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We generalize the framework of chiral effective field theory to study the interactions of the isovector
D�D̄ð�Þ and B�B̄ð�Þ systems up to the next-to-leading order, in which the long-, mid-, and short-range force
contributions as well as the S-D wave mixing are incorporated. Based on the Lippmann-Schwinger
equation, we fit the invariant mass distributions of the elastic channels measured by the BESIII and Belle
Collaborations. Our results indicate that the four charged charmoniumlike and bottomoniumlike states
Zcð3900Þ, Zcð4020Þ and Zbð10610Þ, Zbð10650Þ can be well identified as the DD̄�, D�D̄� and BB̄�, B�B̄�

molecular resonances. The bound state explanations are vetoed in our framework. Our study favors the Zc

and Zb states are the twin partners under the heavy quark symmetry.

DOI: 10.1103/PhysRevD.102.114019

Hadrons are usually classified as the conventional quark
model states (qq̄ mesons and qqq baryons) and exotic
states (glueball, hybrid, and multiquark states etc.). Hadron
spectrum serves as a golden platform in investigating the
low energy strong interactions. Since the discovery of
Xð3872Þ in 2003 by the Belle Collaboration [1], many new
states in the charmonium and bottomonium energy regions
have been observed [2]. Most of these so-called XYZ states
cannot be easily accommodated in the mass spectra of the
quark models, which stimulated the theorists to propose
various possible interpretations of these unconventional
ones [3–8].
In the charmonium energy region, two charged charmo-

niumlike structures Zcð3900Þ and Zcð4020Þ were observed
by the BESIII Collaboration in the J=ψπ� [9] and hcπ� [10]
channels, respectively. The Zcð3900Þ was subsequently
confirmed by the Belle [11] and Xiao et al. [12]. Later,
the BESIII studied the ðDD̄�Þ� and ðD�D̄�Þ�;0 distributions
and found the signals of Zcð3900Þ and Zcð4020Þ in the open
charmed channels [13–16], respectively. The former was
named as the Zcð3885Þ because the mass measured in the
ðDD̄�Þ� channel is about 15 MeV smaller than that of the

J=ψπ� channel. Enlightened by the Ockham’s razor:
“Entities should not be multiplied unnecessarily,” we treat
the Zcð3900Þ and Zcð3885Þ as the same state that was
visualized in different “microscope.” After all, the mass
resolution in different measurements is inequable. In the
bottomonium energy region, the Belle Collaboration dis-
covered two charged bottomoniumlike states Zbð10610Þ
andZbð10650Þ in theϒðnSÞπ� (n ¼ 1; 2; 3) and hbðmPÞπ�
(m ¼ 1; 2) invariant mass spectra [17]. Four years later, the
Belle Collaboration also observed these two structures in the
BB̄� and B�B̄� channels, respectively [18].
Isospin and parity analyses indicate these Zð0Þ

Q (Q ¼ c, b)
states are the isovector particles with positive G parity and
negative C-parity (C-parity for the neutral members). We
will denote the Zcð3900Þ, Zcð4020Þ and Zbð10610Þ,
Zbð10650Þ as Zc, Z0

c and Zb, Z0
b, respectively in the

following context for simplicity. Analyses of the angular
distributions favor the JP ¼ 1þ assignment for the Zc

[13,14] and Zð0Þ
b [19]. The JP quantum numbers of the Z0

c

are undetermined yet, but the JP ¼ 1þ is presumed in most

works [3–8]. The minimal quark component in these Zð0Þ
Q

states should be QQ̄qq̄ (q ¼ u, d) rather than the pure QQ̄
since they are the charged particles. Such a quark configu-
ration is obviously beyond the conventional mesons and
baryons, so they are dubbed the exotic hadrons. Many
theoretical explanations have been proposed to understand
these exotica, such as the loosely bound molecular states,
compact tetraquarks, kinematical effects and so on (one can
consult some comprehensive reviews [3–8] for deepgoing
excavations). Besides the similarities of the decay modes,
themass differences of ðZc; Z0

