
 

Resolved 1=mb contributions to B̄ → Xs;dl+l− and B̄ → Xsγ
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In view of the importance of the nonperturbative resolved contributions for the overall uncertainties of
the two inclusive penguin decays B̄ → Xsγ and B̄ → Xs;dlþl−, we reanalyze these contributions using new
estimates of moments of the subleading shape functions and of other input parameters. Within a systematic
approach, we find a significant reduction of the nonperturbative uncertainties in the inclusive decay
B̄ → Xs;dlþl−, but a much less pronounced reduction in the inclusive decay B̄ → Xsγ compared to a
recent analysis on the resolved contributions to the inclusive decay B̄ → Xsγ. We identify the reasons for
this discrepancy.
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I. INTRODUCTION AND NEW INPUTS

The so-called resolved contributions to rare B-decays are
nonlocal power corrections and can be systematically calcu-
lated using soft-collinear effective theory (SCET). In case of
the inclusive B̄ → Xsγ decays, all resolved contributions to
Oð1=mbÞ have been analyzed some time ago [1–3]. Also, the
analogous contributions to the inclusive B̄ → Xs;dlþl−

decays have been calculated toOð1=mbÞ [4,5]. In both cases,
these analyses lead to an additional uncertainty of 4%–5%
which represents the largest uncertainty in the prediction of the
decay rate of B̄ → Xsγ [6] and of the low-q2 observables of
B̄ → Xs;dlþl− [7,8]. The resolved contributions contain
subprocesses in which the photon couples to light partons
instead of connecting directly to the effectiveweak-interaction
vertex. In both cases, there are four contributions atOð1=mbÞ,
namely, from the interference terms O7γ −O8g, O8g −O8g,
and Oc

1 −O7γ , but also from Ou
1 −O7γ . The latter is sup-

pressed by small entries of the Cabibbo-Kobayashi-Maskawa
matrix in the b → s case, but was shown to vanish [1]. It turns
out that the Oc

1 −O7γ piece has the largest impact. The
resolved contributions are given by convolution integrals of a
so-called jet function, characterizing the hadronic final state
XsðdÞ at the intermediate hard-collinear scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbΛQCD

p
, and

of a soft (shape) function at scaleΛQCD which is defined by an
explicit nonlocal heavy-quark effective theory (HQET)matrix
element. The hard contribution at the scale mb is factorized
into Wilson coefficients. The resolved contributions in the
B̄ → Xs;dlþl− were calculated in the presence of a cut in the
hadronic mass MX; such a cut might be necessary also at
the Belle-II experiment in order to suppress huge background
from double semileptonic decays. However, it was explicitly
shown [4,5] that the resolved contributions stay nonlocalwhen
the hadronic cut is released and, thus, represent an irreducible
uncertainty. The support properties of the shape function
imply that the resolved contributions (besides the O8g −O8g

one) are almost cut independent.
The resolved contributions can be estimated in a

conservative way by considering the explicit form of the
HQET matrix element which represents the shape function.
One can derive general properties of that matrix element
and then use functions fulfilling all these properties in the
convolution with the perturbatively calculated jet function
to estimate the impact of the resolved contributions.
In a recent paper [9], new estimates of the moments
of the subleading shape function in the interference term
Oc

1 −O7γ—based on the results in Refs. [10,11]—were
derived and used to significantly reduce the uncertainty due
to this resolved contribution in the decay B̄ → Xsγ. In the
present paper, we revise our analysis of this resolved
contribution to B̄ → Xs;dlþl− in view of these new
estimates of the moments. In our revised analysis, we
analyze all parametric uncertainties of input parameters and
also the scale dependence of our results in order to get a
reasonable estimate of this contribution in both inclusive
decay modes. In the original analysis of the B̄ → Xsγ case
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[1,2], often just central values of input parameters were
used and scale dependences were not considered.
In the present analysis, we follow the original choice in

Ref. [1] for the bottom quark and use the low-scale
subtracted heavy quark mass defined in the shape func-
tion scheme [12]. As in the new analysis in Ref. [9], we
choose the latest HFLAV determination of that mass [13],
namely, mb ¼ ð4.58� 0.03Þ GeV. In comparison, the
original analysis in Ref. [1] used the central value of
mb ¼ 4.65 GeV and neglected any uncertainties.
The charm mass dependence originates from the charm

penguin diagram with a soft gluon emission in the Oc
1 −

O7γ interference term which is naturally calculated at the
hard-collinear scale. Thus, it is appropriate to consider the
running charm mass at the hard-collinear scale mMS

c ðμhcÞ.
In order to make the ambiguity of the charm mass manifest,
we change the hard-collinear scale μhc ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbΛQCD

p
from

1.3 to 1.7 GeV. With the present PDG value of the charm
mass being mMS

c ðmcÞ ¼ ð1.27� 0.02Þ GeV, we find using
three-loop running with αsðmcÞ ¼ 0.395 and αsðmZÞ ¼
0.1185 down to the hard-collinear scale mMS

c ð1.5 GeVÞ ¼
1.19 GeV as central value at 1.5GeV.The change of thehard-
collinear scale indicated above then leads to 1.14 GeV ≤
mc ≤ 1.26 GeV. The parametric errors of mMS

c ðmcÞ and αs
are neglected in view of the larger uncertainty due to the
change of the hard-collinear scale μhc. In contrast, two-loop
running was used in the recent analysis in Ref. [9], which
gives the value mMS

c ð1.5 GeVÞ ¼ ð1.20þ 0.03Þ GeV.
Taking into account the parametric uncertainties, but no
change of the hard-collinear scale, finally leads to the
variation of the charm mass, 1.17 GeV ≤ mc ≤ 1.23 GeV,
which was used in the analysis in Ref. [9]. As will be shown
later, the different variation of the charm mass parameter in
our present analysis compared to the one used in the recent
analysis in Ref. [9] turns out to be one of the main reasons for
the discrepancy between the two analyses.
We note that in the original analysis in Ref. [1] just

mcð1.5 GeVÞ ¼ 1.131 GeVwasused anduncertaintieswere
neglected. As already emphasized by the authors of Ref. [9],
controlling the scale dependence by calculatingαs corrections
to the resolved contributions would also help to better control
the uncertainty due to the charm quark mass.
For the operator basis, we refer the reader to the original

analysis in Ref. [5]. We calculate the uncertainty due to the
resolved contributions relative to the decay rate in the
region in which the operator product expansion (OPE) is
valid.1 Therefore, the Wilson coefficients of the OPE result
are naturally calculated at the hard scale.

