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The axial-vector form factors of the spin − 3
2
þ decuplet baryons are investigated in the chiral constituent

quark model using their explicit quark spin polarizations. The quark sea arises from the chiral symmetry
breaking, which results in the Goldstone bosons mediating the interaction between constituent quarks.
The axial-vector form factors, which have some physical significance corresponding to the flavor singlet
current, flavor isovector (triplet) current, and the flavor hypercharge axial (octet) current at zero momentum
transfer, are, respectively G0

AV;B�3
2

ð0Þ, G3

AV;B�3
2

ð0Þ, and G8

AV;B�3
2

ð0Þ. In order to further understand the Q2

dependence of these form factors, we have used the dipole form of parametrization. The qualitative and
quantitative contribution of the quark sea has also been investigated by varying the transition probability of
the chiral fluctuation.

DOI: 10.1103/PhysRevD.102.114027

I. INTRODUCTION

The quest to understand the internal structure of the
baryons in terms of effective degrees of freedom has
stimulated both experimental and theoretical studies in
the past. The measurements of polarized structure functions
in the deep inelastic scattering (DIS) experiments [1–4]
have thrown considerable light in describing the spin
structure of the baryons. These experiments provide clear
evidence that the valence quarks carry only a small fraction
of its spin, and the decomposition of the baryon spin still
remains to be a major unresolved issue in high energy spin
physics. These composite systems are bound by increas-
ingly strong forces for decreasing momentum transfer.
The electromagnetic current probes the Dirac and Pauli

forms, whereas the isovector axial-vector current provides
information on the internal structure in both strong and
weak interactions. In particular, the flavor isovector (triplet)
current determines precisely the neutron β decay param-
eters, the flavor hypercharge axial (octet) current provides
the information on the hyperon β decay parameters, and the
flavor singlet current can be related to the total quark spin
content. The axial-vector form factors arising from the axial
current are the fundamental quantities that carry the
complete information in understanding the spin structure
of the baryons.
The axial-vector form factors of the low-lying octet

baryons are well known through their semileptonic decays

over a wide region of momentum transfer squared Q2 [5].
The axial-vector coupling constants of the nucleons can be
calculated from the experimentally measured first moments
and related to combinations of the spin polarizations and
coupling constants. These can further be related to certain
well-known sum rules derived within quantum chromody-
namics (QCD). However, since the low-lying decuplet
baryons decay strongly (except Ω−), the study of their
axial-vector form factors has been rather limited, and it is
rather difficult to experimentally measure these quantities
due to their short lifetimes. Further, the Q2 dependence of
the nucleon axial-vector form factors have been studied
from the elastic scattering of neutrinos and antineutrinos
[6,7] and the pion electroproduction on the proton [8] for
the low-Q2 region. Very limited data is available for the
high-Q2 region. More recently, there has been considerable
progress to probe the hyperon form factors through the
strangeness-production processes in the higher-energy
Minerνa experiment at Fermilab [9]. These measurements
will give a broader understanding by providing a refined
data in a wide range of Q2.
Since the axial-vector form factors describe the low-

energy hadron phenomena in the nonperturbative regime,
they can be described in models incorporating the relevant
properties of QCD. There is a limitation in theoretical
knowledge of these form factors, as the calculations from
the first principles of QCD are still a big challenge. The
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lattice calculations serve as a valuable tool to determine the
axial charge and form factors in a model-independent way.
Even though some systematic errors still exist in the lattice
calculations, a lot of refinements have been made in the
recent past to remove the sources of such errors. At present,
the axial-vector form factors of the nucleon are very well
known in the lattice calculations [10–14], whereas lattice
calculations have given some information on the properties
of hyperons [15–18]. More recently, lattice QCD has
provided data on the axial-vector form factors of the
decuplet baryons as well [19,20]. Another powerful method
is the QCD sum rules (QCDSR), where the hadron
properties are estimated through the calculation of the
correlation function using the operator product expansion
(OPE) with Wilson coefficients and local operators
[21–25]. Some more estimates have been made for the
axial charges of the hyperons in the chiral perturbation
theory [26–28], large Nc limit of QCD [29].
Various theoretical works have carried out the calcula-

tions for the case of decuplet baryons, including the chiral
perturbation theory [30,31], Goldstone-boson-exchange
relativistic constituent quark model (RCQM) [32,33],
light-cone sum rules (LCSR) [34], and pertubative chiral
quark model (PCQM) [35].
In light of the above developments, it is clearly of great

interest to find the axial-vector form factors of the spin − 3
2
þ

decuplet baryons, as it will provide an important test for
models that attempt to describe the low-energy properties
of the baryons. Their knowledge would also undoubtedly
provide vital clues to the physical interpretation of the
nonperturbative aspects of QCD. Based on the successes
of the chiral constituent quark model (χCQM) [36] to find
the axial-vector form factors of the low-lying spin − 1

2
þ

octet baryons [37], we use the basic idea of chiral symmetry
breaking taking place at a distance scale much smaller
than the confinement scale. As a consequence of this
symmetry breaking, the almost massless quarks acquire a
dynamical mass coupled with internal Goldstone bosons
(GBs) [38–41]. As a consequence, the exchange of GBs
mediates the interaction between constituent quarks. The
χCQM has been successful in giving a possible solution to
the proton spin problem [41], different components of the
magnetic moments of octet, and decuplet baryons, including
their transitions [42], factors contributing to the violation
of the Gottfried sum rule [43], and the Coleman-Glashow
sum rule. Further, the hyperon β decay parameters [5] and
strangeness content in the nucleon [44] have also been
successfully estimated. In general, the χCQM is able to
provide unique and important information about the flavor
and spin distributions of the quarks in the baryons.
The purpose of the present paper is to estimate the axial-

vector form factors of the spin − 3
2
þ decuplet baryons using

the chiral constituent quark model (χCQM). In particular,
we would like to phenomenologically estimate the explicit
quark spin polarizations, which are directly affected by

chiral symmetry breaking parameters as well as the SU(3)
symmetry breaking parameters. It would be interesting to
study the extent of the contribution of the quark sea arising
from the Goldstone bosons, which mediate the interaction
between constituent quarks. The static properties can be
computed using the axial-vector current for the matrix
elements, which have some physical significance. The
flavor singlet current G0

