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We study exclusive production of scalar χc0 ≡ χcð0þþÞ and pseudoscalar ηc charmonia states in
proton-proton collisions at the LHC energies. The amplitudes for gg → χc0 as well as for gg → ηc
mechanisms are derived in the kT -factorization approach. The pp → ppηc reaction is discussed for
the first time. We have calculated rapidity, transverse momentum distributions, and such correlation
observables as the distribution in relative azimuthal angle and ðt1; t2Þ distributions. The latter two
observables are very different for χc0 and ηc cases. In contrast to the inclusive production of these mesons
considered very recently in the literature, in the exclusive case, the cross section for ηc is much lower
than that for χc0, which is due to a special interplay of the corresponding vertices and off-diagonal
unintegrated gluon distributions used to calculate the cross sections. We present the numerical results for
the key observables in the framework of potential models for the light-front quarkonia wave functions.
We also discuss how different the absorptive corrections are for both considered cases.
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I. INTRODUCTION

The central exclusive diffractive processes in proton-
proton collisions at high energies have attracted recently a
lot of attention. These processes lead to very unusual final
states. For example, in the central exclusive production, one
produces one or a few particles at central rapidities which
are fully measured. There are no other tracks in the
detectors. The incoming protons remain intact (in the virtue
of “elastic diffraction”) or are excited into small mass
hadronic systems, which disappear into the beam pipe.
We consider here simultaneously two such reactions,
pp → pχc0p and pp → pηcp, which are well suited to
be analyzed in the framework of the so-called Durham
model formulated by Khoze et al. (see Ref. [1] and
references therein). From the experimental point of view,
there is a rapidity gap, between each of the protons and the

produced χc0 or ηc states. These processes hence provide a
very clean environment for the study of the produced
hadronic systems tightly connected to poorly known soft
and semihard QCD dynamics. For a review of conceptual
and experimental challenges with such central exclusive
production (CEP) reactions, see for example Ref. [2].
The theory of the CEP of single χcJ, J ¼ 0, 1, 2 mesons,

with a correct account for the spin of the mesons and
precise kinematics of the production process, has been
worked out earlier by Pasechnik et al. (PST) in a series of
papers [3–5]. The numerical calculations were done for the
Tevatron energies. In this analysis, the nonrelativistic QCD
(NRQCD) methods were applied. So far, only CEP of light
pseudoscalar mesons was discussed in the literature [3,6].
There, rather nonperturbative effects strongly dominate
(see Ref. [6]). Very recently, in Ref. [7], the production
of χc0 at the LHC was discussed in the kT-factorization and
saturation dipole-model inspired approaches. The analysis
was performed there in the NRQCD approach and using a
single model for the unintegrated gluon distribution
(UGDs) and a particular prescription for the off-diagonal
UGD. Given a particular importance of the CEP of heavy
quarkonia for ongoing and future experimental studies, we
revisit and extend this analysis to account for additional
effects and sources for theoretical uncertainties (such as the
shapes of the charmonia wave functions and a treatment of
the absorptive corrections, as well as an accurate treatment
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of the phase space and production kinematics) as
well as incorporate the pseudoscalar ηc final state for the
first time.
Recently, our group showed how to include relativistic

corrections for the inclusive production of ηc [8] and χc [9].
These calculations use ligh-cone wave functions of char-
monia which were derived from well known models for the
cc̄ interquark potential. It is the aim of the present paper to
do a similar study for the exclusive case. In addition, there
is no such a study on the pp → ppηc CEP available in the
literature. In contrast, inclusive production of ηcð1SÞ was
measured by the LHCb Collaboration in proton-proton
collisions for

ffiffiffi
s

p ¼ 7, 8, 13 TeV [10]. Is such a measure-
ment possible for the exclusive production of ηc? This
study is a first step to address this important question. An
analysis of inclusive diffractive production of ηcð1SÞ was
done recently in Ref. [11].
In the present paper, we wish to discuss in parallel the

exclusive production process of both the scalar χc0 and
pseudoscalar ηc quarkonia. For illustration of the corre-
sponding production mechanism initially proposed by
the Durham group [1], see Fig. 1. We start with a brief
introduction into the formalism for pp → pχc0p and
pp → pηcp reactions based upon the Durham model of
CEP [1] setting up the necessary notation and conven-
tions. In this model, a quarkonium state is produced via
fusion of two virtual active gluons accompanied by an
extra exchange with a screening gluon as is shown in
Fig. 1. The additional exchange of the gluon provides
color conservation and hence the effective color singlet
exchange in the t-channel. As a result, in the final state, in
addition to the meson produced mainly at central rap-
idities, there are two forward protons that retain most of
their initial energy. We intend to calculate the integrated
cross sections for such processes as well as several
differential distributions relevant for future measurements.
We wish to discuss both the hard and soft processes
involved in these reactions in the light-front QCD
approach, to consider several prescriptions on how to
calculate the off-diagonal UGDs (some of them have
already been used previously in the literature) and to
estimate the absorptive corrections in the differential
distributions.

