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The Curci-Ferrari model has been shown to provide a good grasp on pure Yang-Mills correlation
functions in the Landau gauge, already at one-loop order. In a recent work, the robustness of these results
has been tested by evaluating the two-loop corrections to the gluon and ghost propagators. We pursue this
systematic investigation by computing the ghost-antighost-gluon vertex to the same accuracy in a particular
kinematic configuration that makes the calculations simpler. Because both the parameters of the model and
the normalizations of the fields have already been fixed in a previous work, the present calculation
represents both a pure prediction and a stringent test of the approach. We find that the two-loop results
systematically improve the comparison to Monte Carlo simulations as compared to earlier one-loop results.
The improvement is particularly significative in the SU(3) case where the predicted ghost-antighost-gluon
vertex is in very good agreement with the data. The same comparison in the SU(2) case is not as good,
however. This may be due to the presence of a larger coupling constant in the infrared in that case although
we note that a similar mismatch has been quoted in nonperturbative continuum approaches. Despite these
features of the SU(2) case, it is possible to find sets of parameters fitting both the propagators and the ghost-
antighost-gluon vertex to a reasonable accuracy.
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I. INTRODUCTION

Many years after the formulation of quantum chromo-
dynamics (QCD), the theoretical description of the infrared
behavior of strong interactions remains largely an open
problem. Questions such as the confinement of colored
partons or the dynamics of spontaneous chiral symmetry
breaking count as some of the biggest challenges in the
field. Of course, extensive numerical lattice studies have
allowed for the first-principle extraction of many hadronic
properties [1,2]. However, these Monte Carlo simulations
are extremely costly from a numerical point of view, and
some central questions, such as the study of the QCD phase
diagram at finite baryonic density [3], remain so far out of
reach. As a consequence, any analytical or semianalytical
approach that is able to describe at least some aspects of the
infrared behavior of strong interactions is welcome. Of
course, standard perturbative approaches (the most straight-
forward analytical procedure in field theory) do not work in

the infrared regime of QCD, which is why this regime is
usually referred to as “nonperturbative.”
Among the semianalytical methods that aim at going

beyond the standard perturbative QCD paradigm, one can
identify essentially two types. The vast majority of
approaches put their focus in constructing nonperturbative
approximation schemes in the continuum. These include
truncations of the hierarchy of Dyson-Schwinger (DS)
[4–20] or functional renormalization-group [21–27] equa-
tions as well as variational Ansätze in the Hamiltonian
formalism [28–30]. A generic feature of all these
approaches is that they are not formulated in terms of
gauge-invariant observables but rely, instead, on the evalu-
ation of correlation functions for the partonic degrees of
freedom. Of course, physics is determined by hadronic
gauge-invariant observables and an effort has been made in
order to reconstruct physical observables from correlation
functions (see, for instance, [31,32]). Practical calculations
require, however, the use of a gauge-fixed action. In order
to keep Lorentz invariance manifest, covariant gauges are
usually preferred and for many reasons to be discussed
below, most studies, by far, are done in the Landau gauge.
Covariant gauge fixing in a nonperturbative setting is not

a trivial problem, however, and the standard Faddeev-
Popov (FP) prescription, well justified in the ultraviolet,
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together with its underlying local Becchi-Rouet-Stora-
Tyutin (BRST) symmetry, cannot be applied in a straight-
forward way in the infrared [33]. This problem is intimately
related to the ambiguity that exists when one tries to fix the
gauge in a covariant manner, the so-called Gribov problem
[34]. It has lead some groups to try to tackle the infrared
properties of non-Abelian theories from a different per-
spective, with a focus on first extending the gauge-fixing
procedure beyond its ultraviolet FP realization, before any
prejudice on the type of method to be used in the
determination of the correlation functions in the infrared.
The most known of these approaches is certainly the
Gribov-Zwanziger framework where the Gribov ambiguity
is partially lifted by removing so-called infinitesimal
Gribov copies [34–37].1 Ideally, one would like to elimi-
nate any type of copy but this remains, to date, an arduous
task.
Let us mention that this second type of approach is not

totally disconnected from the previous one. For instance, it is
known that DS equations are formally the same for a theory
with or without infinitesimal copies (with the exception of
ghost correlation functions) [40]. What changes are the
boundary conditions to be applied on these equations
(because the underlying actions are different of course).
In nonperturbative approaches, one particular handle on
the boundary conditions2 is provided by the fact that the
(necessary) regularization breaks the BRST symmetry
explicitly, placing inevitably the model within a larger class
of models with less symmetry and, therefore, with more
operators or couplings. How these extra couplings should be
fixed in order to retrieve a BRST invariant theory and
whether or not BRST should be retrieved at all in the IR are
questions that are still open to debate.3

This large activity around the semianalytical evaluation
of Landau gauge correlation functions has motivated
numerous gauge-fixed lattice simulations. In fact, one of
the main reasons explaining the focus on the Landau gauge
is that the gauge fixing can be formulated as the extrem-
ization of the functional WA½U�≡ R

x trA
U
μ ðxÞAU

μ ðxÞ. For a
given gauge field configuration Aμ, the latter admits many

extrema Ui along the gauge orbit AU
μ , corresponding to the

Gribov copies mentioned above. Since gauge fixing
amounts to choosing one copy per orbit one can restrict
to copies that minimize the functional WA½U�, turning the
gauge fixing into a minimization problem well suited for
numerical simulations. Various ways of choosing these
minimizing Gribov copies have been considered [41], the
simplest of which consists in randomly picking one copy
on each orbit, defining the so-called minimal Landau
gauge, which explicitly breaks the BRST symmetry of
the FP Lagrangian.4

Rather independently of the precise choice of copy,
lattice studies in d ¼ 3 and d ¼ 4 dimensions5 have clearly
demonstrated that the gluon propagator saturates to a finite
nonzero value at vanishing momentum, corresponding to a
massivelike behavior [48–55]. At the same time, this
behavior is a nonstandard one for it features a violation
of positivity. The ghost dressing function (the correspond-
ing propagator times the momentum square) has also been
found to saturate at a finite nonzero value for vanishing
momentum. Finally, the gauge coupling extracted from the
ghost-antighost-gluon vertex stays finite for all momenta
and even becomes small in the deep infrared [49,56].
All these results are clearly at odds with standard

perturbation theory based on the FP procedure, which
features an infrared Landau pole in the running of the
coupling constant. The nonperturbative approaches referred
to above typically find two classes of solutions, known as
scaling and decoupling, depending on how the boundary
conditions are chosen. The class of decoupling solutions
allows for a very good comparison to lattice data. As for the
Gribov-Zwanziger approach, in its simplest form, it leads
instead to a scaling-type solution, at odds with the lattice
results. A refinement based on the dynamical generation of
condensates could reconcile the approach with the lattice
results at tree level [57]. It remains to see how this survives
the inclusion of higher-order corrections.6

Next to these two main approaches and their myriad
results, a third way has been put forward and has proven
quite successful in determining many infrared properties
of Yang-Mills (YM) theories. It belongs to the class of
approaches that aim at extending the gauge fixing beyond
its ultraviolet FP prescription but it is more phenomeno-
logical in spirit than the Gribov-Zwanziger approach: rather
than trying to infer the complete gauge-fixed action by
eliminating as many copies as possible, one exploits the
lattice results in the Landau gauge in order to guess
the main ingredients that would compose such an action.

1Interestingly, a generalization of the BRST symmetry has
been recently discovered in this context [38,39].

2Another such handle is related to the value of the ghost
dressing function at zero momentum.

3In a recent work [20], while it is acknowledged that there is an
arbitrariness related to the removal of quadratic divergences that
impacted previous implementations, it is claimed that, within a
new implementation of the truncation of DS equations, this
arbitrariness has almost no impact on the gluon propagator, once
expressed in physical units. This is certainly an interesting claim
that deserves attention. Whether the full arbitrariness that the
subtraction of quadratic divergences entails has been tested in
[20] as well as how the observed insensitivity to this subtraction
depends on the specifics of the truncation and how it can be
implemented in other nonperturbative continuum approaches
remain open questions.

4The possibility that the FP construction in the Landau gauge
is correct at a nonperturbative level, despite the presence
of Gribov copies, has been suggested in [42–44] but remains un-
proven so far.

5The case d ¼ 2 requires a separate discussion; see [45–47].
6There exist examples where tree-level masses generated by

condensates are canceled by one-loop corrections [58].
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As proposed initially in [59,60], one considers a massive
deformation of the FP Lagrangian in the Landau gauge.
This deformation is rather minimalistic since the only
modification to the Landau gauge FP Feynman rules is
that the gluon propagator, while remaining transverse,
becomes massive.
The model corresponds to the Landau limit of the Curci-

Ferrari (CF) model [61] which has a long history. It was
proven to be renormalizable long time ago [62–64] but was
discarded due to violations of positivity [63,65]. Indeed, the
model possesses a BRST-like symmetry but it is not
nilpotent and it turns out not to be sufficient to prove that
the standard definition of the perturbative physical space
[66,67] only contains positive norm states. A Hilbert space
with only positive norm states is a necessary step in defining
a physical space on which to verify unitarity. It is to be
stressed, however, that perturbative unitarity is not sufficient
in general to prove the true unitarity of a given model. Even
in QED, unitarity requires one to consider the S matrix
between any possible scattering state, including scattering
between the elementary constituents of the model and
possible bound states.7 This is even more true in YM theory
or QCDwhere confinement forbids the presence of elemen-
tary constituents among the asymptotic states. In such
models the true physical space is certainly not one that
includes quarks or transverse gluons (as is the case for the
standard perturbative physical space) but rather glueballs
and hadrons and it is on such a physical space that the
question of unitarity needs to be addressed. The possibility
to construct such a version of the physical space in the CF
model or in any model where the Gribov problem is taken
into account in onewayor another remains an openquestion.
We stress, however, that first-principle lattice simulations
[69,70] have shown an unambiguous violation of reflection
positivity in the (transverse) gluon propagator, which are
well reproduced by the CFmodel [59,71,72]. This observed
positivity violation raises serious doubts on the applicability
of the standard definition of the perturbative physical space
for both YM theories and QCD and, as a consequence, the
criticisms regarding the CF model must be reconsidered.
Setting aside these interesting but to date unsolved

questions, the CF model has been used to evaluate many
correlation functions of YM theory in the Landau gauge
and yields unexpectedly good results within a simple
perturbative expansion. With appropriate renormalization
conditions [60,73] the model is infrared-safe in the sense
that there is a family of renormalization-group trajectories
without Landau pole. The corresponding correlation func-
tions are then regular for any Euclidean momentum,
down to zero momentum. Moreover, the trajectories that

actually reproduce lattice data correspond to moderate
couplings, allowing for a reasonable control of perturbation
theory [60,74].8

Lattice two-point YM vertex functions are very well
reproduced at one-loop order [59,60,74,76] and recently
the corresponding two-loop perturbative corrections have
been evaluated. They are found to be tiny and tend to
improve the one-loop results, confirming the validity of
perturbation theory in the CF model, at least as far as YM
two-point functions are concerned [77]. The same analysis
has been performed for the YM three-point functions, but
so far only at one-loop order [76]. The comparison to lattice
data remains good, although not as good as with the two-
point functions. It is the purpose of the present paper to
extend the systematic evaluation of two-loop corrections to
the three-point YM vertices, in view of further testing the
validity of the perturbative CF picture. In this work, we
consider the ghost-antighost-gluon vertex in a particular
momentum configuration that makes the calculation of the
same level of difficulty than that of the two-point functions.
Before closing this introduction, let us mention that the

CF model has also been used to investigate many other
properties of YM theory and QCD. It has been extended to
include quarks, yielding a reasonable agreement with
lattice data but also showing that the relevant coupling
in the quark-gluon sector is significantly larger than in the
YM sector [78,79]. This observation is particularly impor-
tant in order to study the spontaneous breaking of chiral
symmetry, which, as expected, cannot be obtained by
purely perturbative means. Nevertheless, it was shown that
the smallness of the YM coupling allows for the formu-
lation of controlled approximations that reproduce the
lattice data accurately and also explain the spontaneous
chiral symmetry breaking in QCD in a controlled manner
[80]. The model has also been extended to finite temper-
ature and density. In the case of YM theory as well as QCD
in the limit of heavy quarks, it has allowed one to
successfully capture various features of the phase diagram,
in particular the confinement-deconfinement transition and
its associated order parameter [81–88]. More recently, a
first step towards the description of the phase diagram of
the CF model at finite temperature and finite chemical
potential in the presence of light quarks was presented
in [89].
The article is organized as follows. In Sec. II, we briefly

review the CF model together with its renormalization, and
we summarize some of the results relevant to this work.
In Sec. III, we describe the main properties of the
ghost-antighost-gluon vertex and discuss its perturbative

7This is pretty clear in nonrelativistic scattering where the
scattering operator is unitary on the “asymptotic space” that
labels all these possible scattering states including the scattering
of bound states [68].

