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We examine the polarized doubly-virtual Compton scattering (VVCS) off the nucleon using chiral
perturbation theory (χPT). The polarized VVCS contains a wealth of information on the spin structure of
the nucleon which is relevant to the calculation of the two-photon-exchange effects in atomic spectroscopy
and electron scattering. We report on a complete next-to-leading-order calculation of the polarized VVCS
amplitudes S1ðν; Q2Þ and S2ðν; Q2Þ, and the corresponding polarized spin structure functions g1ðx;Q2Þ and
g2ðx;Q2Þ. Our results for the moments of polarized structure functions, partially related to different spin
polarizabilities, are compared to other theoretical predictions and “data-driven” evaluations, as well as to
the recent Jefferson Lab measurements. By expanding the results in powers of the inverse nucleon mass,
we reproduce the known “heavy-baryon” expressions. This serves as a check of our calculation, as well as
demonstrates the differences between the manifestly Lorentz-invariant baryon χPT and heavy-baryon
frameworks.
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I. INTRODUCTION

In the studies of nucleon structure, the forward doubly-
virtual Compton scattering (VVCS) amplitude, Fig. 1, is
playing a central role (see, e.g., Refs. [1–4] for reviews).
Traditionally, its general properties, such as unitarity,
analyticity, and crossing, are used to establish various
useful sum rules for the nucleon magnetic moment
(Gerasimov-Drell-Hearn [5,6] and Schwinger sum rules
[7–9]) and polarizabilities (e.g., Baldin [10] and
Gell-Mann-Goldberger-Thirring sum rules [11]). More
recently, the interest in nucleon VVCS has been renewed
in connection with precision atomic spectroscopy, where
this amplitude enters in the form of two-photon exchange
(TPE) corrections. As the TPE corrections in the atomic

domain are dominated by low-energy VVCS, it makes
sense to calculate them systematically using chiral pertur-
bation theory (χPT), which is a low-energy effective-field
theory of the Standard Model.
In this paper, we present a state-of-the-art χPT calcu-

lation of the polarized nucleon VVCS, relevant to TPE
corrections to the hyperfine structure of hydrogen and
muonic hydrogen. This will extend the leading-order χPT
evaluation of the TPE effects in hyperfine splittings
[12–17]. Here, however, we do not discuss the TPE
evaluation, but rather focus on testing the χPT framework
against the available empirical information on the low-
energy spin structure of the nucleon.
It is especially interesting to confront the χPT predictions

with the recent measurements coming from the ongoing
“Spin Physics Program” at Jefferson Laboratory [18–27],
with the exception of a recent measurement of the deuteron
spin polarizability by the CLAS Collaboration [28], which
does not treat correctly complications due to deuteron
spin [29].
Our present calculation is extending Ref. [30] to the

case of polarized VVCS. We therefore use a manifestly
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covariant extension of SU(2) χPT to the baryon sector
called baryon χPT (BχPT). First attempts to calculate
VVCS in the straightforward BχPT framework (rather
than the heavy-baryon expansion or the “infrared regulari-
zation”) were done by Bernard et al. [31] and our group
[32]. The two works obtained somewhat different results,
most notably for the proton spin polarizability δLT. Here we
improve on [32] in three important aspects appreciable at
finite Q2: (1) inclusion of the Coulomb-quadrupole ðC2Þ
N → Δ transition [33,34]; (2) correct inclusion of the
elastic form-factor contributions to the integrals Γ1ðQ2Þ,
I1ðQ2Þ, and IAðQ2Þ (see Secs. III C and III D for details),
and (3) cancellations between different orders in the chiral
prediction and their effect on the convergence of the
effective-field-theory calculation, and thus, the error esti-
mate. These improvements, however, do not bring us closer
to the results of [31], and the source of discrepancies most
likely lies in the different counting and renormalization of
the πΔ-loop contributions. Bernard et al. [31] use the so-
called small-scale expansion [35] for the Δð1232Þ contri-
butions, whereas we are using the δ-counting scheme [36]
(see also Ref. [37] [Sec. 4] for review).
This paper is organized as follows. In Sec. II A, we

introduce the polarized VVCS amplitudes and their rela-
tions to spin structure functions. In Sec. II B, we introduce
the spin polarizabilities appearing in the low-energy
expansion (LEX) of the polarized VVCS amplitudes. In
Sec. II C, we briefly describe our χPT calculation, focusing
mainly on the uncertainty estimate. In Sec. III, we show our
predictions for the proton and neutron polarizabilities, as
well as some interesting moments of their structure
functions. In Sec. III G, we summarize the results obtained
herein, comment on the improvements done with respect to
previous calculations, and give an outlook to future
applications. In Appendix B, we discuss the structure
functions; in particular, we define the longitudinal-
transverse response function, discuss the Δ-pole contribu-
tion, and give analytical results for the tree-level πN- and
Δ-production channels of the photoabsorption cross sec-
tions. In Appendix C, we give analytical expressions for
the πN-loop and Δ-exchange contributions to the central
values and slopes of the polarizabilities and moments of
structure functions at Q2 ¼ 0. The complete expressions,
also for the πΔ-loop contributions, can be found in the
Supplemental Material [38].

II. CALCULATION OF UNPOLARIZED
VVCS AT NLO

A. VVCS amplitudes and relations
to structure functions

The polarized part of forward VVCS can be described in
terms of two independent Lorentz-covariant and gauge-
invariant tensor structures and two scalar amplitudes [3]:

Tμνðp; qÞ

¼ −
1

MN
γμναqαS1ðν; Q2Þ

−
1

M2
N
ðγμνq2 þ qμγναqα − qνγμαqαÞS2ðν; Q2Þ: ð1Þ

Here, q and p are the photon and nucleon four-momenta
(cf. Fig. 1), ν is the photon lab-frame energy, Q2 ¼ −q2 is
the photon virtuality, and γμν ¼ 1

2
½γμ; γν� and γμνα ¼

1
2
ðγμγνγα − γαγνγμÞ are the usual Dirac matrices.

Alternatively, one can use the following laboratory-frame
amplitudes:

gTTðν; Q2Þ ¼ ν

MN

�
S1ðν; Q2Þ − Q2

MNν
S2ðν; Q2Þ

�
; ð2aÞ

gLTðν; Q2Þ ¼ Q
MN

�
S1ðν; Q2Þ þ ν

MN
S2ðν; Q2Þ

�
; ð2bÞ

introduced in Eq. (A2). The optical theorem relates the
absorptive parts of the forward VVCS amplitudes to the
nucleon structure functions or the cross sections of virtual
photoabsorption:

ImS1ðν;Q2Þ ¼ 4π2α

ν
g1ðx;Q2Þ ð3aÞ

¼MNνKðν;Q2Þ
ν2þQ2

�
Q
ν
σLTðν;Q2Þþ σTTðν;Q2Þ

�
;

ImS2ðν; Q2Þ ¼ 4π2αMN

ν2
g2ðx;Q2Þ ð3bÞ

¼ M2
NKðν; Q2Þ
ν2 þQ2

�
ν

Q
σLTðν; Q2Þ − σTTðν; Q2Þ

�
;

with α the fine structure constant and Kðν; Q2Þ the photon
flux factor. Note that the photon flux factor in the optical
theorem and the cross sections, measured in electropro-
duction processes, is a matter of convention and has to be
chosen in both quantities consistently. In what follows, we
use Gilman’s flux factor:

FIG. 1. The forward Compton scattering, or VVCS, in the case
of virtual photons, q2 ¼ −Q2.
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Kðν; Q2Þ≡ jq⃗j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p
: ð4Þ

The helicity-difference photoabsorption cross section is
defined as σTT ¼ 1=2ðσ1=2 − σ3=2Þ, where the photons are
transversely polarized, and the subscripts on the right-hand
side indicate the total helicities of the γ�N states. The cross
section σLT corresponds to a simultaneous helicity change
of the photon and nucleon spin flip, such that the total
helicity is conserved. A detailed derivation of the con-
nection between this response function and the photo-
absorption cross sections can be found in Appendix B.
The forward VVCS amplitudes satisfy dispersion relations
derived from the general principles of analyticity and
causality1:

S1ðν; Q2Þ ¼ 16παMN

Q2

Z
1

0

dx
g1ðx;Q2Þ

1 − x2ðν=νelÞ2 − i0þ
ð5aÞ

¼ 2MN

π

Z
∞

νel

dν0
ν0 2½Qν0 σLT þ σTT �ðν0; Q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν0 2 þQ2

p
ðν0 2 − ν2 − i0þÞ

;

νS2ðν; Q2Þ ¼ 16παM2
N

Q2

Z
1

0

dx
g2ðx;Q2Þ

1 − x2ðν=νelÞ2 − i0þ
ð5bÞ

¼ 2M2
N

π

Z
∞

νel

dν0
ν02½ν0Q σLT − σTT �ðν0; Q2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν02 þQ2

p
ðν02 − ν2 − i0þÞ

;

with νel ¼ Q2=2MN the elastic threshold.

B. Low-energy expansions and relations
to polarizabilities

The VVCS amplitudes naturally split into nucleon-pole
(Spolei ) and nonpole (Snonpolei ) parts, or Born (SBorni ) and non-
Born (S̄i) parts:

Si ¼ Spolei þ Snonpolei ¼ SBorni þ S̄i: ð6Þ

The Born amplitudes are given uniquely in terms of the
nucleon form factors [1]:

SBorn1 ðν;Q2Þ¼2πα

MN

�
Q2GMðQ2ÞF1ðQ2Þ

ν2el−ν2
−F2

2ðQ2Þ
�
; ð7aÞ

SBorn2 ðν; Q2Þ ¼ −
2παν

ν2el − ν2
GMðQ2ÞF2ðQ2Þ: ð7bÞ

The same is true for the nucleon-pole amplitudes, which
are related to the Born amplitudes in the following way:

Spole1 ðν; Q2Þ ¼ SBorn1 ðν; Q2Þ þ 2πα

MN
F2
2ðQ2Þ; ð8aÞ

Spole2 ðν; Q2Þ ¼ SBorn2 ðν; Q2Þ: ð8bÞ

Here, we used the elastic Dirac and Pauli form factors
F1ðQ2Þ and F2ðQ2Þ, related to the electric and magnetic
Sachs form factors GEðQ2Þ and GMðQ2Þ through

F1ðQ2Þ ¼ GEðQ2Þ þ τGMðQ2Þ
1þ τ

; ð9aÞ

F2ðQ2Þ ¼ GMðQ2Þ −GEðQ2Þ
1þ τ

; ð9bÞ

where τ ¼ Q2=4M2
N .