AV;B�3
2

ð0Þ, flavor isovector (triplet)
current G3

AV;B�3
2

ð0Þ, and the flavor hypercharge axial (octet)
current G8

AV;B�3
2

ð0Þ at zero momentum transfer have been

investigated for the case of Δ, Σ�, Ξ�, and Ω baryons.
Further, in order to further understand the Q2 dependence
of these form factors, we have used the dipole form of
parametrization to study G0

AV;B�3
2

ðQ2Þ, G3

AV;B�3
2

ðQ2Þ, and

G8

AV;B�3
2

ðQ2Þ. It would also be significant to analyze the

extent of the contribution of the quark sea by varying the
transition probability of the chiral fluctuation. Since no
experimental data is available for the case of spin − 3

2
þ

decuplet baryons, the results can be compared with the
recent available theoretical findings.

II. AXIAL-VECTOR FORM FACTORS

The axial-vector form factors can be defined using the
axial-vector current constituting the quark field. We have

Aμ;a ¼ q̄ðxÞγμγ5
λa

2
qðxÞ; ð1Þ

where qðxÞ is the quark field in flavor space for
q ¼ ðu; d; sÞ. Here, λa (a ¼ 1; 2;…8) are the well known
Gell-Mann matrices describing the flavor SU(3) structure
of the light quarks. In the present context of axial-vector
form factors, we will consider only those matrices that have
diagonal representation. λ3 corresponds to the flavor iso-
vector (triplet) current, and λ8 corresponds to the flavor
hypercharge axial (octet) current [45,46]. In addition to

these matrices, an unit matrix λ0ð¼
ffiffi
2
3

q
IÞ can be intro-

duced, which will correspond to the flavor singlet current.
The axial-vector form factors can be parametrized

through the matrix elements of the axial-vector current
and the spin − 3

2
þ decuplet baryons. We have

hB3
2
þðp0; J0zÞjAμ;ajB3

2
þðp; JzÞi

¼ ūρðp0; J0zÞ
�
γμγ5Ga

AVðQ2Þηρσ þ qμ

2MB
γ5Ga

PðQ2Þηρσ
�

× uσðp; JzÞ: ð2Þ

The Rarita-Schwinger spinor uρðp; JzÞ here represents the
spinor describing the spin − 3

2
þ decuplet baryon and is a

tensor product between a first rank tensor and a Dirac
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spinor. ηρσ expressed as ηρσ ¼ diagð−1; 1; 1; 1Þ is repre-
senting the metric tensor of Minkowski space. If uðpÞ
represents a Dirac spinor, a spin − 1 field or Lorentz vector
can be constructed, and the Rarita-Schwinger spinor can be
described by the combination of the polarization vector of
the spin − 1 field and the Dirac spinor of the spin − 1

2
field.

In the above equation,MB represents the baryon mass, and
uσðp; JzÞ [ūρðp0; J0zÞ] are the Rarita-Schwinger spinors of
the initial (final) spin − 3

2
þ decuplet baryon states, respec-

tively. The four momentum transfer is given in terms of
the initial and final momentum q≡ p − p0, and we
have Q2 ¼ −q2. The functions Ga

AVðQ2Þ and Ga
PðQ2Þ

(a¼0, 3, 8) are the axial and induced pseudoscalar form
factors, respectively. For the present work, we will ignore
the induced pseudoscalar form factors as they are not
relevant.
In general, the axial-vector matrix elements are impor-

tant in hadron physics as they provide a deep insight in
understanding the internal spin structure [5,41]. In order to
calculate the static properties of the axial-vector form
factors at zero momentum transfer, these form factors
can be related to the spin polarizations. Before we present
the spin polarization combinations corresponding to the
singlet, triplet, and octet axial-vector form factors, we first
present the calculations for the spin polarizations of the
constituent quark in each decuplet baryon using the chiral
constituent quark model.

III. SPIN STRUCTURE OF THE DECUPLET
BARYONS IN THE CHIRAL CONSTITUENT

QUARK MODEL

The internal structure of the baryons can be understood
using the QCD Lagrangian, which describes the dynamics
of light quarks (u, d, and s). However, under the chiral
transformation for the quark fields ψ → γ5ψ , it does not
remain invariant and changes sign because of the mass
terms. If the mass terms in the QCD Lagrangian are
neglected, it will have global chiral symmetry of the
SUð3ÞL × SUð3ÞR group. This chiral symmetry is sponta-
neously broken as SUð3ÞL × SUð3ÞR → SUð3ÞLþR at
around a scale of 1 GeV. As a result, a set of massless
Goldstone bosons (GBs) exist and are identified as π, K, η
mesons. Since the QCD Lagrangian is also invariant under
the axialUð1Þ symmetry, the existence of η0 as the ninth GB
is implied. Therefore, the constituent quarks and this nonet

of GBs form the appropriate degrees of freedom within the
region of QCD confinement scale (ΛQCD ≃ 0.1–0.3 GeV)
and the chiral symmetry breaking scale ΛχSB.
The effective Lagrangian describing interaction quarks

and a nonet of GBs forms the basis for the χCQM, which
was introduced by Weinberg and further developed by
Manohar and Georgi [36]. The underlying idea of χCQM is
the fluctuation process where the GBs couple directly to the
constituent quarks in the hadron interior as

q� → GBþ q0∓ → ðqq̄0Þ þ q0∓; ð3Þ
where qq̄0 þ q0 constitute the quark sea [38,39,41]. The
effective interaction Lagrangian between GBs and quarks
in the leading order can be expressed as