II. VIRTUAL GLUON FUSION INTO
(PSEUDO)SCALAR CHARMONIA

Below, we shall consider the hard χc0ð1PÞ and ηcð1SÞ
charmonia production subprocesses separately.

A. Light-cone amplitude for g�g� → χ c0ð1PÞ process
The gluon-gluon fusion vertex is proportional to the

reduced amplitude T μν as follows,

Vab
μνðg�g� → χc0Þ ¼ 4παs

Tr½tatb�ffiffiffiffiffiffi
Nc

p 2T μν ¼
4παsffiffiffiffiffiffi
Nc

p δabT μν;

ð2:1Þ

T μν ¼ −δ⊥μνðq1; q2ÞGTTðq21; q22Þ
þ eLμ ðq1ÞeLν ðq2ÞGLLðq21; q22Þ; ð2:2Þ

where αs is the strong coupling; Nc ¼ 3 and ta are the
number of colors and SUð3Þ group generators in QCD,
respectively; and

�
GTT

GLL

�
¼

�−jq1jjq2j ðq1 · q2Þ
ðq1 · q2Þ −jq1jjq2j

��
G1

G2

�
; ð2:3Þ

while the relevant kinematical variables are displayed
in Fig. 1. Here, we have the projector on transverse
polarization states

−δ⊥μνðq1; q2Þ ¼ −gμν þ
1

X
ððq1 · q2Þðq1μq2ν þ q1νq2μÞ

− q21q2μq2ν − q22q1μq1νÞ; ð2:4Þ

with X ¼ ðq1 · q2Þ2 − q21q
2
2. The longitudinal polarization

vectors read as follows:

eLμ ðq1Þ ¼
ffiffiffiffiffiffiffiffi
−q21
X

r �
q2μ −

q1 · q2
q21

q1μ

�
;

eLν ðq2Þ ¼
ffiffiffiffiffiffiffiffi
−q22
X

r �
q1ν −

q1 · q2
q22

q2ν

�
: ð2:5Þ

The convoluted form of reduced amplitude can be
written as

T ¼ nþν n−μT μν ¼ jq1jjq2jG1ðq21; q22Þ þ ðq1 · q2ÞG2ðq21; q22Þ;
ð2:6Þ

in terms of the light-cone vectors n�ν ¼ ð1; 0; 0;�1Þ. The
form factors here Giðq21; q22Þ have the integral representa-
tions in terms of the P-wave charmonia wave function
ψχðz; kÞ (see Ref. [9] for more details),

FIG. 1. Generic diagram for the Durham model approach to the
considered exclusive production processes.
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G1ðq21; q22Þ ¼ jq1jjq2j
4mc

q22

Z
dzd2k

zð1 − zÞ16π3 ψχðz; kÞ2zð1 − zÞð2z − 1Þ
�

1

l2A þ ε2
−

1

l2B þ ε2

�

G2ðq21; q22Þ ¼ 4mc

Z
dzd2k

zð1 − zÞ16π3 ψχðz; kÞ
�
1 − z
l2A þ ε2

þ z
l2B þ ε2

�

þ 4mc

q22

Z
dzd2k

zð1 − zÞ16π3 ψχðz; kÞ4zð1 − zÞ
�
q2 · lA
l2A þ ε2

−
q2 · lB
l2B þ ε2

�
; ð2:7Þ

where z is a c-quark (or c̄-antiquark) momentum fraction;
k is the relative cc̄ transverse momentum;mc is the mass of
the c-quark; and the shorthand notations

ε2 ¼ zð1 − zÞq21 þm2
c; lA ¼ k − ð1 − zÞq2;

lB ¼ kþ zq2 ð2:8Þ

have been introduced.

B. Light-cone amplitude for g�g� → ηc process

In Ref. [8], we introduced the covariant form of the vertex
for the fusion of two off-shell gluons into the ηc meson,

Vab
μν ¼ ð−iÞ4παsϵμναβqαqβ

δab

2
ffiffiffiffiffiffi
Nc

p 2Iðq21; q22Þ; ð2:9Þ

where Iðq21; q22Þ ¼ Fγ�γ�→ηcðq21; q22Þ=ðe2c
ffiffiffiffiffiffi
Nc

p Þ, or in the
convoluted form

Vab¼ð−iÞ4παs
δabffiffiffiffiffiffi
Nc

p Iðq21;q22Þjq1jjq2jsinðϕ1−ϕ2Þ; ð2:10Þ

with ðϕ1 − ϕ2Þ being the angle between q1 and q2. We then
express Iðq21; q22Þ in terms of light-cone wave functions as
follows [12],

Iðq21; q22Þ ¼ 4mc

Z
dzd2k

zð1 − zÞ16π3 ψηðz; kÞ

×

�
1 − z

ðk − ð1 − zÞq2Þ2 þ zð1 − zÞq21 þm2
c

þ z
ðkþ zq2Þ2 þ zð1 − zÞq21 þm2

c

�
; ð2:11Þ

where ψηðz; kÞ is the wave function of the ηcð1SÞ meson.