A LEX of Eq. (5), in combination with the unitarity
relations given in Eq. (3), establishes various sum rules
relating the nucleon properties (electromagnetic moments,
polarizabilities) to experimentally observable response
functions [1,3]. The leading terms in the LEX of the real
Compton scattering (RCS) amplitudes are determined
uniquely by charge, mass, and anomalous magnetic
moment, as the global properties of the nucleon. These
lowest-order terms represent the celebrated low-energy
theorem (LET) of Low, Gell-Mann, and Goldberger
[39,40]. The polarizabilities, related to the internal structure
of the nucleon, enter the LEX at higher orders. They make
up the non-Born amplitudes and can be related to moments
of inelastic structure functions.
The process of VVCS can be realized experimentally

in electron-nucleon scattering, where a virtual photon is
exchanged between the electron and the nucleon. This
virtual photon acts as a probe whose resolution depends on
its virtuality Q2. In this way, one can access the so-called
generalized polarizabilities, which extend the notion of
polarizabilities to the case of response to finite momentum
transfer. The generalized forward spin polarizability γ0ðQ2Þ
and the longitudinal-transverse polarizability δLTðQ2Þ are
most naturally defined via the LEX of the non-Born part of
the lab-frame VVCS amplitudes [1]:

1

4π
gnonpoleTT ðν; Q2Þ ¼ 2α

M2
N
IAðQ2Þνþ γ0ðQ2Þν3

þ γ̄0ðQ2Þν5 þ � � � ; ð10aÞ

1

4π
gnonpoleLT ðν; Q2Þ ¼ 2α

M2
N
I3ðQ2ÞQþ δLTðQ2Þν2Qþ � � � :

ð10bÞ

Their definitions in terms of integrals over structure
functions are postponed to Eqs. (19) and (22). Here, we
only give the definition of the moment I3ðQ2Þ:

1The dispersion relation for νS2ðν; Q2Þ is used because it is
pole-free in the limit Q2 → 0, and then ν → 0 [cf. Eq. (7b)].
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I3ðQ2Þ ¼ M2
N

4π2α

Z
∞

ν0

dν
Kðν; Q2Þ

νQ
σLTðν; Q2Þ

¼ 2M2
N

Q2

Z
x0

0

dx½g1ðx;Q2Þ þ g2ðx;Q2Þ�; ð11Þ

which is related to the Schwinger sum rule in the real
photon limit [7–9,41,42]. The LEX of the nonpole part of
the covariant VVCS amplitudes can be described entirely in
terms of moments of inelastic spin structure functions [up
to Oðν4Þ [43] ]:

1

4π
Snonpole1 ðν; Q2Þ ¼ 2α

MN
I1ðQ2Þ þ

�
2α

MNQ2
½IAðQ2Þ

− I1ðQ2Þ� þMNδLTðQ2Þ
�
ν2; ð12aÞ

1

4π
νSnonpole2 ðν; Q2Þ ¼ 2αI2ðQ2Þ þ 2α

Q2
½I1ðQ2Þ − IAðQ2Þ�ν2:

ð12bÞ

I1ðQ2Þ and IAðQ2Þ are generalizations of the famous
Gerasimov-Drell-Hearn (GDH) sum rule [5,6] from RCS to
the case of virtual photons [1]. Their definitions are given
in Eqs. (26) and (32). I2ðQ2Þ is the well-known Burkhardt-
Cottingham (BC) sum rule [44],

I2ðQ2Þ≡ 2M2
N

Q2

Z
x0

0

dxg2ðx;Q2Þ ¼ 1

4
F2ðQ2ÞGMðQ2Þ;

ð13Þ

which can be written as a “superconvergence sum rule”:

Q2

16παM2
N
lim
ν→0

νS2ðν; Q2Þ ¼
Z

1

0

dxg2ðx;Q2Þ ¼ 0: ð14Þ

The latter is valid for any value of Q2 provided that the
integral converges for x → 0. Combining Eq. (5) with the
above LEXs of the VVCS amplitudes, we can relate IAðQ2Þ,
I1ðQ2Þ, γ0ðQ2Þ, and δLTðQ2Þ to moments of inelastic
structure functions (see Sec. III). It is important to note that
only γ0ðQ2Þ and δLTðQ2Þ are generalized polarizabilities.
The relation of the inelastic moments IAðQ2Þ and I1ðQ2Þ to
polarizabilities will be discussed in detail in Secs. III C and
III D. The difference between S̄1ðν; Q2Þ and Snonpole1 ðν; Q2Þ
[cf. Eq. (8)] will be important in this context.

C. Details on χPT calculation and uncertainty estimate

In this work, we calculated the next-to-leading-order
(NLO) prediction of BχPT for the polarized non-Born
VVCS amplitudes. This includes the leading pion-nucleon
(πN) loops (see Ref. [32][Fig. 1]), as well as the subleading
tree-level Delta exchange (Δ exchange) (see Ref. [30]

[Fig. 2]) and the pion-Delta (πΔ) loops (see Ref. [32]
[Fig. 2]). In the δ-power-counting scheme [36], the LO and
NLO non-Born VVCS amplitudes and polarizabilities are
of Oðp3Þ and Oðp4=ΔÞ, respectively.2 The low-energy
constants (LECs) are listed in Table I, sorted by the order at
which they appear in our calculation. At the given orders,
there are no “new” LECs that would need to be fitted from
Compton processes. For more details on the BχPT for-
malism, we refer to Ref. [30], where power counting,
predictive orders (Sec. III A), and the renormalization
procedure (Sec. III B) are discussed.
A few remarks are in order for the inclusion of the

Δð1232Þ and the tree-level Δ-exchange contribution. In
contrast to Ref. [32], we include the Coulomb-quadrupole
ðC2Þ N → Δ transition described by the LEC gC. The
relevant Lagrangian describing the nonminimal γ�NΔ
coupling [33,34] (note that in these references the overall
sign of gC is inconsistent between the Lagrangian and
Feynman rules) reads

Lð2Þ
Δ ¼ 3e

2MNMþ
N̄T3

�
igMF̃μν∂μΔν − gEγ5Fμν∂μΔν

þ i
gC
MΔ

γ5γ
αð∂αΔν − ∂νΔαÞ∂μFμν

�
þ H:c:; ð15Þ

with Mþ ¼ MN þMΔ and the dual of the electromagnetic
field strength tensor F̃μν ¼ 1

2
ϵμνρλFρλ. Even though the

Coulomb coupling is subleading compared with the electric
and magnetic couplings (gE and gM), its relatively large
magnitude (cf. Table I) makes it numerically important, for
instance, in γ0ðQ2Þ. Furthermore, we study the effect of
modifying the magnetic coupling using a dipole form factor,

gM →
gM

½1þ ðQ=ΛÞ2�2 ; ð16Þ

where Λ2 ¼ 0.71 GeV2. The inclusion of this Q2 depend-
ence mimics the form expected from vector-meson domi-
nance. It is motivated by observing the importance of this
form factor for the correct description of the electroproduc-
tion data [33].
To estimate the uncertainties of our NLO predictions,

we define

δ̃ðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Δ
MN

�
2

þ
�

Q2

2MNΔ

�
2

s
; ð17Þ

such that the neglected next-to-next-to-leading order terms
are expected to be of relative size δ̃2 [33]. The uncertainties

2In the full Compton amplitude, there is a lower order
contribution coming from the Born terms, leading to a shift in
nomenclature by one order: the LO contribution referred to as the
NLO contribution, etc. (See, e.g., Ref. [45].)
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in the values of the parameters in Table I have a much
smaller impact compared to the truncation uncertainty and
can be neglected. Unfortunately, ΔIAðQ2Þ, γ0ðQ2Þ, and
γ̄0ðQ2Þ, i.e., the sum rules involving the cross section
σTTðν; Q2Þ, as well as the polarizability ΔI1ðQ2Þ, turn out

to be numerically small. Their smallness suggests a
cancellation of leading orders (which can indeed be
confirmed by looking at separate contributions as shown
below). Therefore, an error of δ̃2ðQ2ÞPðQ2Þ, where PðQ2Þ
is a generalized polarizability, might underestimate the
theoretical uncertainty for some of the NLO predictions. To
avoid this, we estimate the uncertainty of our NLO polar-
izability predictions by

σPðQ2Þ
¼ fMax½δ̃4ð0ÞPð0Þ2; δ̃4ð0ÞPLOð0Þ2; δ̃2ð0ÞPNLOð0Þ2�
þMax½δ̃4ðQ2Þ½PðQ2Þ − Pð0Þ�2;
δ̃4ðQ2Þ½PLOðQ2Þ − PLOð0Þ�2;
δ̃2ðQ2Þ½PNLOðQ2Þ − PNLOð0Þ�2�g1=2; ð18Þ

FIG. 2. Upper panel: Generalized forward spin polarizability for the proton (left) and neutron (right) as a function of Q2. The result of
this work, the NLO BχPT prediction, is shown by the blue solid line and the blue band. The red line represents the LO BχPT result. The
purple short-dashed line is the Oðp4Þ HB result from Ref. [51]. The black dotted line is the MAID model prediction [61–63], which is
taken from Ref. [1] (proton) and Ref. [20] (neutron). The pink band is the IRþ Δ result from Ref. [60], and the gray band is the
BχPTþ Δ result from Ref. [31]. Empirical extractions for the proton: Ref. [18] (blue dots), Ref. [64] (purple square), and Ref. [57]
(orange triangle; uncertainties added in quadrature); and neutron: Ref. [20] (blue diamonds) and Ref. [58] (green dots; statistical and
systematic uncertainties added in quadrature). Lower Panel: Longitudinal-transverse spin polarizability for the proton (left) and neutron
(right). The orange dot-dashed and purple short-dashed lines are the Oðp3Þ and Oðp4Þ HB results from Ref. [51]. The pink band is the
IR result from Ref. [60] and the gray band is the covariant BχPTþ Δ result from Ref. [31]. The black dotted line is the MAID model
prediction [61–63]; note that for the proton we use the updated estimate from Ref. [1] obtained using the π; η; ππ channels.

TABLE I. Parameters (fundamental and low-energy constants)
[46] at the order they appear first. The πNΔ coupling constant hA
is fit to the experimental Delta width and the γ�NΔ coupling
constants gM, gE, and gC are taken from the pion photoproduction
study of Ref. [33].

Oðp2Þ α ¼ 1=ð137.04Þ, MN ¼ Mp ¼ 938.27 MeV
Oðp3Þ gA ¼ 1.270, fπ ¼ 92.21 MeV, mπ ¼ 139.57 MeV
Oðp4=ΔÞ MΔ ¼ 1232 MeV, hA ≡ 2gπNΔ ¼ 2.85,

gM ¼ 2.97, gE ¼ −1.0, gC ¼ −2.6
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where PLOðQ2Þ is the πN-loop contribution, PNLOðQ2Þ
are the Δ-exchange and πΔ-loop contributions, and
PðQ2Þ ¼ PLOðQ2Þ þ PNLOðQ2Þ. This error prescription
is similar to the one used in, e.g., Refs. [47–50]. Here,
since we are interested in the generalized polarizabilities,
we added in quadrature the error due to the real-photon
piece Pð0Þ and theQ2-dependent remainder PðQ2Þ − Pð0Þ.
Note that IAð0Þ and I1ð0Þ are given by the elastic Pauli form
factor, which is not part of our BχPT prediction and is
considered to be exact.
Note that our result for the spin polarizabilities (and the

unpolarized moments [30]) are NLO predictions only at low
momentum transfers Q ≃mπ . At larger values of Q≳ Δ,
they become incomplete LO predictions. Indeed, in this
regime theΔ propagators do not carry additional suppression
compared to the nucleon propagators, and the πΔ loops are
promoted to LO. In general, we only expect a rather small
contribution from omitted πΔ loops to the Q2 dependence
of the polarizabilities, since πΔ loops show rather weak
dependence on Q2 compared with the Δ exchange or πN
loops. Nevertheless, this issue has to be reflected in the error
estimate. Since the polarizabilities at the real-photon point
Pð0Þ are not affected, it is natural to separate the error on the
Q2-dependent remainder PðQ2Þ − Pð0Þ, as done in Eq. (18).
To accommodate for the potential loss of precision above
Q≳ Δ, we define the relative error δ̃ðQ2Þ as growing with
increasing Q2 [see Eq. (17)].
Upon expanding our results in powers of the inverse

nucleon mass,M−1
N , we are able to reproduce existing results

of heavy-baryon χPT (HBχPT) at LO. We, however, do not
see a rationale to drop the higher-orderM−1

N terms when they
are not negligible (i.e., when their actual size exceeds by far
the natural estimate for the size of higher-order terms).
Comparing our BχPT predictions to HBχPT, we will also
see a deficiency of HBχPT in the description of the Q2

behavior of the polarizabilities. Note that theOðp4Þ HBχPT
results from Refs. [51,52], which we use here for compari-
son, do not include the Δ. These references studied the
leading effect of the latter in the HBχPT framework, using
the small-scale expansion [35], observing no qualitative
improvement in the HBχPT description of the empirical data
[51,52] when including it. We therefore choose to use the
Oðp4Þ results as the representative HBχPT curves.
Another approach used in the literature to calculate the

polarizabilities in χPT is the infrared regularization (IR)
scheme, introduced in Ref. [53]. This covariant approach
tries to solve the power counting violation observed in
Ref. [54] by dropping the regular parts of the loop integrals
that contain the power-counting-breaking terms. However,
this subtraction scheme modifies the analytic structure of
the loop contributions and may lead to unexpected prob-
lems, as was shown in Ref. [55]. As we will see in the next
section, the IR approach also fails to describe the Q2

behavior of the polarizabilities.