8We refer to [75] for a similar approach based on a massive
modification of perturbation theory which also leads to very good
results at one-loop order. The premises of this approach are
however quite different from those of the CF approach, since it is
assumed from the beginning that the Faddeev-Popov action is a
good starting point to study the infrared properties.

GHOST-ANTIGHOST-GLUON VERTEX FROM THE CURCI- … PHYS. REV. D 102, 114016 (2020)

114016-3



contributions at one- and two-loop order which we reduce
to master integrals and split into UV divergent and finite
parts. In Sec. IV, we present the various cross-checks that
we employed in order to verify the large and tedious output
of the two-loop calculation. We present our results in
Sec. V together with a comparison with lattice results. We
conclude in Sec. VI and gather some technical details in the
Appendixes.

II. THE CURCI-FERRARI MODEL

In what follows, we work with the Euclidean Lagrangian
density

L ¼ 1

4
ðFa

μνÞ2 þ ∂μc̄aðDμcÞa þ iha∂μAa
μ þ

m2

2
ðAa

μÞ2; ð1Þ

where Latin indices label the generators of the SUðNÞ color
group. The covariant derivative in the adjoint representation
is given by

ðDμcÞa ≡ ∂μca þ gfabcAb
μcc; ð2Þ

and the corresponding field-strength tensor reads

Fa
μν ≡ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν; ð3Þ

with g the coupling constant.
As already mentioned in the introduction, the

Lagrangian density (1) corresponds to a particular case
of the CF model [61], obtained in the limit of vanishing
gauge parameter (i.e., the Landau gauge). At tree level,
the gluon propagator is massive and transverse in momen-
tum space, which ensures that the model is renormalizable.
We refer the reader to Refs. [60,64] for a more detailed
account of the model, including its many symmetries.

A. Infrared-safe renormalization scheme

The model is regularized in d ¼ 4 − 2ϵ dimensions.
It is renormalized as usual by rescaling both the bare
fields,

Aa;μ
B ¼

ffiffiffiffiffiffi
ZA

p
Aa;μ; caB¼

ffiffiffiffiffi
Zc

p
ca; c̄aB¼

ffiffiffiffiffi
Zc

p
c̄a; ð4Þ

and the bare parameters,

gB ¼ Zgg; m2
B ¼ Zm2m2; ð5Þ

where we have denoted bare quantities with a subscript “B.”
One interesting feature of the model (1) is that the

renormalization factors ZX are constrained by two non-
renormalization theorems [90–95]. First, owing both
to the particular form of the ghost-antighost-gluon inter-
action and to the transversality of the gluon propagator,
the ghost-antighost-gluon vertex receives no corrections
beyond tree level in the limit of vanishing ghost momentum

[95].9 A direct consequence of this observation is that the
combination Zg

ffiffiffiffiffiffi
ZA

p
Zc is finite. Similarly, owing to various

symmetries enjoyed by the model, one can argue that
Zm2ZAZc is finite as well [90–94].
In particular, this means that one can choose renormal-

ization schemes where

Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ Zm2ZAZc ¼ 1 ð6Þ

and, therefore, such that all renormalization factors can be
obtained from the sole knowledge of the gluon and ghost
propagators, denoted G and D, respectively. In what
follows, we work within this setup and fix the remaining
renormalization factors by imposing the following con-
ditions on the gluon and ghost propagators at the running
scale μ:

G−1ðk ¼ μÞ ¼ μ2 þm2ðμÞ; D−1ðk ¼ μÞ ¼ μ2: ð7Þ

These constraints, together with those in Eq. (6), define the
so-called infrared-safe (IS) scheme [60].
We recall for completeness that, in dimensional regu-

larization, the bare coupling that appears in the Lagrangian
density has mass dimension ϵ and is usually written gBμϵ.
Despite this explicit dependence on μ, the dimensionful
bare coupling gBμϵ should be considered μ independent.
This is particularly important when deriving the beta
functions that govern the μ evolution of the renormalized
parameters g and m.

B. Summary of results

At one- and two-loop order of perturbation theory, the
CF model in the IS scheme displays two classes of
renormalization-group (RG) trajectories in the space of
dimensionless parameters ðm2=μ2; g2Þ, separated by a
particular trajectory connecting an UV and an IR fixed
point [74]. On one side of this separatrix, the renormaliza-
tion-group flow becomes singular at a finite scale μLandau,
which generalizes the Landau pole of the Faddeev-Popov
model (corresponding to the limit m → 0). In contrast, on
the other side of the separatrix, the RG trajectories are
defined for all values of the renormalization scale and are
characterized by a bounded coupling that approaches zero
both in the UV limit and in the IR limit.
Strictly speaking, only the IS trajectories for which the

coupling remains perturbative should be taken seriously
within this perturbative determination of the RG flow.

9Indeed, in this limit, and for any diagrammatic contribution
beyond tree level, one finds a factor P⊥

ρσðqÞqσ ¼ 0, where the
transverse projector P⊥

ρσðqÞ≡ δρσ − qρqσ=q2 originates from the
gluon propagator attached to the same vertex as the ghost leg,
while qσ is the antighost momentum leaving that same vertex
(which equals the gluon momentum in the limit where the
external ghost momentum is taken to zero).
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Luckily enough, these are the trajectories that best describe
the lattice data for the Landau gauge YM correlation
functions [59,60,74].
In particular, the two-point functions are reproduced to

very good accuracy using the CF model at one-loop order,
and this agreement has improved to an impressive level in a
recent two-loop calculation [77]. In general, the quality of
the results is better for the SU(3) gauge group than for
SU(2). An explanation to this fact could be that the
expansion parameter λ≡ g2N=ð16π2Þ in the IS scheme
at two-loop order is bounded by ≃0.6 in the SU(3) case but
the corresponding parameter in the SU(2) case overpasses
0.8 in some region along the flow and thus approaches the
limit of validity of the perturbative expansion; see Fig. 1.
The apparent convergence of perturbation theory in the
SU(3) case has also been tested by comparing the results in
the IS scheme to results in other renormalization schemes,
such as the family of vanishing momentum (VM) schemes;
see below. Although the scheme dependences remain
sizable at one-loop order, they are considerably reduced
at two-loop order in the SU(3) case.
Let us point out, however, that the precise expansion

parameter of the loop expansion in this model is not exactly

known. Indeed, most loop diagrams are rather controlled by
an improved perturbative expansion parameter λ̃ ¼
λμ2=ðμ2 þm2Þ that takes into account that most perturba-
tive corrections including internal gluon lines are sup-
pressed in the infrared by at least one factor of order μ2=m2

(with μ ≪ m). The parameter λ̃ is considerably smaller than
λ in the infrared (as can be seen in Fig. 1) and its order of
magnitude seems to agree better with the observed errors of
perturbative calculations of most vertex functions in YM
theory in the CF model. Which of the two expansion
parameters λ or λ̃ is the one that controls the perturbative
expansion is not completely clear and possibly depends on
the considered renormalization scheme. Our calculations in
the IS scheme to be presented below reveal that the
theoretical error bars of the two-loop results are typically
governed by a parameter between λ̃ and λ.
As for the three-point vertex functions, both the three-

gluon vertex and the ghost-antighost-gluon vertex were
studied in [76] in the SU(2) case for arbitrary tensorial
structures and for arbitrary configurations of momenta. The
results were compared with the lattice data of [96] with
again a very good agreement, although not as good as in the
case of the two-point functions.
It must be stressed that the calculation of the three-point

functions in [76] is a pure prediction of the model since all
parameters were fixed by fitting the two-point functions,
with no free parameter left to adjust the three-point
functions.10 Therefore, a direct comparison of the qualities
of the two- and three-point functions is slightly biased since
any inaccuracy at the level of the two-point functions
impacts the determination of the parameters and, therefore,
the prediction of the vertices. This point will be relevant
below when we investigate the ghost-antighost-gluon
vertex at two-loop order. Another relevant observation
when matching one-loop vertices with lattice data is that
the quality of the agreement with the lattice results is not
uniform over all configurations of momenta. The agree-
ment is far better for configurations where all external
momenta are typically of the same order, as compared to
configurations where one of the gluon momenta vanishes.
As announced in the introduction, we here initiate a

systematic analysis of the two-loop corrections to the
three-point functions in the CF model, similar to what
has been done for the two-point functions in [77]. We will
address the case of the ghost-antighost-gluon vertex,
leaving the more involved three-gluon vertex for a future
analysis. Moreover, since the analysis for an arbitrary
configuration of momenta is too demanding at two-loop
order,11 we focus on the particular configuration where the

SU(2)

SU(3)
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0.01 0.05 0.10 0.50 1 5 10
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˜

FIG. 1. Two-loop running of the expansion parameters λðμ2Þ
(top) and λ̃ðμ2Þ (bottom) in the IS scheme in the SU(2) and
SU(3) cases.

10The only exception is a possible overall normalization of the
three-gluon vertex, see the discussion in [76] for more details.

11Even with the standard FP Lagrangian, the calculation
remains quite technical and has been carried out only in the
same configuration that we consider here [97].
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momentum of the gluon vanishes.12 The calculations in this
configuration are of the same order of complexity as those
for the two-point functions. We stress, however, that this is
precisely the configuration which leads to the least accurate
results at one-loop order. Therefore, we expect the quality
of our results in this particular configuration to set a lower
bound on the quality of two-loop predictions for the same
vertex in other configurations.