III. MATRIX ELEMENT FOR pp → ppM
REACTION

The amplitude for the CEP process for a given meson
V ≡ χc0; ηc reads1

M¼ s
2
π2

1

2

δc1c2
N2

c − 1

Z
d2QVc1c2

×
F off

g ðx1; x0;Q2;q21;μ
2; t1ÞF off

g ðx2; x0;Q2;q22;μ
2; t2Þ

Q2q21q
2
2

;

ð3:1Þ

in terms of the “active” (fusing into V) x1;2 and “screening”
x0 (connecting both proton lines) gluon momentum frac-
tions. The screening gluon carries a transverse momentum
Q, while the transverse momenta of active gluons are
denoted by q1, q2. The generalized UGDs also depend on
the hard scale of the process μ (see below). The 2 → 3 total
cross section can be calculated generically as follows,

σ ¼ 1

2s

Z
jMj2ð2πÞ4δ4ðp1 þ p2 − p0

1 − p0
2 − pVÞ

×

�
1

2ð2πÞ3
�

3

ðdy01d2p01Þðdy02d2p02Þðdyd2pVÞ; ð3:2Þ

or, following a simplification done in Ref. [13], as

σ ¼ 1

2s
1

28π4s

Z
jMj2dt1dt2dydϕ: ð3:3Þ

Above, t1 ¼ ðp1 − p0
1Þ2, t2 ¼ ðp2 − p0

2Þ2, ϕ ∈ ð0; 2πÞ is
the relative azimuthal angle between the outgoing protons,
s is the pp center-of-mass energy squared, and y is rapidity
of the outgoing meson V.

IV. DIFFERENT APPROACHES TO OFF-
DIAGONAL GLUON DENSITIES

In the forward limit of small t1;2 → 0 corresponding to
Q2 ≃ q21;2 ≡Q2⊥, the generalized UGDs in Eq. (3.1) are
simplified and are considered as functions of only one
transverse momentum, i.e.,

F off
g ðx1;x0;Q2;q21;μ

2;t1Þ→F off
g ðx1;x0;Q2⊥;μ2;t1Þ: ð4:1Þ

The Khoze-Martin-Ryskin (KMR) prescription for the
off-diagonal (“skewed”) UGD includes a Sudakov form
factor Tgðq2⊥; μ2Þ and is typically written as [1]

1Notice a factor 1=2 in the normalization, due to the fact that
we use light-cone vectors fulfilling nþ · n− ¼ 2, matching the
conventions of PST.
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F off
g;KMRðx;x0;Q2⊥;μ2;tÞ

¼Rg
d

d lnq2⊥

h
xgðx;q2⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tgðq2⊥;μ2Þ

q i
q2⊥¼Q2⊥

FðtÞ; ð4:2Þ

with gluon virtualities q2⊥ ≡ q2 playing a role of the
momentum scale squared in the collinear gluon density
xgðx; q2⊥Þ and with the nucleon form factor FðtÞ often
parametrized in the following two ways,

FðtÞ ¼ 4m2
p − 2.79t

ð4m2
p − tÞð1 − t=0.71Þ2 or

FðtÞ ¼ exp

�
bt
2

�
; b ¼ 4 GeV−2; ð4:3Þ

with mp being the proton mass, corresponding to the
isoscalar nucleon form factor [14] or the QCD elastic
profile factor, respectively.
The Sudakov form factor is taken as

Tgðq2⊥; μ2Þ ¼ exp
�
−
Z

μ2

q2⊥

dk2⊥
k2⊥

αsðk2⊥Þ
2π

×
Z

1−Δ

0

�
zPggðzÞ þ

X
q

PqgðzÞ
�
dz
�
; ð4:4Þ

with the hard scale μ2 ¼ M2
V þ q2⊥ and Δ ¼ k⊥=ðk⊥ þ μÞ.

Regarding the longitudinal momentum fractions,
central diffractive production is dominated by the region
x0 ≪ x1;2 ≪ 1. We thus compute the skewedness correction
Rg in Eq. (4.2) using a method proposed and derived for the
collinear off-diagonal gluon distributions [15]:

Rg ¼
22λþ3ffiffiffi

π
p Γðλþ 5=2Þ

Γðλþ 4Þ ; λ ¼ d
d lnð1=xÞ ½lnðxgðx; q

2⊥ÞÞ�:

ð4:5Þ
In a slightly off-forward case t1;2 ≠ 0, the choice of Q⊥ in

the off-diagonal KMR gluon in Eq. (4.2) becomes somewhat
arbitrary. In practical calculations, we use the so-called
“minimum prescription” proposed by the Durham group,
by substituting Q2⊥ → minðQ2⊥; q2⊥Þ in Eq. (4.2), with trans-
verse momentum of an active gluon q⊥ and transverse
momentumof the screeninggluonQ⊥. In addition,we suggest
a geometrical average of active and screening gluon momenta
as Q2⊥ →

ffiffiffiffiffiffiffiffiffiffiffiffi
Q2⊥q2⊥

p
—an option, called Babiarz-Pasechnik-

Schäfer-Szczurek (BPSS) in the following, for brevity.
We vary our results by also using the modified off-

diagonal Cudell-Dechambre-Hernandez-Ivanov (CDHI)
gluon defined as [16]

