excited state, that is,

ψ spatial ¼
Y3
i¼1

Y0
0ðk̂iÞR0ðjkijÞ;

X3
i¼1

ki ¼ 0: ð1Þ

Since this is a completely symmetric wave function,
the remaining product of spin and flavor degrees of
freedom must also be in a totally symmetric configuration.
This means that the lowest two multiplets in the baryon
spectrum are Gell-Mann’s flavor octet and decuplet [4,5]
that combine mixed-symmetry flavor and spin wave
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functions (the octet) and completely symmetric spin and
flavor wave functions (the decuplet).
The empirical consequence of this quantumwave function

organization is the absence of a qqq flavor singlet in the
lowest-lying spectrum; its antisymmetry would require an
antisymmetric spin wave function for the spin-flavor product
to be symmetric. As it is not possible to antisymmetrize three
quarks with only 2 degrees of freedom (one would be
repeated), a flavor singlet with the color degree of freedom
requires a spatial-wave-function excitation (so that part can
separately be antisymmetrized). This excitation raises the
flavor-singlet mass. Schematically,

ψA
qqq ¼ψA

color ⊗ψA
flavor ⊗ ðψ spin⊗ψ radial⊗ψorbitalLÞA; ð2Þ

where the A superindex indicates each of the parts that need
to separately be antisymmetric. There are several ways of
achieving antisymmetry of the last parenthesis, and the
resulting lowest-energy qqq wave functions are explicitly
constructed in Sec. II below.
It is therefore of theoretical interest to be able to identify

a state which coincides, in all or in a good part, with the
three-quark antisymmetric flavor-singlet configuration.
This is to be found within the ðudsÞ Λ hyperon spectrum
that contains ΛS, the possible singlets.
To discuss the lightest of those flavor-singlet states, in

this study we consider baryons with just one quantum of
excitation.

B. Excited Λ spectrum

The ground-state Λ hyperon is well assigned to Gell-
Mann’s octet: Therefore, and as expected, the search for a
singlet needs to concentrate on excited states. There are two
prominent low-energy Λ excitations, the Jπ ¼ 3

2
−Λð1520Þ

and the Jπ ¼ 1
2
−Λð1405Þ=Λð1380Þ double system, both

with negative parity [6]. But as we will show later in Sec. II,

one expects a qqq singlet configuration with only one
quantum of excitation in the 1

2
þ sector, so we briefly

comment on all three channels here.

1. Jπ = 1
2
−

The first apparent excitation of the Λ is the S-wave
Λð1405Þ system, widely believed to be formed by two
particles of equal quantum numbers [7,8] (see, more
recently, [9]) mixed from a singlet and two octets with
Jπ ¼ 1

2
−. In that classic work, the limit of exact SUð3Þ

symmetry reveals that one of the particle poles, at
1450 MeV, corresponds to a singlet. This pole is generated
by the dynamics of the N − K interaction [two octets can
yield a singlet irreducible representation of SUð3Þ]. Upon
breaking SUð3Þ, however, it mixes with the Λ8 octets and
goes down in mass to 1390 MeV.
In lattice gauge theory, a state compatible with this

Λð1405Þ was found to give a strong signal with a flavor-
singlet interpolating operator [10], making it the lightest
solid candidate to belong to the ΛS singlet family, but how
much of the genuine qqq singlet is therein (and how much
corresponds to molecularlike configurations, NK̄; for
example) remained unclear. The answer to this question,
as given by [11], is that, at physical pion masses, the state is
mostly an antikaon-nucleon bound molecule (as earlier
discussed for a long time). Unfortunately, because the
interpolator used is an ideally mixed uds configuration,
both singlet and octet can contribute to this lattice signal, so
the flavor representation or mixing (under scrutiny here) is
not extracted. Interestingly, for unphysical pion masses of
order the kaon mass or higher, the lattice state becomes an
intrinsic (presumably qqq) state, but then its mass is in the
1.7–1.8 GeV range, 400 MeV above the data.
Next, in one of the Graz quark-model computations [12],

the Goldstone boson exchange (GBE) model (in which
quarks exchange pions instead of gluons), the computed

TABLE I. The lattice QCD data from [13,14] show a spectrum of Λ resonances at substantially larger mass than the experimental
states. This is natural taking into account that the pion mass mπ is taken in the interval 300–700 MeV in the lattice simulations (in effect
closing the decay phase space) corrected by a linear extrapolation MΛ ∝ aþ bm2

π to the physical 138 MeV mass. Thus, our Coulomb-
QCDmodel computation of pure qqq states (selected in a flavor-singlet configuration) is more comparable to this lattice calculation than
directly to the experimental spectrum. Our restriction of the flavor to a singlet is likely raising the mass, as can be seen when comparing
to other theoretical approaches. All masses are rounded off to 5 MeV.

Experimental Mixed uds configurations Singlet configuration

Λ candidates Lattice Graz models Bonn model [15] ([16]) Dyson-Schwinger [17] Coulomb-gauge model (this work)

Λð1380þ 1405Þ1
2
− 1600 [10] 1555 (GBE) 1620 (1511) 1315

Λð1670Þ1
2
− 1450 [11] 1630 (OGE) 1695 (1635) (1580�) 1800� 200

Λð1800Þ1
2
− 1830 (1774)

Λð1520Þ3
2
− 1950 1555 (GBE) 1595 (1500) 1700� 200

Λð1690Þ3
2
− 1750 [18] 1630 (OGE) 1710 (1650)

Λð1600Þ1
2
þ 1900 [19] 1625 (GBE) 1590 (1665) 1475 2400� 150

Λð1810Þ1
2
þ 1745 (OGE) 1790 (1750) (1580�)
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mass fits the assignment of Λð1405Þ → ΛS (see Table I),
but this model is less widely accepted to represent quark
interactions than their one gluon exchange (OGE) model
that yields a higher mass: This is in agreement with the
lattice result of [10], but now too high with respect to the
experimental datum.
There are two further relatively clear 1

2
− excitations at 1670

and 1800 MeV, completing the picture of a singlet and two
octets from the meson-nucleon molecule picture and also
quark-model expectations. It is a fair question to ask how is
the qqq flavor singlet distributed among these three states, if
at all: The lowest states seem very much influenced by the
baryon-meson configuration, and the higher ones have
traditionally been assigned to nonsinglet multiplets.

2. Jπ = 3
2
−

The second well-known Λ excitation appears at slightly
higher energy above the KN threshold, the Λð1520Þ, which
is a very prominent peak [20] with Jπ ¼ 3

2
−, decaying to

both Σπ and NK̄ channels. The lattice computation (typical
of what would be a pure qqq state) yields a mass of
1950 MeV in this channel, remarkably higher. The Graz
quark models are closer to the experimental mass.
This is a general pattern: Lattice gauge theory data [13,14]

show a Λ spectrum that is systematically too high with
respect to the experimental one. A likely reason is that the
higher than physical pion mass employed in lattice simu-
lations decouples the meson-nucleon channel, returning the
energy of the would-be three-quark core. In this way, our
own qqq computation in the North Carolina State University
(NCState) Coulomb-gauge model presented below in
Sec. IV, should more naturally be compared to lattice data
than to experimental data. This is shown in Table I.
There is a second resonance with these quantum num-

bers, Λð1690Þ, that is usually assigned to a baryon octet
[21]. It is this resonance that was possibly being picked up
by early lattice studies, due to a poor choice of interpolating
field. This was resolved by an improved choice with built-
in parity and flavor structure by Meinel and Rendon [18]:
for pion masses around 300 MeV, they find Λ3

2
− masses

around 1750 MeV, suggesting how much the 1520 reso-
nance goes up upon closing its decay channels.

3. Jπ = 1
2
+

If the singlet is searched for with the same Jπ quantum
numbers as the ground-state Λ, the internal qqq structure
needs to be assigned a radial-like excitation.
There are two experimentally known resonances,

Λð1600Þ and Λð1810Þ, though this second one apparently
is not strictly needed to improve the global fit quality [22].
It is however the one that the Graz group considers the most
likely singlet candidate [12] in view of their calculations.
The Dyson-Schwinger computation [17] predicts a uds

excitation with 1
2
þ around 1475 MeV, though the authors

believe that model dependence is dragging it downward: If
they opt for artificially weakening their kernel interaction,
by less than 10%, they bring it up to 1580 MeV, in line with
other qqq approaches. This is marked with an asterisk in
Table I.
Several other aspects of the table merit comment. We

quote two different instanton-interacting Bonn quark-
model computations from [15,16]. They differ in that the
latter employs a flavor-independent kernel, whereas the
former, a later computation, introduces a flavor dependence
to improve agreement with the data. This is achieved, but
then disagreement with lattice data (that should better
represent the qqq configuration) arises.