III. GHOST-ANTIGHOST-GLUON VERTEX

In what follows, the ghost-antighost-gluon vertex will be
written as

ð8Þ

with k, l and h ¼ kþ l, the (incoming) ghost, (incoming)
gluon and (outgoing) antighost momenta, respectively.
From Lorentz symmetry, the vertex has a priori two tensor
components:

Vabc
μ ðk;lÞ ¼ kμVabcðk2; k · l;l2Þ þ lμWabcðk2; k · l;l2Þ:

ð9Þ

However, in the limit of zero sources, the equation of
motion for the Nakanishi-Lautrup field iha in (1) reads
∂μAa

μ ¼ 0, which means that, once this constraint is
imposed, the effective action, and then the vertex functions,
should be restricted to transverse gauge field configura-
tions. In particular, the only component of Vabc

μ ðk;lÞ that
contributes to connected correlation functions is

Vabc⊥;μðk;lÞ≡ P⊥
μνðlÞVabc

μ ðk;lÞ
¼ P⊥

μνðlÞkνVabcðk2; k · l;l2Þ; ð10Þ

that is essentially Vabcðk2; k · l;l2Þ. Furthermore, owing to
the symmetry

ca→ c̄a; c̄a →−ca; iha → iha−fabcc̄bcc; ð11Þ

which applies when iha is on shell (that is in the absence
of an associated source), it is easily deduced that
Vabc⊥;μðk;lÞ ¼ Vcba⊥;μð−h;−lÞ, from which it follows that

Vabcðk2; k · l;l2Þ ¼ −Vcbaðh2; h · l;l2Þ: ð12Þ

In this work, we are interested in the limit of vanishing
gluon momentum, in which case the previous identity
means that Vabcðk2Þ≡ Vabcðk2; 0; 0Þ is antisymmetric
under a ↔ c and can thus be parametrized as

Vabcðk2Þ ¼ igBμϵfabcvðk2Þ; ð13Þ

since the other possible color tensor dabc is symmetric
under a ↔ c.13

It is easily seen that the scalar function vðk2Þ renorm-
alizes as vðk2Þ → ffiffiffiffiffiffi

ZA
p

ZcZgvðk2Þ. It is then finite, owing to
the nonrenormalization theorem alluded to above, and even
invariant under the RG flow in the renormalization scheme
considered here. Moreover, since the vanishing of the loop
corrections to the ghost-antighost-gluon vertex in the limit
k → 0 (see the previous section) originates both from the
vertex attached to the ghost leg and from the vertex attached
to the antighost leg in the case where the gluon momentum
vanishes,14 we find that the loop corrections to Vabc

μ ðk; 0Þ
vanish at least like k2 when k → 0 and thus that

Vabcðk2Þ ¼ kμ
k2

Vabc
μ ðk; 0Þ ð14Þ

approaches its tree-level value as k2 → 0. In other words,
vðk2 → 0Þ ¼ 1. We mention that, in the scheme considered
here, this property is valid both for the bare and the
renormalized vðk2Þ, which are in fact equal to each other.
In any scheme where the finite part of

ffiffiffiffiffiffi
ZA

p
ZcZg is not fixed

to 1, the renormalized vðk2Þ obeys instead vðk2 → 0Þ ¼ffiffiffiffiffiffi
ZA

p
ZcZg.We also note that the above argument is only valid

in the absence of infrared divergences in the limit k → 0,
which is made possible here by the presence of a mass in the
gluon propagator. This is an important difference with
respect to standard perturbative calculations in the FPmodel,
where vðk2Þ diverges as k → 0, in obvious disagreement
with lattice results, as we recall below.
The function vðk2Þ has been computed at one-loop order

in the CF model in [76] and compared to lattice simulations
[96]. Here, we would like to evaluate the two-loop
corrections to this quantity to further constrain the validity
of the CF model as an effective description of YM theory in
the infrared.

A. Diagrams

For later convenience, we write the two-loop expression
for vðk2Þ at bare level as

12Configurations where the ghost or antighost momentum is
taken to zero are also technically simpler. In the Landau gauge,
they are even trivial due to the Taylor nonrenormalization
theorem (as recalled above) [95].

13More generally, the tensor dabc can be discarded using
charge conjugation invariance [98].

14This is because the external antighost momentum is also
equal to k in this case and multiplies naturally any diagram.
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vðk2Þ ¼ 1þ λBv1ðk2; m2
BÞ þ λ2Bv2ðk2; m2

BÞ; ð15Þ

where vnðk2; m2
BÞwith n ¼ 1 or 2 represent the sum of one-

loop and two-loop Feynman diagrams, respectively. By
writing λnB in front of vnðk2; m2

BÞ, we have naturally
factored out the corresponding power of gB (which is
nothing but g2nB ) as well as the color factor (which is
nothing but Nn). Moreover, as it is customary (see for
instance [99]), we have absorbed a factor ð16π2Þn in
vnðk2; m2

BÞ, together with the factor μ2nϵ that comes along
with g2nB ; see the remark at the end of Sec. II A. In practice,
this means that, in computing Feynman diagrams, the
d-dimensional momentum integrals are replaced by

Z
ddp
ð2πÞd →

Z
p
≡16π2μ2ϵ

Z
ddp
ð2πÞd : ð16Þ

We emphasize that, despite the presence of the factors μ2ϵ,
they all recombine into the μ-independent dimensionful
bare coupling gBμϵ, as should be the case since vðk2Þ is a
bare quantity and is, therefore, μ independent.
The Feynman diagrams contributing to v1ðk2; m2

BÞ have
been computed in [76]. In order to ease the computation of
the Feynman diagrams contributing to v2ðk2; m2

BÞ while
using the earlier one-loop results, it is convenient to
organize the various diagrams contributing to the ghost-
antighost-gluon vertex in three categories: (i) those
corresponding to self-energy corrections, (ii) those corre-
sponding to vertex corrections, and (iii) the rest. The
diagrams corresponding to categories (i) and (ii) are
gathered in Appendix E. Among those of category (iii),
we need only to evaluate the planar diagram of Fig. 2 since
the other (nonplanar) diagrams (see Fig. 3) all vanish [97].
Indeed their color factor is

feafffhgfgicfbhdfdie

¼ −fadefeifffhgfgicfbhd − faiefefdffhgfgicfbhd; ð17Þ

where we have used Jacobi identity. In the first term, we can
identify the color loop feifffhgfgic ¼ fiefffhgfgci ¼
−ðN=2Þfehc, while in the second term, we have the loop
fefdffhgfbhd ¼ fdefffghfhbd ¼ −ðN=2Þfegb. It follows
that the color factor of the nonplanar diagrams reads

N
2
½fadefbhdfehc þ faiefgicfegb� ¼ N2

4
½fabc − fabc�

¼ 0; ð18Þ

as announced.

B. Reduction to master integrals

After each diagram contributing to vðk2Þ has been
written in terms of the corresponding Feynman integral,
we proceed to reducing the latter into one-loop master
integrals,

Am ≡
Z
p
GmðpÞ; ð19Þ

Bm1m2
ðk2Þ≡

Z
p
Gm1

ðpÞGm2
ðpþ kÞ; ð20Þ

with

FIG. 2. Planar diagram that cannot be seen either as a self-
energy correction or as a vertex correction to the one-loop ghost-
antighost-gluon vertex.

FIG. 3. Nonplanar diagrams at two-loop order. All of them
vanish as explained in the text.
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GmðpÞ≡ 1

p2 þm2
; ð21Þ

and two-loop master integrals,

Sm1m2m3
ðk2Þ≡

Z
p
Gm1

ðpÞBm2m3
ððpþ kÞ2Þ; ð22Þ

Um1m2m3m4
ðk2Þ≡

Z
p
Gm2

ðpÞGm1
ðpþ kÞBm3m4

ðp2Þ; ð23Þ

Mm1m2m3m4;m5
ðk2Þ≡

Z
p
Gm1

ðpÞGm3
ðpþ kÞ

×
Z
q
Gm2

ðqÞGm4
ðqþ kÞGm5

ðq − pÞ;

ð24Þ

that can then be efficiently computed numerically using the
Two-loop Self-energy Integral Library package [99].
The reduction into master integrals was performed using

the Feynman Integral REduction (FIRE) package [100].
The output of the procedure is an expression for v1ðk2; m2

BÞ
as a sum of integrals of the type A and B multiplied by
rational fractions involving k2, m2

B and d and, similarly, an
expression for v2ðk2; m2

BÞ as a sum of integrals of the type
S, U, M, or products of the integrals A and B, multiplied
again by rational fractions.
It is worth noting that all the master integrals given above

can be obtained formally from M by switching off some of
the propagators. In our reduction of vðk2Þ, we also found
some integrals obtained from M by elevating, in addition,
one of the propagators to the power −1. Fortunately, these
integrals can be reduced to the master integrals listed above.
We illustrate this reduction in Appendix A.

C. UV divergences

As already mentioned above, vðk2Þ is UV finite. Of
course, this is explicit only after one expresses vðk2Þ in
terms of renormalized parameters. We thus plug the
rescalings (5) into Eq. (15) and expand to order g4 using
that δZλ ≡ Z2

g − 1 and δZm2 ≡ Zm2 − 1 are both of order
λ ∝ g2. We find

vðk2Þ ¼ 1þ λv1ðk2; m2Þ þ λ2v2ðk2; m2Þ

þ λ

�
δZλ þ δZm2m2

∂
∂m2

�
v1ðk2; m2Þ: ð25Þ

The derivative ∂v1=∂m2 generates integrals of the type
∂Am=∂m2 and ∂Bm0ðk2Þ=∂m2. The latter can be reex-
pressed in terms of the master integrals Am and Bm0 as

∂Am

∂m2
¼

�
d
2
− 1

�
Am

m2
; ð26Þ

∂Bm0ðk2Þ
∂m2

¼ ðd − 3ÞBm0ðk2Þ þ ∂Am=∂m2

k2 þm2
; ð27Þ

where the first identity is easily obtained using dimensional
analysis and the second from integration by parts tech-
niques, more precisely by writing the two identities

0 ¼
Z
p

∂
∂pμ

pμ

ðp2 þm2Þðpþ kÞ2 ; ð28Þ

0 ¼
Z
p

∂
∂pμ

kμ
ðp2 þm2Þðpþ kÞ2 ; ð29Þ

as a linear system for ∂Bm0ðk2Þ=∂m2 and a second integral
that is not needed here.
The first two terms in Eq. (25) correspond to the one-

loop result. They do not involve any counterterm which
means that the integrals entering v1ðk2; m2Þ should com-
bine into a UV finite contribution. This is easily verified. In
fact, each one-loop diagram is easily seen to be finite. This
is because, at the level of the vertex attached to the ghost
leg, one has P⊥

ρσðqÞðqþ kÞσ ¼ P⊥
ρσðqÞkσ, where q denotes

the momentum of the gluon propagator attached to the
vertex. Owing to the contraction with the transverse
projector, one power of q is lost in the power counting,
yielding a superficial degree of divergence equal to −1.
The same reasoning applies to each diagram contributing

to v2ðk2; m2Þ which consequently also have a superficial
degree of divergence equal to −1. However, this does not
mean that the diagrams are finite since, being two-loop
diagrams, they can also contain subdivergences. The latter
should be precisely killed by the second line of Eq. (25)
with δZλ and δZm2 taken at one-loop accuracy (i.e., order g2

or λ). This is a nontrivial check of our reduction of
v2ðk2; m2Þ using FIRE. Indeed the individual terms con-
tributing to v2ðk2; m2Þ after the reduction into master
integrals contain simple, double and even triple poles in
1=ϵ. The simple and double poles come from the two-loop
master integrals or from products of one-loop master
integrals. The triple poles originate from the fact that the
reduction into master integrals generates certain terms with
an extra prefactor ð4 − dÞ−1. More precisely, those are

ð4 − dÞ−1
96

�
−
�
14þ 11

k2

m2

�
Am

m2
B00 − 3

�
2þ k2

m2

�
Bm0B00

−
�
2 − 11

k2

m2

��
1þm2

k2

�
Sm00

m2
−
�
6þ 13

k2

m2

�
S000
m2

þ
�
5þ 2

m2

k2

�
Im00

m2
− 8

�
1þ k2

m2

�
U00m0

þ 3

�
2þ k2

m2

�
U0m00

�
; ð30Þ
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where Im1m2m3
stands for Sm1m2m3

ðk2 ¼ 0Þ. We have verified
that the triple poles cancel among the various terms in this
formula, as should be the case since there is no other source
of triple poles. The double poles cancel against the other
contributions to v2ðk2; m2Þ, as should happen if one wants
to have a chance of canceling the subdivergences with the
second line of Eq. (25) which contains only simple poles.15

Finally, we have checked that the remaining simple poles in
v2ðk2; m2Þ are exactly opposite to those in the second line
of Eq. (25). We recall that δZλ and δZm2 are already known
from the renormalization of the two-point functions and the
two nonrenormalization theorems. At one-loop order we
have

δZλ ¼ λ

�
zλ11
ϵ

þ zλ10

�
; ð31Þ

δZm2 ¼ λ

�
zm211

ϵ
þ zm210

�
; ð32Þ

with zλ11 ¼ −11=3, zm211 ¼ −35=12, and where zλ10 and
zm210 depend on the considered scheme.
Other similar checks that test nontrivial cancellations

between the many terms generated by the FIRE reduction
will be presented in Sec. IV.