F off
g;CDHIðx; x0; Q⊥; μ2; tÞ

¼ Rg

� ∂
∂ log Q̄2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TgðQ̄2; μ2Þ

q
xgðx; Q̄2Þ

�
·
2Q2⊥q2⊥
Q4⊥ þ q4⊥

· FðtÞ;

ð4:6Þ

where Q̄2 ¼ ðQ2⊥ þ q2⊥Þ=2. In order to take into account
the saturation effects, we use of the simplest saturation-
based UGD inspired by the Golec-Biernat-Wüsthoff
(GBW) model [17]. In order to extrapolate it into the
off-diagonal domain, we use the prescription proposed in
Ref. [3] (further referred to as the PST prescription),

F off
g;GBW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2⊥fGBWg ðx0; Q2⊥Þq2⊥fGBWg ðx; q2⊥Þ

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tgðq2⊥; μ2Þ

q
FðtÞ;

fGBWg ðx; q2⊥Þ ¼
3σ0
4π2αs

R2
0q

2⊥ exp½−R2
0q

2⊥�; ð4:7Þ

where fGBWg is the diagonal GBW UGD and x0 ¼ jQj= ffiffiffi
s

p
,

R0 ¼ ðx=x0Þλ=2. In practical calculations, we have used the
following fitted values of the GBW parameters obtained by
Golec-Biernat and Sapeta [18]: σ0 ¼ 29.12 mb, λ ¼ 0.277,
x0=10−4 ¼ 0.41, with αsðq2⊥Þ¼minð0.82; 4π

9 logðQ2=Λ2
QCDÞ

Þ and
Q2 ¼ maxðq2⊥; 0.22 GeV2Þ, Λ2

QCD ¼ 0.04 GeV2.
As an alternative model based on the color dipole

cross section, we used a fit obtained by Rezaeian and
Schmidt [19]. While the GBWmodel resembles the eikonal
unitarization, the Rezaeian-Schmidt (RS) cross section uses
a form of the dipole cross section proposed in Ref. [20]
which is motivated by the Balitsky-Fadin-Kuraev-Lipatov
equation and its nonlinear generalizations. We computed
the corresponding UGD fRSg ðx; jqjÞ as

fRSg ðx;jqjÞ¼q2
σ0
αs

Nc

8π2

Z
∞

0

rdrJ0ðjqjrÞ
�
1−

σðx;rÞ
σ0

�
: ð4:8Þ

As an example, we have used the first set of parameters
from Table I in Ref. [19].

V. NUMERICAL RESULTS

In the CEP processes at high energies, it is mandatory
to consider gluons carrying very small longitudinal
momentum fractions x. For this purpose, in practical
calculations, we use a few parton distribution functions
(PDFs): JR14NLO [21] (Q2

0T ¼ 0.8 GeV2), GJR08NLO
[22] (Q2

0T ¼ 0.5 GeV2), and GRV94NLO [23] (Q2
0T ¼

0.4 GeV2). In Fig. 2, we illustrate the shape of the
corresponding gluon PDFs at scales and longitudinal
momenta fractions typical for the considered pp→ppηc
and pp → ppχc;0 CEP processes. In the range of scales
under discussion, the gluon PDFs from the literature differ
considerably. We do not employ the Durham or CTEQ
PDFs for which the initial scales for evolution are rather
high, making them difficult to apply in the context of the
exclusive reactions discussed here.
The total cross sections computed over the full

phase space for each PDF mentioned above are listed in
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Tables I and II, for χc0 and ηc, respectively. The integrated
cross section for pp → ppχc0 at

ffiffiffi
s

p ¼ 13 TeV is shown in
Table I for different off-diagonal UGD prescriptions for the
effective Q2

iT summarized as follows:
(a) Durham prescription [Eq. (4.2)]: Q2

iT ¼ minðQ2
T; q

2
iTÞ,

(b) BPSS prescription [Eq. (4.2)]: Q2
iT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

Tq
2
iT

p
,

(c) CDHI prescription [Eq. (4.6)]: Q2
iT ¼ ðQ2

T þ q2iTÞ=2,
(d) PST off-diagonal UGD [Eq. (4.7)].
For χc production, these prescriptions lead to similar
cross sections of the order of 1 μb before including
absorption effects. The corresponding gap survival factor
is of the order of 0.1 as will be discussed at the end of this
section.
In Table II, we present similar results for ηc production.