III. RESULTS AND DISCUSSION

We now present the NLO BχPT predictions for the
nucleon polarizabilities and selected moments of the
nucleon spin structure functions. Our results are obtained
from the calculated non-Born VVCS amplitudes and the
LEXs in Eqs. (10) and (12). For a cross-check, we used the
photoabsorption cross sections described in Appendix B.
In addition to the full NLO results, we also analyze the
individual contributions from the πN loops, the Δ
exchange, and the πΔ loops.

A. γ0ðQ2Þ—generalized forward spin polarizability

The forward spin polarizability,

γ0ðQ2Þ ¼ 1

2π2

Z
∞

ν0

dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

ν2

s
σTTðν; Q2Þ

ν3
ð19Þ

¼16αM2
N

Q6

Z
x0

0

dxx2
�
g1ðx;Q2Þ−4M2

Nx
2

Q2
g2ðx;Q2Þ

�
;

provides information about the spin-dependent response
of the nucleon to transversal photon probes. The RCS
analogue of the above generalized forward spin polar-
izability sum rule is sometimes referred to as the Gell-
Mann, Goldberger, and Thirring (GGT) sum rule [11]. At
Q2 ¼ 0, the forward spin polarizability is expressed
through the lowest-order spin polarizabilities of RCS
as γ0 ¼ −ðγE1E1 þ γM1M1 þ γE1M2 þ γM1E2Þ. The forward
spin polarizability of the proton is relevant for an
accurate knowledge of the (muonic-)hydrogen hyperfine
splitting, as it controls the leading proton-polarizability
correction [16,56].
The πN-loop, Δ-exchange, and πΔ-loop contributions to

the NLO BχPT prediction of the forward spin polarizability
amount to, in units of 10−4 fm4,

γ0p ¼ −0.93ð92Þ ≈ 2.01 − 2.84 − 0.10; ð20aÞ

γ0n ¼ 0.03ð92Þ ≈ 2.98 − 2.84 − 0.10; ð20bÞ

while the slope is composed as follows, in units of
10−4 fm6:

dγ0pðQ2Þ
dQ2

				
Q2¼0

¼−0.22ð4Þ≈−0.33þ0.11þ0.01; ð21aÞ

dγ0nðQ2Þ
dQ2

				
Q2¼0

¼−0.61ð7Þ≈−0.73þ0.11þ0.01: ð21bÞ

Figure 2 (upper panel) shows our NLO prediction, as
well as the LO πN loops, compared to different exper-
imental and theoretical results. For the proton, we have
one determination at the real-photon point by the GDH
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Collaboration [19], γ0p ¼ −1.00ð8Þð12Þ × 10−4 fm4, and
further Jefferson Laboratory data [18,57] at very low Q2.
For the neutron, only data at finite Q2 are available [20,58].
The experimental data for the proton are fairly well
reproduced in the whole Q2 range considered here, while
for the neutron the agreement improves with increasingQ2.
The HB limit of our πN-loop contribution reproduces the
results published in Refs. [51,59] for arbitrary Q2.
In addition, our prediction is compared to the MAID
model [1,20], the IRþ Δ calculation of Ref. [60], and
the BχPTþ Δ result of Ref. [31].
The πN-production channel gives a positive contribution

to the photoabsorption cross section σTTðν; Q2Þ at low Q2

(cf. Fig. 10). Accordingly, one observes that the πN loops
give a sizable positive contribution to γ0ðQ2Þ. The Delta, on
the other hand, has a very large effect by canceling the πN
loops and bringing the result close to the empirical data.
From Fig. 3 (upper panel), one can see that it is the Δ
exchange what dominates, while πΔ loops are negli-
gible. This was expected, since the forward spin polar-
izability sum rule is an integral over the helicity-difference

cross section, in which σ3=2 is governed by the Delta
at low energies (the relevant energy region for the
sum rule).
To elucidate the difference between the present calcu-

lation and the one from Ref. [31], we note that the two
calculations differ in the following important aspects. First,
Ref. [31] uses the small-scale counting [65] that considers
Δ and mπ as being of the same size, Δ ∼mπ . In practice,
this results in a set of πΔ-loop graphs which contains
graphs with one or two γΔΔ couplings and hence two or
three Delta propagators. Such graphs are suppressed in the
δ counting and thus omitted from our calculation while
present in that of Ref. [31]. Second, the Lagrangians
describing the interaction of the Delta are constructed
differently and assume slightly different values for the
coupling constants. In particular, we employ (where pos-
sible) the so-called “consistent” couplings to the Delta
field, i.e., those couplings that project out the spurious
degree of freedom (see Refs. [37,66,67]). The authors of
Ref. [31], on the other hand, use couplings where the
consistency in this sense is not enforced. The effects of
these differences are of higher order in the δ-counting

FIG. 3. Contributions of the different orders to the chiral predictions of γ0ðQ2Þ (upper panel) and δLTðQ2Þ (lower panel) for the proton
(left) and neutron (right). Red solid line: πN-loop contribution; green dot-dashed line: Δ-exchange contribution; orange dotted line:
πΔ-loop contribution; blue long-dashed line: total result; purple dot-dot-dashed line: total result without gC contribution; and black
short-dashed line: total result without gM dipole.
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expansion, and their contribution to the Q2 dependence
of the considered polarizabilities is expected to be
rather small; however, the differences at Q2 ¼ 0 could
be noticeable [68].
Finally, as mentioned in Sec. II C, we are including a

dipole form factor in the magnetic coupling gM, a modi-
fication absent in Ref. [31]. This modification is expected
to be needed in order to generate the correctQ2 behavior of
the polarizabilities that receive a significant contribution
from the magnetic γ�NΔ transition, such as γ0ðQ2Þ.
Figure 2 (upper panel) shows that our predictions for the
Q2 dependence of γ0ðQ2Þ differ quite significantly from
those of Ref. [31]. The main reason for this is the dipole
form factor that indeed drives the curves closer to the
experimental data. Another polarizability that shows a

similar importance of the dipole form factor is the closely
related IAðQ2Þ, considered below in Sec. III C, and shown
in Fig. 4 (upper panel). In other polarizabilities, such as
δLTðQ2Þ shown in Fig. 2 (lower panel), the magnetic
transition is not so prominent, and so is the effect of the
dipole form factor on the Q2 dependence. The effect of the
form factor on the polarizabilities is further illustrated in
Figs. 3, 5, and 9, where one can see the total result with the
gM dipole compared to the total result without it.
Concerning the generalized forward spin polarizability,

the experimental data for γ0nðQ2Þ at very low Q2 slightly
favor the BχPT prediction without inclusion of the
dipole form factor [31]. In general, our BχPT prediction
is able to describe all experimental data within errors and
shows perfect agreement for γ0pðQ2Þ at Q2 < 0.3 GeV2

FIG. 4. Upper panel: The generalized GDH integral IAðQ2Þ for the proton (left) and neutron (right) as a function of Q2. The result of
this work, the NLO BχPT prediction, is shown by the blue solid line and the blue band. The red line represents the LO BχPT result. The
purple short-dashed line is the Oðp4Þ HB result from Refs. [51,52]. The gray band is the BχPTþ Δ result from Ref. [31]. The black
dotted line is the MAID model prediction [69]. Experimental extractions for the proton: Ref. [57] (orange triangle; uncertainties added in
quadrature); and neutron: Refs. [21]/[27], where magenta dots/orange diagonal crosses correspond to data and red squares/lilac crosses
correspond to data plus extrapolation to unmeasured energy regions. The green stars at the real-photon point are derived from the
anomalous magnetic moments: ϰp ≈ 1.793 and ϰn ≈ −1.913 [70]. Lower panel: The generalized GDH integral I1ðQ2Þ for the proton
(left) and neutron (right) as a function of Q2. The purple short-dashed line is the HB result from Ref. [52]. Experimental extractions for
the proton: Ref. [18] (blue dots) and Ref. [57] (orange triangle; uncertainties added in quadrature); and neutron: Refs. [58]/[27]
(uncertainties added in quadrature) where green dots/orange diagonal crosses correspond to data and gray squares/lilac crosses
correspond to data plus extrapolation to unmeasured energy regions.
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and for γ0nðQ2Þ in the region of 0.15 < Q2 < 0.3 GeV2.
The πΔ-loop contribution does not modify theQ2 behavior
of γ0ðQ2Þ and differs from Ref. [31] by only a small global
shift. Note also the relatively large effect of gC, which
generates a sign change for virtualities above ∼0.2 GeV2

[see Fig. 3 (upper panel)].

B. δLTðQ2Þ—longitudinal-transverse polarizability

The longitudinal-transverse spin polarizability,

δLTðQ2Þ ¼ 1

2π2

Z
∞

ν0

dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

ν2

s
σLTðν;Q2Þ

Qν2

¼ 16αM2
N

Q6

Z
x0

0

dxx2½g1ðx;Q2Þ þ g2ðx;Q2Þ�; ð22Þ

contains information about the spin structure of the nucleon
and is another important input in the determination of
the (muonic-)hydrogen hyperfine splitting [16,56]. It is
also relevant in studies of higher-twist corrections to the
structure function g2ðx;Q2Þ, given by the moment d2ðQ2Þ
[52] (see Sec. III E). The peculiarity of the response
encoded in this polarizability is that it involves a spin flip
of the nucleon and a polarization change of the photon (see
Appendix B and Fig. 11).
It is expected that the Delta isobar gives only a

small contribution to δLTðQ2Þ, which makes this polar-
izability a potentially clean test case for chiral calcula-
tions. Consequently, there are relatively many different
theoretical calculations of δLTðQ2Þ coming from different
versions of χPT with baryons (HB, IR, and covariant).
Reference [51] found a systematic deviation of the HB
result for δLTnðQ2Þ from the MAID model prediction. This
disagreement was identified by the authors of Ref. [71] as a
puzzle involving the neutron δLT polarizability—the δLT
puzzle. The IR calculation in Ref. [60] also showed a
deviation from the data and predicted a rapid rise of
δLTðQ2Þ with growing Q2. The problem is solved by
keeping the relativistic structure of the theory, as the
BχPTþ Δ result of Ref. [31] showed.
As expected, already the leading πN loops provide

a reasonable agreement with the experimental data
[cf. Fig. 2 (lower panel)]. Since the Δ-exchange con-
tribution to δLTðQ2Þ is small, the effect of the gM form
factor is negligible in this polarizability, as is that of the
gC coupling [cf. Fig. 3 (lower panel)]. In fact, we predict
both the Δ-exchange and the πΔ-loop contributions to be
small and negative. This is in agreement with the MAID
model, which predicts a small and negative contribution
of the P33 wave to δLTðQ2Þ. However, in the calculation
of Ref. [31], which is different from the one presented
here only in the way the Δð1232Þ is included, the
contribution of this resonance to δLTpðQ2Þ is sizable
and positive. The authors of that work attributed this

large contribution to diagrams where the photons couple
directly to the Delta inside a loop. As mentioned in
Sec. III A, the effect of such loop diagrams does not
change the Q2 behavior of the polarizabilities. On the
other hand, it can produce a substantial shift of the
δLTðQ2Þ as a whole. A higher-order calculation should
resolve the discrepancy between the two covariant
approaches; however, it will partially lose the predictive
power since the LECs appearing at higher orders will
have to be fitted to experimental data.
The πN-loop, Δ-exchange, and πΔ-loop contributions to

the NLO BχPT prediction of the longitudinal-transverse
polarizability are, in units of 10−4 fm4,