D. Finite parts

Beyond the UV divergences, we are of course interested
in the UV finite contributions to vðk2Þ. Since the counter-
terms, the master integrals and even some prefactors
multiplying these integrals contain poles in 1=ϵ, it is a
question to which order in ϵ one should expand both the
counterterms and the master integrals in order not to miss
any contribution of order ϵ0.
Consider first the counterterms δZλ and δZm2 that

multiply v1ðk2; m2Þ in Eq. (25). Because the latter is UV
finite, its ϵ expansion starts at order ϵ0. This means that it is
enough to consider the counterterms at order ϵ0 as well.16

On the contrary, v1ðp2; m2Þ itself, and therefore the
integrals A and B that appear linearly within it,17 need
to be expanded to order ϵ1. In the case of v2ðp2; m2Þ, in any
term that does not contain the extra prefactor ð4 − dÞ−1, the
master integrals A and B need to be expanded to order ϵ1

while the others need to be expanded only to order ϵ0. In
contrast, for those terms in Eq. (30), Am, Bm0, and B00 need
to be expanded to order ϵ2, whereas S000, Sm00, Im00, U0m00

and U00m0 need to be expanded to order ϵ1. These
expansions are given in Appendix B.
We mention finally that, because the renormalized

expression (25) is just an expansion to order g4 of the μ-
independent expression (15), it should be μ independent up
to contributions of order g6. The μ independence is crucial
since it allows us to choose μ ¼ k in practice, and, there-
fore, to obtain a controlled perturbative estimate of the IR
and UV tails, where an evaluation at a fixed μ would
generate large logarithms lnðk2=μ2Þ spoiling the validity of
the perturbative expansion.18 We shall implement this
choice of scale when presenting our results in the IS
scheme in comparison to the lattice results. We note,
nonetheless, that most of the tests that we perform in the
next section are valid for a fixed value of the renormaliza-
tion scale μ.

IV. CROSS-CHECKS

As we have mentioned above, the reduction of vðk2Þ into
master integrals generates an expression with many terms,
which it is wise to test in as many ways as possible. The
tests we consider are always of the same type: we use
properties of vðk2Þ that are not obeyed by the individual
many terms making the reduced expression for vðk2Þ but
which emerge as the result of cancellations between these
many terms.19 We have already seen one example of such
cancellations: the cancellation of triple and double poles in
1=ϵ and the cancellation of simple poles against the
counterterm contributions in Eq. (25). We next discuss
various other properties that rely on similar cancellations:
the asymptotic UVand IR behaviors, the regularity of vðk2Þ
for k2 ¼ m2, and the regularity and correctness of the
m2 → 0 limit.

A. UV behavior

We have seen above that each diagram contributing to
vðk2Þ has a superficial degree of divergence δ ¼ −1. From
the Weinberg theorem we would naively expect that vðk2Þ
behaves like 1=k (up to logarithms) as k2 → ∞. However,
one should not forget that the reduction of the superficial
degree of divergence leaves a factorized extra factor of k

15We mention that the absence of multiple poles applies in fact
to each diagrammatic contribution to v2ðp2; m2Þ taken separately,
since their superficial degree of divergence is δ ¼ −1, meaning
that there are at most (one-loop) subdivergences and, thus, at
most simple poles in 1=ϵ.

16This is in contrast to what happened in the case of the two-
point functions where certain counterterms needed to be expanded
to order ϵ1 because they multiplied UV divergent integrals [77].

17We mention, for completeness, that the prefactors of these
integrals do not contain any extra factor ð4 − dÞ−1 in this case.

18We stress that this procedure can only be applied directly
along renormalization-group trajectories without a Landau pole,
such as those in the IS scheme below the separatrix. We refer to
Sec. V C for the appropriate modification of the procedure in
those schemes that suffer from a Landau pole.

19Most of the properties apply, however, to the individual
diagrams entering vðk2Þ, so we could in principle perform a finer
test by checking them for each individual diagram.
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[see the discussion below Eq. (29)], meaning that vðk2Þ
should behave logarithmically at large k2.
On the other hand, the individual terms that make vðk2Þ

after the FIRE reduction can grow much faster. In order to
check that these unwanted contributions cancel, we used
UVexpansions for the various master integrals given above,
obtained using our own implementation of the algorithm
described in Ref. [101] and which exploits the Weinberg
theorem. As compared to our earlier implementation [77],
where we needed only to determine the UV expansions of
the ϵ0 contributions to these integrals, here we needed to
extend the routine to obtain the UV expansion of the
corresponding ϵ1 contributions, when necessary. In par-
ticular, this meant computing Im00 at order ϵ1 which is
easily done using Eq. (B4).
At leading order, we find

vðk2→∞Þ¼ 1þ3λ

4
þλ2

�
11þ3zλ11

4ϵ
þ317

32
þ zλ11

þ3zλ10
4

þ22þ3zλ11
4

ln
μ̄2

k2

�
þO

�
m2

k2

�
; ð33Þ

where zλ11 and zλ10 were defined in Eq. (31) and
μ̄2 ≡ 4πμ2e−γ , with γ the Euler constant. Upon using the
value of zλ11, this becomes

vðk2 → ∞Þ ¼ 1þ 3λ

4
þ λ2

�
599

96
þ 3zλ10

4
−
11

4
ln
k2

μ̄2

�

þO
�
m2

k2

�
: ð34Þ

The absence of logarithms in the contribution of order λ is
reminiscent of the fact that v1ðk2; m2Þ is finite, whereas the
presence of a simple logarithm in the contribution of order
λ2 comes from the fact that the diagrams in v2ðp2; m2Þ have
only subdivergences but no global divergences. We also
note that the running of λ obeys

0 ¼ μ
∂
∂μ lnðλBμ

2ϵÞ ¼ μ
∂ lnZλ

∂μ þ μ
∂ ln λ
∂μ þ 2ϵ

¼ λ

Zλ
μ
∂zλ10
∂μ þ

�
1þ δZλ

Zλ

�
μ
∂ ln λ
∂μ þ 2ϵ; ð35Þ

that is,

μ
∂λ
∂μ ¼

�
2zλ11 − μ

∂zλ10
∂μ

�
λ2 þOðλ3Þ: ð36Þ

From this, it is easily checked that the μ dependence in
Eq. (34) appears formally only at order λ3 ∝ g6, as already
anticipated above. The corrections of order m2=k2 also
contain logarithms and involve the finite part zm210 of δZm2 .

We mention finally that the choice μ ¼ k that we shall
eventually make in the IS scheme does not jeopardize the
ordering in powers of m2=k2 in Eq. (34) because mðkÞ runs
to 0 in the UV [60,74]. Moreover, each term in the
expansion is dominated by the one with less powers of
λðkÞ. We conclude that, once the running is included, vðk2Þ
approaches 1 logarithmically in the UV.

B. IR behavior

Similar remarks apply in the opposite k2 → 0 limit. We
have seen that vðk2 → 0Þ → 1. However, this property is
not necessarily true for the individual terms contributing to
vðk2Þ − 1. In order to check that the appropriate cancella-
tions occur, we used IR expansions for the various master
integrals listed above, obtained by implementing the
algorithm in Ref. [102]. In certain cases, the algorithm
cannot be applied and one needs to resort to a more
sophisticated version described in Ref. [103]. In the present
case, for most of the problematic integrals, we could
circumvent the difficulty using the fact that these integrals
are known analytically. For a few of them which do not
have known analytic expressions, in particular for the order
ϵ1 contributions to U0m00 and U00m0, we implemented our
own strategy which we detail in Appendix C.
At first nontrivial order, we find

vðk2 → 0Þ ¼ 1þ
��

17

48
−
1

8
ln

k2

m2

�
λþ

�
2323

1152
−

29

1152
π2

−
999

128
S2 þ

17

48
zλ10 −

11

48
zm210 þ

3

32
ln
m2

μ̄2
ln

k2

m2

þ
�
−

5

64
−
zλ10
8

þ zm210

8

�
ln
k2

μ̄2

þ
�
−
53

96
þ zλ10

8
−
zm210

8

�
ln
m2

μ̄2

�
λ2
�

k2

m2

þO
�
k4

m4

�
; ð37Þ

where zm210 was defined in Eq. (32) and

S2 ¼
4

9
ffiffiffi
3

p ImðLi2ðeiπ=3ÞÞ: ð38Þ

In order to test the μ independence of this expression, we
need the running of the mass, which we derive by writing

0 ¼ μ
∂
∂μ lnðZm2m2Þ; ð39Þ

which leads to
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μ
∂m2

∂μ ¼ −m2μ
∂
∂μ lnZm2

¼ −m2μ
∂
∂μ

�
λ

�
zm211

ϵ
þ zm210

��

¼ −m2μ
∂
∂μ

�
λBμ

2ϵμ−2ϵ
�
zm211

ϵ
þ zm210

��

¼ λm2

�
2zm211 − μ

∂zm210

∂μ
�
: ð40Þ

Together with Eq. (36), this allows one to check that the
asymptotic behavior (37) is μ independent up to higher-
order contributions (∼λ3 ∼ g6).
We mention finally that, as is obvious from Eq. (37),

vðk2 → 0Þ → 1, in line with the argumentation given at the
beginning of Sec. III in the case where m ≠ 0. This
property is not affected by the running in the IS scheme
since both the mass and the coupling run logarithmically to
zero in the infrared.

C. Regularity at k2 =m2

The function vðk2Þ is not only regular for k2 ¼ 0 but in
fact for any other Euclidean momentum. However, the
various contributions that enter in the reduction into master
integrals might be singular at some values of k2 and it is
thus necessary to check that the corresponding residue
vanishes. Aside from the canceling singular contributions
at k2 ¼ 0 that we treated in the previous section, we only
found intermediate singular contributions at k2 ¼ m2.
When adding all the contributions, the corresponding
residue is written

λ2

64

�
ðd − 2ÞðAmB00ðm2Þ þ Im00Þ þ ðd − 3Þm2ðB00ðm2ÞÞ2

þ ð8 − 3dÞSm00ðm2Þ þ d − 4

2
m4M0000mðm2Þ

�
: ð41Þ

Fortunately, all these integrals are known exactly and it is
easily checked that the residue indeed vanishes, as
expected. Similar singularities (although at a different
value of k2) appeared in the intermediate steps leading
to the evaluation of the gluon and ghost two-point functions
at two-loop order [77].
We stress that we are here implicitly assuming that

m ≠ 0. The case m ¼ 0 yields a true singularity at
k2 ¼ m2 ¼ 0, as we recall in the next section.

D. Zero mass limit

A final check involves the limit m → 0. This limit is
regular for any k2>0 and the expression for vm2¼0ðk2 > 0Þ
has been determined in [97]. That the limit is not
regular for k2 ¼ 0 can be simply seen from the fact
that vm2≠0ðk2 → 0Þ → 1, whereas vm2¼0ðk2 → 0Þ → ∞.