cÞ and ðZb; Z0
bÞ almost equal to
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the mass splittings of ðD;D�Þ and ðB;B�Þ, respectively. The
large comparability between the Zð0Þ

c and Zð0Þ
b suggests that

they are the partners under the heavy quark flavor symmetry.
The most salient feature of the Zc, Z0

c and Zb, Z0
b is their

proximities to the DD̄�, D�D̄� and BB̄�, B�B̄� thresholds,

respectively. Therefore, the properties of the Zð0Þ
Q states are

strongly related to the interactions of these open heavy flavor
systems.
The Zð0Þ

c and Zð0Þ
b lie few MeV above the D�D̄ð�Þ and

B�B̄ð�Þ thresholds, respectively. Thus it is natural to inves-

tigate whether the Zð0Þ
c and Zð0Þ

b are molecular resonances
generated from the D�D̄ð�Þ and B�B̄ð�Þ interactions, respec-
tively. In this work we exploit the chiral effective field
theory (χEFT) to study the D�D̄ð�Þ and B�B̄ð�Þ interactions
up to the next-to-leading order (NLO), and then fit the
experimental data to extract the resonance parameters. As
the modern theory of nuclear forces [20,21], χEFT has been
extensively used to study the nucleon systems with high
precision [22–27]. Within χEFT, the effective potentials of
the VP and VV systems [V and P denote the (anti)charmed/
bottom vector and pseudoscalar mesons, respectively] with
the definite isospin can be respectively parametrized as

V ¼
X6
i¼1

Viðp0; pÞOiðp0; p; ε; ε†Þ; ð1Þ

V 0 ¼
Xn
i¼1

V 0
iðp0; pÞO0

iðp0; p; ε; ε†; ε0; ε0†Þ; ð2Þ

where p and p0 denote the initial and final state momenta in
the center of mass system (c.m.s.), respectively. εð0Þ and εð0Þ†
represent the polarization vectors of the initial and final

vector mesons, respectively. Vð0Þ
i are the scalar functions

that can be extracted from the chiral Lagrangians, while Oi
are six pertinent operators:

O1 ¼ ε† · ε; O2 ¼ ðε† × εÞðq × kÞ;
O3 ¼ ðq · ε†Þðq · εÞ; O4 ¼ ðk · ε†Þðk · εÞ;
O5 ¼ ðq × ε†Þðq × εÞ; O6 ¼ ðk × ε†Þðk × εÞ; ð3Þ

with q¼p0−p the transferred momentum and k¼ðp0þpÞ=2
the average momentum. For the VV system, the number of
the possible operators increases drastically due to the
involvement of two new polarization vectors ε0 and ε0†, e.g.,

O0
1 ¼ ðε† · εÞðε0† · ε0Þ; O0

2 ¼ ðε0† · εÞðε† · ε0Þ;
O0

3 ¼ ðε0† · ε†Þðε · ε0Þ; O0
4 ¼ ðq · ε0†Þðq · εÞðε† · ε0Þ;

O0
5 ¼ ðq · ε†Þðq · ε0Þðε0† · εÞ; O0

6 ¼ ðq · ε0†Þðq · ε†Þðε0 · εÞ;
O0

7 ¼ ðq · ε0Þðq · εÞðε0† · ε†Þ;…; ð4Þ

where the ellipsis denotes the other possible combinations
among q, k, εð0Þ, and εð0Þ† at the NLO.
Like the nuclear forces [23,24], the interactions between

a pair of charmed (bottom) mesons can also be divided into
the short-, mid- and long-range contributions. The χEFT
does not depend on the details of the short-range dynamics
(r ≪ 1=mπ), which is usually mimicked by the contact
interaction. Following the spirit of Eq. (1), the contact
potential of the VP system is parametrized as follows,