δLTp ¼ 1.32ð15Þ ≈ 1.50 − 0.16 − 0.02; ð23aÞ

δLTn ¼ 2.18ð23Þ ≈ 2.35 − 0.16 − 0.02; ð23bÞ

while the slopes are, in units of 10−4 fm6,

dδLTpðQ2Þ
dQ2

				
Q2¼0

¼ −0.85ð8Þ ≈ −0.80 − 0.04 − 0.01;

ð24aÞ

dδLTnðQ2Þ
dQ2

				
Q2¼0

¼ −1.24ð12Þ ≈ −1.19 − 0.04 − 0.01:

ð24bÞ

C. IAðQ2Þ—a generalized GDH integral

The helicity-difference cross section σTT exhibits a faster
falloff in ν than its spin-averaged counterpart σT . This is
due to a cancellation between the leading (constant) terms
of σ1=2 and σ3=2 at large ν.3 The resulting 1=ν falloff of
the helicity-difference cross section allows one to write an
unsubtracted dispersion relation for the VVCS amplitude
gnonpoleTT ðν; Q2Þ [cf. Eq. (10)]. This is the origin of the GDH
sum rule [5,6],

−
α

2M2
N
ϰ2 ¼ 1

2π2

Z
∞

ν0

dν
σTTðνÞ

ν
; ð25Þ

which establishes a relation to the anomalous magnetic
moment ϰ. It is experimentally verified for the nucleon by
MAMI (Mainz) and ELSA (Bonn) [72,73].
There are two extensions of the GDH sum rule to

finite Q2: the generalized GDH integrals IAðQ2Þ and
I1ðQ2Þ. The latter will be discussed in Sec. III D. The
former is defined as4

3Notice that a constant term in σTT at ν → ∞ is forbidden by
crossing symmetry.

4Note that IAðQ2Þ is sometimes called ITTðQ2Þ.
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−
α

2M2
N
IAðQ2Þ

¼ −
1

8π2

Z
∞

ν0

dν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

ν2

s
σTTðν; Q2Þ

ν

¼ α

Q2

Z
x0

0

dx

�
4M2

Nx
2

Q2
g2ðx;Q2Þ − g1ðx;Q2Þ

�
: ð26Þ

Because of its energy weighting, the integral in Eq. (26)
converges slower than the one in the generalized forward
spin polarizability sum rule (19). Therefore, knowledge of
the cross section at higher energies is required and the
evaluation of the generalized GDH integral IAðQ2Þ is not as
simple as the evaluation of γ0ðQ2Þ.
The generalized GDH integral IAðQ2Þ is directly related

to the nonpole amplitude gnonpoleTT ðν; Q2Þ, which differs from
non-Born amplitude ḡTTðν; Q2Þ by a term involving the
elastic Pauli form factor

gnonpoleTT ðν; Q2Þ ¼ ḡTTðν; Q2Þ − 2παν

M2
N

F2
2ðQ2Þ ð27Þ

[cf. Eqs. (2) and (8)]. Consequently, IAðQ2Þ is not a
pure polarizability, but also contains an elastic contribu-
tion. The “nonpolarizability” or the Born part of IAðQ2Þ is
given by

IBornA ðQ2Þ ¼ IAðQ2Þ − ΔIAðQ2Þ ¼ −
1

4
F2
2ðQ2Þ; ð28Þ

where we refer to the polarizability part as ΔIAðQ2Þ. The
same is true for the generalized GDH integral I1ðQ2Þ,
which is directly related to Snonpole1 ðν; Q2Þ:

IBorn1 ðQ2Þ ¼ I1ðQ2Þ − ΔI1ðQ2Þ ¼ −
1

4
F2
2ðQ2Þ: ð29Þ

In the following, we will add the Born parts to our LO and
NLOBχPT predictions for the polarizabilitiesΔIAðQ2Þ and
ΔI1ðQ2Þ, employing an empirical parametrization for the
elastic Pauli form factor [74]. This allows us to compare to
the experimental results for IAðQ2Þ and I1ðQ2Þ (cf. Fig. 4).
Note that the blue error bands only describe the uncer-
tainties of our BχPT predictions of the polarizabilities,
while the elastic contributions are considered to be exact, as
explained in Sec. II C. The uncertainties of the polar-
izability predictions are therefore better reflected in Fig. 5,
where we show the contributions of the different orders to
the BχPT predictions of ΔIAðQ2Þ and ΔI1ðQ2Þ, as well as
the total results with error bands.
The E97-110 experiment at Jefferson Lab has recently

published their data for IAnðQ2Þ in the region of
0.035 GeV2 < Q2 < 0.24 GeV2 [27]. In addition, there
are results for IAnðQ2Þ from the earlier E94-010 experiment

[21], and for IApðQ2Þ from the E08-027 experiment [57].
The Oðp4Þ HB calculation gives a large negative effect
[52], which does not describe the data. The BχPTþ Δ
result from Ref. [31], which mainly differs from our work
by the absence of the dipole form factor in gM, looks
similar to this HB result and only describes the data points
at lowest Q2. Our NLO prediction, however, follows
closely the Q2 evolution of the data. In Fig. 5 (upper
panel), we show the polarizability ΔIAðQ2Þ, whose Q2

evolution is clearly dominated by the Δ exchange. Similar
to the case of γ0pðQ2Þ, the inclusion of the dipole in gM
and the Coulomb coupling gC is very important in order to
describe the experimental data. The LO prediction, on the
other hand, slightly overestimates the data [cf. Fig. 4
(upper panel)].
At the real-photon point: IAð0Þ ¼ − ϰ2

4
and ΔIAð0Þ ¼ 0.

Therefore, we give only the slope of the polari-
zability ΔIAðQ2Þ (showing also the separate contribu-
tions from πN loops, Δ exchange, and πΔ loops) in units
of GeV−2:

dΔIApðQ2Þ
dQ2

				
Q2¼0

¼ −8.58ð3.43Þ ≈ 2.38 − 11.21þ 0.25;

ð30aÞ

dΔIAnðQ2Þ
dQ2

				
Q2¼0

¼ −9.55ð3.43Þ ≈ 1.41 − 11.21þ 0.25:

ð30bÞ

Including the empirical Pauli form factor [74], we find,
in units of GeV−2,

dIApðQ2Þ
dQ2

				
Q2¼0

¼−3.18;
dIAnðQ2Þ

dQ2

				
Q2¼0

¼−3.00: ð31Þ

D. Γ1ðQ2Þ and I1ðQ2Þ—the first moment
of the structure function g1ðx;Q2Þ

The second variant for a generalization of the GDH sum
rule to finite Q2 is defined as

−
α

2M2
N
I1ðQ2Þ

¼ −
1

8π2

Z
∞

ν0

dν
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν2 þQ2
p �

σTTðν;Q2Þ þQ
ν
σLTðν;Q2Þ

�
¼ −

α

Q2

Z
x0

0

dxg1ðx;Q2Þ; ð32Þ

where I1ð0Þ ¼ − ϰ2

4
. This generalized GDH integral directly

stems from the amplitude Snonpole1 ðν; Q2Þ with the LEX
from Eq. (12). It is given by the first moment of the
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structure function g1ðx;Q2Þ, Γ1ðQ2Þ ¼ R x0
0 dxg1ðx;Q2Þ, as

follows: I1ðQ2Þ ¼ 2M2
N

Q2 Γ1ðQ2Þ. The isovector combination

Γ1ðp−nÞðQ2Þ ¼
Z

x0

0

dx½g1pðx;Q2Þ − g1nðx;Q2Þ� ð33Þ

is related to the axial coupling of the nucleon through the
Bjorken sum rule [75,76]:

lim
Q2→∞

Γ1ðp−nÞðQ2Þ ¼ gA
6
: ð34Þ

As explained in Eq. (28), the moment I1ðQ2Þ splits into a
polarizability part ΔI1ðQ2Þ and a Born part IBorn1 ðQ2Þ.
Figure 4 (lower panel) shows the Q2 dependence of I1ðQ2Þ
which, in contrast to IAðQ2Þ shown in Fig. 4 (upper panel),
is clearly dominated by its Born part and the elastic Pauli
form factor. The πN-loop, Δ-exchange, and πΔ-loop
contributions to the polarizability ΔI1ðQ2Þ are shown in
Fig. 5 (lower panel). Comparing to Fig. 5 (upper panel),
one sees that ΔI1ðQ2Þ is less sensitive to gC and the dipole
form factor in gM than ΔIAðQ2Þ.

For the proton, our NLO BχPT prediction gives a very
good description of the experimental data [18,57] and is in
reasonable agreement with the MAID prediction [69]. For
the neutron, one observes good agreement with the empiri-
cal evaluations including extrapolations to unmeasured
energy regions starting from Q2 > 0.1 GeV2 [27,58]. In
the region of Q2 < 0.05 GeV2, one observes an interesting
tension between the recent E97-110 experiment [27] and
the data from CLAS [58]. While the newest measurement
finds I1nð0.035 GeV2Þ < ϰ2n=4, thus suggesting a negative
slope at low Q, the older measurement found a rather large
value for I1nð0.0496 GeV2Þ. A similar but milder behavior
is seen in the E97-110 [27] and E94-010 [21] data for IAn.
The MAID predictions do not agree with the CODATA
recommended values for the anomalous magnetic moments
of the proton and neutron [70], which in our work are
imposed by using empirical parametrizations for the elastic
Pauli form factors [74]. The slope of the HB result from
Ref. [52] is too large and therefore only reproduces the data
at very low Q2.
Figure 6 shows the moment Γ1ðQ2Þ for the proton and

neutron, while Fig. 7 shows the isovector combination
Γ1;p−nðQ2Þ. The LO and NLO BχPT predictions are

FIG. 5. Contributions of the different orders to the chiral predictions of ΔIAðQ2Þ (upper panel) and ΔI1ðQ2Þ (lower panel) for the
proton (left) and neutron (right). Red solid line: πN-loop contribution; green dot-dashed line: Δ-exchange contribution; orange dotted
line: πΔ-loop contribution; blue solid line and blue band: total result; purple dot-dot-dashed line: total result without gC contribution;
and black short-dashed line: total result without gM dipole.
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identical, because our calculation produces the same Delta
contributions for the proton and the neutron. For the
isovector combination, the MAID model only agrees with
the data at very low Q2 < 0.10 GeV2. The same is true
for the IR result [60,77], while all other chiral results
describe the data: NLO BχPT (this work), BχPTþ Δ [31],
and HBχPT [52].
At the real-photon point: I1ð0Þ ¼ − ϰ2

4
and ΔI1ð0Þ ¼ 0.