As already mentioned above, this is an important difference
with regard to the comparison with the lattice data. Putting
these considerations aside, investigating the m → 0 limit of
our result represents a double check of the reduction into
master integrals since (i) individual terms in the reduction
are not necessarily regular in the limit m → 0 and can-
cellations should occur in order to ensure the regularity of
the limit, and (ii) the limit should coincide with the result
of [97].
We can envisage taking the limit m → 0 using various

strategies. One possibility is to exploit dimensional analysis
to write any of the master integrals given above as

ðμ2ϵÞLFðp2; m2Þ ¼ ðμ2ϵÞLðm2ÞD=2Fðp2=m2; 1Þ; ð42Þ

where L is the number of loops and D the mass dimension
of the integral (setting aside the powers of μ that multiply
it). It is clear from this relation that the low-mass expansion
of any master integral can be obtained using the large
momentum expansion, as discussed above. Consequently,
the zero mass limit of vm2ðk2Þ is nothing but the leading
term in the expansion (33), which we checked coincides
with the result of [97] in the Landau gauge (up to the fact
that we consider general renormalization factors).
Another possible strategy, which we used as a further

cross-check, is to Taylor expand the master integrals in
powers of m2. Although simpler a priori, the reason why
this approach works is a little bit subtle as we discuss at the
end of this section and in Appendix D. We can proceed in
two ways depending on which of the ϵ and m expansions is
considered first. In both cases, we have to deal with the fact
that certain contributions to vm2ðk2Þ are not regular and the
correct limit m → 0 is reached only after the corresponding
singularities have been canceled. It turns out that these
cancellations are more easy to handle if we first expand in
m for an arbitrary dimension d and only then expand in ϵ.
In fact, the regularity of them → 0 limit must take place for
all dimensions d > 2 [60].
We find potentially singular terms proportional to

m−4 and m−2. The contribution diverging as m−4 is
proportional to

ð8 − 3dÞS000ðk2Þ þ ðd − 4Þ½k2U0000ðk2Þ − I000�; ð43Þ

but this quantity vanishes fortunately (I000 vanishes trivi-
ally by itself). Similarly, the contribution diverging as m−2

is proportional to

ðd − 4Þ½2ðd − 3Þk2B2
00ðk2Þ þ ðd − 4Þk4M00000ðk2Þ�

− 2ð3d − 8Þð3d − 10ÞS000ðk2Þ; ð44Þ

which turns out to be zero as well. To finally compare with
the result of Ref. [97], we extract the m0 term, which is
proportional to
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ðd − 4Þðd − 6Þðd − 8Þ½ðd − 1Þðd − 4Þk4M00000ðk2Þ
þ 2ð2d4 − 28d3 þ 134d2 − 252dþ 147Þk2B00ðk2Þ�
þ 2ð88832 − 224384dþ 223348d2 − 113336d3

þ 31705d4 − 4895d5 þ 386d6 − 12d7ÞS000ðk2Þ: ð45Þ

After expansion in powers of ϵ, this leads again to the result
of Ref. [97] in the Landau gauge.
At first sight, it may seem suspicious that we were able to

obtain the correct m → 0 limit of vm2ðk2Þ from a naïve
Taylor expansion of the master integrals in powers of the
mass. Indeed, from Eq. (42) and the Weinberg theorem, we
expect the low-mass expansion of a given master integral to
involve more terms than those that arise from a simple
Taylor expansion. On the other hand, because vm2ðk2Þ is
regular in the limitm → 0, it turns out that the terms that are
missed by using the naïve Taylor expansion cancel each
other and one ends up with the correct result. We illustrate
these various features in Appendix D.

V. RESULTS

In what follows we discuss our results for vðk2Þ in
comparison to available lattice simulations [96,104–106].
Except when explicitly stated, we work in the IS scheme
and we employ two different strategies.
First, we fix the parameters by fitting the lattice data for

the gluon and ghost propagators with the corresponding
expressions in the CF model. In that case, the values of the
parameters g and m at a reference scale μ̄0 ¼ 1 GeV have
been determined independently of the vertex and the vertex
becomes then a pure prediction of the model. We stress that
we get different parameters depending on the considered
accuracy of the propagators. In Table I, we summarize the
obtained values in the IS scheme and quote the correspond-
ing errors.20

As shown below, this procedure turns out to give
excellent results in the SU(3) case but gives much poorer
results for SU(2). For this reason, we consider a second
strategy where we first perform an independent fit of the
various functions and we then look for optimal parameters
for which all functions are reproduced to a reasonable
accuracy.

A. CF prediction for the function vðk2Þ
and comparison to the lattice data

In the first strategy, since the parameters are already
fixed, we can evaluate vðk2Þwith no further adjustment and

compare it directly with the lattice data. Our results are
shown in Fig. 4 for the SU(3) case and in Fig. 5 for the
SU(2) case. The colored bands display a simple estimate of
our theoretical error defined by the absolute difference
between central values at a given order and the previous one.
In the SU(3) case, we observe that, except for a tiny

region in the IR where the two-loop corrections acciden-
tally vanish (preventing us from estimating the error), our
two-loop results are compatible with the lattice data.
Moreover, the theoretical error diminishes when going
from one-loop to two-loop order, indicating that perturba-
tion theory shows a good apparent convergence for those
parameters.
The situation is drastically different in the SU(2) case

where, even though the theoretical error still diminishes
from one-loop to two-loop order, our results are far from
the lattice data. In particular the scale at which vðk2Þ
reaches a maximum is underestimated by a factor of 2.
Given the large error bars and the dispersion of the results
with the various lattice parameters, one cannot exclude the
possibility that this discrepancy originates in lattice arti-
facts, at least partially. As already mentioned, another
explanation could be the size of the expansion parameter
in the SU(2) case that lies in the limit of validity of

FIG. 4. CF prediction for the function vðk2Þ in the SU(3) case
and in the IS scheme, compared to the lattice data in the Taylor
scheme [104,105]. The parameters m and g at the initial scale μ̄0
are those previously determined from the fits of the gluon and
ghost propagators. The lattice data were extracted manually from
the plots in [104,105] using WebPlotDigitizer [107]. We estimated
the error related to the extraction procedure to be at most 0.8%.

TABLE I. Parameters in the IS scheme, as obtained from fitting
the lattice results for the two-point functions, together with the
corresponding error.

Group N ¼ 2 N ¼ 3

Parameters λ0 m0 (GeV) χ λ0 m0 (GeV) χ

One-loop 0.34 0.45 10% 0.24 0.35 7%
Two-loop 0.38 0.39 6% 0.27 0.33 4%

20We mention here that due to an unfortunate coding typo in
our determination of the error for the one-loop SU(2) results, the
one-loop error of 7% quoted in [77] is in fact an error of 10%.
Interestingly, because the two-loop error was correctly estimated,
the observed improvement from one-loop order to two-loop order
is higher than what was originally claimed in that reference.
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perturbation theory. Finally, a third source of discrepancy
(possibly complementary to the previous ones) is that the
parameters have been adjusted to best reproduce the two-
point functions. Therefore, any inaccuracy in the determi-
nation of the two-point functions [be it numerical or
originating from the fact that perturbation theory may
not be as justified as in the SU(3) case], necessarily impacts
the determination of the parameters and in turn the
prediction of the vertex.
For this last reason, it is interesting to consider indepen-

dent fits of the various vertex functions inview of finding the
optimal choice of parameters for each function separately.
We proceed to this analysis in the next section. Given that
the lattice SU(3) error bars for the vertex are quite large, this
analysis only makes sense for the SU(2) case.

B. Independent fit of the various vertex functions

As we have just mentioned, the parameters that optimize
the gluon and ghost propagators in the SU(2) case give poor
results for the vertex. We analyze here the error bars for
these functions independently.
In Fig. 6, the error regions associated to the estimation of

parameters are shown for various confidence intervals. The
successive regions correspond, for the ghost propagator and
vertex, to fits to lattice data with, respectively, 10%, 7%,
5% and 4% accuracy. The gluon propagator is much more
demanding and the regions correspond to fits to lattice data
with, respectively, 20%, 10% and 7% accuracy. We show
the error regions both at one-loop order and at two-loop
order. It is seen that the optimal fitting parameters do not
coincide for the various functions but the tension is
considerably reduced when going from one-loop to two-
loop order. This may explain the disappointing results
obtained in the previous subsection for the SU(2) case.
On the other hand, if one fits only the vertex function (as

has been done previously in other approaches) without

simultaneously optimizing the two-point functions, one can
obtain an excellent fit, as we illustrate in Fig. 7. Therefore,
by only fitting the vertex, one can have the incorrect
impression of finding excellent agreement with the data.

FIG. 5. CF prediction for the function vðk2Þ in the SU(2) case
and in the IS scheme, compared to the lattice data in the Taylor
scheme [106]. The parameters m and g at the initial scale μ̄0 are
those previously determined from the fits of the gluon and ghost
propagators.

FIG. 6. Error regions with, respectively, 10%, 7%, 5% and 4%
accuracy obtained when fitting the ghost dressing and the vertex
function vðk2Þ in the SU(2) case and in the IS scheme to the
lattice data in the Taylor scheme [106]. The wide region
corresponds to the vertex and the cigarlike region to the ghost
dressing function. As for the gluon propagator, its error region
corresponds to the small round region at the bottom left and is
subdivided in subregions representing 20%, 10% and 7%
accuracy. The parameters m and g are fixed at the initial scale
μ0. Top: one-loop case. Bottom: two-loop case.
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But one must recognize that the lattice data for two-point
functions have a much better precision since both statistical
and systematic errors are manifestly more under control.
As a consequence, an excellent agreement when fitting the
vertex to the data without a similar fit of the two-point
functions must be taken with serious skepticism.
We mention finally that one can try to locate parameters

for which each all functions are reproduced to a reasonable
accuracy by minimizing a joint error function; see Fig. 8.

C. Scheme dependence

Another possible way to test the validity of the pertur-
bative approach is to study the dependence with respect to a
change in the renormalization scheme. Indeed, it is usually
expected that the more convergent a perturbative expansion
is, the less dependent it should be to such changes. To test
this in the present context, we compared the IS scheme to
the so-called VM scheme obtained by replacing the
constraint (6) fixing Zm2 with the condition

G−1ðk ¼ 0Þ ¼ m2ðμÞ: ð46Þ

Unfortunately, this scheme suffers from the presence of an
IR Landau singularity [59,60]. We can cure the problem by
stopping the flow at scale μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ αm2

p
with α ¼ 1 or 2,

with the price however of introducing a systematic error in
the deep IR.
Our results are displayed in Table II, where we show our

estimate for the relative error between the IS scheme
evaluation of vðk2Þ and the corresponding evaluations in
the VM scheme with α ¼ 1 or α ¼ 2.
We note first that the relative variation when changing

scheme is systematically smaller than the relative error
from the determination of the parameters, which indicates
that the comparison displayed in Table II is meaningful. We
then observe that the scheme dependence diminishes in the
SU(3) case as one increases the number of loops, specially
for α ¼ 2. Although the effect is not as strong for α ¼ 1, the

FIG. 7. Best fit for the vertex function vðk2Þ in the SU(2) case
and in the IS scheme, when compared to the lattice data in the
Taylor scheme [106].

FIG. 8. Ghost-antighost-gluon vertex, ghost dressing function
Fðk2Þ≡ k2Dðk2Þ and gluon propagator Gðk2Þ for a choice of
parameters that reproduces the three functions to a reasonable
accuracy. Lattice data from [96].

TABLE II. Relative difference between the IS scheme and the
VM schemes for α ¼ 1 and α ¼ 2.

Group N ¼ 2 N ¼ 3

VM α ¼ 1 α ¼ 2 α ¼ 1 α ¼ 2

One-loop 0.9% 1.1% 0.9% 1.1%
Two-loop 1.2% 2.0% 0.8% 0.7%
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result remains compatible with the scenario that perturba-
tion theory within the CF model provides a good grasp on
YM correlation functions in the SU(3) case. On the
contrary, the scheme dependence increases in the SU(2)
case, in line once more with the earlier observation that, in
this case, we are closer to the limit of validity of the
perturbative expansion.