Vct ¼ ðC0 þ C1q2 þ C2k2ÞO1 þ
X6
i¼2

Ciþ1Oi; ð5Þ

where Ciði ¼ 0;…; 7Þ are the unknown low energy con-
stants (LECs). The C0 and C1;…;7 terms designate the
leading order (LO) and the next-to-leading order contribu-
tions, respectively. With Eq. (2), one can construct the
similar form as in Eq. (5) for the contact potential of the VV
system.
The χEFT is very good at dealing with the long- and mid-

range interactions, which could be calculated to any high
orders theoretically. For the VP and VV systems, the long-
range interaction is provided by the one-pion-exchange
(OPE), which is firmly rooted in the chiral symmetry and its
spontaneous breaking of quantum chromodynamics (QCD).
The mid-range force arises from the two-pion-exchange
(TPE). The corresponding loop diagrams are illustrated in
Fig. 1. The long- and mid-range effective potentials can be
obtained from the LO chiral Lagrangians,

L ¼ ihHv ·DH̄i þ ghHγμγ5uμH̄i
− ih ¯̃Hv ·DH̃i þ gh ¯̃Hγμγ5uμH̃i; ð6Þ

where h� � �i denotes the trace in spinor space. The covariant
derivativeDμ ¼ ∂μ þ Γμ and v ¼ ð1; 0Þ represents the four-
velocity of heavy mesons. The H and H̃ denote the super-
field of the charmed (bottom) mesons and anticharmed
(bottom) mesons, respectively. Their expressions can be
found in Refs. [28–31]. The axial coupling g ≃ 0.57 for the
charmedmesons is extracted from the partial decay width of
D�þ → D0πþ [2], while for the bottom ones average value
g ≃ 0.52 is taken from the lattice QCD calculations [32,33].
The chiral connection Γμ and axial-vector current uμ are
formulated as Γμ ≡ ½ξ†; ∂μξ�=2, and uμ ≡ ifξ†; ∂μξg=2,
where ξ2 ¼ U ¼ expðiφ=fπÞ, with φ the matrix form of
the pion triplet [30], and fπ ¼ 92.4 MeV the pion decay
constant.
Establishing the flavor wave functions of the IGðJPCÞ ¼

1þð1þ−Þ Zð0Þ
Q [34] and unfolding Eq. (6) one can get the

OPE potentials for the ZQ and Z0
Q states, respectively,

VOPE ¼ −
g2

4f2π

O3

q2 þm2
π
; ð7Þ
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V 0
OPE ¼ −

g2

4f2π

ðO0
3 −O0

2Þq2 þO0
4 þO0

5 −O0
6 −O0

7

q2 þm2
π

; ð8Þ

with mπ the pion mass, and q2 ¼ p2 þ p02 − 2pp0 cosϑ
(where p ¼ jpj, p0 ¼ jp0j, and ϑ is the scattering angle in
the c.m.s. of VP and VV). In the Breit approximation [35],
the effective potential V from the scattering amplitude M
reads V ¼ −M=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Πi2miΠf2mf

p
(mi and mf stand for the

masses of initial and final states, respectively.).
Similarly, the midrange potential provided by the loop

diagrams in Fig. 1 can be calculated with the one-pion and
two-pion coupling vertices in Eq. (6) (for the calculation
details one can consult Refs. [36,37]). In heavy quark limit,
the two-particle-irreducible TPE potential can be formu-
lated via a concise form,

Vð0Þ
TPE ¼ Vð0Þ

1 Oð0Þ
1 ; ð9Þ

with

V 0
1 ¼ V1 ¼ −

24ð4g2 þ 1Þm2
π þ ð38g2 þ 5Þq2

2304π2f4π

þ 6ð6g2 þ 1Þm2
π þ ð10g2 þ 1Þq2

768π2f4π
ln

m2
π

ð4πfπÞ2

þ 4ð4g2 þ 1Þm2
π þ ð10g2 þ 1Þq2

384π2f4πy
ϖ arctan

y
ϖ
; ð10Þ

where ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 4m2

π

p
, and y¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pp0cosϑ−p2−p02p

.
The ZQ and Z0

Q are observed in the eþe− → πVP and
eþe− → πVV processes, respectively. So we simulate the
two transitions and fit the invariant mass spectra of the VP
and VV pair. The reaction is illustrated in Fig. 2, where
graphs 2(a) and 2(b) describe the continuum and resonance
contributions, respectively. In Fig. 2(b) we need to cope
with the VPðVÞ rescatterings, since they account for

the dynamical generation of the Zð0Þ
Q . Additionally, we also

need to mimic the γ� → πVPðVÞ coupling, which can be
depicted by the following effective Lagrangians