Therefore, we give only the slope of the polarizability
ΔI1ðQ2Þ (showing also the separate contributions from πN
loops, Δ exchange, and πΔ loops) in units of GeV−2:

dΔI1pðQ2Þ
dQ2

				
Q2¼0

¼ 0.39ð4Þ ≈ 0.34 − 0.53þ 0.58; ð35aÞ

dΔI1nðQ2Þ
dQ2

				
Q2¼0

¼ −1.01ð10Þ ≈ −1.07 − 0.53þ 0.58:

ð35bÞ

Including the empirical Pauli form factor [74], we find,
in units of GeV−2,

dI1pðQ2Þ
dQ2

				
Q2¼0

¼ 5.80;
dI1nðQ2Þ
dQ2

				
Q2¼0

¼ 5.53: ð36Þ

E. d̄2ðQ2Þ—a measure of color polarizability

Another interesting moment to consider is d2ðQ2Þ,
which is related to the twist-3 part of the spin structure
function g2ðx;Q2Þ [79,80]:

d2ðQ2Þ≡ 3

Z
1

0

dx x2½g2ðx;Q2Þ − gWW
2 ðx;Q2Þ�; ð37Þ

where gWW
2 ðx;Q2Þ is the twist-2 part of g2ðx;Q2Þ. Using

the Wandzura-Wilczek relation [81], one can relate d2ðQ2Þ
to the moments of the spin structure functions g1ðx;Q2Þ
and g2ðx;Q2Þ:

d2ðQ2Þ ¼
Z

1

0

dx x2½3g2ðx;Q2Þ þ 2g1ðx;Q2Þ�: ð38Þ

This relation, however, only holds for asymptotically
large Q2. It is also in the high-Q2 region, where
d2ðQ2Þ is a measure of color polarizability [82,83],
through its relation to the gluon field strength tensor
[80]. We refer to Ref. [84] for a recent review on the
spin structure of the nucleon, including a discussion
of sum rules for deep inelastic scattering and color
polarizabilities.
What we consider in the following is the inelastic part of

d2ðQ2Þ, defined as the moment of g1ðx;Q2Þ and g2ðx;Q2Þ
spin structure functions [cf. Eq. (38)]:

d̄2ðQ2Þ ¼
Z

x0

0

dx x2½3g2ðx;Q2Þ þ 2g1ðx;Q2Þ�: ð39Þ

FIG. 7. Isovector combination of Γ1ðQ2Þ as a function of Q2.
The legend is the same as in Fig. 6. The pink curve is the IR result
from Refs. [60,77]. The experimental points are from Ref. [78]
(brown dots) and Ref. [23] (orange squares).

FIG. 6. First moment of the structure function g1ðx;Q2Þ for the proton (left) and neutron (right) as a function of Q2. The legend is the
same as in Fig. 4.
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This moment provides another testing ground for our BχPT
predictions through comparison with experiments on the
neutron [22]. Going toward the low-Q2 region, the inter-
pretation of d̄2ðQ2Þ in terms of color polarizabilities will
fade out. The above definition, however, implies it is related
to other VVCS polarizabilities:

d̄2ðQ2Þ¼ Q4

8M4
N

�
M2

NQ
2

α
δLTðQ2Þþ I1ðQ2Þ−IAðQ2Þ

�
: ð40Þ

Note that d̄2ðQ2Þ and its first two derivatives with respect to
Q2 vanish at Q2 ¼ 0. The considerations in Eqs. (28) and
(29) have no effect on d̄2ðQ2Þ, since the Born contributions
from IAðQ2Þ and I1ðQ2Þ cancel out. Therefore, d̄2ðQ2Þ is a
pure polarizability.
In Fig. 8 (upper panel), we show our NLO BχPT

prediction and other results for d̄2ðQ2Þ. While MAID [69]
and BχPT describe the experimental data for the neutron
[22] very well, the HB limit [51,52] is showing a fast growth
with Q2. This illustrates the importance of keeping the

relativistic result. Note also that, even though the πN-loop
contribution is dominant, both gC and the form factor in gM
are essential to obtain a curvature that reproduces the data
[cf. Fig. 9 (upper panel)]. For the proton there are, to our
knowledge, no experimental results to compare with.
However, the agreement between the NLO BχPT prediction
and the MAID prediction at low energies is reasonable.

F. γ̄0ðQ2Þ—fifth-order generalized
forward spin polarizability

It is interesting to compare the generalized fifth-order
forward spin polarizability sum rule,

γ̄0ðQ2Þ¼ 1

2π2

Z
∞

ν0

dν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

ν2

s
σTTðν;Q2Þ

ν5
ð41Þ

¼ 64αM4
N

Q10

Z
x0

0

dxx4
�
g1ðx;Q2Þ−4M2

Nx
2

Q2
g2ðx;Q2Þ

�
;

FIG. 8. Upper panel: The inelastic moment d̄2ðQ2Þ for the proton (left) and neutron (right) as a function ofQ2. The result of this work,
the NLO BχPT prediction, is shown by the blue solid line and the blue band. The red line represents the LO BχPT result. The purple
short-dashed line is theOðp4Þ HB result from Refs. [51,52]. The black dotted line is the MAID model prediction [69]. The experimental
points for the neutron (cyan dots) are from Ref. [22]. Lower panel: Fifth-order generalized forward spin polarizability γ̄0ðQ2Þ, for the
proton (left) and neutron (right) as a function of Q2. The experimental points for the proton are from Ref. [64] (purple square) and
Ref. [85] (orange dot).
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to the sum rule integrals for IAðQ2Þ and γ0ðQ2Þ, since they
differ merely by their energy weighting of σTTðν; Q2Þ and a
constant prefactor [cf. Eqs. (19), (26), and (41)]. From
IAðQ2Þ to γ0ðQ2Þ to γ̄0ðQ2Þ, the energy suppression is
increasing by a factor of ν−2, respectively. Therefore, the
description of γ̄0ðQ2Þ should be easiest in a low-energy
effective-field theory such as χPT, whereas γ0ðQ2Þ and
IAðQ2Þ receive larger contributions from higher energies.
In Fig. 8 (lower panel), we show our LO and NLO BχPT

predictions for γ̄0ðQ2Þ. One can see that the πN-loop
contribution is positive (in accordance to what we see
for the cross section σTT ; see Fig. 10). The Delta shifts it
substantially, especially in the low Q2 region, bringing it
into a better agreement with data. In general, the BχPT
curves start above the empirical data points at the real-
photon point, and then decrease asymptotically to zero
above Q2 > 0.1 GeV2. On the other hand, the MAID
prediction reproduces the empirical data at the real-photon
point, then decreases to negative values until about
Q2 > 0.06 GeV2, from where it also starts to asymptoti-
cally approach zero. Consequently, our NLO BχPT pre-
diction of γ̄0ðQ2Þ is consistently above the MAID

prediction. This is very different from what we saw for
IAðQ2Þ in Fig. 4 (upper panel), where the MAID prediction
at the real-photon point is above the experimental value.
While the agreement of our predictions with the empirical
data is in general quite good for all moments of σTTðν; Q2Þ,
one should point out that both for γ0nðQ2Þ and γ̄0pðQ2Þ we
overestimate the data at low Q2. For IAðQ2Þ such an
observation cannot be made because ΔIAð0Þ ¼ 0, and
thus, IAð0Þ is given by the empirical Pauli form factor
only. From IAðQ2Þ, γ0ðQ2Þ, and γ̄0ðQ2Þ, the latter has the
smallest, however, non-negligible dependence on gC and
the dipole in gM [cf. Fig. 9 (lower panel)].
The πN-loop, Δ-exchange, and πΔ-loop contributions to

the NLO BχPT prediction of the fifth-order forward spin
polarizability amount to, in units of 10−4 fm6,

γ̄0p ¼ 1.12ð30Þ ≈ 2.08 − 0.96 − 0.01; ð42aÞ

γ̄0n ¼ 1.95ð30Þ ≈ 2.92 − 0.96 − 0.01; ð42bÞ

while the slope is composed as follows, in units of
10−4 fm8:

FIG. 9. Contributions of the different orders to the chiral predictions of d̄2ðQ2Þ (upper panel) and γ̄0ðQ2Þ (lower panel) for the proton
(left) and neutron (right). Red solid line: πN-loop contribution; green dot-dashed line: Δ-exchange contribution; orange dotted line:
πΔ-loop contribution; blue long-dashed line: total result; purple dot-dot-dashed line: total result without gC contribution; and black
short-dashed line: total result without gM dipole.
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dγ̄0pðQ2Þ
dQ2

				
Q2¼0

¼ −0.84ð10Þ ≈ −1.00þ 0.16þ 0.00;

ð43aÞ

dγ̄0nðQ2Þ
dQ2

				
Q2¼0

¼ −1.42ð15Þ ≈ −1.58þ 0.16þ 0.00:

ð43bÞ

Note that the HB prediction of γ̄0p [4.23 at Oðp3Þ and
3.65 at Oðϵ3Þ [85,86] ] is almost an order of magnitude
larger than the empirical value, and therefore not shown
in Fig. 8.

G. Summary

Our results are summarized in Table II, where we give
the contributions of the different orders to the chiral
predictions of the polarizabilities and their slopes at the
real-photon point. A quantitative comparison of our pre-
dictions for the spin polarizabilities to the work of Bernard
et al. [31] and different empirical evaluations is shown in
Table III. We can see that the inclusion of the Delta turns
out to be very important for all moments of the helicity-
difference cross section. To describe the Q2 behavior of the
polarizabilities, the magnetic coupling of the N → Δ
transition should be modified by a dipole form factor, as
has been observed previously in the description of electro-
production data [33]. This dipole form factor effectively
takes account of vector-meson exchanges. The Coulomb-
quadrupole N → Δ transition, despite its subleading order,
is important in the description of some moments of spin
structure functions. This is contrary to what we saw for the
moments of unpolarized structure functions [30], where the
Coulomb coupling had a negligible effect. The πΔ loops
are mainly relevant for the generalized GDH integrals.

IV. CONCLUSIONS

We have presented a complete NLO calculation of the
polarized non-Born VVCS amplitudes in covariant BχPT,
with pion, nucleon, and Δð1232Þ fields. The dispersion
relations between the VVCS amplitudes and the tree-level
photoabsorption cross sections served as a cross-check of
these calculations.
The obtained moments of the proton and neutron spin

structure functions, related to generalized polarizabilities
and GDH-type integrals, agree well with the available
experimental data. The description of their Q2 evolution is
improved compared to the previous χPT predictions. In
particular, the NLO BχPT predictions obtained here give a
better description of the empirical data (e.g., from the
Jefferson Laboratory “Spin Physics Program”) than the HB
[51,52] and IR [60] calculations.

TABLE II. The NLO BχPT predictions for the forward VVCS
polarizabilities and their slopes at Q2 ¼ 0. The contributions of
the πN loops, the Δ exchange, and the πΔ loops are shown,
together with the combined total result. Note that IAð0Þ ¼
I1ð0Þ ¼ d̄2ð0Þ ¼ 0 and ðd̄2Þ0 ¼ 0.