The Wilson coefficients in the resolved contribution are
taken at the hard scale but at leading accuracy because we
do not consider any αs corrections or any RG improve-
ments in the calculation of the resolved power corrections.
In this analysis, we then vary the scale of the Wilson
coefficients in the resolved contributions between the hard
and the hard-collinear scale—while keeping the hard scale
in the OPE rate fixed—to make the scale dependence of the
results manifest.2

In this work, we mainly consider the resolved contri-
bution due to the interference Oc

1 −O7γ , which is numeri-
cally the most relevant for the case B̄ → Xs;dlþl−, but also
for the case B̄ → Xsγ. The explicit form of the subleading
shape function for that contribution was derived in Ref. [1],

h17ðω1;μÞ ¼
Z

dr
2π

e−iω1r
hBjh̄ð0Þ=̄niγ⊥α n̄βgGαβðrn̄Þhð0ÞjBi

2MB
;

ð1Þ
where n and n̄ are the light-cone vectors and h andG are the
heavy quark and gluon field, respectively. Soft Wilson lines
connect the fields to ensure gauge invariance but are
suppressed in the notation. The variable ω1 corresponds
to the soft gluon momentum. (The integration overωwhich
is related to the heavy quark momentum is already taken
here).
With the help of standard HQET techniques, one can

derive from parity time-reversal invariance that the function
h17 is real and even in ω1. The new estimates of the
moments of this subleading shape function in the interfer-
ence term Oc

1 −O7γ as derived in Ref. [9] lead to the
additional constraints
Z

∞

−∞
dω1ω1

0h17ðω1; μÞ ¼ ð0.237� 0.040Þ GeV2;
Z

∞

−∞
dω1ω1

2h17ðω1; μÞ ¼ ð0.15� 0.12Þ GeV4: ð2Þ

The normalization was already known before. The second
moment has been used for the first time in the case of
B̄ → Xsγ in Ref. [9]. All odd moments of h17 in ω1 vanish
because the function is even. It is worth noting that more
moments can be expressed in terms of HQET parameters as

1For the B̄ → Xs;dlþl− case, this means that there is no cut in
the hadronic mass and for the B̄ → Xsγ case the cut on the photon
region is taken at a value around Ecut

γ ¼ 1.6 GeV. We use the
next-to-leading order (NLO) OPE result of the B̄ → Xs;dlþl−

decay rate as in the original analysis in Ref. [5] and the leading
order (LO) one of the B̄ → Xsγ rate as in the original analysis in
Ref. [1].

2In the original [1] and also in the recent analysis [9], the
authors have chosen the hard-collinear scale for the Wilson
coefficient in the OPE rate which is not the natural scale of the
OPE rate, in spite of the fact that the OPE rate at higher orders is
often calculated at a scale slightly smaller than the hard scale for
other reasons (see i.e., Ref. [6]). For the Wilson coefficients in the
resolved contribution, these authors again use the hard-collinear
scale. We note that using the hard or the hard-collinear scale in
both, in the OPE rate and in the resolved contribution, leads only
to a relatively small change of the final result. The real scale
ambiguity of the final result is explored in the present analysis
when we keep the hard scale in the OPE rate and vary the scale in
resolved contribution from the hard to the hard-collinear scale.
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was shown in Refs. [9,10]; thus, more accurate determi-
nations of the moments might be possible in the future.
However, we note that the determination of the HQET

parameters related to the second and also higher moments
are based on the so-called lowest-lying state approxi-
mation (LLSA) (see Refs. [14–16]). This method allows
to estimate higher-dimensional operators (related to the
higher moments) by assuming that the lowest-lying
heavy meson state saturate a sum-rule for the insertion
of a heavy meson state sum. This way LLSA relates
higher-dimensional matrix elements to the known lower-
dimensional ones. In Ref. [11], the error due to this
approximation was estimated to be 60%–100%. This large
uncertainty also enters the second equation in Eq. (2).
The natural scale of the HQET parameters related to the

second moment is of OðΛ4
QCDÞ or even higher powers of

ΛQCD in case of the parameters related to higher moments.
This in principle allows for a rough dimensional analysis of
the nth moment to be a linear combination of parameters of
order Λnþ2

QCD with O(1) coefficients, a feature which is
confirmed in existing HQET calculations, in particular in
the case of the second moment of h17. Also, the fourth and
the sixth moments can be expressed by parameters of Λ6

QCD

and Λ8
QCD, respectively. Assuming that the coefficients are

still of O(1) or only slightly larger in case of the sixth
moment, one gets to the following dimensional estimates:

−0.3 GeV6 ≲
Z

∞

−∞
dω1ω1

4h17ðω1; μÞ ≲þ0.3 GeV6;

−0.3 GeV8 ≲
Z

∞

−∞
dω1ω1

6h17ðω1; μÞ ≲þ0.3 GeV8: ð3Þ

These estimates were also used in a similar way in the
analysis in Ref. [9]; we consistently use these estimates for
all model functions within the present analysis.3

Finally, one assumes that the subleading shape function
as a soft function should not have any significant structures
like maxima outside the hadronic range (−1 GeV < ω1 <
1 GeV) and the values of it should be within the hadronic
range (−1 GeV < h17ðω1Þ < 1 GeV). In the following, we
will take all those properties into account when we consider
model functions in the convolution with the jet function.

Nothing further is known about the structure of the
subleading shape functions. Thus, we follow the strategy
used by authors of Ref. [9] who modeled the shape function
h17 by using a complete set of basis functions. This
systematic approach was already advocated before and
used in several applications [17–19]. In the original
analyses in Refs. [1,5], simple functions like polynomials
of second degree multiplied by a Gaussian function were
used. The systematic approach using a complete basis of
model functions allows to avoid any prejudice regarding
the functional form of the shape functions.
Due to the importance of the resolved Oc

1 −O7γ con-
tribution for the overall uncertainty in the decay B̄ → Xsγ,
we first revisit the recent analysis in Ref. [9] in Sec. II. We
will extend our findings to decay B̄ → Xs;dlþl− in Sec. III.
Section IV is reserved for our summary and our
conclusions.

II. RESOLVED CONTRIBUTIONS
TO THE DECAY B̄ → Xsγ

The relative uncertainty of the decay rate of B̄ → Xsγ
due to the nonlocal resolved contribution within the
interference of O1 −O7γ

4 is given by

F 17
b→sγ ¼

C1ðμÞC7γðμÞ
ðC7γðμOPEÞÞ2

Λ17ðm2
c=mb; μÞ
mb

; ð4Þ

where at order 1=mb one finds [1]

Λ17

�
m2

c

mb
; μ

�
¼ ecRe

Z
∞

−∞

dω1

ω1

�
1 − F

�
m2

c − iε
mbω1

�

þmbω1

12m2
c

�
h17ðω1; μÞ; ð5Þ

with the penguin function FðxÞ ¼ 4x arctan2ð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x − 1

p Þ.
We start with the model function used in the original

analyses in Refs. [1,5], namely, a polynomial of second
degree combined with a Gaussian function

h17ðω1Þ ¼
2λ2ffiffiffiffiffiffi
2π

p
σ

ω2
1 − Λ2

σ2 − Λ2
e−

ω2
1

2σ2 ; ð6Þ

in which the two hadronic parameters, Λ and σ, are chosen
to be of order ΛQCD. Combining this function with all
constraints mentioned in the last section, one finds that the
reduction of the uncertainty due to the resolved contribu-
tions in the decay B̄ → Xsγ is twofold which are as follows:

(i) First, the central value of the charm mass at the
hard-collinear scale moved from mcð1.5 GeVÞ ¼
1.131 GeV used in the original analysis in Ref. [1] to

3However, we note that to our knowledge there is no general
argument that for the unknown higher moments the coefficients
of HQET parameters scaling with a certain power of ΛQCD are
always O(1). A counter example is given by the model function
for the subleading shape function h17 ¼ expð−jx=ΛjÞ for which
we find

R∞
−∞ dω1ω1

n expð−jx=ΛjÞ ¼ Λðð−ΛÞn þ ΛnÞΓð1þ nÞ.
Here the second moment is of order Λ3 with a coefficient 4,
the fourth moment is of order Λ5 with a coefficient 48, and the
sixth moment is of order Λ7 with a coefficient 1440 (!). There-
fore, we analyze the impact of these two additional dimensional
estimates within our analysis, and this way we offer the results to
the reader also for the case when no such estimates on the higher
moments are used.