Lγ�πVPðVÞ ¼ gγF μνPμν þ g0γϵαβμνF αβP0
μνvλuλ; ð11Þ

where gð0Þγ designate the effective coupling constants,
and F μν is the field strength tensor of the virtual photon.

Pð0Þ
μν are the antisymmetric tensors that constructed as

Pμν¼ðP̃†
μuνP†−P̃†

νuμP†Þ−ðP̃†uμP
†
ν−P̃†uνP

†
μÞ and P0

μν ¼
P̃†
μP†

ν − P̃†
νP

†
μ, where ðP̃μ=P̃ÞPμ=P denote the (anti)

charmed (bottom) vector/pseudoscalar meson fields (e.g.,
see Refs. [30,31]), and uμ is the axial-vector field.
Equipped with the above effective potentials, the VP and

VV production amplitudes UðE; pÞ can be obtained by
solving the following Lippmann-Schwinger equation
(LSE),

UðE; pÞ ¼ MðE; pÞ

þ
Z

d3q
ð2πÞ3 VðE; p; qÞGðE; qÞUðE; qÞ; ð12Þ

where MðE; pÞ denotes the production vertex from
Eq. (11) and E is the invariant mass of the paired
VPðVÞ. The Green’s function GðE; qÞ is given as

GðE; qÞ ¼ 2μ

p2 − q2 þ iϵ
; jpj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðE −mthÞ

p
; ð13Þ

with μ and mth the reduced mass and threshold of the
VPðVÞ systems, respectively. The potentials in Eqs. (5) and

VP:

VV:

(a)

(a)

(b) (c)

(c)

(d)

(d)

(e)

(e)

(f)

(f)

(g)

(g)

(h)

(h)

(i)

(i)

(j)

(b)

FIG. 1. The two-pion-exchange contributions to the VP and VV interactions, where we use the thick, thin, and dashed lines to denote
the charmed (bottom) vector, pesudoscalar mesons and pion, respectively.

*( )S� V

P(V)

�

(a) (b)

FIG. 2. Graphs (a) and (b) represent the continuum and signal
channel contributions, respectively. The wiggly line denotes the
virtual photon, and other notations are the same as those in Fig. 1.
The gray blob in graph (b) signifies the rescatterings of VP and VV.
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(7)–(10) are given in the plane wave helicity state basis in
the c.m.s. of the VPðVÞ systems, whereas the physical
observables are usually defined in terms of partial waves,
i.e., the jlsji basis [where l, s and j represent the orbital
angular momentum, total spin and total angular momentum
of the VPðVÞ systems, respectively]. So it is desirable to
obtain the above effective potentials in the partial wave
decomposition. This can be easily done via [38]

Vl;l0 ¼
Z

dp̂0
Z

dp̂
Xl0

ml0¼−l0
hl0; ml0 ; s;mj −ml0 jj; mji

×
Xl

ml¼−l
hl; ml; s;mj −mljj; mjiY�

l0ml0
ðθ0;ϕ0Þ

× Ylml
ðθ;ϕÞhs;mj −ml0 jVjs;mj −mli; ð14Þ

with Ylml
the spherical harmonics. The remaining matrix

element hs;mj −ml0 jVjs;mj −mli in spin space can be
directly calculated with the coupled spin multiplets j1; msi,
which are the products of one-body spin states.
As demonstrated in the nucleon systems, the S- and

D-wave mixing effect plays an important role [22–25].
This effect can be easily taken into account in the LSE
framework, in which the effective potential becomes
a 2 × 2 matrix. After performing the partial wave decom-
position via Eq. (14), the contact potential that incorporates
the S-D mixing reads,