The total cross section for the ηc production is 3–4 orders of
magnitude smaller than that for χc0, i.e., surprisingly small.
The cross section for the PST prescription for off-diagonal
gluon is quite similar as for the Durham and CDHI
prescriptions in the case of χc0, while the spread in the
total cross section for ηc is much higher.
In Fig. 3, we show the rapidity distribution of χc;0 (left)

and ηc (right) quarkonia CEP. We show results for the
Durham (min) and CDHI prescription for the off-diagonal
unintegrated gluon distributions (UGDs). We present
results for Rg ¼ 1 as well as with Rg calculated according
to the Shuvaev prescription [see Eq. (4.5)]. Inclusion of Rg

increases the cross section by a factor of 3–4. While for χc0
the difference of the results for the Durham prescription and

the CDHI prescription is small, for ηc, the difference is of
the order of magnitude size.
The distribution in transverse momentum is shown in

Fig. 4. The distribution for ηc and χc0 CEP are somewhat
different. The maximum of the cross section for ηc is at
pT ∼ 1 GeV, and the dip at vanishing pT is more
pronounced.
In Fig. 5, we show two-dimensional distributions in

ðt1; t2Þ (t1, t2 are 4-momenta squared transferred in the
proton lines), for the pp → ppηcð1SÞ CEP process atffiffiffi
s

p ¼ 13 TeV. Here, we present results for several pre-
scriptions for the off-diagonal KMR UGDFs: with the
Durham prescription (left-upper panel), the BPSS prescrip-
tion (right-upper panel), and the CDHI prescription
(left-lower panel) as well as the PST prescription for off-
diagonal UGD using the diagonal GBW UGDF (right-
lower panel). No gap survival effect is incorporated here.
The results appear to be reasonably stable with respect to a
change in the UGDs modeling, while the BPSS prescrip-
tion differs in the distribution shape.

TABLE I. Total cross section for χc0 at
ffiffiffi
s

p ¼ 13 TeV with
Rg ¼ 1.0 and Rg according to Eq. (4.5). In order to obtain the
cross section, several gluon distributions were used with Q2

0T ≥
0.4 GeV2 for GRV94NLO, Q2

0T ≥ 0.5 GeV2 for GJR08NLO,
and Q2

0T ≥ 0.8 GeV2 for JR14NLO. The light-cone form factor
for the gg → χc0 coupling was calculated using the Buchmüller-
Tye potential (for more details, see Ref. [9]) No gap survival
factor is included here.

KMR skewed gluon
0.8 GeV2 ≤ Q2

0T , JR14NLO
σtot (nb),
Rg ¼ 1.0

σtot (nb),
Rgðx;Q2

iTÞ
CDHI, Q2

iT ¼ ðQ2
T þ q2iTÞ=2. 0.42 × 103 1.1 × 103

KMR, Q2
iT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

T · q2iT
p

0.36 × 103 0.94 × 103

KMR, Q2
iT ¼ minðQ2

T ; q
2
iTÞ 0.20 × 103 0.52 × 103

KMR skewed gluon
0.5 GeV2 ≤ Q2

0t, GJR08NLO
σtot (nb),
Rg ¼ 1.0

σtot (nb),
Rgðx;Q2

iTÞ
CDHI, Q2

iT ¼ ðQ2
T þ q2iTÞ=2. 0.46 × 103 1.57 × 103

KMR, Q2
iT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

T · q2iT
p

0.64 × 103 2.1 × 103

KMR, Q2
iT ¼ minðQ2

T ; q
2
iTÞ 0.34 × 103 1.1 × 103

KMR skewed gluon
0.4 GeV2 ≤ Q2

0T , GRV94NLO
σtot (nb),
Rg ¼ 1.0

σtot (nb),
Rgðx;Q2

iTÞ
CDHI, Q2

iT ¼ ðQ2
T þ q2iTÞ=2. 1.88 × 103 9.02 × 103

KMR, Q2
iT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

T · q2iT
p

3.03 × 103 13.4 × 103

KMR, Q2
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For completeness, in Fig. 6, we show similar results
for the χc0 production. In this case, all prescriptions for
effective transverse momenta (Durham, BPSS, and CDHI

prescriptions) lead to fairly similar results. Here, the cross
sections are peaked at t1 ¼ 0, t2 ¼ 0.
In Fig. 7, we show relative azimuthal angle (between

outgoing protons) distributions. The distribution for χc0
(left) is very different than that for ηc (right). While for χc0
there is one maximum for the back-to-back configurations,
there are two maxima for ηc. The cross section vanishes in
the back-to-back kinematics in the case of ηc CEP. The
exact position of the maxima depends on the details of the
treatment of the off-diagonal UGDs, so their experimental
identification could pin down the correct theoretical mod-
eling of these objects.
Finally, we wish to compare our results for the exclusive

reactions pp → ppηc and pp → ppχc0 with their inclusive
production counterparts as calculated recently in Refs. [8,9].
In Figs. 8 and 9, we show the numerical results (rapidity and
transverse momentum distributions) for ηc and χc0, respec-
tively. While for ηc production the cross section for the
exclusive process is a few orders of magnitude lower than
that for the inclusive case, this is quite different for the χc0
meson. Both for rapidity and transverse momentum distri-
butions, the results for the exclusive case are very different
compared to the inclusive case.
The two UGDs obtained from the dipole cross section,

labeled GBWand RS, give rise to similar distributions. For
the case of ηc, the RS UGD gives a larger cross section than
that obtained with the GBW model, while in the case of χc,
their sizes are very similar.