4To simplify the notation, we leave out the superscript “c” in
the following.

RESOLVED 1=MB CONTRIBUTIONS TO PHYS. REV. D 102, 114024 (2020)

114024-3



mcð1.5 GeVÞ ¼ 1.19 GeV in the recent analysis in
Ref. [9], and the central value of the bottom mass in
the shape function scheme moved from mb ¼
4.65 GeV to the new value mb ¼ 4.58 GeV. As
shown in the upper plot of Fig. 1, these changes in
the input parameters have the effect that the jet
function moves slightly outside the hadronic range
and the overlap and therefore the convolution
integral with the model function becomes smaller.
The dependence on the charm mass is pronounced.
Varying the charm mass will therefore have a
noticeable impact on the resolved contribution,
leading to larger values than in the recent analysis
in Ref. [9].

(ii) Second, the new bound on the second moment of the
shape function, given in Eq. (2), significantly re-
stricts the shape of the soft function and conse-
quently leads to a reduction of the extreme values of

the convolution integral as shown in the bottom plot
of Fig. 1.

In the recent analysis [9], the authors modeled the shape
function h17 by using a complete set of basis functions,
namely, the Hermite polynomials multiplied by a Gaussian5

in order to make a systematic analysis of all possible model
functions—as already advocated by the authors of
Ref. [17]. This systematic approach allows to avoid any
prejudice regarding the unknown functional form of the
shape functions. We note here that in the original analyses
in Refs. [1,5] simple functions like a second-order poly-
nomial with a Gaussian function were assumed.
Because the shape function h17 is even, one needs only

even polynomials in the systematic expansion

h17ðω1Þ ¼
X
n

a2nH2n

�
ω1ffiffiffi
2

p
σ

�
e−

ω2
1

2σ2 : ð7Þ

The Hermite polynomials are very suitable for this purpose
because they are orthogonal and, thus, the 2kth moment
of h17 only depends on the coefficients a2n with n ≤ k.
Therefore, the zeroth moment only depends on a0 and the
second moment depends on a0 and a2. This also means that
the first 2k moments determine a2n with n ≤ k [9].
Our present analysis follows the strategy of Ref. [9], but

we rigorously explore the space of Hermite polynomials
multiplied by a Gaussian. Hermite polynomials with
expð−x4Þ or expð−x6Þ suppression can also be expressed
in the basis above, but this requires an infinite sum and is
therefore not considered in an approach that only takes into
account a limited number of terms. The recent analysis
[9] does not consider polynomials with a degree higher
than 10. We anticipate that the extreme values for the
uncertainty are realized with polynomials of degree 6 with
an expð−x2Þ suppression or with polynomials of degrees 4
and 6 with an expð−x4Þ suppression and that already
polynomials of degree 8 and higher suppression factors
like expð−x6Þ do not lead to larger values.
Our grid of input parameters of the model function is the

following: we scan through the one-sigma ranges of the
input parameters 1.14 GeV ≤ mc ≤ 1.23 GeV with 10
steps, 4.55 GeV ≤ mb ≤ 4.61 GeV with 3 steps, the first
momentm0 from 0.197 to 0.277 GeV2 with 8 steps, and the
second moment m2 from 0.03 to 0.27 GeV4 with 12 steps,
and also the fourth and the sixth moments between −0.3

FIG. 1. The top figure shows the jet (weight) function in the
case B̄ → Xsγ formc ¼ 1.131 GeV andmb ¼ 4.65 GeV (dashed
dotted, brown) and for mc ¼ 1.19 GeV and mb ¼ 4.58 GeV
(dotted, blue) with the shape function in Eq. (6) (solid, red). The
bottom figure shows in addition the shape function with a second
moment which satisfies the new constraint (dotted, blue).

5The Hermite polynomials are orthogonal with respect to a
weight function e−x

2

, so that we have

Z
∞

−∞
HmðxÞHnðxÞe−x2dx ¼ π1=22nn!δnm:

The Hermite polynomials form an orthogonal basis of the Hilbert
space of functions which satisfy

R
∞
−∞ jfðxÞj2e−x2dx < ∞. The

inner product is defined as hf; gi ¼ R
∞
−∞ fðxÞgðxÞe−x2dx.
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and 0.3 GeV6 and between −0.3 and 0.3 GeV8, respec-
tively, in 30 steps. Moreover, we vary the hadronic
parameter σ from −1 to þ1 GeV in 40 steps.
We also anticipate that—except for the upper bound in

case of the sum of Hermite polynomial of degrees 0 and
2—the extreme values of Λ17 for all the different model
functions can be found using the mass parameters mc ¼
1.14 GeV and mb ¼ 4.61 GeV. This is expected, since for
any larger value of mc and any smaller value of mb, the jet
functionmoves further out of the hadronic range (see Fig. 1).
In the case of the model function with the sum of n ¼ 0

and n ¼ 2 polynomials [see Eq. (7)], we find in our
multiparameter scan

−24 MeV ≤ Λ17 ≤ −1 MeV ðn ≤ 2; expð−x2ÞÞ: ð8Þ
The lower bound is found with σ ¼ 400 MeV, with the
zeroth moment m0 ¼ 0.200 GeV2 and with the second
moment m2 ¼ 270 GeV4. This implies for the higher
moments m4 ¼ 0.244 GeV6 and m6 ¼ 0.286 GeV8. The
upper bound corresponds to the parameter set, σ ¼
140 MeV, m0 ¼ 0.280 GeV2, and m2 ¼ 0.0030 GeV4.
The sum of n ¼ 0, n ¼ 2, and n ¼ 4 polynomials leads to

−27 MeV ≤ Λ17 ≤ þ4 MeV ðn ≤ 4; expð−x2ÞÞ: ð9Þ
The lower bound corresponds to the parameter set σ ¼
300 MeV, m0 ¼ 0.260 GeV2, m2 ¼ 0.270 GeV4, and
m4 ¼ 0.260 GeV6, the upper bound to σ ¼ 340 MeV,
m0 ¼ 0.220 GeV2, m2 ¼ 0.030 GeV4, and m4 ¼
−0.100 GeV6. An even larger interval is found with a
sum of Hermite polynomials up to order 6, namely,