πN loops Δ exchange πΔ loops Total

γ0 p 2.01 −2.84 −0.10 −0.93ð92Þ
ð10−4 fm4Þ n 2.98 0.03(92)

δLT p 1.50 −0.16 −0.02 1.32(15)
ð10−4 fm4Þ n 2.35 2.18(23)

γ̄0 p 2.08 −0.96 −0.01 1.12(30)
ð10−4 fm6Þ n 2.92 1.95(30)

ðγ0Þ0 p −0.33 0.11 0.01 −0.22ð4Þ
ð10−4 fm6Þ n −0.73 −0.61ð7Þ
ðδLTÞ0 p −0.80 −0.04 −0.01 −0.85ð8Þ
ð10−4 fm6Þ n −1.19 −1.24ð12Þ
ðγ̄0Þ0 p −1.00 0.16 0.00 −0.84ð10Þ
ð10−4 fm8Þ n −1.58 −1.42ð15Þ
ðΔIAÞ0 p 2.38 −11.21 0.25 −8.58ð3.43Þ
(GeV−2) n 1.41 −9.55ð3.43Þ
ðΔI1Þ0 p 0.34 −0.53 0.58 0.39(4)
(GeV−2) n −1.07 −1.01ð10Þ

TABLE III. Our NLO BχPT predictions for the spin polarizabilities at Q2 ¼ 0, compared with the BχPTþ Δ
predictions from Bernard et al. [31], and the available empirical information. Where the reference is not given, the
empirical number is provided by the MAID analysis [61,69] with unspecified uncertainty.

Proton Neutron

This work BχPTþ Δ Empirical This work BχPTþ Δ Empirical

γ0 −0.93ð92Þ −1.74ð40Þ −1.00ð8Þð12Þ [19] 0.03(92) −0.77ð40Þ −0.005
ð10−4 fm4Þ −0.90ð8Þð11Þ [85] [MAID]

−0.929ð105Þ [64]
δLT 1.32(15) 2.40(1) 1.34 2.18(23) 2.38(3) 2.03
ð10−4 fm4Þ [MAID] [MAID]

γ̄0 1.12(30) 0.60(7)(7) [85] 1.95(30) 1.23
ð10−4 fm6Þ 0.484(82) [64] [MAID]
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The demonstrated predictive power of the χPT frame-
work amplitudes makes it well suited for extending the χPT
evaluation of the TPE effect in the hyperfine structure of
(muonic-)hydrogen [15–17] to next-to-leading order.
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APPENDIX A: TENSOR DECOMPOSITIONS
OF THE VVCS AMPLITUDES

In this Appendix, we review the decomposition of
the forward VVCS process into tensor structures and
scalar amplitudes. In particular, we consider the connec-
tion between the covariant and the semirelativistic decom-
position in the lab frame that is defined in terms of
the conventional transverse, longitudinal, transverse-
transverse, and transverse-longitudinal amplitudes.
As explained in Sec. II A, the process of forward VVCS

off the nucleon can be described in terms of four explicitly
covariant amplitudes S1;2 and T1;2 [3]:

Tðν; Q2Þ ¼
��

−gμν þ qμqν

q2

�
T1ðν; Q2Þ þ 1

M2
N

�
pμ −

p · q
q2

qμ
��

pν −
p · q
q2

qν
�
T2ðν; Q2Þ

−
1

MN
γμναqαS1ðν; Q2Þ − 1

M2
N
ðγμνq2 þ qμγναqα − qνγμαqαÞS2ðν; Q2Þ

�
ϵ0�μ ϵν; ðA1Þ

where ϵμ (ϵ0�μ ) are the incoming (outgoing) photon polarization vectors, ν is the photon lab-frame energy, and Q2 is
the photon virtuality. Alternatively, the decomposition in the laboratory frame (which in the forward case coincides
with the Breit frame) is parametrized in terms of the nucleon Pauli matrices σ⃗ and the four scalar functions fL, fT , gTT ,
and gLT :

Tðν; Q2Þ ¼ ε0ε
0�
0 fLðν; Q2Þ þ ðε⃗0� · ε⃗ÞfTðν; Q2Þ þ iσ⃗ · ðε⃗0� × ε⃗ÞgTTðν; Q2Þ − iσ⃗ · ½ðε0ε⃗0� − ε⃗ε0�0 Þ × q̂�gLTðν; Q2Þ: ðA2Þ

Here, q⃗ and q̂ ¼ q⃗=jq⃗j are the photon three-momentum in
the lab system and its unit vector. The modified polarization
vector components are given by

ε0 ¼
�
ϵ0 −

ν

jq⃗j ðϵ⃗ · q̂Þ
� jq⃗j
Q

; ε⃗ ¼ ϵ⃗ − q̂ðϵ⃗ · q̂Þ; ðA3Þ

where ϵ ¼ ðϵ0; ϵ⃗Þ is the usual incoming photon polarization
vector, and ϵ0� the outgoing polarization vector. The LEX of
the lab frame amplitudes [Eq. (10)] can serve, in particular,
as the definition of the generalized polarizabilities. The lab
frame amplitudes are also conveniently used for the
definition of the response functions; see the example of
the scalar amplitude gLTðν; Q2Þ and the corresponding
response function σLTðν; Q2Þ below in Appendix B.

APPENDIX B: PHOTOABSORPTION
CROSS SECTIONS

In the forward kinematics, the spin-dependent VVCS
amplitudes and the spin polarizabilities can be described in
terms of the polarized structure functions g1ðx;Q2Þ and

g2ðx;Q2Þ, or equivalently, the helicity-difference cross
section σTTðν; Q2Þ and the longitudinal-transverse response
function σLTðν; Q2Þ, with the help of dispersion relations
(5) and the optical theorem (3). In this way, the photo-
absorption cross sections, measured in electroproduction
processes, form the basis for the most empirical evaluations
shown throughout Sec. III. In the following, we present the
BχPT predictions for the tree-level cross sections of πN-,
πΔ-, and Δ-production through photoabsorption on the
nucleon (cf. Figs. 8, 9, and 10 in Ref. [30]). In Secs. B 1 and
B 2, we will discuss the leading πN-production channel and
the Δ-production channel, respectively. We used these
cross sections to verify the polarizability predictions
obtained otherwise from the calculated non-Born VVCS
amplitudes. Because of the bad high-energy behavior of the
πΔ-production cross sections in BχPT (cf. Fig. 10), the
dispersion relations in Eq. (5) require further subtractions
for a reconstruction of the πΔ-loop contribution to the
spin-dependent VVCS amplitudes. Therefore, not all
polarizabilities could be verified, but only those appearing
as higher-order terms in the LEX of the VVCS amplitudes,
such as γ̄0 [16].
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1. πN-production channel

In order to extract the response function σLTðν; Q2Þ, we
have developed a method similar to the one used to
calculate σTTðν; Q2Þ (see, for example, Ref. [87]). For
σLTðν; Q2Þ, however, the calculation is more complicated
because one has to take into account that the associated
Compton process involves a spin flip of the nucleon, as
illustrated in Fig. 11. When calculating the cross section,
the product of the incoming nucleon spinors has to reflect
this flip.

The forward VVCS amplitude related to σLTðν; Q2Þ—
and δLTðQ2Þ—is gLTðν; Q2Þ. It can be extracted from
Eq. (A2) if one takes the modified polarization vector
components in Eq. (A3) with ϵ ¼ ϵL and ϵ0� ¼ ϵ�� as input,
where ϵL ¼ 1

Q ðjq⃗j; 0; 0; q0Þ and ϵ� ¼ ∓ 1ffiffi
2

p ð0; 1;�i; 0Þ are
the standard longitudinal and transverse polarization vec-
tors, respectively. For ϵL and ϵ��, only the choice of
helicities h0 ¼ �1=2 and h ¼ ∓1=2 gives a nonzero
contribution, and one obtains

χ†h0Tðν;Q2Þχh ¼ χ†h0f−iσ⃗ · ½ðε0ε⃗0� − ε⃗ε0�0 Þ× q̂�gLTðν;Q2Þgχh
¼

ffiffiffi
2

p
gLTðν;Q2Þ; ðB1Þ

where χh and χ†h0 are two-component Pauli spinors with
opposite helicities, or here, spins.
Let us now consider the related photoabsorption

process and, in particular, the tree-level γ�N → πN channel
(see diagrams in Fig. 8 of Ref. [30]). We define the
πN-production amplitude as

T ¼ ūhBðPBÞ
X
i

Aiðs; tÞΓiuhAðPAÞ; ðB2Þ

with the Dirac structures

Γ1 ¼ γ5; ðB3aÞ

Γ2 ¼
1

2
½=qA; =ϵ �γ5; ðB3bÞ

FIG. 11. Relation between the forward Compton process and
the photoabsorption process given by the optical theorem. In
particular, we show the longitudinal-transverse contribution. The
double-line arrows represent the spin of the external particles,
while the dot represents the scalar (longitudinal) polarization of
the incoming photon. Inside the blob the intermediate states are
represented: e.g., nucleons with spins r0 (which are averaged in
the calculation of the cross section) and pions.

FIG. 10. Photoabsorption cross sections for πN (red lines) and πΔ production (orange lines) with Q2 ¼ 0 (solid lines) and
Q2 ¼ 0.1 GeV2 (dashed lines for πN and dotted lines for πΔ channels).
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where uhAðPAÞ and u†hBðPBÞ are the Dirac spinors and PA

and PB are the four-momenta of the incoming and outgoing
nucleons, respectively. When calculating the photoabsorp-
tion cross section, related to the VVCS amplitude in
Eq. (B1), the nucleon spin flip should be implemented
by ūh0 ðPAÞ in T † and uhðPAÞ in T , together with the
appropriate transverse and longitudinal photon polarization
vectors ϵ�� and ϵL.
However, if one wants to use the properties of the

Dirac matrices, it is more useful to construct an operator
to produce this spin flip in the external nucleons of
Fig. 11. This is accomplished by introducing the projector
ΓLT ≡ 1

2
ffiffi
2

p ðγ1 þ iγ2Þγ5, which also takes into account the

extra factor
ffiffiffi
2

p
in Eq. (B1). We checked that with this

projector one correctly extracts δLT by comparing the
HB limit of our result to the HB result of Ref. [51],
where the authors calculate this polarizability from the
Compton amplitude directly. With all those ingredients,
the longitudinal-transverse cross section is calculated in the
following way:

σLTðν; Q2Þ ¼ 1

64π2s

jp⃗fjcm
jp⃗ijcm

Z
1

−1
d cos θ

X
i;j

AiA
†
jX ij; ðB4Þ

with

X ij ¼ Tr½ð=PB þMNÞΓið=PA þMNÞΓLTγ
0Γ†

jγ
0�; ðB5Þ

where θ is the scattering angle in the center-of-mass (cm)
frame and jp⃗ijcm (jp⃗fjcm) is the three-momentum of an
incoming (outgoing) particle in the cm frame. An explicit
calculation of the matrix X ij leads to

X ¼ MNQ

�
0 2ðPB − PAÞ · ϵL

−
ffiffiffi
2

p jq⃗fjcm sin θ ðs − uÞ

�
; ðB6Þ

where jq⃗ijcm (jq⃗fjcm) is the relative three-momentum of the
incoming (outgoing) particles in the cm frame. Here, s, t,
and u are the usual Mandelstam variables. For the different
γ�N → πN channels, we obtain the following amplitudes
Ai, where we introduce qA as the four-momentum of the
incoming photon and qB as the four-momentum of the
outgoing pion:

(i) γ�p → π0p

A1 ¼
egAMN

fπ

�
2PA · ϵþ qA · ϵ

s −M2
N

þ 2PB · ϵ − qA · ϵ
u −M2

N

�
;