VI. ABSORPTIVE CORRECTIONS

It is understood that the Born-level cross sections receive
absorptive corrections through hadronic rescatterings at
large distances. These are related to the interactions of
spectator partons [24]. They give rise to the so-called gap
survival probability in exclusive reactions. The calculation
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FIG. 3. The rapidity distribution for χc0, ηc quarkonia CEP and effective Rg factor calculated with the GJR08NLO parton distribution
function. No gap survival factor is included here.

TABLE II. The same as in Table I but for the ηc meson. The
light-cone form factor for the gg → ηcð1SÞ coupling was calcu-
lated using the power-law potential (for more details, see Ref. [8]).

KMR skewed gluon,
0.8 GeV2 ≤ Q2

0T , JR14NLO
σtot (nb),
Rg ¼ 1.0

σtot (nb),
Rgðx;Q2

iTÞ
CDHI, Q2

iT ¼ ðQ2
T þ q2iTÞ=2. 1.1 2.4

KMR, Q2
iT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

T · q2iT
p

0.39 1.2

KMR, Q2
iT ¼ minðQ2

T ; q
2
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FIG. 6. Distribution in t1 × t2 for CDHI (left upper), BPSS (Q2
iT ¼
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q2iT ; Q

2
T

p
) (right upper), and Durham [Q2

iT ¼ minðq2iT ; Q2
TÞ] (left

lower) prescriptions calculated with the GJR08NLO gluon distribution function and for the PST off-diagonal UGD computed with the
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ffiffiffi
s

p ¼ 13 TeV. No gap survival factor is included here.
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of the latter poses a difficult problem, which has not been
solved yet in a way fully consistent with the perturbative
QCD approach to the production amplitude.
Numerous approaches exist in the literature; some of

them are based on soft multi-Pomeron exchanges [25–27],
while other approaches avoid the decomposition into Born
term and absorptive correction altogether, treating the
absorptive effects dynamically [28,29] and at the amplitude
level in the dipole picture [30–32], and some of them relate
the gap survival probability to the absence of multiparton
interactions [33,34].
It is also understood that the gap survival must depend on

the kinematics of the process. Here, we wish to discuss the
absorptive corrections at the amplitude level, in a simple

quantum-mechanical treatment. To this end, we adopt a
simple effective Reggeon Field Theory motivated approach.
In the simplified case where only “elastic rescattering” is

taken into account, the amplitude looks as follows:

MðY; y; p1; p2Þ ¼ Mð0ÞðY; y; p1; p2Þ − δMðY; y; p1; p2Þ:
ð6:1Þ

Here, Y ¼ logðs=m2
pÞ is the rapidity difference between the

colliding beams at center-of-mass energy
ffiffiffi
s

p
, y is the c.m.

rapidity of the produced meson V, and p1;2 are the trans-
verse momenta of outgoing protons.
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The absorptive correction is then computed as follows,

δMðY; y; p1; p2Þ

¼
Z

d2k
2ð2πÞ2 Tðs; kÞM

ð0ÞðY; y; p1 þ k; p2 − kÞ; ð6:2Þ

with

Tðs; kÞ ¼ σpptot ðsÞ exp
�
−
1

2
BelðsÞk2

�
: ð6:3Þ

At
ffiffiffi
s

p ¼ 13 TeV, we take σpptot ¼ ð110.6� 3.4Þ mb and
the nuclear slope Bel ¼ ð20.36� 0.19Þ GeV−2 [35]. In a
double-Regge approach, the Born-level amplitude has the
form

Mð0ÞðY; y; p1; p2Þ
¼ isΦ1ðp1ÞRIPðY − y; p21ÞVðp1; p2ÞRIPðy; p22ÞΦ2ðp2Þ:

ð6:4Þ

Here, RIPðy; p2Þ are the Pomeron Regge-propagators, and
Vðp1; p2Þ is the IPIP → meson vertex.
Let us now briefly discuss the vertices Vðp1; p2Þ. The

most general form of the Pomeron-Pomeron-particle vertex
for a spinless particle can be written as a Fourier expansion:

Vðp1; p2Þ ¼ V0ðp21; p22Þ þ
X
n≥1

ðVþ
n ðp21; p22Þ cosðnϕÞ

þ V−
n ðp21; p22Þ sinðnϕÞÞ: ð6:5Þ

For a scalar particle, all V−
n ¼ 0, while for the pseudoscalar

V0 ¼ 0; Vþ
n ¼ 0. For definiteness, let us concentrate on

only the first order, n ¼ 1. We thus adopt (V0þ for the
scalar and V0− for the pseudoscalar state):