−29 MeV ≤ Λ17 ≤þ6 MeV ðn ≤ 6;expð−x2ÞÞ; ð10Þ

with the lower bound corresponding to the parameters σ ¼
280 MeV, m0 ¼ 0.200 GeV2, m2 ¼ 0.270 GeV4, m4 ¼
0.280 GeV6, and m6 ¼ 0.300 GeV8 and the upper bound
with σ¼300MeV, m0 ¼ 0.200 GeV2, m2 ¼ 0.030 GeV4,
m4 ¼ −0.120 GeV6, and m6 ¼ −0.220 GeV8.
With an additional polynomial of degree 8, one does not

find larger values,6

−29 MeV ≤ Λ17 ≤þ6 MeV ðn ≤ 8;expð−x2ÞÞ: ð11Þ

The lower bound is obtained for σ ¼ 260 MeV, m0 ¼
0.280 GeV2, m2 ¼ 0.270 GeV4, m4 ¼ 0.260 GeV6,
m6 ¼ 0.300 GeV8, and m8 ¼ 0.380 GeV10, the upper
bound for σ ¼ 300 MeV, m0 ¼ 0.280 GeV2, m2 ¼
0.030 GeV4, m4 ¼ −0.120 GeV6, m6 ¼ −0.220 GeV8,
and m8 ¼ −0.340 GeV10.

If one uses model functions with expð−x4Þ or expð−x6Þ
suppression instead of a Gaussian (expð−x2Þ), one still
finds slightly larger intervals for Λ17. In case of the Hermite
polynomials up to degree 4 with a weight function
expð−x4Þ, one gets

−31 MeV ≤ Λ17 ≤þ9 MeV ðn ≤ 4; expð−x4ÞÞ: ð12Þ

The lower bound corresponds to the parameter set σ ¼
740 MeV, m0 ¼ 0.280 GeV2, m2 ¼ 0.270 GeV4, m4 ¼
0.300 GeV6 and the upper bound to σ ¼ 800 MeV,
m0 ¼ 0.200 GeV2, and m2 ¼ 0.030 GeV4 and m4 ¼
−0.120 GeV6. With the Hermite polynomials up to degree
6 with an expð−x4Þ suppression, one obtains the same
result,

−31 MeV ≤ Λ17 ≤þ9 MeV ðn ≤ 6; expð−x4ÞÞ: ð13Þ

The corresponding parameter sets are σ ¼ 720 MeV,m0 ¼
0.200 GeV2, m2 ¼ 0.270 GeV4, m4 ¼ 0.440 GeV6, and
m6 ¼ 0.580 GeV8 for the lower bound and σ ¼ 760 MeV,
m0 ¼ 0.280 GeV2, m2¼0.030GeV4, m4 ¼ −0.120 GeV6,
and m6 ¼ −0.200 GeV8 for the upper bound. If one uses a
higher suppression, namely, expð−x6Þ, for example, with a
Hermite polynomial up to degree 4, one gets a significantly
smaller interval, namely,

−29 MeV ≤ Λ17 ≤þ1 MeV ðn ≤ 4; expð−x6ÞÞ; ð14Þ

with σ¼900MeV, m0 ¼ 0.200 GeV2, m2 ¼ 0.270 GeV4,
m4 ¼ −0.300 GeV6 for the lower bound and to σ ¼
900 MeV, m0 ¼ 0.280 GeV2, and m2 ¼ 0.030 GeV4 and
m4 ¼ 0.300 GeV6 for the upper bound.
Summing up, the largest interval we find is

−31 MeV ≤ Λ17 ≤ þ9 MeV. Our new result has a 42%
smaller range than the original one in Ref. [1], −42 MeV ≤
Λ17 ≤ þ27 MeV where the model given in Eq. (6) and no
constraint on the second, fourth, and sixth moments was
used. In the recent analysis in Ref. [9], a stronger reduction
by almost 60% compared to the result in Ref. [1] was
found, namely, −24 MeV ≤ Λ17 ≤ þ5 MeV.7 The reasons
for this discrepancy between our and the recent analysis in
Ref. [9] are threefold which are as follows:

(i) The important difference is the fact that we take into
account a larger uncertainty due to the charm mass
as discussed in the Introduction.

(ii) We use a denser grid of parameters to find the
extrema of the resolved contributions.

(iii) We use the fact that also polynomials with suppres-
sion factors expð−x4Þ or expð−x6Þ can be expressed
in terms of the original basis given in Eq. (7), and,

6We note that in contrast to the authors of the recent paper [9]
we also find solutions with polynomials up to degree 8 due to our
more dense grid.

7We note here that we have fully reproduced these results using
their input and their assumption with our numerics.
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thus, have also to be considered within a systematic
analysis.

A further subtlety arises from kinematic corrections. The
original analysis of the B̄ → Xsγ case included an addi-
tional large 1=m2

b correction due to kinematic factors [1]. In
order to make this manifest, Eq. (5) should be replaced by

Λ17

�
m2

c

mb
; μ

�

¼ ecRe
Z

Λ̄

−∞
dω

Z
∞

−∞

dω1

ω1

��
mb þ ω

mb

�
3

×

�
1 − F

�
m2

c − iε
ðmb þ ωÞω1

��
þmbω1

12m2
c

�
g17ðω;ω1; μÞ;

ð15Þ
where h17ðω1; μÞ ¼

R
dωg17ðω;ω1; μÞ.8 Obviously, the

factor ðmb þ ωÞ was approximated by mb within the
prefactor and within the function F in Eq. (5) at order
1=mb. If we include this 1=m2

b effect, we find the extreme
range for Λ17 for the same parameters as in the cases
without the 1=m2

b correction. If one chooses a Gaussian
suppression, it is again the sum of Hermitian polynomials
up to degree 6 which leads to the following largest interval:

−54 MeV ≤ Λ17 ≤ −1 MeV: ð16Þ
And if one chooses a expðx−4Þ suppression, the polynomials
up to degrees 4 and 6 lead again to the maximal results,

−59 MeV ≤ Λ17 ≤ þ4 MeV; ð17Þ
−61 MeV ≤ Λ17 ≤ þ5 MeV: ð18Þ

This should be compared to−60 MeV ≤ Λ17 ≤ þ25.0 MeV
found in the original analysis [1]. Our final result shows a
reduction of the uncertainty of approximately 25%.
We emphasize that this 1=m2

b piece directly originates from
the O1 −O7γ contribution as shown above. It has a large
numerical impact increasing this resolved contribution by
more than 50%. In contrast, resolved contributions like the
ones due to the operator pairs O1 −O8g or O1 −O1 which
also occur at the order 1=m2

b were shown to be numerically
negligible in the original analysis [1]. The recent analysis in
Ref. [9] did not take this 1=m2

b correction into account.
(iv) Thus, dropping this numerically large 1=m2

b term
represents a large piece of reduction of the uncer-
tainty in the analysis in Ref. [9] compared to the
original analysis in Ref. [1] and also represents the
second important difference to our present analysis.