C. Flavor structure

As SUð3Þ symmetry is not exact, octet-singlet flavor
mixing (and eventually, even with higher representations) is
expected to happen. Of mesons we know, for example, that
the ω is purely uūþ dd̄, while the ϕ is almost entirely ss̄
(ideal mixing), and the pseudoscalar η; η0 pair is in a
differently mixed configuration, though not purely octet
singlet; ground-state baryons are, however, widely believed
to be in a rather good octet configuration. Remarkably, the
Gell-Mann-Okubo formulas for the octet 1

2
þ baryons are

accurate [21] toOð15 MeVÞ ∼ 1%–2% despite the possible
mixing. The mixing seems to be small, and because its
dependence in the controlling sin θ1–8 is quadratic, the
angle is difficult to extract with precision.
Turning to the excited states with which we here deal,

assigning the 3
2
− Λð1520Þ to be a pure flavor-singlet baryon

is problematic because of its decay to Σð1385Þπ, as 1→10þ
8 [21], so that invoking mixing with a higher resonance of
equal spin parity, presumably the 1690, belonging to a flavor
octet according to other work [12] seems necessary.
Also, in the negative parity sector [19], an interesting

quenched lattice calculation that separately analyzed the
correlators found very similar octet and singletmasses for the
Λ1
2
− (and this around 1.6 GeV in agreement with [13]). That

could indicate that in that channel, an octet and a singlet
should appear almost degenerate and mixed, which seems to
be the case for the Λð1380Þ − Λð1405Þ system (though at a
smaller mass consistent with a strong nucleon-meson open
channel influence). However, the extent towhich this system
can be considered qqq remains questionable: This system
might be mixed, but not be so relevant for our thrust.
There does not seem to be much information in the octet-

singlet comparison for higher excitations or for the 3
2
þ

channel, but we can draw from the active field onΛc andΛb

spectroscopy: For example, an excited likely Λb
1
2
þ candi-

date has just been reported [23] (see, for example, [24] for
quark-based theory discussion thereof).
In Fig. 1 we have displayed the Λ spectrum against the

Λc, Λb (and marked the rescaled second shell of the 3He
atomic A − e − e three-body system) as a benchmark.
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The ground-state energy of all of them has been sub-
tracted, so that only the excitation energy is seen in the plot.
As has been known for long, the charmed/charmonium

and bottomed/bottomonium system have congruent spectra
on this type of Grotrian diagram (see, e.g., [25]). This is due
to the shape of the interquark Cornell linear þ Coulomb
potential that looks, in the momentum range where both
pieces are of comparable magnitude, somewhat like a
logarithmic potential (that would show actual matching
of the spectra upon subtracting the ground state).
The heavy-baryon spectrum shown in the figure should

correspond to the pure valence or ideally mixed configu-
rations ðudÞc, ðudÞb with little or no further flavor
configuration mixing expected to affect the heavy quark,
which is distinguishable and more localized than the
others due to its large mass. The figure teaches us that
the splittings to the ground state are generically larger for
the strange Λ states than their heavy-quark counterparts,
probably due to these being less relativistic, but they seem
rather comparable. This suggests perhaps that one quantum
of excitation costs a similar amount whether concentrated
in a part of the system such as in ðudÞb or distributed
through the three quarks such as in ðudsÞ8 or ðudsÞ1. Our
findings within the Coulomb-gauge approach (see again
Table I) would however indicate that the singlet qqq
configuration can be a bit heavier in the Cornell linear þ
Coulomb potential.
Flavor mixing in the QCD Hamiltonian resides exclu-

sively in the quark mass matrix, that for exact isospin
symmetry can be written as

½M� ¼ mu þmd þms

3
I −

ms − ðmu þmdÞ=2ffiffiffi
3

p λ8: ð3Þ

Since the second term, not respecting SUð3Þ symmetry,
is in the octet representation as Gell-Mann’s λ8 matrix
reveals, singlet and octet hyperon representations can
be mixed, but not singlet and decuplet ones. The Bonn
group has extended [15] their earlier work to explore
additional sources of flavor violation in an effective qqq
Hamiltonian that is meant to incorporate effects of meson
exchange among quarks in a potential. Because mesons
have rather different masses, this potential is strongly
flavor dependent.
In our own calculation in Sec. IV, we have kept the

canonical interaction with the global symmetries of QCD,
so that our flavor violation is reduced to the quark mass
matrix in Eq. (3). Moreover, because dynamical chiral
symmetry breaking means that the running quark mass
decreases with the scale (unlike in constituent models
where the mass is fixed; this point will be clear in
Fig. 6 below), our approach should have significantly less
flavor mixing than others. This probably oversimplifies a
more complex physical picture, but makes discussion of the
flavor-singlet configuration, whose absence in the low
spectrum is the telltale of color, more straightforward.
To conclude this section, though it is often manifested

that quark models cannot be used for precision work, which
is fair criticism given the uncontrolled approximations
that are needed to reduce them to manageable calculations,
the prediction of the quantum numbers for the lowest Λ

FIG. 1. Comparative of the Λ spectrum with the known Λc and Λb states that mark ideal udc and udb valence mixing without SUð3Þ
symmetry. To discuss the congruence of the spectra, we plotM −M0 withM0 ¼ 1116, 2286, 5620 MeV, for s, c, b, respectively (and in
the same spirit, the second shell levels of helium with A ¼ 3 are also marked as dotted lines, with energies rescaled to match the Λb

1
2
−).

The ΛS singlet candidates highlighted by the Graz group [12] (1810, 1405=1380, 1520) are displayed in red online.
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excitations is spot on: Indeed, the first excitation in the
quark model can have quantum numbers Jπ ¼ 1

2
−; 3

2
−; 1

2
þ as

demonstrated next in Sec. II. These happen to be the
quantum numbers of the first few experimentally detected
states, a refreshing agreement, so there are several possible
candidates to the ΛS singlet.

II. CONSTRUCTION OF VARIATIONAL WAVE
FUNCTIONS FOR LOWEST-LYING
qqq FLAVOR-SINGLET BARYONS

As discussed in Sec. I A, the SUð3Þ flavor-singlet qqq
baryon is in an antisymmetric flavor combination, and
because of the confinement hypothesis, also antisymmetric
in color, with Fermi statistics necessarily leaving an
antisymmetric spin and spatial wave function of its valence
quarks.
We employ configurations with well-defined total angu-

lar momentum J ≔ jJj, third component hJzi, and parity π.
To obtain J, we combine the doublet representations from
spin and spatial quantum numbers, which are a set of
mixed-symmetric and mixed-antisymmetric configura-
tions. The spatial part carries standard spherical harmonics
Ym
l ðk̂iÞwith k̂i ¼ ki=ki, ki being the quark momentum and

ki ¼ jkij its modulus.
With only one quark excited above the ground state, we

can construct three different Jπ combinations with totally
antisymmetric spin-spatial states,
(1) 1=2þ with a radial-like excitation R1ðkÞY0

0ðk̂Þ [see
Eq. (10) below]

(2) 3=2− with an angular excitation R0ðkÞYm
1 ðk̂Þ [see

Eq. (11) below]
(3) 1=2−, also with an angular excitation R0ðkÞYm

1 ðk̂Þ
[see Eq. (12) below]

The two quarks that remain in the ground state are
naturally assigned wave functions R0ðkÞY0

0ðk̂Þ. The three
quarks are then antisymmetrized without concern about
their mass/flavor (the flavor wave function is by construc-
tion antisymmetric itself). It is this step that suppresses any
singlet-octet flavor mixing that may lower the mass: All
results in this work refer to the pure flavor-singlet con-
figuration. In a Λc or Λb baryon, one quark is in a definite
flavor state; not here, all three have some probability
amplitude of being the strange quark.
As explained in Sec. I A, we need to introduce that

spatial excitation in order to build an antisymmetric spin-
spatial wave function appropriate for the singlet baryon.
Hence, we have two spin quantum states (�1=2), and either
two radial states (nr ∈ f0; 1g ground/excited) or two
angular states (l ∈ f0; 1g). In each of these spaces, we
therefore have a doublet of an SUð2Þ-like group, and for
three quarks we have a tensor product, which furnishes a
reducible representation thereof,

2 ⊗ 2 ⊗ 2 ¼ 4 ⊕ 2 ⊕ 2: ð4Þ

The quadruplet 4 in the resulting direct-sum decom-
position is totally symmetric under permutations of the
three quarks, so joint antisymmetry of the spin-space wave
function demands the usage of the two doublets 2. These
can be related to a couple of mixed-symmetric (MS) and
mixed-antisymmetric (MA) states for spin χMS;MAðS;MSÞ

χMS

�
1

2
;
1

2

�
¼ 1ffiffiffi

6
p ð2j↑↑↓i − j↑↓↑i − j↓↑↑iÞ;

χMS

�
1

2
;−

1

2

�
¼ 1ffiffiffi

6
p ð2j↓↓↑i − j↓↑↓i − j↑↓↓iÞ;

χMA

�
1

2
;
1

2

�
¼ 1ffiffiffi

2
p ðj↑↓↑i − j↓↑↑iÞ;