V0þðp1; p2Þ ¼ V0 þ Vþ
1 ðp1 · p2Þ ¼ V0ð1þ τBDðp1 · p2ÞÞ

with τ≡ Vþ
1

BDV0

V0−ðp1; p2Þ ¼ V−
1 ½p1; p2�: ð6:6Þ

We further neglect a possible dependence of vertices V�
i on

p21 and p22.
Our amplitude is normalized in such a way that the

expression

dσ ¼ 1

256π5s2
jMðY; y; p1; p2Þj2dyd2p1d2p2d2p

× δð2Þðpþ p1 þ p2Þ ð6:7Þ

holds. We will now concentrate on central diffractive
production; i.e., we fix the meson rapidity to be y ¼ 0.
Below, we adopt

ffiffiffi
s

p ¼ 13 TeV. We can therefore forget
about the Regge propagators in Eq. (6.4), and without loss
of generality, we write

Φ1;2ðp1;2Þ ¼ exp

�
−
1

2
BDp21;2

�
: ð6:8Þ

Then, using the vertices of Eq. (6.6), the transverse
momentum distributions of the mesons at the Born level are
obtained as

dσ0þBorn
dydp2

T

				
y¼0

¼ exp½− 1
2
BDp2

T �V2
0

512π3BD

�
1 − τ

�
1 −

1

2
BDp2

T

�
þ τ2

2

�
1 −

1

2
BDp2

T þ 1

8
B2
Dp

4
T

��

dσ0−Born
dydp2

T

				
y¼0

¼ ðV−
1 Þ2

512π3
p2
T

4B2
D
exp

�
−
1

2
BDp2

T

�
: ð6:9Þ

Now, the absorptive corrections require the evaluation of the loop integral

δMðY; 0; p1; p2Þ ¼
Z

d2k
2ð2πÞ2 Tðs; kÞ exp

�
−
1

2
BDðp1 þ kÞ2

�
exp

�
−
1

2
BDðp2 − kÞ2

�

× Vðp1 þ k; p2 − kÞ ¼ exp

�
−
1

2
BDðp21 þ p22Þ

�

×
Z

d2k
2ð2πÞ2 exp

�
−
1

2
ðBelðsÞ þ 2BDÞk2 − BDk · ðp1 − p2Þ

�
σpptot ðsÞVðp1 þ k; p2 − kÞ: ð6:10Þ

It is useful to introduce the dimensionless quantities

gabs ¼
σpptot ðsÞ

4πðBelðsÞ þ 2BDÞ
and β ¼ BD

BelðsÞ þ 2BD
: ð6:11Þ
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Then, at small p21; p
2
2, the absorptive corrections are obtained as

δM0þðY; 0; p1; p2Þ ¼ gabsV0 exp
�
−
1

2
BDðp21 þ p22Þ

�
exp

�
1

2
βBDðp1 − p2Þ2

�

× f1þ βð1þ βÞτBDðp21 þ p22Þ þ ðp1 · p2ÞτBDð1 − 2βð1þ βÞÞg; ð6:12Þ

δM0−ðY; 0; p1; p2Þ ¼ ð1 − βÞgabsV−
1 exp

�
−
1

2
BDðp21 þ p22Þ

�
exp

�
1

2
βBDðp1 − p2Þ2

�

× ½p1; p2�ð1 − βÞð1 − βBDðp1 · p2ÞÞ; ð6:13Þ

for the scalar and pseudoscalar meson, respectively. We
now adjust the constants V0; V�

1 , as well as BD, to our
numerical results obtained for the Born-level amplitude.
In Tables III and IV, we show the parameters obtained

for different prescriptions for the generalized unintegrated
gluon distribution, GBW, as well as the CDHI and Durham
prescriptions for the GJR08NLO gluon distribution. We
also show the gap survival factors

S2 ≡ dσ=dyjy¼0

dσBorn=dyjy¼0

: ð6:14Þ

We observe that, depending on the gluon distribution
used, we obtain for the χc the gap survival values of
S2 ¼ 0.13 ÷ 0.21, while for the ηc production, they are
systematically somewhat higher, S2 ¼ 0.21 ÷ 0.38. Notice
that the ηc amplitude, due to the vanishing in forward
direction, is more peripheral than the one for χc production.
However, also notice that the both reactions have signifi-
cantly different values of the effective diffraction slopes BD.
Regarding the diffraction slope, we furthermore observe a
strong model dependence, especially for the ηc case.

Our simplified double-Regge approach works reason-
ably well. In Fig. 10, we show the cross section dσ=dydpT
at y ¼ 0 for the χc for the three different generalized UGD
prescriptions. Shown is the exact numerical result of the
Born amplitude (solid line) as well as the result of our
effective Regge amplitude fit (long-dashed line). By the
short-dashed line, we show the differential cross section
including absorptive corrections on top of the Regge
amplitude Born term. We see from these figures that the
effective Regge amplitude form is reasonably accurate for
pT ≲ 1.5 GeV, with a slight ambiguity in the slope BD. In
the case of the ηc shown in Fig. 11, the effective Regge fit
works almost perfectly for the PST-GBW and CDHI
prescriptions, while for the Durham case, the description
is rather poor.
In our calculation of absorptive corrections, we restricted

ourselves to the so-called elastic rescattering correction.
We wish to point out that the often applied multichannel
models that account for the possible diffractively excited
intermediate states, are constructed for soft diffractive
processes. In our case, we deal with a Born-level processes
with (semi)hard gluon exchanges, which will favor a

TABLE IV. An example of V1 values at midrapidity of ηc in the CEP process, for several prescriptions for off-diagonal UGDs.