Finally, we analyze the impact of the dimensionally
estimated bounds on the fourth and the sixth moment given
in Eq. (3). Without these estimates, we would find the

extreme values again for the Hermite polynomials up to
degree 4 or 6 with a suppression factor expð−x4Þ, namely,
−72 MeV ≤ Λ17 ≤ þ4 MeV and −76 MeV ≤ Λ17 ≤
þ5 MeV. But also with polynomials up to degree 6 and
a Gaussian suppression, we would already get a rather large
result: −63 MeV ≤ Λ17 ≤ þ1 MeV. The direct compari-
son of these results with the extreme one we have found
using the dimensionally estimated bounds given in Eq. (3)
shows their large impact.

Summary of numerical results in the case of B̄ → Xsγ.—
Our result for Λ17 at order 1=mb, −31 MeV ≤ Λ17 ≤ þ
9 MeV, as given in Eqs. (12) and (13), translates into the
following relative uncertainty of the decay rate of B̄ → Xsγ
via Eq. (4):

F 17
b→sγj1=mb

∈ ½−0.7%; 2.4%�; ð19Þ

which is significantly larger than the result of the recent
analysis in Ref. [9], but also significantly smaller than the
corresponding result in the original analysis in Ref. [1].
Several reasons for this difference to the result in Ref. [9]
were indicated in detail in our analysis. The most important
one is that we use a larger uncertainty in the charm mass (as
discussed in the Introduction) compared to the analysis
in Ref. [9].
If we include the large additional 1=m2

b piece—as not
done in the recent analysis in Ref. [9]—our result,
−61;MeV ≤ Λ17 ≤ þ5 MeV, as given in Eq. (18), leads
to our following final result:

F 17
b→sγ ∈ ½−0.4%; 4.7%�: ð20Þ

It was shown in [1] that this kinematical 1=m2
b contribu-

tion from theO1 −O7γ interference is the only numerically
relevant contribution at the second order in 1=mb.
Our result represents a significant reduction of the uncer-
tainty compared to the result of the original analysis in
Ref. [1], F 17

b→sγ ∈ ½−1.9%; 4.7%�, but is still much larger
than the result in the recent analysis in Ref. [9], F 17

b→sγ ∈
½−0.4%; 1.9%� which is missing the large 1=m2

b contribu-
tion. These latter numbers of Refs. [1] and [9] are translated
to our scale fixing.9

8For the precise limits of integration, we refer the reader to the
discussion in Sec. 6 of Ref. [1].

9The numbers do not agree with the quoted ones in the original
analysis Ref. [1] because the authors use the hard-collinear scale
in the Wilson coefficients of the resolved contribution and also in
the Wilson coefficients of the OPE rate. The same scale fixing
was used in the recent analysis Ref. [9]. In contrast, we have
chosen the hard scale as our default value within the resolved
contribution as mentioned in the Introduction and the OPE rate is
naturally fixed at the hard scale. Using their scale-fixing (with the
OPE rate and the resolved contribution fixed at the hard-collinear
scale), one finds F 17

b→sγ ∈ ½−1.7%; 4.0%� in the original analysis
in Ref. [1] and F 17

b→sγ ∈ ½−0.3%; 1.6%� in the recent analysis in
Ref. [9].
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If we do not use the dimensional estimates on the higher
moments, given in Eq. (3), we find a much larger
uncertainty, F 17

b→sγj1=mb
∈ ½−0.4%; 5.9%� what shows the

large impact of these dimensional estimates.
Finally, we consider scale variations in our final result.

The present results are leading order results; no αs
corrections are calculated and no RG improvements were
implemented. The only scale in our resolved contribution is
within the hard function, represented by the Wilson
coefficients. Therefore, we have chosen the scale in the
Wilson coefficients of the resolved contribution at the hard
scale as our default value. If we run down the LO Wilson
coefficients C1ðμÞC7γðμÞ to the hard-collinear scale and
keep the OPE rate at the hard scale, the result increases by
more than 40% compared to our default value. There is no
strict argument here that this specific scale variation in our
result can be connected to an estimate of the unknown NLO
corrections. However, this observation calls for a calcu-
lation of the αs corrections and RG resummations.
We also emphasize that the local Voloshin term10 is

subtracted from the resolved contribution F 17
b→sγ . This has

been traditionally done in all analyses of this specific
resolved contribution to the B̄ → Xsγ decay rate. Therefore,
this local Voloshin term has still to be added to the decay
rate. It corresponds to ΛVoloshin

17 ¼ ð−1Þðmbλ2Þ=ð9m2
cÞ

which translates in

FVoloshin
b→sγ ¼ −

C1C7γλ2
ðC7γÞ29m2

c
¼ þ3.3%: ð21Þ

There are two more resolved contributions at order 1=mb
as discussed in the Introduction. In the original analysis in

Ref. [1], the resolved contributions due to the interference
O7γ −O8g and O8g −O8g were estimated to F 78;VIA

b→sγ ¼
½−3.0%;−0.3%� and F 88

b→sγ ¼ ½−0.3%; 2.1%�, using our
scale fixing. The superscript VIA indicates that the resolved
contribution F 78 was determined by using the vacuum
insertion approximation. We add up the three contributions
using the scanning method and arrive at the final result for
all resolved contributions,

F total
b→sγ ∈ ½−3.7%; 6.5%� ðVIAÞ: ð22Þ

This has to be compared to the final result in the original
analysis, which reads when translated to our default
scales: F total

b→sγ ∈ ½−5.2%; 6.5%�.
We finally note that there is an alternative estimation of

F 78 offered in Ref. [1] based on experimental data on Δ0−,
the isospin asymmetry of inclusive neutral and charged
B → Xsγ decay using BABAR and BELLE measurements
[24–26]. In the recent analysis [9], the authors derived new
bounds based on the inclusion of a new Belle measurement
of Δ0−, which leads to the experimental determination of
F 78 being the same order of magnitude as the determi-
nation using Sec. VIA.