VI. CONCLUSIONS

In the present article, we computed the two-loop ghost-
antighost-gluon vertex in Landau-gauge Yang-Mills theory
using the CF model and we compared the results with
available lattice simulations [96,104–106]. In order to keep
the calculations manageable, we restricted our analysis to
the case where the gluon momentum vanishes.
As discussed in the introduction, the perturbative expan-

sion of the CF model, as proposed originally in [59,60], has
been shown to reproduce accurately many correlation
functions (both in the vacuum and at finite temperature
and density) in Yang-Mills theory. It incorporates in the
perturbative analysis two main ingredients observed in
lattice simulations in Landau gauge: the gluon propagator
displays a massivelike behavior in the infrared [48–50,52–
55] and the Yang-Mills coupling constant takes moderate
values for all momenta [49,56] allowing for a perturbative
analysis even in the infrared.
The present work generalizes previous studies in many

ways. First, it pursues the analysis of the two-point correlation
functions at two-looporder in theCFmodel [77] andapplies it
to one of the Yang-Mills three-point correlation functions.
Second, it extends the well-known two-loop result for the
same vertex in the case of a massless gluon in the same
momentum configuration [97]. Third, it refines the previous
one-loop result obtained in the CF model [76].21

When compared with lattice data, our two-loop results
improve the previous one-loop results, both for SU(2) and
SU(3). However, the improvement is much more spectacu-
lar in the SU(3) case where an excellent agreement is
achieved. We stress that this result is, in a sense, a pure
prediction of the model for it was obtained without
adjusting any parameter. Indeed, the parameters of the
model had already been fixed independently by fitting the
two-point functions [77].
In the SU(2) case the same procedure does not give such

an excellent agreement. In particular, the position of the
maximum of the vertex is shifted by a factor of 2
approximatively. Even though the results improve when
going from one-loop order to two-loop order, the improve-
ment is not as impressive as that for two-point functions or
that for the SU(3) vertex. Let us note, however, that a very
good fit can be achieved by fitting the vertex alone. What

seems to be in tension are the parameters obtained from the
two-point functions versus the parameters needed to
reproduce the vertex. This fact is important to be taken
into account when comparing to other studies where the
vertex has been fitted directly without imposing that the
associated parameters must also fit the two-point functions
with at least the same accuracy.
When discussing the quality of the present results,

various pieces of information must be taken into account.
First, the analyzed momentum configuration was the most
challenging, at least for the one-loop analysis [76]. This is
to be expected. If one of the momenta is small, the results
become much more sensitive to the sector of the theory
with higher coupling. Accordingly, the present analysis
should probably be seen as the “worst-case scenario,” at
least as far as the considered ghost-antighost-gluon vertex
is concerned. In the same vein, the expansion parameter is
larger in the SU(2) case which necessarily impacts the
quality of our perturbative estimate.
Second, the lattice data for the three-point functions are

much less accurate than those for the two-point functions.
This is again expected since it is of course harder to
simulate three-point functions than two-point functions.
This simple remark has however important consequences
for the present analysis. In contrast to the case of the two-
point functions where we considered that the main source
of error in the fit to lattice data was the internal precision of
the perturbative calculation in the CF model, it is not clear
in the present case whether the errors coming from the
lattice simulation can be neglected. Indeed, the lattice
systematics are clearly visible when comparing lattice data
with different parameters. As such, it could happen that part
of our discrepancies with lattice data have their origin in the
simulations themselves. In order to discard this possible
source of error, more precise lattice simulations for the
three-point vertices would be extremely valuable.
A third point must be stressed regarding our results: the

inclusion of the gluon mass turns out to be crucial in order
to obtain a good agreement with lattice data, even at a
qualitative level. The massless case [97] features a diver-
gence in the present momentum configuration when the
ghost momentum goes to zero. This is at odds with lattice
data and the CF result [both in the SU(2) and in the SU(3)
case] which, instead, saturate to their bare value in the far
infrared. This again strongly supports the use of a modified
perturbation theory in the presence of a gluon mass.
The present study can be extended inmanyways. First, we

are currently including quarks at two-loop order in order to
look at the unquenching effect in two-point functions (not
only in the gluon and ghost propagators but also in the quark
propagator). As mentioned in the introduction, the use of
perturbation theory in thequark sector seems to bemuchmore
problematic [78,79] particularly in the chiral limit [80]. Let us
note, however, that some aspects of the quark self-energy
seem to be dominated by two-loop perturbative effects [78]

21It must be stressed, however, that in that reference the three-
point vertices were calculated for arbitrary momentum configu-
rations and not only for a zero momentum gluon.
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and we plan to test if the inclusion of those contributions
improves our understanding of these questions. Second, the
present study can be extended to the (more intricate) three-
gluonvertex in theYang-Mills casewhichwewill analyze in a
futurework, againwith one of thegluonmomenta taken equal
to zero. It is worth noting that the three-gluon vertex is related
to the ghost-antighost-gluon vertex by a Ward-Slavnov-
Taylor identity [97] which applies also in the Curci-Ferrari
model [76]. We plan in particular to check this identity in the
case where one gluon momentum vanishes. A priori, this
requires the evaluation of the ghost-antighost-gluon vertex in
yet another momentum configuration (in addition to the one
considered in the present work) which wewill evaluate along
with the three-gluon vertex.
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APPENDIX A: REDUCING INTEGRALS
WITH INVERTED PROPAGATORS

When implementing the FIRE reduction package, it may
happen that not all the resulting integrals belong to the list
of master integrals (19)–(24). In some instances, it can
happen that one of the propagators is elevated to the power
−1. We now discuss a generic example as an illustration of
how these integrals are dealt with in practice. It will be
convenient for the following discussion to introduce the
notation

I12345ðn1;n2;n3;n4;n5Þ

≡
Z
p

Z
q
Gn1

1 ðpÞGn2
2 ðqÞGn3

3 ðk−pÞGn4
4 ðk−qÞGn5

5 ðp−qÞ;

ðA1Þ

with GiðlÞ≡ 1=ðl2 þm2
i Þ. Some of the masses can be

zero, in which case we replace the corresponding index by
0 and m2

0 ¼ 0.
Let us consider the integral I10045ð1;−1; 0; 1; 1Þ which

has one propagator elevated to the power −1. Using

q2 ¼ ðk − qÞ2 þm2
4 − k2 −m2

4 þ 2ðk · qÞ; ðA2Þ

the integral is rewritten

I10045ð1;−1; 0; 1; 1Þ
¼ I15000ð1; 1; 0; 0; 0Þ − ðk2 þm2

4ÞI10045ð1; 0; 0; 1; 1Þ

þ
Z
p

Z
q
2ðk · qÞG1ðpÞG4ðk − qÞG5ðp − qÞ: ðA3Þ

We next perform the change of variables p → k − p and
q → k − q, followed by p ↔ q, which basically replaces
k · q by k · ðk − pÞ, while exchanging the role of the indices
1 and 4. We then arrive at

I10045ð1;−1; 0; 1; 1Þ
¼ I15000ð1; 1; 0; 0; 0Þ þ 2k2I40015ð1; 0; 0; 1; 1Þ
− ðk2 þm2

4ÞI10045ð1; 0; 0; 1; 1Þ

−
1

2

Z
q
2kG1ðk − qÞ ·

Z
p
2pG4ðpÞG5ðp − qÞ: ðA4Þ

The benefit of this form with respect to (A3) is that now the
inner integral is a vector depending only on q. It follows
that

I10045ð1;−1;0;1;1Þ
¼ I15000ð1;1;0;0;0Þ
þ2k2I40015ð1;0;0;1;1Þ− ðk2þm2

4ÞI10045ð1;0;0;1;1Þ

−
1

2

Z
q
2ðk ·qÞG0ðqÞG1ðk−qÞ

×
Z
p
2ðp ·qÞG4ðpÞG5ðp−qÞ: ðA5Þ

Then, inserting the identities

2ðk · qÞ ¼ k2 þm2
1 þ q2 − ðk − qÞ2 −m2

1; ðA6Þ

2ðp ·qÞ¼ q2þm2
5−m2

4þp2þm2
4− ðp−qÞ2−m2

5 ðA7Þ

and identifying master integrals, we find

2I10045ð1;−1; 0; 1; 1Þ þ I40015ð1;−1; 0; 1; 1Þ
¼ A1A4 þ A4A5 þ A5A1 − ðk2 þm2

1ÞðA5 − A4ÞB01

þ ðm2
5 −m2

4ÞI045 þ ðk2 −m2
1 −m2

4 −m2
5ÞS145

− ðk2 þm2
1Þðm2

5 −m2
4ÞU1045: ðA8Þ

In the case where m1 ¼ m4, we have obtained an explicit
expression for I10045ð1;−1; 0; 1; 1Þ in terms of the master
integrals. In the case where m1 ≠ m4, we can consider the
same equation with 1 ↔ 4:
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I10045ð1;−1; 0; 1; 1Þ þ 2I40015ð1;−1; 0; 1; 1Þ
¼ A1A4 þ A4A5 þ A5A1 − ðk2 þm2

4ÞðA5 − A1ÞB04

þ ðm2
5 −m2

1ÞI015 þ ðk2 −m2
1 −m2

4 −m2
5ÞS145

− ðk2 þm2
4Þðm2

5 −m2
1ÞU4015: ðA9Þ

Together with Eq. (A8), this provides an invertible
linear system that can be solved in order to obtain
I10045ð1;−1; 0; 1; 1Þ in terms of the master integrals.

APPENDIX B: FEYNMAN INTEGRALS
TO ORDER ϵ

Let us start gathering some formulas that will be useful in
this section and the next one. First we recall the well-known
integrals

Jαðm2Þ≡
Z
q

1

ðq2 þm2Þα ¼
ðm2Þ2−α−ϵ
ð4πμ2Þ−ϵ

Γðα− 2þ ϵÞ
ΓðαÞ ðB1Þ

and

Iα;βðp2Þ≡
Z
q

1

ðq2Þαððqþ pÞ2Þβ ¼ Iβ;αðp2Þ ¼ ðp2Þ2−α−β−ϵ
ð4πμ2Þ−ϵ

Γð2 − α − ϵÞΓð2 − β − ϵÞΓðαþ β − 2þ ϵÞ
ΓðαÞΓðβÞΓð4 − α − β − 2ϵÞ ; ðB2Þ

obtained by a simple application of the Feynman trick. One also has

Jα;βðm2Þ≡
Z
q

1

ðq2 þm2Þαðq2Þβ ¼
ðm2Þ2−α−β−ϵ
ð4πμ2Þ−ϵ

Γð2 − β − ϵÞΓðαþ β − 2þ ϵÞÞ
Γð2 − ϵÞΓðαÞ ; ðB3Þ

which can be obtained by interpreting Jα;βðm2Þ as the integral Jαðm2Þ in d − 2β dimensions, up to some appropriate
normalization factor. Combining this result together with Eq. (B2), one also finds

Iα;β;γðm2Þ≡
Z
p

Z
q

1

ðp2 þm2Þαðq2Þβððqþ pÞ2Þγ ¼ Iα;γ;βðm2Þ

¼ ðm2Þ4−α−β−γ−2ϵ
ð4πμ2Þ−2ϵ

Γð2 − β − ϵÞΓð2 − γ − ϵÞΓðβ þ γ − 2þ ϵÞΓðαþ β þ γ − 4þ 2ϵÞ
ΓðαÞΓðβÞΓðγÞΓð2 − ϵÞ : ðB4Þ

Finally, we quote the following result by Berends et al. [103]:

Iα;β;γðm2; m2Þ≡
Z
p

Z
q

1

ðp2 þm2Þαðq2 þm2Þβððqþ pÞ2Þγ ¼ Iβ;α;γðm2; m2Þ

¼ ðm2Þ4−α−β−γ−2ϵ
ð4πμ2Þ−2ϵ

Γð2 − γ − ϵÞΓðαþ γ − 2þ ϵÞΓðβ þ γ − 2þ ϵÞΓðαþ β þ γ − 4þ 2ϵÞ
ΓðαÞΓðβÞΓð2 − ϵÞΓðαþ β þ 2γ − 4þ 2ϵÞ : ðB5Þ