ðB7aÞ

A2 ¼
egAMN

fπ

�
1

s −M2
N
þ 1

u −M2
N

�
; ðB7bÞ

(ii) γ�p → πþn

A1 ¼
ffiffiffi
2

p
egAMN

fπ

�
2PA · ϵþ qA · ϵ

s −M2
N

þ 2ðPA − PBÞ · ϵþ qA · ϵ
t −m2

π

�
; ðB8aÞ

A2 ¼
ffiffiffi
2

p
egAMN

fπðs −M2
NÞ

; ðB8bÞ

(iii) γ�n → π0n

A1 ¼ 0; ðB9aÞ

A2 ¼ 0; ðB9bÞ

(iv) γ�n → π−p

A1 ¼
ffiffiffi
2

p
egAMN

fπ

�
2PB · ϵ − qA · ϵ

u −M2
N

−
2ðPA − PBÞ · ϵþ qA · ϵ

t −m2
π

�
; ðB10aÞ

A2 ¼
ffiffiffi
2

p
egAMN

fπðu −M2
NÞ

: ðB10bÞ

The analytical expressions shown above were checked with
the amplitudes given in Ref. [88]. Analytical expressions
for the tree-level γ�N → πN channel of the σLTðν; Q2Þ and
σTTðν; Q2Þ cross sections are given below (proton channels:
πþn and π0p; neutron channel: π−p). We checked that they
reproduce the known results in the real-photon limit
[45,87]. To shorten the final expressions for the cross
sections, which are considerably longer for finiteQ2 than in
the real-photon limit, we define the following dimension-
less kinematic variables:

αγ ¼ ðEN
i Þcm=

ffiffiffi
s

p ¼ sþM2
N þQ2

2s
; ðB11Þ

απ ¼ ðEN
f Þcm=

ffiffiffi
s

p ¼ sþM2
N −m2

π

2s
; ðB12Þ

βγ ¼ Eγ
cm=

ffiffiffi
s

p ¼ s −M2
N −Q2

2s
; ðB13Þ

βπ ¼ Eπ
cm=

ffiffiffi
s

p ¼ s −M2
N þm2

π

2s
; ðB14Þ

λγ ¼ jq⃗ijcm=
ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −M2

N −Q2Þ2 þ 4sQ2
p

2s
; ðB15Þ

λπ ¼ jq⃗fjcm=
ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs −M2

N þm2
πÞ2 − 4sm2

π

p
2s

: ðB16Þ
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Here, ðEN
i Þcm and ðEN

f Þcm are the energies of the incoming and outgoing nucleon, Eγ
cm is the energy of the incoming photon,

and Eπ
cm is the energy of the outgoing pion, all in the cm frame.

σðπ
þnÞ

TT ¼ −
e2g2AM

2
N

64πf2πs3ðs −M2
NÞ2λ4γ

�
4sλπλγ½ðM2

N − sÞðM2
N −Q2 − sÞðQ2 þ 2sβγβπÞ þ 2sðm2

πQ2 − ðM2
N − sÞ

× ðM2
N þ sð−1þ 2βγβπÞÞÞλ2γ � − 2ðM2

N − sÞðM2
N −Q2 − sÞ

× ðQ2 þ 2sβγβπ − 2sλπλγÞðQ2 þ 2sðβγβπ þ λπλγÞÞarctanh
�

2sλγλπ
Q2 þ 2sβγβπ

��
ðB17Þ

σðπ
0pÞ

TT ¼ e2g2AM
2
Nλπ

64πf2πsðs −M2
NÞ2λγ

�
−4m2

πQ2 þ 2ðM2
N − sÞ

�
2ðs −M2

NÞ þ 4sβγβπ þ
ðs −M2

N þQ2Þð3ðM2
N − sÞ þ 2sβγβπÞ

sλ2γ

þ 2m2
πQ2ðs −M2

NÞ
ðM2

N − sð1 − 2βγβπ þ 2λπλγÞÞðM2
N − sð1 − 2βγβπ − 2λπλγÞÞ

�
þM2

N − s
s2λπλ3γ

× ðQ2sð4λ2γm2
π þ sð−4β2γβ2π þ 8βγβπ þ 4λ2πλ

2
γ − 3ÞÞ þ 3M6

N

þM4
Nðsð8βγβπ þ 2λ2γ − 9Þ − 3Q2Þ þ s3ð−4β2γβ2π þ 8βγβπ þ 2ð1þ 2λ2πÞλ2γ − 3Þ

þM2
NsðQ2ð6 − 8βγβπÞ þ sð4β2γβ2π − 16βγβπ − 4ð1þ λ2πÞλ2γ þ 9ÞÞÞarctanh

�
2sλπλγ

M2
N þ sð2βγβπ − 1Þ

��
; ðB18Þ

σðπ
−pÞ

TT ¼ e2g2AM
2
N

16πf2πs2λ3γ

�
λπ

M4
N − 2M2

Nsð1 − 2βγβπÞ − s2ð−4β2γβ2π þ 4βγβπ þ 4λ2πλ
2
γ − 1Þ

× ½Q2sð−2λ2γm2
π þ 4β2γβ

2
πs − 4βγβπs − 4λ2πλ

2
γsþ sÞ −M6

N

þM4
NðQ2 þ sð3 − 4βγβπÞÞ þM2

Nsð2Q2ð2βγβπ − 1Þ
þ sð−4β2γβ2π þ 8βγβπ þ 4λ2πλ

2
γ − 3ÞÞ þ s3ð4β2γβ2π − 4βγβπ − 4λ2πλ

2
γ þ 1Þ�

þ 1

2sλγ

�
ðQ4 þ 4βγβπQ2sþ 4s2ðβ2γβ2π − λ2πλ

2
γÞÞarctanh

�
2sλπλγ

Q2 þ 2sβγβπ

�
þ ðM4

N − 2M2
NðQ2 − λ2γsþ sÞ þ sð2Q2ð1 − 2βγβπÞ − 4β2γβ

2
πsþ 2ð2λ2π − 1Þλ2γsþ sÞÞ

× arctanh

�
2sλπλγ

M2
N þ sð2βγβπ − 1Þ

���
; ðB19Þ

σðπ
þnÞ

LT ¼ e2g2AM
3
Nλπ

32πf2πQs3ðs −M2
NÞ2λ4γ

�
2sλγ½ðM2

N − sÞðQ2 þ 2sβ2γÞðQ2 þ 2sβγβπÞ

− 4sððM2
N − sÞðQ2 − 2sðαπ − 1ÞβγÞ þQ2sβγβπÞλ2γ þ 8s3ðαπ − 1Þλ4γ �

þ s −M2
N

λπ
½ðQ2 þ 2sβ2γÞðQ2 þ 2sβγβπÞ2 þ 4s2ð2ðαπ − 1ÞβγðQ2 þ 2sβγβπÞ

−Q2λ2πÞλ2γ þ 8s3ðαπ − 1Þ2λ4γ �arctanh
�

2sλπλγ
Q2 þ 2sβγβπ

��
; ðB20Þ
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σðπ
0pÞ

LT ¼ e2g2AM
3
Nλπ

16πf2πQsðs−M2
NÞ2λγ

�
1

−2sðM2
N þ sð−1þ 2βγβπÞÞ2λ2γ þ 8s3λ2πλ4γ

× ½−3M8
NðQ2þ 2sβ2γÞþ 2M4

Ns
2ð−ðQ2þ 2sβ2γÞð2βγβπ − 3Þð5βγβπ − 3Þþ ðQ2ð2βγβπ þ 6λ2π −3Þ

þ 2sβγð12απ þ 2βγβπ − 12απβγβπ þ 4βγλ
2
π − 3ÞÞλ2γ − 4sðα2π − 1Þλ4πÞ

þ 2M2
Ns

3½−ðQ2þ 2sβ2γÞð2βγβπ −1Þð6þ βγβπð−9þ 2βγβπÞÞþ ðQ2ð3− 12λ2π þ 4βγβπð−1þ 2βγβπ þ λ2πÞÞ
− 2sβγð−3þ 4απð3þ 2βγβπðβγβπ − 3ÞÞþ 4βγðβπ þð2− βγβπÞλ2πÞÞÞλ2γ þ 8sððαπ − 1Þð1þαπ − 2βγβπÞþ 2απβγλ

2
πÞλ4γ �

þ s4ððQ2þ 2sβ2γÞð1− 2βγβπÞ2ð2βγβπ − 3Þþ 2ðQ2ð−1þ 6λ2π þ 2βγβπðð1− 2βγβπÞ2− 2λ2πÞÞ
þ 2sβγð−1þ 2βγβπ þ 4ð−1þ βγβπÞð−απ þ 2απβγβπ − βγλ

2
πÞÞÞλ2γ − 8ðsðαπ −1Þðαπ þð1− 2βγβπÞ2Þ

þ 2βγð2sαπ þQ2βπÞλ2πÞλ4γ þ 32sðαπ − 1Þλ2πλ6γÞþ 2M6
NsðQ2ð6− 7βγβπ þ λ2γÞþ 2sβγðβγð6− 7βγβπÞþ ð1− 4απÞλ2γÞÞ�

þ s−M2
N

4s2λπλ3γ
½ðQ2þ 2sβ2γÞð3M2

N þ sð2βγβπ − 3ÞÞðM2
N þ sð2βγβπ −1ÞÞþ 2sð−M2

NðQ2þ 2sβγ − 8sαπβγÞ

þ sð2sβγð1− 4απ þ 4απβγβπÞþQ2ð1− 2λ2πÞÞÞλ2γ þ 8s3ðα2π − 1Þλ4γ �arctanh
�

2sλπλγ
M2

N þ sð2βγβπ − 1Þ
��

; ðB21Þ

σðπ
−pÞ

LT ¼ e2g2AM
3
N

16πf2πQs2λ3γ

�
λπ

ðM2
N þ sð2βγβπ − 2λπλγ − 1ÞÞðM2

N þ sð2βγβπ þ 2λπλγ − 1ÞÞ
× ½2λ2γsðsðð1 − 2λ2πÞQ2 þ 2βγsð2απ − 1Þð2βγβπ − 1ÞÞ −M2

NðQ2 þ 2βγsð1 − 2απÞÞÞ

þ ðQ2 þ 2β2γsÞðM2
N þ sð2βγβπ − 1ÞÞ2 þ 8ðαπ − 1Þαπλ4γs3� þ

1

2sλγðs −M2
N þQ2Þ

×

�
ð4λ2γs2ð2ðαπ − 1ÞβγðQ2 þ 2βγβπsÞ − λ2πQ2Þ þ ðQ2 þ 2β2γsÞðQ2 þ 2βγβπsÞ2

þ 8ðαπ − 1Þ2λ4γs3Þarctanh
�

2sλπλγ
Q2 þ 2sβγβπ

�
þ ððQ2 þ 2β2γsÞðM2

N þ sð2βγβπ − 1ÞÞ

× ð−M2
N þ 2Q2 þ sð2βγβπ þ 1ÞÞ þ 2λ2γsð−M2

NðQ2 þ 2βγsÞ þQ4

þQ2sð2ð2απ − 1Þβγ − 2λ2π þ 1Þ þ 2βγs2ð4ðαπ − 1Þβγβπ þ 1ÞÞ þ 8ðαπ − 1Þ2λ4γs3Þ

× arctanh

�
2sλπλγ

M2
N þ sð2βγβπ − 1Þ

���
; ðB22Þ

2. Δ-production channel

The tree-level Δ-exchange diagram in Fig. 2 of Ref. [30] contributes to the non-Born part of the VVCS amplitudes. The
contribution of the Δ exchange to the VVCS amplitudes can be split into [17]