ηc V−
1 (

ffiffiffiffiffi
nb

p
=GeV4) BD (GeV−2) gabs β σtotjy¼0 (nb) σabstot jy¼0 (nb) S2y¼0

PST GBW 194 3.4 0.83 0.12 1.8 × 10−2 3.9 × 10−3 0.21
PST RS 400 3.2 0.84 0.12 9.0 × 10−3 1.9 × 10−3 0.21
CDHI GJR08NLO 651 3.5 0.81 0.13 1.8 × 10−1 4.0 × 10−2 0.22
KMR GJR08NLO 1015 4.7 0.76 0.16 1.3 × 10−1 3.0 × 10−2 0.29
BPSS GJR08NLO 1490 7.0 0.66 0.20 5.8 × 10−2 2.2 × 10−2 0.38

TABLE III. V0 and τ at midrapidity of χc0, for several prescriptions for off-diagonal UGDs.

χc0 Vþ
0 (

ffiffiffiffiffi
nb

p
=GeV2) τ BD (GeV−2) gabs β σtotjy¼0 (nb) σabstot jy¼0 (nb) S2y¼0

PST GBW −2062 −0.31 5.7 0.71 0.18 17 3.7 0.21
PST RS −2381 −0.28 5.9 0.70 0.18 21 4.5 0.21
CDHI GJR08NLO −2985 −0.135 4.5 0.76 0.15 42 7.5 0.18
KMR GJR08NLO −2167 −0.11 4.5 0.77 0.15 29 3.7 0.13
BPSS GJR08NLO −3118 −0.135 4.5 0.77 0.15 61 8.0 0.13
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coupling to small color dipoles in each proton. It is not clear
that the diffractive final states that dominate soft diffractive
dissociation at the LHC have a large overlap with the
relevant dipole sizes.
In this regard, we wish to point to the work of

Refs. [30–32]. In these works, it is argued that for certain
hard inclusive diffractive processes (part of) the rescattering
corrections are in fact already included effectively in the
dipole cross section. The consistent formalism for exclusive
channels remains an important task for the future.

VII. CONCLUSION

In the present paper, we have calculated the key
observables of central exclusive χc0 and ηc quarkonia
production in proton-proton collisions at the LHC within
a formalism proposed earlier by the Durham group for
central exclusive Higgs boson production.
The χc0 meson CEP was already computed in the

literature previously, while ηc production has been analysed
here for the first time. Compared to the previous calcu-
lations, we have used here modern versions of collinear

gluon distributions to generate off-diagonal unintegrated
gluon distributions.
In the present analysis, we have also used the gg → ηc

and gg → χc0 transition amplitudes calculated using the
light-cone cc̄ wave functions obtained in the framework of
potential models. We have performed similar calculations
for inclusive production of ηc and χc0 very recently and
showed that one can very well describe the experimental
data for the ηcð1SÞmeson measured in last few years by the
LHCb Collaboration. Our previous results showed that in
the inclusive case the cross section for ηc is significantly
larger than that for χc0.
It was the main aim of the present paper to make a similar

analysis for the exclusive production case, which for the
case of ηc has not been done so far in the literature. In
contrast to the inclusive case, we have found that for the
CEP the situation reverses; i.e., the corresponding cross
section for exclusive ηc production is considerably smaller
than its counterpart for exclusive χc0 production, at least,
for the hard part obtained using the Durham or Cudell et al.
prescriptions for calculation of the scale in the off-diagonal
unintegrated gluon distribution. The reason is a specific
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FIG. 11. Distribution in transverse momentum of ηc in the CEP process for PST-GBW, CDHI, and Durham prescriptions at y ¼ 0.
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interplay of the off-diagonal UGDs and virtual gluon—
virtual gluon—quarkonium vertex.
We also proposed a way to calculate the soft effects (in

the region of small gluon transverse momenta) using the
GBW or RS UGDs, which were obtained from the
respective color dipole cross sections and a simple (PST)
prescription for its off-diagonal extrapolation. In this case,
the cross section is only slightly smaller for ηc than for χc0
production. We have also discussed to which extent the
absorption effects for pp → ppηc are different than those
for pp → ppχc0. We find that the absorptive corrections for
the ηc are somewhat smaller, which correlates with a very
different ðt1; t2Þ dependence for the corresponding Born
amplitudes. However, there is a rather strong model
dependence on the Born amplitude.
It would be desirable to measure the cross section for

pp → ppηc by identifying ηc, e.g., in the pp̄ decay
channel as was done in the inclusive case. It could be
interesting to estimate the signal-to-background ratio
before the real experiment. The pp → pppp̄ continuum

was calculated previously by Lebiedowicz et al. [36], and
first experimental evidence was obtained very recently by
the STAR Collaboration at the Relativistic Heavy Ion
Collider [37]. Also, the pp → ppγγ reaction could be
considered as an alternative to measure the pp → ppηc
reaction.
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