As described in the main text, we need to expand the
master integrals Am, Bm0 and B00 to order ϵ2, as well as
S000, Sm00, Im00, U0m00 and U00m0 to order ϵ1. The integrals
Am and B00 are easily handled from (B1) and (B2).
Similarly, S000 can be handled by using (B2) twice. We
can also easily deal with Im00 using (B4).
To deal with Bm0ðk2Þ, we use the Feynman trick to write

it as

Bm0ðk2Þ ¼
ΓðϵÞ

ð4πμ2Þ−ϵ
Z

1

0

dxðxm2 þ xð1 − xÞk2Þ−ϵ: ðB6Þ

Since the prefactor of the integral diverges as 1=ϵ, we need
to expand the latter up to and including order ϵ2. The
integrals appearing as coefficients of ϵ0, ϵ1 and ϵ2 can

all be performed analytically in terms of logarithms and
dilogarithms.
To deal with Sm00ðk2Þ, we write it as

Sm00ðk2Þ ¼
Z
p

I1;1ððpþ kÞ2Þ
p2 þm2

¼ Γð1 − ϵÞ2ΓðϵÞ
ð4πμ2Þ−ϵΓð2 − 2ϵÞ

Z
p

ððpþ kÞ2Þ−ϵ
p2 þm2

¼ Γð1 − ϵÞ2Γð−1þ 2ϵÞ
ð4πμ2Þ−2ϵΓð2 − 2ϵÞ
×
Z

1

0

dxð1 − xÞ−1þϵðxm2Þ1−2ϵ

×

�
1þ ð1 − xÞ k

2

m2

�
1−2ϵ

; ðB7Þ
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where we have once more made use of the Feynman trick in
the last step. One should refrain from expanding the
integrand in ϵ at this stage because this would generate
a singularity

R
1 dxð1 − xÞ−1. In fact, ϵ plays the role of a

regulator for the integral which diverges as ϵ → 0. Instead,
we first write

�
1þ ð1 − xÞ k

2

m2

�
1−2ϵ

¼ 1þ
��

1þ ð1 − xÞ k
2

m2

�
1−2ϵ

− 1

�
: ðB8Þ

The first term leads to an analytically computable integral
which contains the divergence of the integral as ϵ → 0. In
contrast, the second term leads to an integral that is regular
in the limit ϵ and whose integrand can be safely expanded.
We arrive at

Sm00ðk2Þ ¼
ðm2Þ1−2ϵ
ð4πμ2Þ−2ϵ

Γð1 − ϵÞ2Γð−1þ 2ϵÞΓðϵÞ
Γð2 − ϵÞ

þ ðm2Þ1−2ϵ
ð4πμ2Þ−2ϵ

Γð1 − ϵÞ2Γð−1þ 2ϵÞ
Γð2 − 2ϵÞ

×
Z

1

0

dxx1−2ϵð1 − xÞ−1þϵ

×

��
1þ ð1 − xÞ k

2

m2

�
1−2ϵ

− 1

�
: ðB9Þ

Since the prefactor of the integral diverges as 1=ϵ as ϵ → 0,
we need to expand the integrand to order ϵ2. Again the
integrals appearing as coefficients of ϵ0, ϵ1 and ϵ2 can
all be performed analytically in terms of logarithms and
dilogarithms.
Next, we consider U0m00ðk2Þ which we write

U0m00ðk2Þ ¼
Z
p

I1;1ðp2Þ
p2 þm2

1

ðp − kÞ2

¼ Γð1 − ϵÞ2ΓðϵÞ
ð4πμ2Þ−ϵΓð2 − 2ϵÞ

Z
p

ðp2Þ−ϵ
p2 þm2

1

ðp − kÞ2

¼ Γð1 − ϵÞ2Γð2ϵÞ
ð4πμ2Þ−2ϵΓð2 − 2ϵÞ ðm

2Þ−2ϵ
Z

1

0

dxx−1þϵ

×
Z

1−x

0

dy

�
1 − x − yþ yð1 − yÞ k

2

m2

�−2ϵ
:

ðB10Þ

As before, expanding the integrand in ϵ is incorrect because
of the appearance of a divergence at x ¼ 0. Instead, we add
and subtract to the integral over y, its value at x ¼ 0.
The added term can be computed analytically, while the
subtracted term is regular in the limit ϵ → 0 and the
corresponding integrand can be expanded. We find (we
use that ϵ > 0)

U0m00ðk2Þ ¼
Γð1 − ϵÞ2Γð2ϵÞ

ð4πμ2Þ−2ϵΓð2 − 2ϵÞ
ðm2Þ−2ϵ

ϵ

×
Z

1

0

dy

�
1 − yþ yð1 − yÞ k

2

m2

�−2ϵ

þ Γð1 − ϵÞ2Γð2ϵÞ
ð4πμ2Þ−2ϵΓð2 − 2ϵÞ ðm

2Þ−2ϵ
Z

1

0

dxx−1þϵ

×

�Z
1−x

0

dy

�
1 − x − yþ yð1 − yÞ k

2

m2

�−2ϵ

−
Z

1

0

dy

�
1 − yþ yð1 − yÞ k

2

m2

�−2ϵ�
: ðB11Þ

Due the presence of a double pole that multiplies the first
integral, the latter needs to be expanded to order ϵ3. Since
the integral multiplying the ϵ3 term is not computable
analytically, we resorted to a numerical evaluation. As for
the subtracted integral, it needs to be expanded to order ϵ2

for it is multiplied by a simple pole. Again we evaluated the
corresponding expansion coefficients numerically.
Finally, we consider U00m0ðk2Þ which we write

U00m0ðk2Þ¼
Z
q

1

q2þm2

Z
p

1

p2ðp−qÞ2ðp−kÞ2

¼ Γð1þ ϵÞ
ð4πμ2Þ−ϵ

Z
1

0

dx
Z

1−x

0

dy

×
Z
q

ðxð1−xÞq2þyð1−yÞk2−2xyq ·kÞ−1−ϵ
q2þm2

ðB12Þ

Pulling out a factor ðxð1 − xÞÞ−1−ϵ in the numerator of the
second integral, we can interpret the latter as a propagator
to the power 1þ ϵ. Then, applying once more the Feynman
trick, we find

U00m0ðk2Þ¼
Γð2þϵÞ
ð4πμ2Þ−ϵ

Z
1

0

dxx−1−ϵð1−xÞ−1−ϵ
Z

1−x

0

dy
Z

1

0

dzzϵ

×
Z
q

1

ðq2þð1−zÞm2þyzð1−x−yþxyð1−zÞÞ
xð1−xÞ2 k2Þ2þϵ

¼ Γð2ϵÞ
ð4πμ2Þ−2ϵ

Z
1

0

dxx−1þϵð1−xÞ−1þ3ϵ

Z
1−x

0

dy

×
Z

1

0

dzzϵðxð1−xÞ2ð1−zÞm2

þyzð1−x−yþxyð1−zÞÞk2Þ−2ϵ: ðB13Þ

When setting ϵ → 0 in the integrand, we find a divergence
at x ¼ 0. We proceed as above by adding and subtracting
from the yz integral its value at x ¼ 0. The added integral
can be evaluated analytically, whereas the subtracted
integral is regular in the limit ϵ → 0 and its integrand
can be expanded. We find
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U00m0ðk2Þ ¼
ðk2Þ−2ϵ

ð4πμ2Þ−2ϵ
Γð2ϵÞΓðϵÞΓð3ϵÞΓð1 − 2ϵÞ2
Γð4ϵÞΓð2 − 4ϵÞð1þ ϵÞ

þ Γð2ϵÞ
ð4πμ2Þ−2ϵ

Z
1

0

dxx−1þϵð1 − xÞ−1þ3ϵ

×

�Z
1−x

0

dy
Z

1

0

dzzϵðxð1 − xÞ2ð1 − zÞm2

þ yzð1 − x − yþ xyð1 − zÞÞk2Þ−2ϵ

−
Z

1

0

dy
Z

1

0

dzzϵðyzð1 − yÞk2Þ−2ϵ
�
: ðB14Þ

Due to the presence of a simple pole in the last term, we
need to expand the corresponding triple integral to order ϵ2.

APPENDIX C: LOW-MOMENTUM EXPANSION

Here we discuss the low-momentum expansion of some
of the integrals for which we did not have an analytic
expression. We make use of the integrals defined in the
previous section. For convenience, we write them as
Jαðm2Þ ¼ ðm2Þ2−α−ϵJαð1Þ, Jα;βðm2Þ ¼ ðm2Þ2−α−β−ϵJα;βð1Þ
and Iα;βðp2Þ ¼ ðp2Þ2−α−β−ϵIα;βð1Þ, where the “1” in the
argument of each function means that we replace m2

and p2 formally by 1 in the corresponding analytical
expression. Similarly, Iα;β;γðm2Þ¼ðm2Þ4−α−β−γ−2ϵIα;β;γð1Þ,
Iα;β;γðm2; m2Þ ¼ ðm2Þ4−α−β−γ−2ϵIα;β;γð1; 1Þ, and we men-
tion that Iα;β;γð1Þ ¼ Bβ;γð1ÞJα;βþγ−2þϵð1Þ.
A word of caution is in order before we start. The

integrals Jα;βðm2Þ, Iα;βðp2Þ, Iα;β;γðm2Þ and Iα;β;γðm2; m2Þ
are IR divergent when some of their indices are large
enough. Although these divergences are regularized in
dimensional regularization (that is, the integrals admit a
well-defined expression as long as ϵ ≠ 0),22 they mix with
the UV divergences and the integrals need to be manip-
ulated with care. In fact, the subtlety with these integrals is
that they are not continuously connected to the related
integrals in which the IR divergence has been regularized
by means of some momentum or mass scale. In many
instances, however, the IR-divergent integrals arise pre-
cisely from expanding in powers of this IR-regulating
scales. Only if the original quantity is infrared-safe does the
expansion make sense and one can use these IR-divergent
integrals. We shall give various examples below and also in
Appendix D.

1. Small k2 expansion of U0m00ðk2Þ
We have

U0m00ðk2Þ ¼ I1;1ð1Þ
Z
p

ðp2Þ−ϵ
p2 þm2

1

ðpþ kÞ2 : ðC1Þ

We now would like to expand U0m00ðk2Þ=I1;1ð1Þ for small
k2. The first term in the expansion is the limit as k2 → 0 and
is easily computed to be

U0m00ð0Þ
I1;1ð1Þ

¼ J1;1þϵðm2Þ ¼ ðm2Þ−2ϵJ1;1þϵð1Þ; ðC2Þ

and so

U0m00ðk2Þ
I1;1ð1Þ

¼ ðm2Þ−2ϵJ1;1þϵð1Þ þOðk2Þ: ðC3Þ

Naïvely, in order to obtain the next term in the expansion,
we would write

1

ðpþkÞ2¼
1

p2

1

1þ 2ðp·kÞþk2

p2

¼ 1

p2

�
1−

2ðp ·kÞ
p2

−
k2

p2
þ4ðp ·kÞ2

p4
þ�� �

�
: ðC4Þ

The first term in the bracket leads to the just computed
leading-order contribution, the second term vanishes upon
angular integration and the third and fourth terms can be
expressed in terms of J1;2þϵ, yielding

U0m00ðk2Þ
I1;1ð1Þ

¼ ðm2Þ−2ϵ
�
J1;1þϵð1Þ þ

2ϵ

d
k2

m2
J1;2þϵð1Þ

�

þOðk4Þ: ðC5Þ

The analytical expressions for J1;1þϵð1Þ and J1;2þϵð1Þ are
well defined [see Eq. (B3)], so it seems that we obtain a
meaningful expansion. However, this expansion is wrong
because dU0m00ðk2Þ=dk2 has a logarithmic divergence as
k → 0. In fact, J1;2þϵð1Þ is one of the IR-divergent integrals
discussed above and as already mentioned, it can only be
used when it arises from the expansion of an IR-safe
quantity. The quantity U0m00ðk2Þ=I1;1ð1Þ is certainly
IR-safe. However, U0m00ðk2Þ=I1;1ð1Þ − ðm2Þ−2ϵJ1;1þϵð1Þ,
which we need to obtain the next term in the expansion,
is not.
To cope with this, the idea is to split the integrand in (C1)

into a piece that is analytically tractable and a piece where
the expansion in k can be pushed to one order higher
without encountering any infrared divergence. To this
purpose, we write