S̄Δ-exch:1 ðν; Q2Þ ¼ SΔ-pole1 ðν; Q2Þ þ S̃Δ-exch:1 ðν; Q2Þ; ðB23aÞ

νS̄Δ-exch:2 ðν; Q2Þ ¼ νSΔ-pole2 ðν; Q2Þ þ fνS2Δ-exch:ðν; Q2Þ; ðB23bÞ

and similarly for the unpolarized VVCS amplitudes discussed in Ref. [30]. Here, we introduced the Δ-pole contributions
SΔ-polei and the Δ-nonpole contributions S̃Δ-exch:i . The former amplitudes feature a pole at the Δð1232Þ-production threshold,
and thus, are proportional to
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1

½s −M2
Δ�½u −M2

Δ�
¼ 1

4M2
N

1

ν2Δ − ν2
: ðB24Þ

They can be reconstructed from the dispersion relations in Eq. (5) with the tree-level Δ-production cross sections as input
(cf. Fig. 10 in Ref. [30]),

σTTðν; Q2Þ ¼ π2α

M2
NM

2þjq⃗j
�
−g2MMNðMþ þ νÞjq⃗j2 þ g2EðΔ − νÞðQ2 −MNνÞ2

MN
þ g2CQ

4sðΔ − νÞ
MNM2

Δ
− 4gMgEðQ2 −MNνÞjq⃗j2

− 4gMgCQ2jq⃗j2 þ 2gEgCQ2½−MNMΔjq⃗j2 þ sðQ2 þ ΔνÞ�
MNMΔ

�
δðν − νΔÞ; ðB25aÞ

σLTðν; Q2Þ ¼ Qπ2α

M2
NM

2þjq⃗j
�
g2EðMNν −Q2Þ½MΔðMN þ νÞ − s�

MN
þ g2CQ

2½MNMΔjq⃗j2 − sðQ2 þ ΔνÞ�
MNM2

Δ

þ gMgEMΔjq⃗j2 −
gMgCðQ2 −MNνÞjq⃗j2

MΔ
þ gEgCðν − ΔÞðM2

N jq⃗j2 − 2Q2sÞ
MNMΔ

�
δðν − νΔÞ; ðB25bÞ

with Δ ¼ MΔ −MN , Mþ ¼ MΔ þMN , and the Mandelstam variable s ¼ M2
N þ 2MNν −Q2. Analytical expressions

for the spin structure functions g1ðx;Q2Þ and g2ðx;Q2Þ can be constructed from Eq. (3) with the flux factor
Kðν; Q2Þ ¼ jq⃗j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þQ2

p
.

In the Δ-nonpole contributions to S1ðν; Q2Þ and νS2ðν; Q2Þ, the pole in ν at the Δð1232Þ-production threshold has
canceled out:

S̃Δ-exch:1 ðν; Q2Þ ¼ πα

MNM2þ

�
g2MQ

2þ þ g2EðΔ2 − 3Q2Þ þ 4g2CQ
4

M2
Δ

− 8gMgEMΔω−

−
2gMgCQ2ðMN − 4MΔÞ

MΔ
þ 2gEgCQ2ð3MN − 2MΔÞ

MΔ

�
; ðB26aÞ

fνS2Δ-exch:ðν; Q2Þ ¼ 2πα

MNM2þ

�
g2EMΔω− þ g2MMNQ2þ

2
þ g2CQ

2ðQ2 − Δ2Þ
2MΔ

þ gEgMMΔðMΔωþ − 4MNω−Þ

− gEgCΔð2Q2 þMNωþÞ þ gMgCQ2ð4MN − ωþÞ
�
þ S̃Δ-exch:2 ðν; Q2Þ

ν

�
M2

Δω
2þ

M2
N

þ ν2
�
; ðB26bÞ

with Qþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMΔ þMNÞ2 þQ2

p
and ω� ¼ ðM2

Δ −M2
N�

Q2Þ=2MΔ, and the nonpole contribution to S2ðν; Q2Þ:

S̃Δ-exch:2 ðν; Q2Þ ¼ −
2παMNν

MΔM2þ
½gM þ gE�gC: ðB27Þ

These amplitudes, to the contrary, are not described by the
tree-level Δ-production cross sections in the standard
dispersive approach [17]. This peculiarity has been pre-
viously missed, e.g., in the calculation of the Δ-exchange
contribution to the hydrogen hyperfine splitting in Ref. [89].
The importance of including the Δ-nonpole contribution is
also evident when considering the BC sum rule in Eq. (14).
The Δ-pole terms by themselves violate the BC sum rule,
but cancel exactly with the Δ-nonpole terms:

lim
ν→0

νSΔ-pole2 ðν; Q2Þ þ lim
ν→0

fνS2Δ-exch:ðν; Q2Þ ¼ 0: ðB28Þ

APPENDIX C: POLARIZABILITIES AT Q2 = 0

In this section, we give analytical expressions for the
polarizabilities and their slopes at Q2 ¼ 0. In particular, we
give the HB expansion of the πN-loop contributions and
the Δ-exchange contributions. The complete expressions,
also for the πΔ-loop contributions, can be found in the
Supplemental Material [38]. Recall that IAð0Þ ¼ I1ð0Þ ¼
d̄2ð0Þ ¼ 0 and dd̄2ðQ2Þ

dQ2 jQ2¼0 ¼ 0.

1. πN-loop contribution

Here, we give analytical expressions for the πN-loop
contributions to the proton and neutron spin polarizabil-
ities, expanded in powers of μ ¼ mπ=MN , viz. the HB
expansion. Note that we choose to expand here to a high
order in μ; the strict HB expansion would only retain the
leading term in an analogous NLO calculation.
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(i) Polarizabilities at Q2 ¼ 0:

γ0p ¼ e2g2A
96π3f2πm2

π

�
1 −

21πμ

8
−
�
59

2
þ 26 log μ

�
μ2 þ 1875πμ3

64
þ 3

�
3

2
þ 26 log μ

�
μ4 þ � � �

�
; ðC1Þ

γ0n ¼
e2g2A

48π3f2πm2
π

�
1

2
−
9πμ

16
− 2μ2 log μþ 75πμ3

128
−
3μ4

4
þ � � �

�
; ðC2Þ

δLTp ¼ e2g2A
192π3f2πm2

π

�
1 −

9πμ

8
þ
�
13

2
− 2 log μ

�
μ2 −

465πμ3

64
−
�
47

2
þ 42 log μ

�
μ4 þ � � �

�
; ðC3Þ

δLTn ¼
e2g2A

96π3f2πm2
π

�
1

2
þ 3πμ

16
þ ð1þ 2 log μÞμ2 − 105πμ3

128
þ 5μ4

4
þ � � �

�
; ðC4Þ

δLTn ¼
e2g2A

96π3f2πm2
π

�
1

2
þ 3πμ

16
þ ð1þ 2 log μÞμ2 − 105πμ3

128
þ 5μ4

4
þ � � �

�
; ðC5Þ

γ̄0p ¼ e2g2A
16π3f2πm4

π

�
4

45
−
3πμ

16
þ 14μ2

5
−
1813πμ3

384
−
192

5
ð1þ log μÞμ4 þ 80703πμ5

2048
þ � � �

�
; ðC6Þ

γ̄0n ¼
e2g2A

16π3f2πm4
π

�
4

45
−
5πμ

48
þ 4μ2

5
−
245πμ3

384
−
32μ4 log μ

15
þ 1323πμ5

2048
þ � � �

�
: ðC7Þ

(ii) Slopes of polarizabilities at Q2 ¼ 0:

dγ0pðQ2Þ
dQ2

				
Q2¼0

¼ e2g2A
1440π3f2πm4

π

�
2 −

45πμ

4
þ 223μ2 −

28515πμ3

64
− 9

�
1953

4
þ 449 log μ

�
μ4 þ 570255πμ5

128
þ � � �

�
;

ðC8Þ

dγ0nðQ2Þ
dQ2

				
Q2¼0

¼ e2g2A
1440π3f2πm4

π

�
2 −

81πμ

8
þ 94μ2 −

2535πμ3

32
− 3ð1þ 90 log μÞμ4 þ 84315πμ5

1024
þ � � �

�
; ðC9Þ

dδLTpðQ2Þ
dQ2

				
Q2¼0

¼ e2g2A
2880π3f2πm4

π

�
−
5

2
−
27πμ

32
þ 20μ2 −

5865πμ3

256
þ 3

�
617

4
þ 36 log μ

�
μ4 −

2056845πμ5

4096
þ � � �

�
;

ðC10Þ

dδLTnðQ2Þ
dQ2

				
Q2¼0

¼ e2g2A
1440π3f2πm4

π

�
−
5

4
−
81πμ

64
− 11μ2 þ 10005πμ3

512
þ 15

8
ð11þ 48 log μÞμ4 − 267015πμ5

8192
þ � � �

�
;

ðC11Þ

dIApðQ2Þ
dQ2

				
Q2¼0

¼ g2A
96π2f2πμ2

�
1 −

15πμ

4
−
1

2
ð115þ 88 log μÞμ2 þ 1839πμ3

32
þ 5ð5þ 34 log μÞμ4 þ � � �

�
; ðC12Þ

dIAnðQ2Þ
dQ2

				
Q2¼0

¼ g2A
48π2f2πμ2

�
1

2
−
11πμ

8
−
1

4
ð1þ 20 log μÞμ2 þ 99πμ3

64
−
25μ4

12
þ � � �

�
; ðC13Þ

dI1pðQ2Þ
dQ2

				
Q2¼0

¼ g2A
96π2f2πμ

�
3π

8
þ 2ð4þ 3 log μÞμ − 537πμ2

64
−
1

2
ð15þ 56 log μÞμ3 þ � � �

�
; ðC14Þ

dI1nðQ2Þ
dQ2

				
Q2¼0

¼ g2A
48π2f2πμ

�
−

π

16
þ 1

4
ð3þ 4 log μÞμ − 57πμ2

128
þ 2μ3

3
þ � � �

�
; ðC15Þ
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dγ̄0pðQ2Þ
dQ2

jQ2¼0 ¼ e2g2A
16π3f2πm6

π

n 1

105
−
23πμ

256
þ 377μ2

210
−
15551πμ3

6144
þ 3371μ4

105
−
1640457πμ5

32768
þ…

o
; ðC16Þ

dγ̄0nðQ2Þ
dQ2

jQ2¼0 ¼ e2g2A
16π3f2πm6

π

n 1

105
−
153πμ

1792
þ 69μ2

70
−
4615πμ3

6144
þ 172μ4

35
−
120897πμ5

32768
þ…

o
: ðC17Þ

2. Δ-exchange contribution

Here, we give analytical expressions for the tree-level Δ-exchange contributions to the nucleon spin polarizabilities
and their slopes at Q2 ¼ 0. Note that the Δ-exchange contributes equally to proton and neutron polarizabilities. Recall that
for the magnetic γ�NΔ coupling we introduced a dipole form factor to mimic vector-meson dominance:
gM → gM=ð1þQ2=Λ2Þ2.

(i) Polarizabilities at Q2 ¼ 0:

γ0 ¼ −
e2

4πM2þ

�
g2M
Δ2

þ g2E
M2þ

−
4gMgE
MþΔ

�
; ðC18Þ

δLT ¼ e2MΔ

4πM3þ

�
g2E

MNMþ
þ gMgE
ΔMN

−
gEgC
M2

Δ

�
; ðC19Þ

γ̄0 ¼
e2M2

N

πΔ2M4þ

�
−
g2M
Δ2

þ g2E
M2þ

þ 4gMgE
ΔMþ

�
: ðC20Þ

(ii) Slopes of polarizabilities at Q2 ¼ 0:

dγ0ðQ2Þ
dQ2
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¼ −
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Δ
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1

4Δ2
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�
; ðC21Þ
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dIAðQ2Þ
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dγ̄0ðQ2Þ
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