½Vct�l;l0 ¼
�
C̃s þ Csðp2 þ p02Þ Csdp2

Csdp02 0

�
; ð15Þ

where C̃s, Cs, and Csd are the so-called partial wave LECs.
Their values will be fixed by fitting the experimental data.
Iteration of the potential Vl;l0 in the LSE requires

suppressing the high momenta contribution to avoid diver-
gence, since the χEFT is only valid in low momenta region
q ≪ Λχ ≈ 1 GeV. The Gaussian regulator is commonly
used [24,27,39], i.e., Vl;l0 →Vl;l0 expð−p02=Λ2−p2=Λ2Þ,
where Λ is the cutoff parameter. For the nucleon-nucleon
scattering when the high order corrections are included
[24,27], the cutoff parameter Λ is normally chosen to be
around 0.5 GeV. We leave it as a free parameter and
determine its value by fitting the experimental line shapes.
In terms of the production amplitude in Eq. (12), the

differential decay width for γ� → πVPðVÞ reads

dΓ
dE

¼ 1

12ð ffiffiffi
s

p Þ2ð2πÞ3 jUðEÞj
2jk1jjk�2j; ð16Þ

where
ffiffiffi
s

p
is the center-of-mass energy of the eþe−

collision. k1 and k�2 are the three momentum of the
spectator π in the c.m.s. of eþe− and the three momentum
of PðVÞ in the c.m.s. of VPðVÞ, respectively.

We essentially have four free parameters [three partial
wave LECs in Eq. (15) and a cutoffΛ] to fit the experimental

lineshapes. For the Zð0Þ
c and Zð0Þ

b states, we try to fit the
D�D̄ð�Þ andB�B̄ð�Þ invariant mass distributionsmeasured by
the BESIII [14,16] and Belle [18] Collaborations, respec-
tively. The fitted line shapes and parameters are given in
Fig. 3 and Table I, respectively. We find the experimental
data can be fitted quantitativelywell with the potentials up to
the NLO in our approach. Four sharp peaks appear around
3.88, 4.02, 10.61, and 10.65 GeV for each distribution,
which correspond to the Zcð3900Þ, Zcð4020Þ, Zbð10610Þ,
and Zbð10650Þ signals in experiments, respectively. With
the fitted parameters in Table I as inputs, we search for the
poles of the T matrix in the second (unphysical) Riemann
sheet, which can be achieved through analytical continu-
ation of the Green’s function Gðpþ iϵÞ in Eq. (13),

Gbðpþ iϵÞ≡ Gaðpþ iϵÞ − 2iImGaðpþ iϵÞ; ð17Þ

where Ga and Gb denote the Green’s function defined in the
first (physical) and second Riemann sheet, respectively.
We find a pole for each system in the second Riemann

sheet with the pole positions given in Table I. In other
words, the D�D̄ð�Þ and B�B̄ð�Þ interactions generate the

molecular resonances Zð0Þ
c and Zð0Þ

b . This can be qualita-
tively understood. When the γ� “emits” a pion, the residual
phase spaces for the VPðVÞ systems are small. Thus once
the VPðVÞ are created near their thresholds, they move
slowly and have enough time to interact with each other. If
the interaction is attractive enough, a bound state is formed,
which could not decay into its component mesons. If the
interaction is not attractive enough but has a barrier to
confine the two mesons for a finite time, a molecular
resonance with a certain lifetime is produced.
Our extracted masses are all consistent with the exper-

imental measurements [14,16,18], but the widths in our
study are smaller than those of the experimental data. We
do not consider the inelastic channel J=ψπ½ϒðnSÞπ� and
hcπ½hbðmPÞπ� contributions (see Refs. [40–43] for a
couple-channel approach). These inelastic channels would
contribute additional partial decay widths. These inelastic
processes occur at very short distance and cannot be
accommodated within the χEFT framework. On the other

hand, the coupling strength between Zð0Þ
Q and the inelastic

channels is not strong, since the experimental measure-
ments indicate that the elastic channels dominate the decay