χMA

�
1

2
;−

1

2

�
¼ 1ffiffiffi

2
p ðj↓↑↓i − j↑↓↓iÞ; ð5Þ

a construction that is immediately exported to orbital
angular states jL;MLiMS;MA,

j1;MLiMS ¼
1ffiffiffi
6

p ð2j001ML
i − j01ML

0i − j1ML
00iÞ;

j1;MLiMA ¼ 1ffiffiffi
2

p ðj01ML
0i − j1ML

00iÞ; ð6Þ

and to orbital radial ones jradiMS;MA,

jradiMS ¼
1ffiffiffi
6

p ð2j001i − j010i − j100iÞ;

jradiMA ¼ 1ffiffiffi
2

p ðj010i − j100iÞ: ð7Þ

Combining these states, we can form antisymmetric
combinations of the spin-orbital ones

jMS;MLi ¼
1ffiffiffi
2

p ðχMSð1=2;MSÞj1;MLiMA

− χMAð1=2;MSÞj1;MLiMSÞ ð8Þ

or of the spin-radial ones

jMS; radi ¼
1ffiffiffi
2

p ðχMSð1=2;MSÞjradiMA

− χMAð1=2;MSÞjradiMSÞ: ð9Þ

Once fully antisymmetric representations of the quark
permutation group are achieved, the Clebsch-Gordan coef-
ficients assist in obtaining antisymmetric spin-spatial wave
functions with well-defined Jπ . As advanced, with only one
quantum excitation there are three cases, in agreement with
earlier work [12]

j1=2þi ¼ jMS ¼ 1=2; radi; ð10Þ
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j3=2−i ¼ jMS ¼ 1=2;ML ¼ 1i; ð11Þ

j1=2−i ¼
ffiffiffi
2

3

r
jMS ¼ −1=2;ML ¼ 1i

þ 1ffiffiffi
3

p jMS ¼ 1=2;ML ¼ 0i: ð12Þ

This resulting collection of quantum numbers is used
to prepare the necessary effective Lagrangians to study
branching fractions of flavor-singlet baryon decay at the
hadron level in Sec. III below.
Additionally, these wave functions are also injected into

the Rayleigh-Ritz variational principle hψSjHjψSi ≤
EShψSjψSi with the quark-level Hamiltonian specified
below in Sec. IV.
Symmetry considerations do not fix the wave functions

entirely, leaving what are usually called “radial” excitations
in Eq. (7) (a concept that makes sense once the three-body
variables have been fixed).
We have employed three different variational radial

Ansätze in closed analytical form. Each is a family of
functions with up to three variational parameters ρi, one
for each quark. Because we impose the center-of-massP

ki ¼ 0 condition, one of the parameters is redundant;
we prefer to dedicate the additional computer time spent in
the redundancy than further complicating thewave functions.
They read

Rð0Þ
n ðkÞ ¼

8>><
>>:

h�
k
ρ

�
2 þ 1

i
−2

for n ¼ 0;

2
½ðkρÞ2þ1�2 þ

ðkρÞ2−3
4

½ðkρÞ2þ1
4
�3 for n ¼ 1;

ð13Þ

Rð1Þ
n ðkÞ ¼

8>><
>>:

k
ρ e

−ð kffiffi
2

p
ρ
Þ2 for n ¼ 0;h

2
�
k
ρ

�
3
− 3 k

ρ

i
e−ð

kffiffi
2

p
ρ
Þ2 for n ¼ 1;

ð14Þ

Rð2Þ
n ðkÞ ¼

8>><
>>:

h
3
2
−
�
k
ρ

�
2
i
e−ð

kffiffi
2

p
ρ
Þ2 for n ¼ 0;h

15
4
− 5

�
k
ρ

�
2 þ

�
k
ρ

�
4
i
e−ð

kffiffi
2

p
ρ
Þ2 for n ¼ 1:

ð15Þ

The first one corresponds to a hydrogenlike wave
function, the second to a one-dimensional harmonic oscil-
lator, and the third one is related to the three-dimensional
harmonic oscillator. These wave functions can be employed
to apply the variational principle to any appropriate QCD or
QCD-like Hamiltonian.
Finally, we employ a fourth wave function family which

is implemented as a numeric table to be interpolated. The
table is obtained by solving the 1−− meson problem with
the same Hamiltonian and potential parameters later used
for the three-body problem

Rð3Þ
n ðkÞ ¼

�
ψρðkÞ for n ¼ 0;

ψρ0 ðkÞ for n ¼ 1;
ð16Þ

where the ρ two-body problem was simplified by ignoring
d-wave or backpropagating Salpeter (random phase
approximation) contributions, so that the two wave func-
tions with n ¼ 0, 1 are adequately orthogonal in the radial k
variable (without being concerned about the precision
reached in the ρ spectrum, that does require the additional
contributions).
The hope is that this wave function, by having the correct

tails for the interaction, will be able to relax hHi somewhat
more than the others (this will be shown to be the case in
one instance, the 1

2
þ ΛS, whereas for the other quantum

number combinations, Rð0Þ
n performs equally well, so we

will quote results therefrom as it is more straightforward).
But before deploying a specific calculation, we dedicate

Sec. III to exploiting our gained knowledge of the possible
quantum numbers in the low spectrum to discuss ΛS
decays.

III. DECAY BRANCHING RATIOS OF THE
SUð3Þ-FLAVOR SINGLET BARYON

AS FUNCTION OF ITS MASS

In this section, we will employ the simplest methods of
effective theory (EFT) to learn about the relevant two-body
(Secs. III A and III B) and, only for one case, three-body
(Sec. III C) decay widths of the ΛS baryon, without
attempting to probe its internal structure, but exploiting
flavor symmetry and phase space to relate different decay
channels. The overall decay constant of the effective
Lagrangians below, such as Eqs. (18), (22), and (27), will
be left undetermined, so that predictivity extends only to
branching fractions Γi=Γtotal.
This is of interest, from a purely experimental point of

view, to eventually understand how well the existing
physical baryons with the same quantum numbers match
a pure singlet configuration, but also to explore the
influence of the open channels to the seed qqq baryons
that quark approaches produce. Naturality suggests that the
imaginary part of the baryon propagator (thus, the decay
width) is of similar size to the correction to the real part,
shifting its mass (that, at order zero, is seeded by the pure
quark calculations discussed below in Sec. V). This section
employs standard notation of hadron effective theory: B
will represent the ground-state baryon flavor octet of Gell-
Mann, and Φ the pseudoscalar meson octet.

A. Two-body decays with a contact Yukawa
Lagrangian

We consider first two-body Bϕ baryon-meson decays of
the singlet ΛS, that is, ΛS → Bþ ϕ decay.
In this subsection, we adopt the simplest contact Yukawa

Lagrangian density. This is analogous to the analysis of
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flavor in baryon decays carried out by Guzey and Polyakov
[21] (though they cover the entire spectrum) to which we
refer for extensive discussion. They find the ratios among
coupling constants, exclusively based on the flavor struc-

ture, given by gΛSNK∶gΛSΣπ∶gΛSΛη∶gΛSΞK ¼ 1
2
∶

ffiffi
3
2

q
∶ −

1

2
ffiffi
2

p ∶ − 1
2
and whose squares give a first idea of the relative

importance of the different two-body decay channels.
Such coefficients are hidden from direct experimental

access due to two problems that are adding up for states of
low and moderate mass. The first is the phase-space integral:
If states are not too far from the respective thresholds (or
even below, with zero width), the SUð3Þ relations of the
couplings are completely wiped out by the large SUð3Þ
breaking induced by the very different momenta, in turn
coming from the decay-product masses by Källen’s formula
jpj ¼ 1

2mΛS
λ1=2ðm2

ΛS
; m2

1; m
2
2Þ. This first issue is easily

addressed by proceeding to the total width that can be given
in numeric form to compare with experiment,

ΓðΛS → 1þ 2Þ ¼ jpj
32π2m2

ΛS

Z
jMj2dΩ: ð17Þ

To get rid of the model dependence of the gi, we plot
ΓiP
2 body

Γi
in Fig. 2 (top plot). The detailed discussion of such

plots is postponed to Sec. III B, but let us note here how all
channels tend to a constant (energy-independent) decay
fraction at large decaying-particle mass (flavor symmetry)
whereas, at low momenta, different phase space makes the
various lines immensely different.
The second problem with a constant coupling is that the

pion and, to a lesser extent, the kaon and the eta are quasi-
Goldstone bosons, and the construction of chirally sym-
metric Lagrangians demands that they are derivatively
coupled. Constant, momentum-independent couplings, can
of course be present too, since chiral symmetry is not exact,
but the large derivatively coupled contribution can enhance
the apparent SUð3Þ-symmetry breaking of the decay by the
same mechanism, the different momenta induced by the
different masses.

B. Two-body decays with a derivatively coupled meson

After the brief example of a constant Yukawa coupling,
we proceed to examine the derivatively coupled meson
Lagrangian for all three Jπ combinations of interest for a
qqq ΛS.

1. State with Jπ = 1
2
+

We use the simplest perturbative Lagrangian with a pion
derivative coupling as suggested by the chiral theory of the
strong interactions [26] and SUð3Þ symmetry,

L ¼ −
g

2fπ
Ψ̄ΛS

γμγ5trðΨB∂μΦÞ; ð18Þ

where g is the decay coupling and fπ the weak meson decay
constants, both flavor independent, ΨB is the octet and ΨΛS

the singlet baryon fields, and Φ is the meson field (the
flavor trace is taken over the product of the two octet
matrices). It yields a matrix element

jMj2
¼ TrððpΛS

− pBÞγ5ðpΛS
þmΛS

Þγ5ðpB − pΛS
ÞðpB þmBÞÞ

ð19Þ

that is especially simple if evaluated in the rest frame of the
decaying ΛS baryon,

jMj2 ¼ ðmΛS
þmBÞ2ððmΛS

−mBÞ2 −m2
ϕÞ ð20Þ

in terms of the respective masses.
The two-body flavor-preserving decay channels of the

SUð3Þ singlet ΛS are Σ0π0, Σþπ−, Σ−πþ, pK−, nK0,
Λ0η=η0, Ξ0K0, and Ξ−Kþ. Their branching ratios are
presented in the lower plot of Fig. 2 (bottom plot).