III. RESOLVED CONTRIBUTIONS TO THE
DECAY B̄ → Xs;dl+l−

We now update our analysis in Ref. [5] using the new
estimate of the second moment of the shape function h17. In
the case of the decay B̄ → Xslþl−, the relative contribu-
tion due to the interference ofO1 withO7γ is given at order
1=mb by

F 17
b→sll ¼ 1

mb

C1ðμÞC7γðμÞ
COPE

ec

Z þ∞

−∞
dω1J17ðq2min; q

2
max;ω1Þh17ðω1; μÞ; ð23Þ

where the shape function h17 is the same one as in the decay B̄ → Xsγ and the jet function is given by

J17ðq2min; q
2
max;ω1Þ ¼ Re

1

ω1 þ iϵ

Z q2max
MB

q2
min
MB

dn̄ · q
n̄ · q

1

ω1

×

�
ðn̄ · qþ ω1Þ

�
1 − F

�
m2

c

mbðn̄ · qþ ω1Þ
��

− n̄ · q

�
1 − F

�
m2

c

mbn̄ · q

��

−n̄ · q

�
G

�
m2

c

mbðn̄ · qþ ω1Þ
�
−G

�
m2

c

mbn̄ · q

���
: ð24Þ

10This local term can be derived from the resolved contribution Oc
1 −O7γ by neglecting the shape function effects and under

the assumption that the charm quark mass is treated as heavy (see Sec. 3.2 of Ref. [5]). It was shown that this local term derived in
Refs. [20–23] does not fully account for the corresponding resolved contribution.
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COPE is defined via the OPE result of the decay rate ΓOPE.
11

FðxÞ is the penguin function defined in the previous
section. The second penguin function is given by
GðxÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x − 1

p
arctanð1= ffiffiffiffiffiffiffiffiffiffiffiffiffi

4x − 1
p Þ − 2.

For the analysis of the resolved contribution from the
interference of O1 and O7 in the case of B̄ → Xslþl−,
we follow the same strategy as in the case of B̄ → Xsγ
and use the same basis of functions. We also take the
Wilson coefficients in the resolved contributions at the
hard scale as our default value and explore the scale
dependence by running down to the hard-collinear scale.
The hard scale is the natural choice for the OPE results.
We also use the same grid of input parameters and make
a multiparameter scan to find the extreme values of the
convolution integral.
There are two features which are crucial to understand

our results which we present below.
(i) First, due to the rather symmetric structure of the jet

functions, in contrast to the B̄ → Xsγ case, the
various model functions lead to very similar extreme
values of the convolution integral as we will see
below. This feature is already manifest in the bottom
of Fig. 2, where some model functions are shown.
Thus, using higher-order polynomials does not
increase the uncertainties compared to the second-
order polynomial used in the original analyses.

(ii) Second, in the upper plot of Fig. 2, two input values
of the jet function, namely, the charm and the bottom
masses, mc and mb, are varied within their 1σ
uncertainties. As in the case of B̄ → Xsγ, one finds
that larger mc and smaller mb values move the jet
function to the right, outside the hadronic range.
Thus, as in the case of B̄ → Xsγ, the convolution
with the shape functions leads to larger values, if
mc ¼ 1.14 and mb ¼ 4.61 GeV. However, in con-
trast to the B̄ → Xsγ case, the jet function has a
comparatively broad peak. Therefore, the variation
of the charm mass has a lower impact on the
magnitude of the convolution integral in the B̄ →
Xslþl− case. In order to systematically compare our results, we define

the parameter Σ17 in view of Eq. (23) via

F 17
b→sll ¼ 1

mb

C1ðμÞC7γðμÞ
COPE

Σ17; ð25Þ

analogously to Eq. (4). Starting with the sum of Hermite
polynomials of n ¼ 0 and n ¼ 2 [see Eq. (7)] as model
function for h17, we find in our multiparameter scan

−195 MeV ≤ Σ17 ≤ −48 MeV ðn ≤ 2; expð−x2ÞÞ:
ð26Þ

FIG. 2. The top figure shows the jet (weight) function in the
case B̄ → Xslþl− for mc ¼ 1.14 GeV and mb ¼ 4.61 GeV
(dashed-dotted, brown) and for mc ¼ 1.23 GeV and mb ¼
4.55 GeV (dotted, blue) with a second-order polynomial as
shape function (solid, red). The bottom figure shows two shape
functions which lead to the extreme values for the convolution.
The polynomials are of order 2 (solid, red) and of order
4 (dotted, blue).

11The OPE result of the decay rate is given by (see for more
details Ref. [5])

ΓOPE ¼
G2

Fαm
5
b

32π4
jV�

tbVtsj2
1

3

α

π

Z
dn̄ · q
n̄ · q

�
1−

n̄ · q
mb

�
2

×

�
C2
7γ

�
1þ 1

2

n̄ · q
mb

�
þ ðC2

9 þC2
10Þ

�
1

8

n̄ · q
mb

þ 1

4

�
n̄ · q
mb

�
2
�

þC7γC9

3

2

n̄ · q
mb

�

≡G2
Fαm

5
b

32π4
jV�

tbVtsj2
1

3

α

π
COPE:
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The lower bound is found with σ ¼ 320 MeV, with the
zeroth moment m0 ¼ 0.200 GeV2 and with the second
moment m2 ¼ 0.030 GeV4. This implies for the higher
moments m4 ¼ 0.009 GeV6 and m6 ¼ 0.005 GeV8.
The upper bound corresponds to the parameter set, σ ¼
360 MeV, m0 ¼ 0.200 GeV2, and m2 ¼ 0.270 GeV4.
The sum of Hermite polynomials up to order n ¼ 4
leads to

−209 MeV ≤ Σ17 ≤ −46 MeV ðn ≤ 4; expð−x2ÞÞ:
ð27Þ

The lower bound corresponds to the parameter set, σ ¼
300 MeV, m0 ¼ 0.280 GeV2, m2 ¼ 0.030 GeV4, and
m4 ¼ 0.040 GeV6, the upper bound to σ ¼ 320 MeV,
m0 ¼ 0.200 GeV2, m2 ¼ 0.270 GeV4, and m4 ¼
0.180 GeV6. The sum of Hermite polynomials up to order
6 leads to a slightly larger interval for Σ17,

−209 MeV ≤ Σ17 ≤ −42 MeV ðn ≤ 6; expð−x2ÞÞ;
ð28Þ

with the lower bound corresponding to the parameters
σ ¼ 280 MeV, m0 ¼ 0.280 GeV2, m2 ¼ 0.030 GeV4,
m4 ¼ −0.060 GeV6, and m6 ¼ −0.120 GeV8 and the
upper bound to σ ¼ 320 MeV, m0 ¼ 0.200 GeV2, m2 ¼
0.270 GeV4, m4 ¼ 0.240 GeV6, and m6 ¼ 0.280 GeV8.
With an additional polynomial of degree 8, one finds a
slightly smaller interval

−201 MeV ≤ Σ17 ≤ −43 MeV ðn ≤ 8; expð−x2ÞÞ:
ð29Þ

The lower bound is obtained for σ ¼ 380 MeV, m0 ¼
0.280 GeV2, m2 ¼ 0.030 GeV4, m4 ¼ 0.060 GeV6,
m6 ¼ 0.100 GeV8, and m8 ¼ 0.200 GeV10, the upper
bound for σ ¼ 320 MeV, m0¼0.200GeV2, m2 ¼
0.270 GeV4, m4 ¼ 0.220 GeV6, m6 ¼ 0.260 GeV8, and
m8 ¼ 0.400 GeV10.
As in the case of B̄ → Xsγ, we also use model

functions with expð−x4Þ and expð−x6Þ suppression
because also those model functions can be expressed in
terms of basis of Hermite polynomials with a Gaussian
function. In that case, we find only slightly larger intervals
for Σ17,