widths of Zc [13] and Zð0Þ
b [18]. Therefore, the corrections

from the inelastic channels to the widths of Zð0Þ
Q shall not be

significant. From Fig. 3, the signal line shapes deviate from
the moderate Breit-Wigner distribution, which are dramati-
cally distorted by the strong coupling of VPðVÞ. The
classical Breit-Wigner function is not good enough to
describe these typical very-near-threshold states.
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Inspecting the fitted parameters in Table I, one notices
that the rescatterings inside the VP and VV systems proceed
predominantly via the S-wave interactions. They can be
described almost by one set of parameters, respectively,
which is guaranteed by the heavy quark spin symmetry
[29,44]. In addition, the LO LEC C̃s for the charmed and
bottom systems are consistent with each other within
uncertainties, which is the reflection of heavy quark flavor
symmetry [29,45,46]. The sensible difference of the NLO
LEC Cs for the D�D̄ð�Þ and B�B̄ð�Þ systems encodes the
heavy quark flavor symmetry breaking effect. The value of
the cutoff Λ also resides in the region (Λ ≪ Λχ) where the
χEFT works healthily. The cutoff for the B�B̄ð�Þ systems is
larger than that of the D�D̄ð�Þ, since the interaction radius
(R ∼ 1=Λ) for the B�B̄ð�Þ is shorter than that of the D�D̄ð�Þ.

It is well known that the bottommesons are heavier than the
charmed ones.
We also attempt to fit the data with the LO effective

potentials solely (OPE plus the LO contact terms), but
cannot reproduce the experimental line shapes well (purple
dot-dashed lines in Fig. 3). Those bumps are caused by the
sudden opening of the phase spaces together with the
monotone decreasing behavior of the production ampli-
tudes, but not by any genuine poles of the T matrix in the
second Riemann sheet. These signals become bound states
with the LO interaction. Nevertheless, the parameters
obtained with only the LO interaction are less reasonable,

such as C̃s ≃ −134.8 GeV−2 and Λ ≃ 1.37 GeV for the Zð0Þ
c

states (while C̃s ≃ −29.3 GeV−2 and Λ ≃ 1.43 GeV for the

Zð0Þ
b states). Although there are no guidances to judge the

TABLE I. The fitted parameters for the D�D̄ð�Þ and B�B̄ð�Þ systems with the potentials up to the NLO, respectively. The LEC are in

units of 102. We define the masses and widths of the Zð0Þ
Q states from their pole positions E ¼ m − iΓ=2 (with m the mass and Γ the

width). The masses and widths are given in units of MeV. The correlation coefficients of the parameters in our fit are ρC̃sCs
¼ 0.23,

ρC̃sCsd
¼ 0.07, ρC̃sΛ ¼ 0.75, ρCsCsd

¼ 0.12, ρCsΛ ¼ 0.87, and ρCsdΛ ¼ 0.21.

States Thresholds C̃s [GeV−2] Cs [GeV−4] Csd [GeV−4] Λ [GeV] ½m;Γ�pole ½m;Γ�expt.
1ffiffi
2

p ½DD̄� þD�D̄� 3875.8 3.6þ1.2
−1.2 −76.9þ6.2

−6.2 1.1þ5.8
−5.8 0.33þ0.024

−0.024 ½3881.3þ3.0
−3.0 ; 12.4

þ5.0
−5.0 � ½3881.7þ2.3

−2.3 ; 26.6
þ3.0
−3.0 � [14]

D�D̄� 4017.1 4.0þ1.6
−1.6 −78.1þ8.7

−8.7 1.7þ6.3
−6.3 0.34þ0.031

−0.031 ½4026.5þ4.5
−4.5 ; 10.1

þ7.2
−7.2 � ½4025.5þ3.7

−5.6 ; 26.0
þ6.0
−6.0 � [16]