FIG. 2. Branching ratios of the two-body flavor-preserving
decay channels of the SUð3Þ singlet ΛS as function ofMs ≔ mΛS

for Jπ ¼ 1
2
þ. The top plot shows the case of a constant Yukawa

vertex, whereas the bottom plot employs the derivatively coupled
amplitude of Eq. (20).
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The vertical solid lines (red online) correspond to the three
Λ resonances in the 1.4–2 GeV region that are candidates to
be (or to contain a sizeable amount of the wave function of)
the lightest flavor singlet as per the Graz proposed assign-
ment [12]. The rest of the lines represent various other ΛS
resonances. If we take the current Jπ assignments of the
Particle Data Group at face value, Λð1600Þ and Λð1810Þ are
the lightest relevant ones (Sec. I B)
To exemplify the use of such graphs, let us focus on the

Λð1600Þ that the Graz group classified as belonging to a
first excited octet with 1

2
þ including the Nð1440Þ Roper

resonance. It corresponds to the first vertical dashed line.
From the graph, we see that there are five channels with an
approximately equal branching fraction if the state is a
singlet instead, the three πΣ charge combinations and the
two KN ones. This entails a prediction ΓπΣ=ΓKN ≃ 1.5 that
would be informative in possession of more accurate
experimental data (currently, the PDG average is consistent
with a broad interval ΓπΣ=ΓKN ≃ 1.1–3.1).

2. State with Jπ = 1
2
−

If the ΛS state has parity opposite to the nucleon, the
decay vertex equivalent to Eq. (18) will lack the γ5 so that
the total Lagrangian density is parity even, as corresponds
to the strong force. In that case, Eq. (20) turns into

jMj2 ¼ ðmΛS
−mBÞ2ððmΛS

þmBÞ2 −m2
ϕÞ: ð21Þ

The resulting relative two-body decay intensities are shown
in Fig. 3.
For example, a singlet state with the mass of Λð1670Þ

would decay in the ratios KN∶πΣ∶ηΛ ¼ 1∶0.7∶0.1
approximately, whereas the experimental quotients seem
to be 1∶0.3–0.7∶0.4–1.4. Thus, current experimental data
are not yet at the precision level where they could exclude
this particle from a singlet assignment just from its decays
(one needs to resort to Gell-Mann-Okubo-type arguments
seeing whether the state fits well inside a complete baryon
octet or not).

3. State with Jπ = 3
2
−

The third basic excitation that can form a qqq flavor
singlet has spin-3

2
. This requires the use of a higher

representation of the Lorentz group than conventional
spinors: A convenient formalism is that of Rarita and
Schwinger. While it is usually not covered in basic treat-
ments, it is somewhat widely known, so we compromise by
giving the detail of the calculation but relegating it to
Appendix A. The decay vertex is now

L ¼ gΛSBϕtr½Ψ̄BðP3=2ÞμνðΨΛSRSÞν∂μΦ� þ H:c:; ð22Þ

where ðΨΛSRSÞν is the Rarita-Schwinger collection of
spinors described in Appendix A and ðP3=2Þμν the projector

necessary to pick up the spin-3
2
component therefrom. The

flavor trace has also been taken so the Lagrangian density is
a flavor singlet. This leads to a squared matrix element

jMj2 ¼ ðpΛS
− pBÞμð−pΛS

þ pBÞν
× TrððP3=2ÞμνðpΛS

þmΛS
ÞðpB þMBÞÞ: ð23Þ

Since the projector P3=2 somewhat complicates the calcu-
lation, we have carried it out with the help of the symbolic
manipulation system FORM [27]. We organize the result as a
power-series expansion in mΛS

, yielding

jMj2 ∝ 1

3
m4

ΛS
þ 2

3
m3

ΛS
mB −m2

ΛS

�
m2

ϕ þ
1

3
m2

B

�

−
4

3
mΛS

ðm2
ϕ þm2

BÞmB −
�
1

3
m4

B þ 2

3
m2

Bm
2
ϕ −m4

ϕ

�

þ 2

3

mB

mΛS

ðm2
B −m2

ϕÞ2

−
1

m2
ΛS

�
1

3
m6

ϕ −m2
Bm

4
ϕ þm4

Bm
2
ϕ −

1

3
m6

B

�
: ð24Þ

After folding it with phase space, the resulting relative
two-body branching fractions are plotted in Fig. 4, with
conventions equal to those of Fig. 2.
We find it remarkable that the KN channel is always

substantially below the πΣ one. This prediction of the
lowest derivatively coupled Lagrangian for the decay of a
spin-3

2
particle basically discards all experimental candi-

dates to be ΛS
3
2
−. For example, for the Λð1520Þ, the

measurement for the ratio ΓπΣ=ΓKN ∼ 1, whereas the
prediction is a factor 9 (this is driven by the small phase
space available for KN, but also on dynamical grounds).
While less extreme, the problem remains for the ΛSð1690Þ

FIG. 3. Branching ratios of the two-body flavor-preserving
decay channels of the SUð3Þ singlet ΛS as function ofMs ≔ mΛS

for Jπ ¼ 1
2
−.
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and higher reported candidates (less solid) with these
quantum numbers.

C. Decay into three particles

Though data on three-body decays of excited hyperons
are scant, it may be of interest to think about them, at least
for the one singlet candidate with the largest phase space,
the heavier 1

2
þ. For theseΛS → Bþ ϕþ ϕ decay processes,

it is of note that two different SUð3Þ-singlet combinations
can be formed in the final state with an octet baryon and
two octet mesons as

8 ⊗ 8 ⊗ 8 ¼ 1 ⊕ 1 ⊕ � � � ; ð25Þ

so that full specification of the final state requires a mixing
angle

jψ2ϕ3ϕ4i ¼ cos θMjS1i þ sin θMjS2i; ð26Þ

which we have adopted for this example, as θM ¼ π
4

(maximal mixing of the two singlets).
The construction of an appropriate chiral Lagrangian

demands one of the mesons to be derivatively coupled, so
that an appropriate effective vertex for a 1

2
þ hyperon would

be [26]

L ¼ i
8f2π

½trðΨ̄BΦ∂μΦÞ þ trðΦΨ̄B∂μΦÞ�γμΨΛS
; ð27Þ

where fπ is the weak pion decay constant,ΨΛS
is the singlet

baryon field, ΨB the ground-state octet baryon, and Φ the
octet meson fields, respectively. The trace over the flavor
index is sensitive to the ordering of the fields.
The tree-level matrix element, up to species-independent

constants, follows from Eq. (27) to be

−iM≡ hψ2ϕ3ϕ4jLeff jΛSi
¼ ðhS1j cos θM þ hS2j sin θMÞLeff jΛSi

¼ 1ffiffiffi
2

p ūð2Þγμðpμ
3 þ pμ

4Þuð1Þ=
ffiffiffi
2

p
; ð28Þ

from which

jMj2 ¼ ð2m2
1 þm2

3 þm2
4 −m2

23 −m2
24Þðm2

1 −m2
4 −m2

23Þ
−m3ðm2

23 þm2
24 −m2

3 −m2
4Þ þ 2m1m2m2

3; ð29Þ

where m1 is the mass of ΛS in the center-of-momentum
(cm) frame,m2 is the mass of the baryon,m3 andm4 are the
mass of the mesons, and m23 and m24 are the Dalitz
variables

m2
23≡p2

23¼ðp2þp3Þ2; m2
24≡p2

24¼ðp2þp4Þ2: ð30Þ

A few more details on these variables, particularly to define
the physical region over which the squared matrix element
of Eq. (29) is integrated, are left for Appendix B.
A flavor-symmetry-preserving decay of a flavor-singlet

hyperon can yield the particle combinations listed in
Table II.
The total width, and now also the branching ratios of

these channels, are not rigorously accessible because the
coupling constants in Eqs. (27) and (18) are not related in a
model-independent way known to us, so that we cannot
predict the ratio of three- to two-body decay fractions.
What can be done is to once more exploit the symmetry
structure built into Eq. (27) to predict the relative strength
of three-body channels with respect to each other. This
relative strength Γi=Γð3 bodyÞ is plotted in Fig. 5.
To exemplify, let us for a moment take the Λð1810Þ as

the lightest ΛS
1
2
þ candidate at face value, though a new data

analysis suggests that it might be a surplus resonance not
really necessary to obtain an optimal global data fit [22].
No three-body decays seem to have been experimentally
reported.
At the position of this Λð1810Þ (vertical line in Fig. 5),

we see that Λππ, the channel with the lowest threshold,
starts losing its phase-space advantage, so that it is still
dominant but comparable to NKπ (that becomes dominant
for even higher masses) due to the derivative coupling of
Eq. (27), and about a factor of 2 larger than Σππ, with other
decay channels being kinematically closed at that energy.