−211 MeV ≤ Λ17 ≤ −48 MeV ðn ≤ 4; expð−x4ÞÞ:
ð30Þ

The lower bound corresponds to the parameter set,
σ ¼ 660 MeV, m0 ¼ 0.280 GeV2, m2 ¼ 0.030 GeV4,
m4 ¼ 0.040 GeV6, the upper bound to σ ¼ 800 MeV,
m0 ¼ 0.200 GeV2, m2 ¼ 0.270 GeV4, and m4 ¼
0.140 GeV6. With the Hermite polynomials up to degree
6 with an expð−x4Þ suppression, one obtains the largest
interval

−215MeV≤Σ17≤−36MeV ðn≤6;expð−x4ÞÞ: ð31Þ

The corresponding parameter sets are σ ¼ 620 MeV,m0 ¼
0.280 GeV2, m2 ¼ 0.030 GeV4, m4 ¼ 0.060 GeV6, and
m6 ¼ 0.060 GeV8 for the lower bound and σ ¼ 760 MeV,
m0 ¼ 0.200 GeV2, m2 ¼ 0.270 GeV4, m4 ¼ 0.240 GeV6,
and m6 ¼ 0.260 GeV8 for the upper bound. If one uses a
higher suppression, namely, expð−x6Þ, for example, with
a Hermite polynomial up to degree 4, one already gets a
slightly smaller interval again, namely,

−215 MeV ≤ Σ17 ≤ −52 MeV ðn ≤ 4; expð−x6ÞÞ;
ð32Þ

with σ¼720MeV, m0 ¼ 0.280 GeV2, m2 ¼ 0.030 GeV4,
m4 ¼ −0.300 GeV6 for the lower bound and σ ¼
740 MeV, m0 ¼ 0.200 GeV2, and m2 ¼ 0.270 GeV4,
m4 ¼ 0.200 GeV6 for the upper bound.
Therefore, the largest interval for Σ17 is again found for a

sum of Hermite polynomials up to degree 6 with an
expð−x4Þ suppression, which leads to a range−215 MeV ≤
Σ17 ≤ −36 MeV. However, all the other model functions
used above lead to very similar results. Thus, adding higher-
order polynomials and using higher suppression factors
have almost no effect in the B̄ → Xslþl− case in contrast to
the B̄ → Xsγ case. This effect can be regarded as a
consequence of the rather symmetric jet function as antici-
pated at the beginning of this section. The interval found in
the original analysis of B̄ → Xslþl− in Ref. [5] was
−355 MeV ≤ Σ17 ≤ þ50 MeV.12 Therefore, the size of
the interval found in our new analysis is by more than a
factor of 2 smaller.
Furthermore, as in the case of B̄ → Xsγ, there exists an

additional 1=m2
b correction in our formula which was

neglected in Eq. (23) at order 1=mb. In order to take it
into account, we have to replace Eq. (23) by the following
original one13:

12We note that the factor ec was not included in Σ17 in Ref. [5],
so in Sec. 6.1 of that reference one finds the interval
−532 MeV ≤ Σ17 ≤ þ75 MeV.

13For the precise limits of integration, we refer the reader to the
discussion in Sec. 6.1 of Ref. [5].
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F 17 ¼
1

mb

C1ðμÞC7γðμÞ
COPE

ecRe
Z þ∞

−∞

dω1

ω1 þ iϵ

Z
dn̄ · q
n̄ · q

Z
dω

ðmb þ ωÞ3
m3

b

×
1

ω1

�
ðn̄ · qþ ω1Þ

�
1 − F

�
m2

c

ðmb þ ωÞðn̄ · qþ ω1Þ
��

− n̄ · q

�
1 − F

�
m2

c

ðmb þ ωÞn̄ · q

��

−n̄ · q

�
G

�
m2

c

ðmb þ ωÞðn̄ · qþ ω1Þ
�
−G

�
m2

c

ðmb þ ωÞn̄ · q

���
g17ðω;ω1; μÞ: ð33Þ

If we include the 1=m2
b term, we again find the extrema for

Σ17 for almost the same parameters as in the corresponding
cases without the 1=m2

b correction. Using a Gaussian
suppression in the model function, the largest interval is
found for the sum of Hermitian polynomials up to degree 6
which leads to the following largest interval:

−259 MeV ≤ Σ17 ≤ −30 MeV: ð34Þ
If one chooses an expðx−4Þ suppression, the polynomial

of degree 6 leads to the maximal result

−268 MeV ≤ Σ17 ≤ −18 MeV: ð35Þ
We note that this 1=m2

b effect which belongs to the O1 −
O7γ contribution was not included in the original analysis
in Ref. [5].
Finally, the shape functions which lead to extreme

convolutions with the jet functions do all have relatively
small higher moments because large higher moments
correspond to shape functions with maxima close to the
hadronic limits. Therefore, the dimensional estimates on
the fourth and sixth moments, given in Eq. (3), namely, that
their values are between −0.3 and 0.3 GeV6 and between
−0.3 and 0.3 GeV8, respectively, have almost no impact on
the results in the case of the decay B̄ → Xslþl− because
these constraints are automatically fulfilled in almost all
cases due to the symmetric jet function. Only the model
function with n ≤ 6 and expð−x4Þ which leads to the
largest interval would allow for even larger values when the
dimensional estimates were not used; the upper bound
would slightly move up from −18 to −6 MeV (with the
1=m2

b correction included). In contrast, the jet function in
the B̄ → Xsγ case is peaked and asymmetric; thus, maxima
of the shape function at the border of the hadronic range
lead to larger convolutions with this jet function and this
leads to larger higher moments of the shape functions. This
explains the large impact of the additional estimates of the
fourth and sixth moments found in the B̄ → Xsγ case.

Summary of numerical results in the case of B̄ →
Xs;dlþl−.—We found the new conservative estimate for
Σ17 at order 1=mb given in Eq. (31), namely, −220 MeV ≤
Σ17 ≤ −40 MeV. This result translates into the following
relative uncertainty of the decay rate of B̄ → Xslþl− via
Eq. (25):

F 17
b→sllj1=mb

∈ ½þ0.4%;þ2.1%�; ð36Þ

which is more than a factor of 2 smaller than the uncertainty
of our original analysis in Ref. [5], namely, F 17

b→sllj1=mb
∈

½−0.5%;þ3.4%�. Including the large additional 1=m2
b

contribution, given in Eq. (35),−270 MeV ≤ Σ17 ≤
−20 MeV, we arrive at our final result which is as follows:

F 17
b→sll ∈ ½þ0.2%;þ2.6%�: ð37Þ

Our results are rather independent from the specific
choice of the degree of the polynomial and of the
suppression function used. Moreover, the dimensional
estimates on the fourth and sixth moments in Eq. (3) have
almost no impact on our result in the b → sll case in
contrast to the b → sγ case. We showed that both features
are consequences of the specific form of the jet functions.
Regarding scale variations in our final result, all remarks

made in the B̄ → Xsγ case also apply in this case.
The two other resolved contributions at order 1=mb due

to the interference O7γ −O8g and O8g −O8g were
estimated in our original analysis in Ref. [5] to F 78

b→sll ¼
½0%; 0.1%� and F 88

b→sll ¼ ½0%; 0.5%�, respectively.
Adding the three contributions by using the scanning
method, we arrive at the following final result for all
resolved contributions at order 1=mb (including the addi-
tional 1=m2

b piece within F 17):

F 1=mb
b→sll ∈ ½0.2%; 3.2%�: ð38Þ

As was already emphasized in our original analysis,
there are subleading contributions due to the interference of
O9;10 and O1 at order 1=m2

b which are numerically relevant
due to the large ratio C7γ=C9;10 and which will be presented
in Ref. [27].
The necessary modifications for the B̄ → Xdlþl− decay

can be found in Refs. [8,28].