1ffiffi
2

p ½BB̄� þ B�B̄� 10604.4 2.2þ0.2
−0.2 −9.9þ1.0

−1.0 3.6þ4.7
−4.7 0.51þ0.014

−0.014 ½10607.9þ2.2
−2.2 ; 10.9

þ3.0
−3.0 � ½10607.2þ2.0

−2.0 ; 18.4
þ2.4
−2.4 � [17]

B�B̄� 10649.4 2.2þ0.3
−0.3 −9.9þ1.2

−1.2 3.3þ6.6
−6.6 0.51þ0.015

−0.015 ½10652.8þ2.7
−2.7 ; 10.9

þ3.4
−3.4 � ½10652.2þ1.5
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FIG. 3. TheD�D̄ð�Þ and B�B̄ð�Þ invariant mass distributions in eþe− → πVPðVÞ transitions. The data with error bars in (a), (b), and (c)/
(d) are taken from Refs. [14,16,18] at

ffiffiffi
s

p ¼ 4.26, 4.23, and 10.86 GeV, respectively. The red solid, dark-blue dashed, purple dot-dashed,
and dark-cyan dotted lines denote the NLO fit, NLO signal, LO fit, and background contributions (extracted from the corresponding
experimental measurements), respectively.
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values of C̃s, the χEFT imposes strong constrains to the Λ,
which has to be smaller than the typical hard scale, i.e., the
ρmeson massmρ ≃ 0.77 GeV. Therefore, we can conclude
that either from the fitting quality or the rationality of
parameters, the bound state explanations are not favored.
In addition, we notice the fitted Csd values in Table I are

always compatible with zero. So we also try to re-fit the
experimental data by turning off the S-D mixing. We find
the parameters C̃s, Cs, and Λ keep almost unchanged. On
the one hand, this may indicate the influence of tensor force
is not so important as in the low energy NN interactions.
On the other hand, the generally suppressed D-wave
production vertex is not taken into account, this may
partially weaken the influence of the S-D mixing. The
inelastic channels, e.g., J=ψπ and ϒðnSÞπ, can couple to

the Zð0Þ
c and Zð0Þ

b states via an S wave, respectively, so this
couple channel effect may be more important than the S-D
mixing. As we explained above, the inelastic channel
contributions cannot be accommodated in our framework,
but an effective way with the couple channels could be
utilized to phenomenologically analyze the inelastic chan-
nel contributions, which is given in the Appendix.
As elucidated above, the Zð0Þ

Q states can be well identified
as the molecular resonances. In the resonance scenario,
their decay behaviors can be explained qualitatively well.
In contrast to the bound state, a resonance naturally
dissolves to their components after interacting within finite
time, which contributes to the dominant decay mode. The
decays with the final states of a heavy quarkonium and a
light meson ½Qq̄� þ ½Q̄q� → ½QQ̄� þ ½qq̄� proceed with less
probability, and they are induced by a much shorter range
interaction (compared to 1=Λχ). At the hadron level, these
decays take place via exchanging a heavy meson ½Qq̄�,
which is generally suppressed. This is why the partial
widths from the inelastic channel contributions are
much smaller than those of the elastic channels in experi-
ments [13,18].
In summary, we systematically study the D�D̄ð�Þ and

B�B̄ð�Þ effective potentials with the χEFT up to the NLO to
draw a clear picture of their interactions. With these
potentials, we investigate the internal structures of the

experimentally observed Zð0Þ
c and Zð0Þ

b states in recent years.
The short-, mid- and long-range forces are all included to fit
the invariant mass distributions. The experimental data are
fitted very well with the effective potentials up to the NLO.
The peaks in experiments arise from the poles in the second