Lint ¼ −
gA
fπ

ψ̄∂μΦγμγ5ψ : ð4Þ

Here, gA is the axial-vector coupling constant. The
Lagrangian be reduced to

Lint ≈ i
X

q¼u;d;s

mq þmq0

fπ
q̄0Φγ5q ¼ i

X
q¼u;d;s

Pπq̄0Φγ5q; ð5Þ

using the Dirac equation ðiγμ∂μ −mqÞq ¼ 0. Here,

Pπð¼ mqþmq0
fπ

Þ is the coupling constant for octet of GBs,
and mq (mq0) is the quark mass parameter. The Lagrangian
of the quark-GB interaction, suppressing all the space-time
structure to the lowest order, can now be expressed as

Lint ¼ Pπψ̄Φψ : ð6Þ
The QCD Lagrangian is also invariant under the axial Uð1Þ
symmetry, which would imply the existence of ninth GB.
This breaking symmetry picks the η0 as the ninth GB. The
effective Lagrangian describing interaction between quarks
and a nonet of GBs, consisting of an octet and a singlet, can
now be expressed as

Lint ¼ Pπψ̄

�
Φþ Pη0

η0ffiffiffi
3

p I

�
ψ ¼ Pπψ̄ðΦ0Þψ ; ð7Þ

where Pπ is the coupling constant for the octet GB, and Pη0

is the ratio of the coupling constants for the singlet and
octet GBs. The GB fieldΦ0 can be expressed in terms of the
GBs and their transition probabilities as

Φ0 ¼

0
BBB@

π0ffiffi
2

p þ Pη
ηffiffi
6

p þ Pη0
η0ffiffi
3

p πþ PKKþ

π− − π0ffiffi
2

p þ Pη
ηffiffi
6

p þ Pη0
η0ffiffi
3

p PKKo

PKK− PKK̄0 −Pη
2ηffiffi
6

p þ Pη0
η0ffiffi
3

p

1
CCCA: ð8Þ
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From Eq. (8), all the chiral fluctuations are given in terms of
the transition probabilities P2

π, P2
K , P

2
η, and P2

η0 [38,39,41].
These parameters help us to understand the extent to
which the quark sea contributes to the structure of the
baryon. The transition probability P2

π is taken by consid-
ering the strange and nonstrange quark masses to be
nondegenerate Ms > Mu;d, the transition probabilities P2

K
and P2

η are taken by considering GB masses of K, η, and π
to be nondegenerate MK;η > Mπ , and finally, the transition
probability P2

η0 is taken by considering GB masses η0, K,
and η to be nondegenerateMη0 > MK;η. A hierarchy for the
transition probabilities is important to be fixed and based
on the scaling of the quark contributions, which is 1

M2
q
, a

constraint can be fixed as

P2
π > P2

πP2
K > P2

πP2
η > P2

πP2
η0 : ð9Þ

All the possible chiral fluctuations in the fluctuation
process are given as

u� ⇌ ðd∓ þ πþÞ þ ðs∓ þ KþÞ þ ðu∓ þ π0; η; η0Þ;
d� ⇌ ðu∓ þ π−Þ þ ðs∓ þ K0Þ þ ðd∓ þ π0; η; η0Þ;
s� ⇌ ðu∓ þ K−Þ þ ðd∓ þ K̄0Þ þ ðs∓ þ η; η0Þ: ð10Þ

The transition probability of the emission of a GB from any
of the q quark, Pðq → GBÞ, can now be expressed in terms
of the transition probabilities P2

π , P2
K, P

2
η, and P2

η0 . We have

Pðu → GBÞ ¼ Pðd → GBÞ ¼ P2
π

6
ð9þ 6P2

K þ P2
η þ 2P2

η0 Þ;
ð11Þ

Pðs → GBÞ ¼ P2
π

3
ð6P2

K þ 2P2
η þ P2

η0 Þ: ð12Þ

The transition probability of the emission of a q� con-
stituent quark to all the possible q0 ¼ u, d, s quarks along
with GBs (qq̄0), Pðq� → qq̄0 þ q0∓Þ, as calculated from the
Lagrangian, can be expressed as

Pðu� → uq̄0 þ q0∓Þ

¼ P2
π

6
ð3þ P2

η þ 2P2
η0 Þu∓ þ P2

πd∓ þ P2
πP2

Ks
∓; ð13Þ

Pðd� → dq̄0 þ q0∓Þ

¼ P2
πu∓ þ P2

π

6
ð3þ P2

η þ 2P2
η0 Þd∓ þ P2

πP2
Ks

∓; ð14Þ

Pðs� → sq̄0 þ q0∓Þ

¼ P2
πP2

Ku
∓ þ P2

πP2
Kd

∓ þ P2
π

3
ð2P2

η þ P2
η0 Þs∓: ð15Þ

The sea quark spin distribution functions can be calcu-
lated in χCQM by substituting for every constituent quark

q� → Pðq → GBÞq� þ Pðq� → qq̄0 þ q0∓Þ: ð16Þ

The spin structure for the spin − 3
2
þ decuplet baryons can be

expressed in terms of the probabilities of the emission of a
GB from any of the quark and the transition probability of
the emission of any valence quark to all the possible other
quarks along with GBs. We have

ΔþþðuuuÞ ¼ 3Pðu → GBÞu� þ 3Pðu� → uq̄0 þ q0∓Þ;
ΔþðuudÞ ¼ 2Pðu → GBÞu� þ Pðd → GBÞd� þ 2Pðu� → uq̄0 þ q0∓Þ þ Pðd� → dq̄0 þ q0∓Þ;
Δ0ðuddÞ ¼ Pðu → GBÞuþ 2Pðd → GBÞdþ Pðu → uq̄0 þ q0∓Þ þ 2Pðd → dq̄0 þ q0∓Þ;
Δ−ðdddÞ ¼ 3Pðd → GBÞd� þ 3Pðd� → dq̄0 þ q0∓Þ;
Σ�þðuusÞ ¼ 2Pðu → GBÞu� þ Pðs → GBÞs� þ 2Pðu� → uq̄0 þ q0∓Þ þ Pðs� → sq̄0 þ q0∓Þ;
Σ�0ðudsÞ ¼ Pðu → GBÞu� þ Pðd → GBÞd� þ Pðs → GBÞs�

þ Pðu� → uq̄0 þ q0∓Þ þ Pðd� → dq̄0 þ q0∓Þ þ Pðs� → sq̄0 þ q0∓Þ;
Σ�−ðddsÞ ¼ 2Pðd → GBÞd� þ Pðs → GBÞs� þ 2Pðd� → dq̄0 þ q0∓Þ þ Pðs� → sq̄0 þ q0∓Þ;
Ξ�0ðussÞ ¼ Pðu → GBÞu� þ 2Pðs → GBÞs� þ Pðu� → uq̄0 þ q0∓Þ þ 2Pðs� → sq̄0 þ q0∓Þ;
Ξ�−ðdssÞ ¼ Pðd → GBÞd� þ 2Pðs → GBÞs� þ Pðd� → dq̄0 þ q0∓Þ þ 2Pðs� → sq̄0 þ q0∓Þ;
Ω−ðsssÞ ¼ 3Pðs → GBÞs� þ 3Pðs� → sq̄0 þ q0∓Þ: ð17Þ

A. Quark spin polarizations

The explicit quark spin distributions of the spin − 3
2
þ decuplet baryons can be evaluated using the matrix elements

for the spin structure, which are, in general, defined as follows [38]
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B̂
3
2
þ ≡ hB�3

2
þjN qþq− jB�3

2
þi; ð18Þ

where jB�3
2
þi is the SU(6) wave function giving the spin and

flavor structure of the baryon (detailed in Ref. [47]), and
N qþq− is the number operator calculating the explicit
quarks with polarization up or down,

N qþq− ¼ nuþuþ þ nu−u− þ ndþdþ þ nd−d−

þ nsþsþ þ ns−s−: ð19Þ

In the above equation, the number of the quarks polarized
in the up (down) direction are given as nqþðnq−Þ, respec-
tively, for each light quark u, d, and s.
The wave function for the ground state of decuplet

baryons can be expressed in terms of the appropriate flavor
and spin parts using the symmetry principles. We have

jB�3
2
þi≡

����10; 32
þ� ¼ φsχs; ð20Þ

where the spin wave functions (χs) for the case of spin − 3
2
þ

decuplet baryons are expressed as

χs ¼ ↑↑↑: ð21Þ

The flavor wave functions φs for the spin − 3
2
þ decuplet

baryons of the types B
3
2
þðq1q1q1Þ, B

3
2
þðq1q1q2Þ, and

B
3
2
þðq1q2q3Þ are, respectively, expressed as

ϕs

B
3
2
þ ¼ q1q1q1;

ϕs

B
3
2
þ ¼ 1ffiffiffi

3
p ðq1q1q2 þ q1q2q1 þ q2q1q1Þ;

ϕs

B
3
2
þ ¼ 1ffiffiffi

6
p ðq1q2q3 þ q1q3q2 þ q2q1q3

þ q2q3q1 þ q3q1q2 þ q3q2q1Þ: ð22Þ

The quark spin polarizations are basically defined as the
difference of the quark polarized in the up direction and the
quark polarized in the down direction. For the spin − 3

2
þ

decuplet baryons, we have

Δq
B
3
2
¼ qþ

B
3
2

− q−
B
3
2

: ð23Þ

Using Eqs. (18) and (20), we can calculate for any member
of the spin − 3

2
þ decuplet baryon, the number of q quarks

polarized in up (down) direction [38,39]

qþð−Þ ¼ hφsχsjnuþðnu−Þjφsχsi: ð24Þ

For the spin − 3
2
þ decuplet baryons of the typesB

3
2
þðq1q1q1Þ,

B
3
2
þðq1q1q2Þ, and B

3
2
þðq1q2q3Þ, we, respectively, have

qþ1 ¼ 3; q−1 ¼ 0; ð25Þ

qþ1 ¼ 2; q−1 ¼ 0; qþ2 ¼ 1; q−2 ¼ 0; ð26Þ

qþ1 ¼ 1; q−1 ¼ 0; qþ2 ¼ 1;

q−2 ¼ 0; qþ3 ¼ 1; q−3 ¼ 0: ð27Þ

The constituent quark spin polarizations can be calcu-
lated from the above equations, whereas the sea quark spin
polarizations can be calculated using Eqs. (16) and (17) by
substituting for every constituent quark. The quark spin
polarizations for spin − 3

2
decuplet baryons have been

presented in Table I. Even though the expressions for spin
polarizations have already been derived and presented in
Ref. [39], we present them here for the sake of complete-
ness since the numerical values for the axial-vector form
factors will be calculated from them. A closer look at the
expressions of these quantities reveals that the constant
factors represent the constituent quark polarizations. On the
other hand, the factors with transition probability P2

π

represent the contribution from the quark sea in general
(with or without SU(3) symmetry breaking). These expres-
sions are calculated in line with the methodology adopted
in Ref. [39] and are in agreement with their results if the
same values of parameters are taken.

B. Axial-vector form factors at Q2 = 0

As discussed earlier, the axial-vector form factors at zero
momentum transfer can be related to the different combi-
nations of explicit quark spin polarizations. The singlet,
triplet, and octet axial-vector form factors can be defined
using the spin polarizations of the constituent quark
calculated for each decuplet baryon using the chiral
constituent quark model. We have

G0

AV;B�3
2

ð0Þ ¼ Δu
B�3

2
þ Δd

B�3
2
þ Δs

B�3
2
;

G3

AV;B�3
2

ð0Þ ¼ Δu
B�3

2
− Δd

B�3
2
;

G8

AV;B�3
2

ð0Þ ¼ Δu
B�3

2
þ Δd

B�3
2
− 2Δs

B�3
2
: ð28Þ

In order to numerically calculate the above form factors,
we have to first fix the symmetry breaking parameters of
χCQM. We have already defined the transition probabilities
P2
π , P2

K, P
2
η, and P2

η0 , which give the extent of quark sea
contribution to the structure of the baryon. In the present
work, we will use the set of parameters as obtained by
carrying out a best fit analysis for the case of spin and flavor
distribution functions of spin − 1