FIG. 4. Branching ratios of the two-body flavor-preserving
decay channels of the SUð3Þ singlet ΛS as function ofMs ≔ mΛS

for Jπ ¼ 3
2
−.

TABLE II. Three-body channels available for SUð3Þ-sym-
metry-preserving decay of ΛS. Their relative branching fractions
with Jπ ¼ 1

2
þ are given in Fig. 5.

Baryon Σ N Ξ Λ N Σ Ξ Σ Λ Λ

First meson K π K K K π η η η π
Second meson K K π K η π K π η π
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IV. ESTIMATE OF SINGLET MASS IN THE
NCSTATE COULOMB-GAUGE QCD MODEL:

THEORETICAL FRAMEWORK

To attempt a numerical estimation of the actual qqq
singlet masses (as past work mostly took uds configura-
tions without a flavor separation), we employ a well-known
Hamiltonian model obtained from Coulomb-gauge QCD.
Its philosophy dating back to [28–30] is to use a field-
theory formalism maintaining the global symmetries of
QCD so that chiral symmetry breaking is spontaneous and
not explicit as in the nonrelativistic quark model. The
interaction corresponds to the established Cornell potential
for heavy quarkonium with the appropriate color factors,
and the flavor structure of the spectrum is reasonable; it can
be seen as an extension of the Cornell model [31] to include
gluodynamics.
This approach gave a reasonable explanation of the lattice

glueball spectrum [32,33], basic features of quark-antiquark
mesons, and of three-quark baryons, and was deployed early
on to show that 1−þ exotic mesons cannot be very light
[34,35] (unlike mainstream thought at the time), to study
internal bb̄ structure [36] abstracting model-independent
features, and to study the coupling [37] of qq̄ and qqq̄ q̄
configurations [38], with hints that this mixing would
provide an explanation for idealω − ϕ vector mesonmixing.
The most recent works within the model’s approach have

been carried out by Abreu et al. [39–41] in studying con-
ventional qq̄ spectroscopy in less trodden channels. Thus,
the model is a one-stop Hamiltonian for many issues in
spectroscopy. On the downside, because it is an equal-time
quantization approach, it is not useful to compute form
factors or other functions pertaining to hadron structure, for
which the Dyson-Schwinger+Bethe-Salpeter/Faddeev [42],
or the light-front [43] or point form [44] approaches are
more apt.
The quark part of the Hamiltonian is described

in [45] and contains a kinetic term Hkin, the longitudinal

Coulomb-potential interaction VC that accommodates
asymptotic freedom at small distances and confinement
at large distances, and an effective transverse interaction VT
that represents the hyperfine quark-gluon interaction. It can
be written in second quantization as

H ¼ Hkin þ VC þ VT; ð31Þ

Hkin ¼
Z

d3x⃗Ψ†ðx⃗Þð−iα⃗ · ∇⃗þmf · βÞΨðx⃗Þ; ð32Þ

VC ¼ −
1

2

Z
d3x⃗d3y⃗ρaðx⃗ÞVðjx⃗ − y⃗jÞρaðy⃗Þ; ð33Þ

VT ¼ 1

2

Z
d3x⃗d3y⃗Jai ðx⃗Þ

�
δij −

∇i∇j

∇2

�
Uðjx⃗ − y⃗jÞJaj ðy⃗Þ:

ð34Þ

Therein, the quark fields Ψ are used to construct a local
color density ρa and current J⃗aðx⃗Þ with the color Gell-
Mann matrices Ta,

ρaðx⃗Þ¼Ψ†ðx⃗ÞTaΨðx⃗Þ; J⃗aðx⃗Þ¼Ψ†ðx⃗Þα⃗TaΨðx⃗Þ: ð35Þ

The kernel V has been presented in [30] as

VðqÞ¼

8>><
>>:
CðqÞ¼−8.07

q2

log−0.62ðq2
m2
g
þ0.82Þ

log0.8ðq2
m2
g
þ1.41Þ

for q>mg;

LðqÞ¼−12.25m1.93
g

q3.93 for q<mg;

ð36Þ

where q is the modulus of the exchanged momentum. The
model depends on a free parameter, the dynamical mass of
the exchanged gluon, that takes a value [45]mg ¼ 0.6 GeV,
yielding an asymptotic string tensionlike scale offfiffiffiffiffiffiffiffi
8πσ

p
12.251=1.93mg≃0.44 GeV, that is, σ ≃ 0.2 GeV2 suf-

ficient for a reasonable description of the quarkonium
spectrum.
The kernel U is introduced as model 4 in [45]. It is a

Yukawa-type potential of the form

UðqÞ ¼
8<
:

CðqÞ for q > mg;

− Ch
q2þm2

g
for q < mg:

ð37Þ

[The constant Ch ≃ ð2.907 GeVÞ3 for mg ¼ 0.6 GeV
simply guarantees continuity of UðqÞ at the matching
point.]
It is a natural implementation of the Coulomb-gauge

philosophy that separates an infrared strong scalar potential
and an infrared suppressed transverse one due to physical
gluon exchange being affected by the dynamical mass mg.
The quark field can be expanded in particle/antiparticle

normal modes in momentum space,

FIG. 5. Relative strength of the three-body decays in the limit of
exact SUð3Þ symmetry.
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Ψðx⃗Þ ¼
Z

d3k⃗
ð2πÞ3 e

ik⃗ x⃗
X
λcf

ðU k⃗λfBk⃗λfc þ V−k⃗λfD
†
−k⃗λfc

Þϵ̂cη̂f:

ð38Þ

λ, f, and c are indices for spin projection, flavor, and
color, respectively, and ϵ̂c, η̂f are the color and flavor
unitary vectors. The spinors U, V are, in terms of the Pauli
spinors (χλ), given by

U k⃗λf ¼
1ffiffiffi
2

p
" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ skf
p

χλffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − skf

p
σ⃗ · k̂χλ

#
; ð39Þ

V−k⃗λf ¼ 1ffiffiffi
2

p
"
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − skf

p
σ⃗ · k̂iσ2χλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ skf
p

iσ2χλ

#
; ð40Þ

where we have made use of the Bogoliubov angle ϕkf

related to a running quark mass mðk; fÞ and energy
Eðk; fÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðk; fÞ þ k2

p
in the following way:

skf ¼ sinϕkf ¼
mðk;fÞ
Eðk;fÞ ; ckf ¼ cosϕkf ¼

k
Eðk;fÞ : ð41Þ

The gap equation that provides the model vacuum and
one-particle dispersion relation was reported in an earlier
work [45]. In Fig. 6, we plot a couple of typical mðkÞ mass
functions for quark momentum up to a few GeV. The
generated quark mass seems somewhat smaller than usual
in the constituent picture, but this is not remarkable in an
approach where there is a significant self-energy in the
potential part of the Hamiltonian [see Eq. (43) below].
It is clear that SUð3Þ symmetry breaking by the effective

quark mass is largest for zero momentum quarks and drops
with the scale (just as it should in exactQCD).This leadsus to
expect less SUð3Þ symmetry breaking (and therefore, less
ΛS-ΛO singlet-octet mixing) than in constituent quark
models: Those feature a constant quark mass which is scale
independent, and therefore, the high-momentum wave func-
tion components support larger flavor-symmetry breaking.
Now with all these pieces and shortening Bi ¼ Bk⃗iλifici

for the ith quark, we can write down the state of our singlet
baryon jΛSi with well-defined Jπ in terms of a suitable
combination of products of the spin-spatial Ansätze of each
quark Fλ1λ2λ3

ΛS
ðfk⃗igÞ as

jΛSi ¼
Z

d3k⃗1d3k⃗2d3k⃗3
ð2πÞ9

ϵc1c2c3ffiffiffi
6

p ϵf1f2f3ffiffiffi
6

p δðk⃗1 þ k⃗2 þ k⃗3Þ

× Fλ1λ2λ3
ΛS

ðfk⃗igÞB†
1B

†
2B

†
3jΩi: ð42Þ

[In Eq. (42), summations over spin projection, flavor, and
color are implicit.]
Hence, we can express the variational approximation to

the ΛS mass as

MΛS
¼hΛSjHjΛSi¼ 3

Z
d3k⃗Ad3k⃗B
ð2πÞ6 ½F λAλBλC

ΛS
ðk⃗A; k⃗BÞ�†

�X
fA

ckAfA jk⃗AjþmfAskAfA
3

F λAλBλC
ΛS

ðk⃗A; k⃗BÞ−
2

3

d3q⃗
ð2πÞ3

×

�
Vðjq⃗jÞ

�
F λAλBλC

ΛS
ðk⃗A; k⃗BÞ

X
fA

1

3
ðskAfAskAþq;fA þckAfAckAþq;fA ·xÞ−

1

6

X
fAfB
fA≠fB

U†
k⃗AλAfA

U k⃗Aþq⃗;λafA
U†
k⃗BλBfB

U k⃗B−q⃗;λbfB

×F λaλbλC
ΛS

ðk⃗Aþ q⃗; k⃗B− q⃗Þ
	
þUðjq⃗jÞ

�X
fA

1

3

�
2skAfAskAþq;fA þ2ckAfAckAþq;fA

xðk2Aþðk⃗Aþ q⃗Þ2Þ− jk⃗Aþ q⃗jkAð1þx2Þ
q2

�

×F λAλBλC
ΛS

ðk⃗A; k⃗BÞ−
X
fAfB
fA≠fB

U†
k⃗AλAfA

αiU k⃗Aþq⃗;λafA

ðδij− q̂iq̂jÞ
6

U†
k⃗BλBfB

αjU k⃗B−q⃗;λbfB
F λaλbλC

ΛS
ðk⃗Aþ q⃗; k⃗B− q⃗Þ

	�

; ð43Þ

FIG. 6. Typical running quark mass mðkÞ in the one-particle
spinors solving the Hamiltonian model gap equation for the light
and strange sector. The SUð3Þ-breaking scale ms −mu ≃
70 MeV at a high quark momentum is enhanced by dynamical
chiral symmetry breaking and becomes a factor 2 larger at low
momentum in this particular calculation. The constituent quark
model, with a fixed quark mass instead, breaks SUð3Þ with the
same (larger) intensity at all scales.
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where we have employed the usual shorthand