Riemann sheet, which indicate that the Zð0Þ
c and Zð0Þ

b states
are resonances that are generated from the analogue of
nuclear forces in heavy meson sectors. The heavy quark
symmetry and its breaking effect are both reflected in the
parameters. The fittings with the LO potentials give rise to
the bound states, which is repudiated either by the above-
threshold masses or the validity of χEFT. The decay

behaviors of the Zð0Þ
c and Zð0Þ

b states can also be qualitatively

interpreted in the resonance picture. In our study, the Zð0Þ
Q

signals can be fully reproduced by the VPðVÞ rescatterings,
where the initial states πVPðVÞ are assumed to be produced
from pointlike sources. We do not need additional struc-
tures around the colliding energies.
Besides the XYZ states, more and more new states have

been observed in experiments (such as the Pc [47] and very
recently reported X0;1 states at LHCb [48,49]), thus a model
independent way is urgently called for to illuminate the
nature of these new hadrons. The systematical generaliza-
tion of the χEFT to the heavy meson systems is very
successful in this work, which helps us to pin down the

inner structures of the Zð0Þ
c and Zð0Þ

b states. This framework
can also be applied to investigate whether the other near-
threshold states (e.g., Pc and X0;1) have the same origin,
i.e., the dynamically generated resonances (bound states)
from the analogue of nuclear forces in different sectors.
This would undoubtedly deepen our understandings of the
low energy behaviors of QCD.
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APPENDIX: ESTIMATING THE INELASTIC
CHANNEL CONTRIBUTIONS

Although the inelastic channel contributions cannot be
systematically included within the framework of χEFT,
which could be phenomenologically described in an
effective way. Here, we take the Zc state as an example,
and consider two channels, i.e., DD̄� and J=ψπ couplings.
The effective potentials for these two channel couplings can
be parametrized as

V ¼
�
0 C

C C̃s þ Csðp2 þ p02Þ

�
; ðA1Þ

where the J=ψ and π coupling strength is known to be
tiny [50] and set to be 0. The constant C represents the
DD̄� and J=ψπ coupling, which can be regarded as the
lowest order expansion in an EFT. The C̃s þ Csðp2 þ p02Þ
depicts the D and D̄� interaction, which is analogous
to Eq. (5).
The scattering T matrix can be written as

T ¼ V þ VGT; ðA2Þ

where the relativistic two-body propagator G is defined as

GðEþiϵÞ¼
Z

Λ

0

q2dq
ð2πÞ2

ω1þω2

ω1ω2

1

E2−ðω1þω2Þ2þiϵ
; ðA3Þ
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with ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

i

p
the energy of ith particle of the two

intermediate states. We use a sharp cutoff Λ to regularize
this loop integral. Considering the c.m.s. momentum of the
J=ψπ channel can reach up to 0.7 GeVat the energy of Zc,
we choose Λ ¼ 1.0 and 0.5 GeV for the J=ψπ channel and
DD̄� channel, respectively.
With the on-shell approximation [51], the couple channel

integral equation Eq. (A2) can be reduced to a set of
algebraic equations, i.e.,

T ¼ ð1 − VGÞ−1V: ðA4Þ

Through analytical continuation of the Green’s function G,

GðEþ iϵÞ → GðEþ iϵÞ þ i
qiðEÞ
4πE

; ðA5Þ

we search for the poles of the T matrix in the second
Riemann sheet by varying the values of the variables C̃s, Cs,
and C in the effective potentials. With the mass and width
measured in Ref. [14] as inputs, we get

C̃s ¼ −0.16� 0.02 GeV−2; Cs ¼ −1.7� 0.2 GeV−4;

C ¼ 0.03� 0.01 GeV−2; ðA6Þ

where the above values are in units of 103. We notice the
value of C is much smaller than that of the C̃s and Cs,
this can qualitatively explain why the partial width
Γ½Zc → DD̄�� is much larger than the Γ½Zc → J=ψπ� (note
that the phase space of Zc → DD̄� is much smaller than that
of Zc → J=ψπ) [13]. Moreover, the above result indicates
the inner structure of Zc is dominantly governed by the
dynamics ofDD̄�. This can also explain why we can give a
rather good description of the experimental data although
we do not consider the inelastic channel contributions.
The above analyses can also be applied to estimate the

coupling strengths of Z0
c and Z

ð0Þ
b to the elastic and inelastic

channels. The results should be very similar to the Zc state,
since they are the twin partners under heavy quark limit,
and the inelastic channels only contribute a small amount of
partial widths [18].
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