2
þ octet baryons since no

experimental data is available for the case of spin − 3
2
þ

decuplet baryons. To find the upper and lower limits of
the parameters, a very gross analysis was carried out
using the quantities whose experimental measurements are
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available [41,44]. Following these physical considerations, a
through and refined analysis was carried out. The input
parameters have been summarized in Table II (set 1). In order
to understand the quantitative contribution of the chiral
fluctuation, we have taken another set of parameters (set 2),
wherein we have varied the transition probability P2

π.
Using these set of parameters, the quark spin polar-

izations and the axial-vector form factors for the decuplet
baryons at zero momentum transfer have been presented in
Table III. After a cursory look at the table, we obtain the
following relations for the case of flavor singlet axial-vector
form factors for Δ, Σ�, Ξ�, and Ω decuplet baryons

G0
AV;Δþþð0Þ ¼ G0

AV;Δþð0Þ ¼ G0
AV;Δ0ð0Þ ¼ G0

AV;Δ−ð0Þ;
G0

AV;Σ�þ ð0Þ ¼ G0

AV;Σ�0 ð0Þ ¼ G0
AV;Σ�− ð0Þ;

G0

AV;Ξ�0 ð0Þ ¼ G0
AV;Ξ�− ð0Þ: ð29Þ

The flavor hypercharge (octet) axial-vector form factors
G8

AV;B�3
2

ð0Þ also obey the same relations for each multiplet

of the decuplet baryons. The flavor isovector (triplet) axial-
vector form factors, however, are different for each baryon
in the multiplet. We have

G3
AV;Δþþð0Þ ≠ G3

AV;Δþð0Þ ≠ G3
AV;Δ0ð0Þ ≠ G3

AV;Δ−ð0Þ;
G3

AV;Σ�þ ð0Þ ≠ G3

AV;Σ�0 ð0Þ ≠ G3
AV;Σ�− ð0Þ;

G3

AV;Ξ�0 ð0Þ ≠ G3
AV;Ξ�− ð0Þ: ð30Þ

In addition to these, there are some interesting relations
between the flavor triplet axial-vector form factors of the
baryons from different multiplets, which are important to
mention here. We get

G3
AV;Δþð0Þ ¼ G3

AV;Ξ�0 ð0Þ;
G3

AV;Δ0ð0Þ ¼ G3
AV;Ξ�− ð0Þ; ð31Þ

Further, we have

G3

AV;Σ�0 ð0Þ ¼ G3
AV;Ω−ð0Þ ¼ 0: ð32Þ

TABLE II. Input parameters of the χCQM transition probability
parameters used in the analysis of axial-vector form factors.

Parameter → P2
π P2

K P2
η P2

η0 MA

Set 1 0.114 0.202 0.202 0.562 1.10þ0.13
−0.15 GeV

Set 2 0.220 0.202 0.202 0.562 1.10þ0.13
−0.15 GeV

TABLE III. The χCQM results for the quark spin polarizations and the axial-vector form factors at Q2 ¼ 0 for the Δ, Σ�, Ξ�, and Ω
decuplet baryons.

Quantity Δþþ Δþ Δ0 Δ− Σ�þ Σ�0 Σ�− Ξ�0 Ξ�− Ω−

Δu
B
3
2

2.095 1.283 0.470 −0.342 1.374 0.561 −0.251 0.652 −0.160 −0.069
Δd

B
3
2

−0.342 0.470 1.283 2.095 −0.251 0.561 1.374 −0.160 0.652 −0.069
Δs

B
3
2

−0.069 −0.069 −0.069 −0.069 0.834 0.834 0.834 1.738 1.738 2.641

G0

AV;B�3
2

ð0Þ 1.684 1.684 1.684 1.684 1.957 1.957 1.957 2.230 2.230 2.503

G3

AV;B�3
2

ð0Þ 2.437 0.812 −0.812 −2.437 1.625 0.000 −1.625 0.812 −0.812 0.000

G8

AV;B�3
2

ð0Þ 1.891 1.891 1.891 1.891 −0.545 −0.545 −0.545 −2.983 −2.983 −5.421

TABLE I. Quark spin polarizations for the spin − 3
2
þ decuplet baryons in terms of the constituent quark polarizations (constant factors)

and quark sea polarizations (with transition probability P2
π).