x ¼ k⃗A
jk⃗Aj

· k⃗Aþq⃗
jk⃗Aþq⃗j. Also, notice the difference among FΛS

in

Eq. (42) and FΛS
in Eq. (43): The first is the product of the

spatial Ansätze of the three quarks, while the last is its
antisymmetrized form

F λ1λ2λ3
ΛS

¼
X
a;b;c

ϵabcFλaλbλc
ΛS

ðk⃗a; k⃗b; k⃗cÞ; fa; b; cg ∈ f1; 2; 3g:

ð44Þ

This fermion antisymmetry naturally appears due to the
anticommutation rules of the creation and annihilation
operators B†

i ; Bi.
It remains to specify the parameters of the Hamiltonian.

They are consistent with extensive meson work in the
Coulomb-gauge model, but also with earlier baryon com-
putations that addressed multiple spin nucleon resonances
in search for parity doublets and are discussed in Table III.
The two (current) quark masses are near actual parameters

in the QCD Lagrangian at 2 GeV, the reason being the
implementation of spontaneous chiral symmetry breaking by
a gap equation, unlike constituent quark models. The
effective gluon mass present in the kernel in Eq. (36) was
set to mg ¼ 0.6 GeV. Those parameters are fixed from the
meson sector of the theory and yield aroundmπ ¼ 150 MeV.
Because spontaneous symmetry breaking is implemented,
Goldstone’s theorem and the Gell-Mann-Oakes-Renner
relation are satisfied, so in the chiral limit mπ ¼ 0; fine-
tuningmu easily yields the physical pionmass, but we see no
point in reaching such a precision. As for the basic vector
meson, with this set mρ=ω ¼ 730 MeV (about 40 MeV too
low, but this resonance is 150MeV broad, so this is not a big
deal numerically). Finally,mϕ (a pure ss̄ meson) has a mass

of 1030 MeV (again quite acceptable as its physical mass is
1020 MeV) for that value ms ¼ 70 MeV.

V. ESTIMATE OF SINGLET MASS IN THE
NCSTATE COULOMB-GAUGE QCD MODEL:
EXTENSIVE NUMERICAL COMPUTATIONS

In order to compute the mass of the SUð3Þ flavor singlet,
we have to evaluate the matrix elements of the Hamiltonian
(presented in Sec. IV), with each of the selected families of
variational wave functions. For that, the complete theo-
retical framework was implemented in a C++ program
where the k⃗A, k⃗B, and q⃗ momentum integrals of Eq. (43)
were estimated using the Monte Carlo-based multidimen-
sional CUBA library [46]. Most frequently, we employed the
well-known VEGAS algorithm therein [47], though we have
also cross-checked with some of the other integration
algorithms in the package.
The color Ward identities between the gap equation and

the qqq kernel guarantee infrared finiteness [48,49] of the
matrix element in Eq. (43) with the employed potential, that
in the infrared V ∝ q−4þϵ practically is the Fourier trans-
form of a linear confining kernel. Still, the nine-dimen-
sional momentum integral was regulated with an IR cutoff
of 3 × 10−3 GeV to avoid any accidental apparent diver-
gence, particularly in the exchanged momentum q in
Eq. (43), due to the random distribution of points in the
Monte Carlo algorithm. Additionally, for the Monte Carlo
algorithm to correctly cover most of each variational wave
function, an upper integration limit (ΛUV) was introduced.
As each wave function extends to different maximum
momentum, this integration cutoff is scaled as a multiple
of the (inverse) variational parameter. Therefore, it takes
a different value in each of the computations, typically
of order 3–10 times the relevant scale. For example, in

TABLE III. Parameters used in the model Hamiltonian and in
the integration. The strange ms is set at 70 MeV, but we also
perform runs at 25 MeV to check the dependence thereof, and
both are fixed in the gap function (momentum scheme) around
2 GeV, and mg controls the kernels V, U of Eqs. (36) and (37),
with the interpretation of a longitudinal gluon masslike param-
eter. The integral extends between an IR cutoff (to avoid an
accidental divergence in the Monte Carlo with the IR-strong
potential, but there is no dependence in it) and a UV cutoff to
cover (most of) the corresponding variational wave function.

Hamiltonian parameters

mu ¼ md 0.001 GeV
ms 0.070 GeV
mg 0.6 GeV

Integration controls

λIR 3 × 10−3 GeV
ΛUV ∝ variational parameters

TABLE IV. Calibration computation of the Δð1232Þ (all light
quarks) and Ω−ð1672Þ (three strange quarks), with maximal spin
J ¼ S ¼ 3

2
, L ¼ 0. The Δ comes out 150 MeV heavier than the

datum, in line with expectations for a pure qqq computation that
does not incorporate its πN channel. Since it has a 130 MeV
width, a positive 150 MeV deviation is very reasonable for this
variational computation. Gell-Mann’s Ω− state, stable by the
strong force, is calculated compatibly with its experimental mass.
A few values around the minimum, rounded off to 5 MeV
precision, are quoted.

vρ (GeV) vλ (GeV) hHi (GeV)
Δð1232Þ 0.3 0.4 1.38� 0.04

0.4 0.4 1.46� 0.05
0.4 0.3 1.45� 0.04

Ωð1672Þ 0.4 0.4 1.65� 0.04
0.4 0.3 1.73� 0.03
0.5 0.3 1.69� 0.04
0.5 0.4 1.72� 0.05
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Sec. VA, the quoted values were obtained with ΛUV ¼
5 ×MAXðvρ; vλÞ as described therein.
That a small tail of the nominal wave function may

extend outside the integration domain (and failed to be
integrated over) does not cause a problem of principle: It
amounts to a redefinition of the variational wave function as
including an additional truncation parameter, so that it is
multiplied by a step function. (There are smaller orthogon-
alization effects that need not concern us at the level of
precision that the Monte Carlo evaluation achieves.) This is
legitimate within the variational principle, as long as the
same truncation of the integration is applied to the
normalization so that hΛSjΛSi

h0j0i ¼ 1. Therefore, we compute
the normalization of the wave function with the same
computer code and cutoffs, then use the obtained number to
set it to 1. The variational approach is then sensible despite
cutting off the integrations.

A. Computer code test: Δð32 + Þ and Ωð32 + Þ baryons
Prior baryon computations in this scheme [50–52]

focused on neutron-wave-function anisotropic deformation
under the high compression of neutron stars and on parity
doubling in the highly excited N=Δ spectrum.
As a renewed test of the computer code modified for this

singlet hyperon application, the masses of two well-known
baryons, Gell-Mann’s decuplet Δð1232Þ and Ωð1672Þ,
were computed first. These two baryons are archetypical
qqq states with three light quarks (the Δ) and three strange
quarks (the Ω) having particularly simple, completely
symmetric qqq wave functions. We assume here perfect
isospin symmetry so mu ¼ md. They are thus ideal cases to
test the entire computer program (except, of course, the
singlet wave function construction).
The parameters of these two Hamiltonian computations

have been shown in Table III, and they are consistent with
meson and earlier baryon work in the same model.
For this calibration exercise, variational wave functions

were adapted from [50–52]. The radial wave function takes
a rational form

RðkÞ ¼ 1h�jkρj
vρ

�
4 þ 1

ih�
jkλj
vλ

�
4 þ 1

i ð45Þ

with

kρ ≔
1ffiffiffi
2

p ðk1 − k2Þ;

kλ ≔
ffiffiffi
3

2

r
ðk1 þ k2Þ ∝ ðk1 þ k2 − 2k3Þ ð46Þ

appropriate Jacobi coordinates for the three-body problem
in the center-of-momentum frame in which

k1 þ k2 þ k3 ¼ 0: ð47Þ

Each of their moduli is scaled by a corresponding vρ and vλ
variational parameter. This two-dimensional parameter
space will later be scanned for a minimum of the variational
mass, according to the Rayleigh-Ritz variational principle.
The variational-parameter spaces for the Δð1232Þ and