IV. FINAL SUMMARY AND CONCLUSIONS

The nonlocal power corrections to the decays B̄ → Xsγ
and B̄ → Xs;dlþl− represent the largest uncertainties
(around �5%) of the theoretically clean inclusive penguin
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modes [6–8]. These resolved contributions had been
estimated using SCET for the B̄ → Xsγ in Ref. [1] and
for the B̄ → Xsll case in Ref. [5]. The largest resolved
contribution in both cases is due to the interference of the
effective operators O1 and O7γ.
The resolved contributions are given by convolution

integrals of a so-called jet function, characterizing the
hadronic final state Xs at the intermediate hard-collinear
scale

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mbΛQCD

p
, and of a soft (shape) function at scale

ΛQCD which is defined by an explicit nonlocal HQET
matrix element while the hard contribution at the scale mb
is factorized into the Wilson coefficients. Knowing the
explicit form of the HQET matrix element, one derives
general properties of this shape function and uses model
functions with all these properties to estimate the con-
volution integral with the perturbatively calculable jet
function.
In the two original analyses of the most important

resolved contribution of O1 −O7γ [1,5], only polynomials
of second order with a Gaussian suppression were used as
model functions for the shape functions. Their parameters
were scanned in order to find the most conservative
estimate for the convolution integral with the correspond-
ing jet functions.
In a recent analysis in Ref. [9], the authors offered a

reevaluation of this resolved contribution in the case of
B̄ → Xsγ. They derived a new constraint on the second
moment of the corresponding shape function and then
made a systematic analysis of model functions based on a
complete basis of functions using the Hermite polynomials
as was already advocated and used in several applications
by the authors of Refs. [17–19]. This systematic approach
allows to avoid any prejudice regarding the unknown
functional form of the shape functions. Using additional
dimensional estimates on the fourth and sixth moments, the
authors of Ref. [9] found the uncertainty due to this
resolved contribution ofO1 −O7γ reduced by a factor of 3.
In our present analysis of this resolved contribution to

the B̄ → Xsγ and also to the B̄ → Xslþl− decay, we
followed the same strategy of a systematic analysis and
also used the constraint on the second moment. In addition,
we analyzed the impact of the dimensional estimates of the
fourth and the sixth moments derived in Ref. [9]. We found
a significantly smaller reduction in the case B̄ → Xsγ and a
reduction by a factor of 2 in the case B̄ → Xslþl−. We
explicitly worked out the differences of our result compared
to the one of recent analysis of the B̄ → Xsγ case in
Ref. [9]: first, we included the very large 1=m2

b contribution
which directly originates from the resolved contribution
O1 −O7γ and which was also included in the original
analysis in Ref. [1]. Other resolved 1=m2

b contributions like
the ones due to the operator pairs O1 −O8g or O1 −O1

were shown to be numerically negligible in the original

analysis. However, the 1=m2
b term in O1 −O7γ was

dropped in the recent analysis in Ref. [9]. Second, we
take into account a larger uncertainty due to the charm
mass. These two differences have the largest impact. Third,
we explore the full space of functions given by the Hermite
polynomials and also used polynomials with suppression
factors expð−x4Þ or expð−x6Þ. Such functions can be
expressed in terms of the original basis given in Eq. (7).
Fourth, we use a more dense parameter grid in our analysis.
If one does not assume the dimensional estimates on the
fourth and sixth moments, we find significantly larger
values for the resolved contributions which show the large
impact of these dimensional estimates.
In contrast to the B̄ → Xsγ case, we found that the

additional constraint on the second moment—established
in the recent analysis in Ref. [9]—has a much larger impact
in the B̄ → Xslþl− decay. It leads to a reduction of the
uncertainty due to O1 −O7γ by a factor of 2 compared to
the result in our original analysis [5]. We also identified the
main reason which leads to these different results in the two
penguin modes. The jet function in the B̄ → Xslþl− case
is symmetric and has a broad peak, while the jet function in
the B̄ → Xsγ case is asymmetric and peaked. Therefore, the
choice of higher-order polynomials has no impact on
the convolution integral in contrast to the B̄ → Xsγ case.
The special features of the jet function in the B → Xslþl−

case also imply that the charmdependence is less pronounced
and that the dimensional constraints on the fourth and sixth
moments on the shape function have no impact either. Finally,
we mention that we also estimated the large 1=m2

b term in the
O1 −O7γ contribution to the B̄ → Xslþell− decaywhichwe
now included in the final result.
We found a large scale ambiguity in the final results

which was never explicitly addressed in previous work.
The only scale in our resolved contribution is within the
hard function, represented by the Wilson coefficients.
Therefore, we have chosen the hard scale for the Wilson
coefficients as our default value. If we run down the LO
Wilson coefficients in the resolved contribution, i.e., C1ðμÞ,
C7γðμÞ in theO1 −O7γ term, to the hard-collinear scale, the
result increases by more than 40%. There is no strict
argument here that this specific scale variation in our result
can be connected to an estimate of the unknown NLO
corrections. However, this observation calls for a calcu-
lation of the αs corrections and RG resummation. We found
that the charm dependence of our result in the B̄ → Xsγ
case is very pronounced. A calculation of the αs corrections
would also allow to control the charm mass dependence of
our result.
We conclude that the nonperturbative nonlocal correc-

tions to the B̄ → Xsγ decay still represents the largest
uncertainty in this decay mode. In the case of the B̄ →
Xslþl− decay, we found a reduction of the uncertainty by
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factor of 2 due to the new second moment constraint at
order 1=mb. However, the calculation of the relevant
resolved contributions to the B̄ → Xslþl− is not complete
yet. There are subleading contributions due to the inter-
ference of O9;10 and O1 at order 1=m2

b which are numeri-
cally relevant due to the large ratio C7γ=C9;10 and which
will be presented in Ref. [27].
As already discussed by the authors of Ref. [9], further

improvements might be possible in the near future. More
accurate and new determinations of HQET parameters
using future data of the Belle-II experiment and lattice
QCD will allow to determine the moments of the sublead-
ing shape function h17 more accurately and will allow to
reduce the error due the resolved contributions within the
two inclusive penguin decays. However, this is a difficult
task because determinations of higher moments rely on the
so-called LLSA.
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