Decuplet baryons B�3
2
þ Δu

B
3
2

Δd
B
3
2

Δs
B
3
2

ΔþþðuuuÞ 3 − P2
πð6þ 3P2

K þ P2
η þ 2P2

η0 Þ −3P2
π −3P2

πP2
K

ΔþðuudÞ 2 − P2
πð5þ 2P2

K þ 2
3
P2
η þ 4

3
P2
η0 Þ 1 − P2

πð4þ P2
K þ 1

3
P2
η þ 2

3
P2
η0 Þ −3P2

πP2
K

ΔoðuddÞ 1 − P2
πð4þ P2

K þ 1
3
P2
η þ 2

3
P2
η0 Þ 2 − P2

πð5þ 2P2
K þ 2

3
P2
η þ 4

3
P2
η0 Þ −3P2

πP2
K

Δ−ðdddÞ −3P2
π 3 − P2

πð6þ 3P2
K þ P2

η þ 2P2
η0 Þ −3P2

πP2
K

Σ�þðuusÞ 2 − P2
πð4þ 3P2

K þ 2
3
P2
η þ 4

3
P2
η0 Þ −P2

πðP2
K þ 2Þ 1 − 2P2

πð2P2
K þ 2

3
P2
η þ 1

3
P2
η0 Þ

Σ�oðudsÞ 1 − P2
πð3þ 2P2

K þ 1
3
P2
η þ 2

3
P2
η0 Þ 1 − P2

πð3þ 2P2
K þ 1

3
P2
η þ 2

3
P2
η0 Þ 1 − 2P2

πð2P2
K þ 2

3
P2
η þ 1

3
P2
η0 Þ

Σ�−ðddsÞ −P2
πðP2

K þ 2Þ 2 − P2
πð4þ 3P2

K þ 2
3
P2
η þ 4

3
P2
η0 Þ 1 − 2P2

πð2P2
K þ 2

3
P2
η þ 1

3
P2
η0 Þ

Ξ�oðussÞ 1 − P2
πð2þ 3P2

K þ 1
3
P2
η þ 2

3
P2
η0 Þ −P2

πð2P2
K þ 1Þ 2 − P2

πð5P2
K þ 8

3
P2
η þ 4

3
P2
η0 Þ

Ξ�−ðdssÞ −P2
πð2P2

K þ 1Þ 1 − P2
πð2þ 3P2

K þ 1
3
P2
η þ 2

3
P2
η0 Þ 2 − P2

πð5P2
K þ 8

3
P2
η þ 4

3
P2
η0 Þ

Ω−ðsssÞ −3P2
πP2

K −3P2
πP2

K 3 − 6P2
πðP2

K þ 2
3
P2
η þ 1

3
P2
η0 Þ
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These observations, along with isospin symmetry, can be
clearly understood from Table I. It is clear that the explicit
quark spin polarizations of each baryon can be related to its
isospin partner with the interchange of u ⟷ d, d ⟷ s, or
s ⟷ u. This is the reason we get

ΔuΔþþ ¼ ΔuΔ− ;

ΔuΔþ ¼ ΔuΔ0 ;

ΔuΣ�þ ¼ ΔuΣ�− ;

ΔuΞ�0 ¼ ΔuΞ�− : ð33Þ

We also have

ΔsΔþþ ¼ ΔuΔþ ¼ ΔuΔ0 ¼ ΔuΔ− : ð34Þ

This has important implication toward the contribution of
quark sea in the nonstrange baryons. The strange spin
polarization is coming entirely from the quark sea, as there
are no s quarks in the Δ baryons. Further, for the case of Σ�
and Ξ� having ðq1q2sÞ and ðq1ssÞ quark content, respec-
tively, we have

ΔsΣ�þ ¼ ΔsΣ�0 ¼ ΔsΣ�− ;

ΔsΞ�0 ¼ ΔsΞ�− : ð35Þ

The singlet axial-vector form factor as defined in
Eq. (28) gives the sum of explicit spin polarizations
Δu

B�3
2
þ Δd

B�3
2
þ Δs

B�3
2
. If we just consider only the con-

stituent quarks of baryons, we should get

G0

AV;B�3
2

ð0Þ ¼ 3: ð36Þ

This combination is further related to the total spin of the
baryon as

1

2
ΔΣ ¼ 1

2
G0

AV;B�3
2

ð0Þ ¼ 3

2
: ð37Þ

If we see the results from Table III, the results for singlet
axial-vector form factor for the case of all the multiplets of
baryons are much lower than the constituent quark model
results. This is completely in line with the observations
from the DIS experiments characterized by proton spin
crisis, which have provided the strong evidence for the
constituent quarks carrying only about 30% of the total spin
for the case of proton. It is possible to describe the missing
spin through the angular momentum conservation, where
this reduced spin due to the quark sea is compensated by
orbital angular momentum carried by the sea [46,48,49].
Even though there is no possibility of any experimental
studies for the case of the decuplet baryons, a deep
understanding of the dynamics of the constituent quarks

will form a basis for formulating any model in the non-
perturbative regime.
For the case of flavor isovector (triplet) axial-vector form

factors, the role of the quark sea is clearly evident when we
compare the results with the constituent quark model
results [50–52], where only the constituent quarks con-
tribute. We have

G3
AV;Δþþð0Þ ¼ −G3

AV;Δ−ð0Þ ¼ 3;

G3
AV;Δþð0Þ ¼ −G3

AV;Δ0ð0Þ ¼ 1;

G3

AV;Σ�þ ð0Þ ¼ −G3
AV;Σ�− ð0Þ ¼ 2;

G3

AV;Ξ�0 ð0Þ ¼ −G3
AV;Ξ�− ð0Þ ¼ 1;

G3

AV;Σ�0 ð0Þ ¼ G3
AV;Ω−ð0Þ ¼ 0: ð38Þ

When we compare these results with the χCQM results, we
find that because of the quark sea contributing with an
opposite magnitude, the results of χCQM are toward the
lower side. If we compare it with the case of octet baryons,
the results of experiments are much lower than the
constituent quark model results for the case of nucleon,
and the χCQM results are more or less in agreement with
the data [53], making us conclude that the quark sea
contribution will play a vital role in the case of decuplet
baryons also. The isovector triplet axial-vector form factor
is one of the most well-known factors, and it connects the
axial charge and the strong coupling constant through the
Goldberger-Treiman relation.
The flavor singlet axial-vector form factor and the flavor

hypercharge (octet) axial-vector form factor reduce to the
Ellis-Jaffe sum rule [54,55] in the limit of Δs ¼ 0, as
evident from Eq. (28). We have

G0

AV;B�3
2

ð0Þ ¼ G8

AV;B�3
2

ð0ÞjΔs¼0: ð39Þ

Since the strange quarks and consequently strange spin
polarization are the same for each baryon in a particular
multiplet, we get the same hypercharge (octet) axial-vector
for the case of Δ, Σ�, Ξ�, and Ω decuplet baryons.