Ωð1672Þ are explored in Figs. 7 and 8, respectively. For
each parameter pair in the two-dimensional grid, we
obtained hHiðvρ; vλÞ. After this calculation of E over the
variational-parameter space grid, we extract its minimum
that, by the variational principle, is an upper bound to the
respective ground level energy. Those minima are carried
over to Table IV.
The discrete values of E were continuously interpolated

by a biharmonic spline for better visibility in the two
figures. As is usual in these calculations, when the energy is
known to precision ϵ, the wave function parameter is only
obtainable to precision

ffiffiffi
ϵ

p
(since the matrix element is

quadratic in the wave function). Therefore, the minima
present themselves as broad valleys depicted with the
darkest shades in Figs. 7 and 8 (and following). In those
dark areas, values of hHi under 2 GeV are found.
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FIG. 7. hHi over the variational-parameter space of the
Δð1232Þ calibration test. The wave function (of rational form)
is that of Eq. (45). The minimum energy obtained on the discrete
grid is given in Table V. For visualization, a continuous surface is
obtained from a biharmonic spline interpolation of the discrete
values result of the MC simulations.
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According to the Rayleigh-Ritz variational principle, all
energies calculated are upper bounds to the physical
particle mass within the given Hamiltonian, with the
optimal one corresponding to the minimum of the varia-
tional surface. Nevertheless, due to the Monte Carlo
computational method, down fluctuations can occur.
Thus, we strove to increase the number of integration

points until the number of fluctuations was small enough to
keep the standard deviation at or below the 50 MeV level.
The Monte Carlo uncertainty was reduced to this level as
shown in Table IV (the uncertainty quoted there corre-
sponds only to this Monte Carlo computation of the matrix
element and not to the error induced by the variational
principle, whose sign is known, but not its size).
The computer code was run at the modest group cluster

of the theoretical physics department in Madrid and similar
facilities.
The Ωð1672Þ computed energy is in fair agreement with

the experimental value, indicating a correct implementation
of the strange quark framework. The Δð1232Þ comes out
∼150 MeV heavier than its physical mass, in line with
expectations for a pure qqq computation that does not
incorporate its πN channel. Since it has a 130 MeV width, a
positive 150–200 MeV deviation is very reasonable for a
variational computation.
From these calibration tests, we take the accuracy of the

computations within the Coulomb-gauge Hamiltonian,
including the Monte Carlo integration procedure, as
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FIG. 8. hHi over the variational-parameter space of the
Ωð1672Þ calibration test. The same wave function and method-
ology as in the Δð1232Þ exercise of Fig. 7 was used. The
minimum of Eðvρ; vλÞ over the discrete grid is given in Table V.

TABLE V. ΛS mass values around the minimum of each Jπ

state and hydrogenlike radial wave function [Rð0Þ
n ðkÞ Ansatz,

Eq. (13)].

Hydrogenlike Ansatz for ΛS

Jπ ρ1 (GeV) ρ2 (GeV) ρ3 (GeV) Mass (GeV)
1
2
þ 0.6 0.8 1.1 2.7� 0.2

0.6 0.8 1.2 2.7� 0.3
0.6 0.8 1.3 2.8� 0.2
0.6 0.8 1.4 2.6� 0.2
0.6 1.0 1.0 2.8� 0.2

3
2
− 0.4 0.6 1.4 1.8� 0.2

0.4 0.6 1.6 1.7� 0.2
0.4 0.8 0.8 1.6� 0.3

1
2
− 0.4 0.4 1.4 1.9� 0.1

0.4 0.4 1.6 1.8� 0.2
0.4 0.6 0.6 2.0� 0.1

FIG. 9. hHi over the variational-parameter space for the Λð1
2
þÞ

with hydrogenlike wave function Rð0Þ. The first variational
parameter ρ1 was fixed to 0.6 for which the lowest values where
found. As in the calibration tests, the direct output of the
Monte Carlo simulations was fitted to a continuous surface
through a biharmonic spline interpolation. The minima providing
the optimal upper bound for the energy of the baryon following
the Rayleigh-Ritz principle are given in Table VI.
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validated, and reassert the adequacy of the Hamiltonian
parameters used in past computations.

B. ΛSðqqqÞ flavor-singlet mass computation

We now proceed to the goal of this section. The only
changes needed to determine the ΛS states masses with the
same Hamiltonian tested in Sec. VA concern the variational
wave functions. Given the reasonable performance with the
two tested single-flavor baryons in the decuplet, only a few
modifications concerning the multiflavor structure had to
be made.
Since their symmetry is more complicated, employing

two variational parameters for the Jacobi variables kρ and
kλ turned out not to be the most straightforward procedure.
Instead, the wave function was written down for each quark
(guaranteeing the correct symmetry by applying appropri-
ate symmetrization/antisymmetrization operators) so that
three variational parameters had to be used. In comparing
with the one-flavor cases, the mixed wave functions
required a significantly large amount of computational
time. To reduce it, we used the antisymmetry of the wave
functions (explicitly tested in the code) to reduce the
number of computed points in the variational space. This
feature allowed us to speed the computation by a factor NN

N!
.

We have run the computer codes with all four radial
Ansätze in Eq. (13) and following. The variational principle
indicates that in each channel we should keep the minimum
energy over each Ansatz family, and then in turn select the
minimum among the four families. Figures 9–11 show hHi
over the variational space for Rð0Þ, the variational wave
function that is hydrogenlike, one figure for each Jπ.
That hydrogenlike Rð0Þ and also the Rð3Þ based on an

interpolation to the solution of the previously computed
two-body problem, were generally superior to both of the
harmonic oscillator (one- or three-dimensional) wave
functions Rð1Þ and Rð2Þ. For the 1

2
− and 3

2
−, we quote results

from the hydrogenlike Rð0Þ, that was as good as any (see
Table V) and is of simple physical interpretation.

FIG. 10. Same as Fig. 9 for the Λð3
2
−Þ state, with hydrogenlike

wave function Rð0Þ.

FIG. 11. Same as Fig. 9 for the Λð1
2
−Þ state with hydrogenlike

variational wave function Rð0Þ.

TABLE VI. Optimal variational estimate for the candidate
singlet ΛS mass in each Jπ channel, and the wave function
variational parameters that deliver it. Our somewhat unexpected
finding is that the 1

2
þ candidate is above 2 GeV.

Minimum hHiΛS
with meson-derived Ansatz Rð3Þ

Jπ ρ1 ρ2 ρ3 E0 (GeV)
1
2
þ 2.5� 0.1 2.7� 0.1 3.1� 0.2 2.4� 0.2

Minimum hHiΛS
with hydrogenlike Ansatz Rð0Þ

Jπ ρ1 (GeV) ρ2 (GeV) ρ3 (GeV) E0 (GeV)
3
2
− 0.4� 0.1 0.7� 0.1 1.2� 0.4 1.7� 0.2

1
2
− 0.4� 0.1 0.5� 0.1 1.0� 0.6 1.8� 0.2
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For 1
2
þ instead, the value of 2.7 GeV quoted in Table V,

being a GeVabove the singlets in the other channels, looks
unnatural to us. In this case, we found the tabulated,
interpolated, and rescaled Rð3Þ to be optimal: The minimum
of hHi drops by 0.3 GeV with respect to the hydrogenlike
Rð0Þ to yield the 2.4 GeV quoted in Table VI. That table
collects the optimal value that we have been able to locate
for each Jπ combination and is the final result of this
section.

VI. DISCUSSION

It seems to us that the qqq flavor singlets of lowest mass
are well established to have quantum numbers 1

2
−, 3

2
−, and

1
2
þ, a result that we have rederived. Their masses are not too
dissimilar in a harmonic oscillator picture of baryons (the
two negative parity states would basically be degenerate,
being in the first shell with N ¼ 1 excitation in a non-
relativistic setup and differing only in spin recoupling; the
excitation energy of the positive parity state would be
higher, jumping to the N ¼ 2 shell with positive parity).
However, traditional flavor analysis [21] sometimes

seems to ignore or do without the 1
2
þ singlet, whose lowest

mass candidate, Λð1810Þ as per the Graz effort [12], has
recently been put into question [22] as unnecessary to
explain scattering data. Experimentally reconfirming this
state by different means then seems to be first-order
business: We have shown in an explicit calculation of
the relativistic, chiral-field-theory quark model extracted
from Coulomb-gauge QCD, and respecting its global
symmetries, that this 1

2
þ singlet is heavier than the other

two Jπ channels, and well above 2 GeV.
This means that even after accounting for mixing and

for the effect of the nucleon-meson decay channels, it is
unlikely to be in agreement with a 1.8 GeV mass.
The negative parity candidates, on the other hand, appear

in the 1.7–1.8 GeV range (with a 0.1–0.2 GeVMonte Carlo
error), consistent with expectations based on other quark
approaches.
The two experimental Λ candidates that could contain

sizeable parts of this qqq singlet wave function configu-
ration appear in the 1.4–1.6 GeV range. This is expected
from ΔM ∼ Γ relating the real and imaginary shifts of the
particle pole upon including open baryon-meson channels,
and from mixing with color octet configurations.
That the radial-like excitation is heavier than the angular

ones is not surprising upon reexamining the meson spec-
trum: The ρð770Þ largely corresponds to the qq̄ ðnr ¼
1Þ3S1 state, the ðnr ¼ 1Þ3P1 corresponds to the a1ð1260Þ,
and the ðnr ¼ 2Þ3S1 to the ρð1450Þ. This entails the radial
excitation to be 200 MeV above the orbital angular
momentum one. A similar splitting separates the analogous
K1ð1270Þ and K�ð1410Þ.
In our baryon ΛS computation, and after allowing for the

Monte Carlo uncertainties, it appears that the splitting is a

factor of 2 larger. Whether this is (a) an effect of the
restriction to a flavor singlet, (b) a variational effect (that we
have not gotten a variational wave function close enough to
the true one for the Hamiltonian despite the four families
with two independent parameters tried), (c) a model effect
built into the Hamiltonian (despite its reasonable success in
several other similar calculations), or (d) a true feature of
QCD (and possibly of nature) remains to be seen, but we
have detected no obvious error that makes us suspect of the
result in Table VI.
If we were to dare a possible explanation, we would note

the 150 MeV excess mass computed for the Δ baryon that
can decay strongly; a similar effect should be there for these
hyperon resonances, and one would broadly expect it
to grow with the particle mass as more decay channels
(ignored in a qqq calculation) would be open.
Even after such effects are discounted, the fact that qqq

flavor-singlet baryon configurations have a mass so much
larger than the ground-state baryon octet is a consequence
of the color degree of freedom that forces them into an
excited state. Additionally to the mass, the issue of baryon-
singlet identification can profit from studying decay-product
distributions. We have examined them with reasonable
EFT-based hadron models and have shown how the branch-
ing fractions depend on the hyperon mass. In those decays,
SUð3Þ symmetry is more easily extracted from the data
for decaying hyperons of higher mass: These see less
pronounced effects of phase space and derivative couplings
breaking SUð3Þ.
Because those effects are rather violent for low-lying

resonances, we hope that symmetry analysis of decays will
be more useful to screen the M > 1.8 GeV region for
singlet candidates, where the experimental uncertainty can
obfuscate the assignment much less.
Simultaneously, we hope to stimulate activity in lattice

gauge theory toward untangling the octet-singlet SUð3Þ
flavor structure of the few low-lying resonances: It would
be an interesting theoretical contribution to achieve such a
separation.
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APPENDIX A: RARITA-SCHWINGER SPINORS
AND ΛSð32 − Þ DECAY VERTEX

In this appendix, we give some detail on the calculation

of the two-body jMj2ΛS→BΦ for the spin-parity 3
2
−

combination.
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Following [53], we take a collection of four spin-1
2
Dirac

spinors grouped as the components of a Minkowski four-
vector, ψRSμ or simply ψμ. Each of the spinors satisfies a
free Dirac equation

ði∂ −MΛS
ÞψμðxÞ ¼ 0; ðA1Þ

with ∂μ → −ipμ to convert to momentum eigenmodes.
Since ψν is the tensor product of an object of spin-12 (each

Dirac spinor) and one that contains spins 0 and 1 (the four-
vector that collects them), this collection of spinors is not an
irreducible representation of the rotation group (or of the
Lorentz one, of course) and contains two spin-1

2
represen-

tations in addition to the 3=2 of interest to the decay
at hand.
One of the unwanted representations is removed by

imposing the condition (see, for example, [54])

γμψμ ¼ 0; ðA2Þ

as the four-vector index is contracted, this can be seen as a
Dirac spinor condition. A second such condition can be
obtained [55] by multiplying Eq. (A1) by γμ and using
Eq. (A2) to simplify, yielding

∂μψμ ¼ 0: ðA3Þ

This removes the second unwanted spin-1
2
representation, it

being a condition in the ð0; 1=2Þ representation of the
Lorentz group cover.
To proceed quickly to ΓΛS

, we need the positive-spinor
completeness relation equivalent to the Dirac one,X

σ

uðp; σÞūðp; σÞ ¼ Λþ ¼ ðpþMÞ: ðA4Þ

This will be a certain tensorX
σ

uμðp; σÞūνðp; σÞ ¼ Λμν
þ ¼ ðpþMÞðP3=2Þμν ðA5Þ

with the spin-1
2
parts projected out.

To construct the tensor following [56], let us first enforce
Eq. (A3) by subtracting from the identity the projection
over pμ,

ημν⊥ ≔ ημν −
pμpν

p2
: ðA6Þ

The resulting spinor ημν⊥ ψν obviously satisfies
pμη

μν
⊥ ψν ¼ 0, and thus, Eq. (A3), and falls in the reducible

ð1; 1=2Þ representation. It does not satisfy Eq. (A2), so we
need to subtract another projection forming

ðP3=2Þμν ¼ ημν⊥ −
1

3p2
ðpμ − γμpÞðpν − pγνÞ: ðA7Þ

It is easy to check several properties: First,

γμðP3=2Þμν ¼ 0 ¼ pμðP3=2Þμν; ðA8Þ

and ðP3=2Þμνψν satisfies both Eqs. (A2) and (A3).
Second, P3=2ðpÞ commutes with p so that it can be

deployed to either side of ðpþMÞ in Eq. (A4). Third, it is
indeed a projector

ðP3=2ÞμνðP3=2Þνρ ¼ ðP3=2Þμρ; ðA9Þ

so that only one copy appears in Eq. (A4) that is
constructed from two Rarita-Schwinger spinor collections.
Therefore, Eqs. (A4) and (A7) suffice to reconstruct

Eq. (23) given the Lagrangian contribution yielding the
decay.
It remains to construct this decay potential, for which

we once more take into account that chiral symmetry
requires in leading order that the meson be derivatively
coupled. We also need to analyze the parity. The positive
component of the RS spinor collection, after Fourier
transform, is a sum, with some Clebsch-Gordan coef-
ficients, of a Dirac spinor u multiplied by a spin-1
polarizationvector ϵν andwith a particle creation operatorb†,
namely,

ψþ
ν ∝

Z X
ðCGÞ · u · ϵν · b†: ðA10Þ

The creation operator carries the intrinsic parity of theΛS

particle b†j0i, which is (−1) for the 3
2
− state, the spinor

picks up a γ0 in the Pauli-Dirac representation, and the
vector ϵν changes sign under parity. The γ0 cancels out
upon constructing a proper bilinear, so we count the RS
field as having parity opposite to that of the particle.
Therefore, the parity-even effective vertex describing

ΛS → BΦ is indeed that of Eq. (22).

APPENDIX B: INTEGRATION LIMITS IN THE
DALITZ PLANE TO INTEGRATE THE

THREE-BODY DECAYS 1 → 2 3 4

In this appendix, we quickly sketch the three-body
formalism needed to carry out three-body decay calcula-
tions such as those in Sec. III C. The independent invariant
Dalitz variables chosen are m2

23 ≡ p2
23 ≡ ðp2 þ p3Þ2 and

the analogous m24. Energy-momentum conservation p1 ¼
p2 þ p3 þ p4 entails that p2, p3, and p4 are coplanar in the
cm system, where

m2
23 ¼ m2

1 þm2
4 − 2m1E4 ðB1Þ

is rather simple, and once fixed,
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m2
24 ¼ m2

2 þm2
4 þ 2ðE2E4 − jp2jjp4j cos θ24Þ: ðB2Þ

The border of the physical region in the ðm23; m24Þ
plane, the Dalitz plot, happens when the three-momenta are
additionally collinear, cos θ24 ¼ 1.
First, let us give the minimum values that the Dalitz

variables can take; these are mmin
ij ¼ mi þmj, but they are

not reached simultaneously. With a bit of work, inverting
Eq. (B1) for E4 (and equivalently for E2, E3) to retrieve
Emin
i , we obtain

m2
23ðmmin

24 Þ¼m2
1þm2

2−
m2

m2þm4

ðm2
1−m2

3þðm2þm4Þ2Þ:

ðB3Þ

Likewise, the maxima of each of the ij-Dalitz variables
are reached when the remaining particle is left at rest, so
that, for example,

mmax
24 ¼ m1 −m3; E3 ¼ m3: ðB4Þ

Some algebra leads, for example, to

Emax
4 ¼ ðm1 −m3Þ2 þm2

2 −m2
4

2ðm1 −m3Þ
ðB5Þ

and

m2
23ðmmax

42 Þ ¼ m2
1 þm2

4 − 2m1E4

¼ m2
4 þm1m3 −m1

m2
4 −m2

2

m1 −m3

: ðB6Þ

The rest of the border can be obtained from the
collinearity condition, the on-shell and momentum con-
servation conditions, yielding, for example,

E�
4 ¼ 1

2m2
24

�ðm2
24 þm2

4 −m2
2Þðm2

1 þm2
24 −m2

3Þ
2m1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

1 þm2
24 −m2

3

2m1

�
2

−m2
24

s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

24 þm2
4 −m2

2Þ2 − 4m2
24m

2
4

q 	
ðB7Þ

that can be substituted into

m2
23ðm24Þ� ¼ m2

1 þm2
4 − 2m1E�

4 ðm2
24Þ ðB8Þ

to complete the figure in the Dalitz plane. With the
computed borders, the three-body widths are then straight-
forward to extract

Γðm1Þjm2;m3;m4
¼ 1

32ð2πÞ3m3
1

Z ðmmax
24

Þ2

ðmmin
24

Þ2
dm2

24

×
Z

m2
23
ðm24Þ−

m2
23
ðm24Þþ

dm2
23jMðm2

23; m
2
24Þj2:
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