C. Q2 dependence in axial-vector form factors

In order to understand the role of Q2 dependence of the
axial-vector form factors, the form factors are often para-
metrized in terms of dipole type or parametrization or a
p–pole type of parametrization. Experimentally, the Q2

dependence is investigated from the quasielastic neutrino
scattering [6,7], as well as from the pion electroproduction
[8]. In the present work, to analyze the axial-vector form
factors, we consider the most conventionally used dipole
form of parametrization, which is given by
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Ga

AV;B�3
2

ðQ2Þ ¼
Ga

AV;B�3
2

ð0Þ	
1þ Q2

M2
A



2
; ð40Þ

where G0

AV;B�3
2

ð0Þ, G3

AV;B�3
2

ð0Þ, and G8

AV;B�3
2

ð0Þ are the

isovector axial-vector coupling constants at zero momen-
tum transfer. Here, MA is defined as the axial mass, which
can be related to the axial radius through this parametriza-
tion. As extracted from neutrino scattering experiments,
we have the global average of MA as (1.026� 0.021) GeV
[56]. A slightly smaller value can also be found at MA ¼
ð1.001� 0.020Þ GeV [57]. Axial mass can also be fitted to
the experiment and taken as free parameter [58]. At present,
we have the experimental data only for the case of nucleon
axial-vector form factors, but, by convention, the axial
masses corresponding to Σ�, Ξ�, and Ω are expected to be
larger. Even though the large value of axial mass will
lead to larger values of the axial-vector form factors in
magnitude, the overall behavior of the form factors,
however, remains the same. We have considered the
most recent value from the MiniBooNE Collaboration
MA ¼ 1.10þ0.13

−0.15 GeV [59] for studying the Q2 dependence
in the present work.
The behavior and magnitude of the form factors for

decuplet baryons mainly depends on the constituent quark
structure of the baryon. Therefore, it would be interesting to
mention here that the axial-vector form factors can be
defined for the constituent quarks, which are spatially
extended particles [58]. The explicit quark flavor axial-
vector form factors can be defined in terms of singlet,
triplet, and octet axial-vector form factors, and further Q2

dependence can be studied using the dipole form of
parametrization [Eq. (40)]. We have

Gu

AV;B�3
2

ðQ2Þ ¼ 1

3
G0

AV;B�3
2

ðQ2Þ þ 1

2
G3

AV;B�3
2

ðQ2Þ

þ 1

2
ffiffiffi
3

p G8

AV;B�3
2

ðQ2Þ;

Gd

AV;B�3
2

ðQ2Þ ¼ 1

3
G0

AV;B�3
2

ðQ2Þ − 1

2
G3

AV;B�3
2

ðQ2Þ

þ 1

2
ffiffiffi
3

p G8

AV;B�3
2

ðQ2Þ;

Gs

AV;B�3
2

ðQ2Þ ¼ 1

3
G0

AV;B�3
2

ðQ2Þ − 1ffiffiffi
3

p G8

AV;B�3
2

ðQ2Þ: ð41Þ

The explicit values of quark flavor axial-vector form factors
at zero momentum transfer have been presented in Table IV
using set 1 from Table II. A cursory look at the table reveals
the fact that the constituent quarks clearly dominate over
the quark sea, and the sea quarks contribute in the opposite
direction. Experimental measurements for heavier baryons
can perhaps substantiate this fact further.

In order to discuss the dependence of the constituent
quark form factors on Q2 (0 ≤ Q2 ≤ 1), in Fig. 1, we have
plotted the explicit u, d, and s quark flavor axial-vector
form factors for each of the Δ, Σ�, Ξ�, and Ω decuplet
baryons.
The constituent quark structure is clearly reflected in the

plots. For example, in the case of ΔþþðuuuÞ, the form
factor Gu

AV;B�3
2

dominates. The interesting point in this case

is the presence of the Gs

AV;B�3
2

. Even though it is small, it

clearly reflects the importance of the quark sea in under-
standing its underlying dynamics. Similarly, in the case of
Σ�þðuusÞ, it is very clear that the form factors Gu

AV;B�3
2

and

Gs

AV;B�3
2

dominate. Here, also, the presence ofGd

AV;B�3
2

is due

to the presence of quark sea. Further, in the case of
Ξ�0ðussÞ, the form factor Gs

AV;B�3
2

dominates, and for

Ω−ðsssÞ, the quark sea contributes equally to the u and
d form factors, and Gs

AV;B�3
2

has maximum contribution.

Another important observation in the plots is the domi-
nance of the role of quark sea at low Q2. As we move
toward higher Q2, the contribution is still dominated by the
constituent quarks, but the constituent quark form factors
fall off rapidly with increasing Q2.
Further, to discuss the Q2 dependence (0 ≤ Q2 ≤ 1) in

the axial-vector form factors, we present in Fig. 2, singlet,
triplet, and octet axial-vector form factors forΔ, Σ�, Ξ�, and
Ω decuplet baryons. From the plots, one can easily discuss
the variation and sensitivity to Q2 for the form factors.
Broadly speaking, the singlet, triplet, and octet vary with
Q2 in the following order

G0
AV;Ω > G0

AV;Ξ�− > G0

AV;Σ�þ > G0
AV;Δþ ;

G3
AV;Δþþ > G3

AV;Σ�þ > G3
AV;Δþ > G3

AV;Ξ�− ;

G8
AV;Δþ > G8

AV;Σ�þ > G8
AV;Ξ�− > G8

AV;Ω: ð42Þ

TABLE IV. The χCQM results for the quark flavor axial-vector
form factors atQ2 ¼ 0 for the Δ, Σ�, Ξ�, and Ω decuplet baryons.

Baryon Gu

AV;B�3
2

ð0Þ Gd

AV;B�3
2

ð0Þ Gs

AV;B�3
2

ð0Þ
Δþþ 2.326 −0.111 −0.530
Δþ 1.513 0.701 −0.530
Δ0 0.701 1.513 −0.530
Δ− −0.111 2.326 −0.530
Σ�þ 1.307 −0.317 0.967
Σ�0 0.494 0.494 0.967
Σ�− −0.317 1.307 0.967
Ξ�0 0.288 −0.524 2.466
Ξ�− −0.524 0.288 2.466
Ω− −0.730 −0.730 3.964
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FIG. 1. The explicit quark flavor axial-vector form factors for Δ, Σ�, Ξ�, and Ω decuplet baryons plotted as function of Q2.

FIG. 2. Form factors for Δ, Σ�, Ξ�, and Ω decuplet baryons plotted as function of Q2.
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The singlet axial-vector form factorsG0

AV;B�3
2

fall off rapidly

for all the decuplet baryons. The triplet axial-vector form
factors G3

AV;B�3
2

fall off rapidly for the cases where u quark

dominates (G3
AV;Δþþ and G3

AV;Σ�þ ), whereas for other cases,

it falls off slowly. The octet axial-vector form factors
G8

AV;B�3
2

, fall off rapidly for the cases having dominant s

quarks (G8
AV;Ω and G8

AV;Ξ�− ).
In order to understand the role of chiral fluctuations in

terms of the transition probabilities, we consider a different
set of input parameters (set 2 from Table II). We consider
here the variation of only the transition probability P2

π,
where the strange and nonstrange quark masses are
considered to be nondegenerate Ms > Mu;d. Since the
hierarchy of the transition probabilities is based on the
scaling of the quark contributions as 1

M2
q
, it is clearly evident

from Eq. (9) that P2
π quantitatively dominates over the other

transition probabilities to understand the extent of quark sea
contribution in the baryon structure. Further, in order to
understand in depth the role of the transition parameters for
each of the flavor singlet, flavor isovector (triplet), and the
flavor hypercharge axial (octet) axial-vector form factors,
we present in Fig. 3 the case of G0

AV;ΔþðQ2Þ, G3
AV;ΔþðQ2Þ,

and G8
AV;ΔþðQ2Þ for the two set of parameters given in

Table II. From the figure, we find that the singlet axial-
vector form factor, which gives the sum of explicit spin
polarizations, is highly sensitive to the parameter P2

π. This
is again in line with the experimental observations for the
case of nucleons, which indicate that the quark sea
contributes to the baryon spin with a reversed sign, or,
in other words, it reduces the total contribution of the
constituent quarks. The lowering of G0

AV;ΔþðQ2Þ at Q2 ¼ 0

for P2
π ¼ 0.220 as compared to P2

π ¼ 0.114 endorses the
fact that more of the probability of constituent quark
fluctuating to a sea of quarks is more so the contribution
of the quark sea in the baryon spin. Future experimental
measurements for decuplet baryons will fix the transition
probabilities so that the constituent and sea quark distri-
butions add up in the right direction to give an excellent
overall fit to the axial-vector form factors. Further, flavor
triplet axial-vector form factor G3

AV;ΔþðQ2Þ is also impor-
tant. In this case, as evident from Eq. (28), only the u and d
spin polarizations contribute. As Δþ has uud as the quark
content, so changing the parameter P2

π does not affect it to a
large extent. In this case, the strange quarks contribute only
through the parameters P2

K , P
2
η, and P2

η0 , which have values

of second order as compared to the value of P2
π. This

reduces to the fact that this term is dominated by the
constituent quark structure. Any refinement for the

FIG. 3. Axial-vector form factors for the case of Δþ plotted as function of Q2 for two set of parameters.
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strangeness dependent quantities would have important
implications for the basic features of χCQM. As for the
case of G0

AV;ΔþðQ2Þ, the flavor hypercharge axial (octet)

axial-vector form factor G8
AV;ΔþðQ2Þ also is sensitive to the

transition probability P2
π.

IV. SUMMARY AND CONCLUSIONS

To summarize, the axial-vector form factors of the
spin − 3

2
þ decuplet baryons have been investigated in the

chiral constituent quark model (χCQM) using the explicit
quark spin polarizations, which have important implica-
tions for the quark sea arising from the chiral symmetry
breaking. The Goldstone bosons mediating the interaction
between constituent quarks play an important role to
phenomenologically estimate the extent of quark sea
contribution in understanding the internal structure of the
baryons. Even though this model does not solve any
dynamical equations, the symmetry and phenomenological
parametrization not only make it easier to handle, but
they are also able to explain the underlying dynamics of
quarks inside the baryons. In particular, we have studied
the axial-vector form factors corresponding to the flavor
singlet current, flavor isovector (triplet) current, and the
flavor hypercharge axial (octet) current at zero momentum
transfer, which are, respectively, represented as G0

AV;B�3
2

ð0Þ,
G3

AV;B�3
2

ð0Þ, and G8

AV;B�3
2

ð0Þ. The form factors have been

investigated for the case of Δ, Σ�, Ξ�, and Ω spin − 3
2
þ

decuplet baryons. Some important relations for the cases
for each baryon in the multiplet and for baryons in different
multiplets have been discussed. The singlet axial-vector
form factor is related to the total spin of the baryon, and the
present results are completely in line with the observations
from the DIS experiments. The quark sea contributes to the
total spin with opposite sign as that of the constituent quark
spin, and this reduced spin is further compensated by its
orbital angular momentum, which has the same sign as that

of the constituent quarks. The isovector triplet axial-vector
form factor connects the axial charge and the strong
coupling constant through the Goldberger-Treiman rela-
tion. Further, the flavor singlet axial-vector form factor and
the flavor hypercharge (octet) axial-vector form factor
reduce to the Ellis-Jaffe sum rule in the limit of Δs ¼ 0.
The role of Q2 dependence of the axial-vector form

factors has been parametrized using the most convention-
ally used dipole form of parametrization. The constituent
quark structure is clearly reflected in the study, and the
dominance of the role of quark sea at low Q2 is also clear.
As we move toward higher Q2, the contribution is still
dominated by the constituent quarks; however, the dom-
inant constituent quark form factors fall off rapidly. High
precision measurements over a wide Q2 region in the near
future will impose important constraints on the parity-
violating asymmetries in different kinematical regions.
The quantitative contribution of the quark sea has also

been investigated by varying the transition probability of
the chiral fluctuation, and it is found that it’s more probable
that constituent quark fluctuating to a sea of quarks more is
the reduction in the total contribution of the constituent
quarks. The strange quarks do not contribute significantly
as the parameters P2

K, P
2
η, and P2

η0 have values of second

order as compared to the value of P2
π . Any refinement for

the strangeness dependent quantities would have important
implications for the basic tenents of χCQM, as well as the
important role of chiral symmetry breaking and SU(3)
symmetry breaking in the nonperturbative regime of QCD,
where the constituent quarks and the weakly interacting
Goldstone bosons constitute the appropriate degrees of
freedom at the leading order.
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