22The only exception is when one of those indices equals
exactly d=2, in which case dimensional regularization does not
regularize the IR divergence, or when the sum of all indices is
equal to d=2, in which case dimensional regularization does not
regularize the UV divergence. We shall never encounter these
undefined integrals.
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1

p2 þm2
¼ 1

m2
þ
�

1

p2 þm2
−

1

m2

�

¼ 1

m2

�
1 −

p2

p2 þm2

�
ðC6Þ

and then

U0m00ðk2Þ
I1;1ð1Þ

¼ 1

m2

�
ðk2Þ1−2ϵI1;ϵð1Þ

−
Z
p

ðp2Þ1−ϵ
p2 þm2

1

ðpþ kÞ2
�
: ðC7Þ

The first term in the rhs is known exactly [see Eq. (B2)],
whereas in the second term the small k2 expansion can be
pushed to one order further than above, before we meet an
infrared divergence (since we have gained an extra power of
p2 in the integrand). Plugging (C4) in (C7), we arrive at

U0m00ðk2Þ
I1;1ð1Þ

¼ k2

m2
ðk2Þ−2ϵB1;ϵð1Þ

− ðm2Þ−2ϵ
�
J1;ϵð1Þ þ

2ϵ

d
k2

m2
J1;1þϵð1Þ

�

þOðk4Þ: ðC8Þ

The first term is of dimension 2 − 4ϵ. It contains poles in
1=ϵ associated with UV divergences. This leads to the
appearance of terms of the form k2 ln k2=μ2, as expected.
The remaining terms are regular in k2. One could be
surprised that the leading term now appears as
−ðm2Þ−2ϵJ1;ϵð1Þ instead of ðm2Þ−2ϵJ1;1þϵð1Þ. But this is
no surprise since J1;βð1Þ ¼ −J1;β−1ð1Þ, as follows from
Eq. (B3) insofar as J1;βð1Þ and J1;β−1ð1Þ are well defined.
Finally, we mention that (C8) can be expanded to any order
in ϵ.
The same strategy can be applied at any order. To this

purpose, we iterate (C6)

1

p2þm2
¼ 1

m2

�
1−

p2

p2þm2

�

¼ 1

m2

�
1−

p2

m2
þ p2

m2

p2

p2þm2

�

¼ 1

m2

�Xn
j¼0

�
−
p2

m2

�
j

−
�
−
p2

m2

�
n p2

p2þm2

�
: ðC9Þ

Then

U0m00ðk2Þ
I1;1ð1Þ

¼ 1

m2

�Xn
j¼0

ð−1Þj ðk
2Þ1þj−2ϵ

ðm2Þj I1;ϵ−jð1Þ

−
ð−1Þn
ðm2Þn

Z
p

ðp2Þ1þn−2ϵ

p2 þm2

1

ðpþ kÞ2
�
: ðC10Þ

The terms in the sum are known exactly and contribute up
to and including order ðk2Þnþ1−2ϵ, which generate loga-
rithms of k2 since the I1;ϵ−jð1Þ’s are all UV divergent and
contain poles in 1=ϵ. The integral in (C10) can be expanded
up to order ðk2Þnþ1 without encountering any IR divergence
and the corresponding, regular expansion can be expressed
in terms of the Jα;βð1Þ’s. More precisely, extending (C4),
we write

1

ðpþ kÞ2 ¼
1

p2

X2ðnþ1Þ

j¼0

ð−1Þj
�
2ðp · kÞ þ k2

p2

�
j

þ � � �

¼
X2ðnþ1Þ

j¼0

ð−1Þj
ðp2Þjþ1

Xj

l¼0

j!
l!ðj − lÞ! ð2p · kÞlðk2Þj−l

þ � � � : ðC11Þ

We consider the sum up to 2ðnþ 1Þ to be sure that we
generate all powers of k2 up to ðk2Þnþ1, but it is understood
that we should truncate any term beyond. Plugging (C11) in
the last term of (C10) and using the formula (for l even;
otherwise, the integral vanishes)

Z
p
fðp2Þð2p · kÞl ¼ l!

ðl=2Þ!
ðk2Þl=2

ð2 − ϵÞl=2

Z
p
fðp2Þðp2Þl=2

ðC12Þ

(see Ref. [101]), we arrive at

Z
p

ðp2Þ1þn−ϵ

p2 þm2

1

ðpþ kÞ2

¼ ðm2Þ1þn−2ϵ
X2ðnþ1Þ

j¼0

Xj

lðevenÞ¼0

ð−1Þj j!
ðl=2Þ!ðj − lÞ!

×

�
k2

m2

�
j−l=2 J1;ϵ−nþj−l=2ð1Þ

ð2 − ϵÞl=2

				
ðk2Þnþ1

þ � � � ðC13Þ

and eventually

U0m00ðk2Þ
I1;1ð1Þ

¼ ðk2Þ−2ϵ
Xn
j¼0

ð−1Þj
�
k2

m2

�
jþ1

I1;ϵ−jð1Þ

− ðm2Þ−2ϵ
X2ðnþ1Þ

j¼0

X½j=2�
l¼0

ð−1Þnþj j!
l!ðj − 2lÞ!

×
�
k2

m2

�
j−l J1;ϵ−nþj−lð1Þ

ð2 − ϵÞl

				
ðk2Þnþ1

þOððk2Þnþ2Þ: ðC14Þ

We have checked that this formula leads to the known low-
k2 expansion for the ϵ0 contributions. We can then use it to
evaluate the corresponding expansion for the contributions
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of order ϵ1. We have checked that the latter matches with a
numerical evaluation of the corresponding ϵ1 contributions
to U0m00ðk2Þ at large k2.

2. Small k2 expansion of U00m0ðk2Þ
We next consider the integral

U00m0ðk2Þ ¼
Z
p

1

p2

1

ðpþ kÞ2
Z
q

1

q2 þm2

1

ðqþ pÞ2 : ðC15Þ

In this case, the leading term of the low-k2 expansion is
already delicate. We use

1

ðqþ pÞ2 ¼
1

q2
þ
�

1

ðqþ pÞ2 −
1

q2

�

¼ 1

q2

�
1 −

2ðp · qÞ þ p2

ðqþ pÞ2
�

ðC16Þ

to arrive at

U00m0ðk2Þ ¼ −
1

m2
J1ðm2ÞI1;1ðk2Þ

−
Z
q

1

q2ðq2 þm2Þ
Z
p

2ðq · pÞ þ p2

p2ðpþ kÞ2ðqþ pÞ2 :

ðC17Þ

The first term is known exactly while the second is regular
in the limit k2 → 0. We can evaluate it by writing

Z
p

2ðq · pÞ þ p2

p4ðqþ pÞ2 ¼
Z
p

ðqþ pÞ2 − q2

p4ðqþ pÞ2

¼
Z
p

1

p4
− q2

Z
p

1

p4ðqþ pÞ2 : ðC18Þ

We mention that (C18) provides yet another example of the
use of (dimensionally regularized) IR-divergent integrals.
Since the lhs is infrared-safe, the decomposition in terms of
IR-divergent integrals makes perfect sense. To evaluate the
second line and if one is not so sure about the value to give
to

R
ddp=p4, one can add a mass regulator to both quartic

propagators (since the lhs is infrared-safe) as 1=p4 →
1=ðp2 þm2Þ2 or even 1=p2 → 1=ðp2ðp2 þm2ÞÞ and com-
plete the calculation. We have checked that one obtains the
same result by applying the Feynman trick directly to the
lhs. We have also checked that the same result is obtained
by using the well-known result

R
ddp=p4 ¼ 0 [108], so

eventually the final result can be written as

Z
p

2ðq · pÞ þ p2

p4ðqþ pÞ2 ¼ −q2
Z
p

1

p4ðqþ pÞ2

−
ðq2Þ−ϵ

ð4πμ2Þ−ϵ Γð1þ ϵÞΓð1 − ϵÞΓð−ϵÞ
Γð1 − 2ϵÞ ;

ðC19Þ

which, once plugged back into (C17), leads to the known
integral J1;1þϵ.
We can compute higher orders by iterating (C16)

1

ðqþ pÞ2 ¼
1

q2

�
1 −

2ðp · qÞ þ p2

ðqþ pÞ2
�

¼ 1

q2

�
1 −

2ðp · qÞ þ p2

q2

þ 2ðp · qÞ þ p2

q2
2ðp · qÞ þ p2

ðqþ pÞ2
�

¼ 1

q2

�Xn
j¼0

�
−
2ðp · qÞ þ p2

q2

�
j

−
�
−
2ðp · qÞ þ p2

q2

�
n 2ðp · qÞ þ p2

ðqþ pÞ2
�
: ðC20Þ

Then

U00m0ðk2Þ¼
Xn
j¼0

ð−1Þj
Z
q

ðq2Þ−j−1
ðq2þm2Þ

Z
p

ð2ðp ·qÞþp2Þj
p2ðpþkÞ2

− ð−1Þn
Z
q

ðq2Þ−n−1
ðq2þm2Þ

Z
p

ð2ðp ·qÞþp2Þnþ1

p2ðpþkÞ2ðqþpÞ2 :

ðC21Þ

The first line can be computed analytically while in the
second line we can expand to the relevant order in k2 before
encountering any IR divergence and the corresponding
expansion coefficients can again be determined analyti-
cally. For the first line, it is convenient to perform the q
integral first:

Z
q

ð2ðp · qÞ þ p2Þj
ðq2Þjþ1ðq2 þm2Þ

¼
Xj

l¼0

j!
l!ðj − lÞ! ðp

2Þj−l
Z
q

ð2ðp · qÞÞl
ðq2Þjþ1ðq2 þm2Þ

¼ ðm2Þd=2−2
Xj

lðevenÞ¼0

j!
ðl=2Þ!ðj − lÞ!

×

�
p2

m2

�
j−l=2 J1;1þj−l=2ð1Þ

ð2 − ϵÞl=2
; ðC22Þ

where we have once again used formula (C12). To treat the
last line, we write
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ð2ðp · qÞ þ p2Þnþ1

p2ðpþ kÞ2 ¼
X2n
j¼0

ð−1Þj
ðp2Þjþ2

ð2ðp · qÞ þ p2Þnþ1ð2ðp · kÞ þ k2Þj
				
ðk2Þn

þ � � � : ðC23Þ

We are then lead to consider

Z
p

ð2ðp · qÞ þ p2Þnþ1ð2ðp · kÞ þ k2Þj
ðp2Þjþ2ðqþ pÞ2 ¼ −q2

Z
p

ð2ðp · qÞ þ p2Þnð2ðp · kÞ þ k2Þj
ðp2Þjþ2ðqþ pÞ2

¼ ð−q2Þk
Z
p

ð2ðp · qÞ þ p2Þnþ1−kð2ðp · kÞ þ k2Þj
ðp2Þjþ2ðqþ pÞ2

¼ ð−q2Þnþ1

Z
p

ð2ðp · kÞ þ k2Þj
ðp2Þjþ2ðqþ pÞ2 ; ðC24Þ

where we have used similar tricks as in (C18). We next plug these formulas into (C21) and invert the order of the integrals
leading to

U00m0ðk2Þ ¼ ðk2m2Þ−ϵ
Xn
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

�
k2

m2

�
j−l J1;1þj−lð1Þ

ð2 − ϵÞl
I1;1þl−jð1Þ

þ
X2n
j¼0

ð−1Þj
Z
p

ð2ðp · kÞ þ k2Þj
ðp2Þjþ2

Z
q

1

ðq2 þm2Þðqþ pÞ2
				
ðk2Þn

þOððk2Þnþ1Þ

¼ ðk2m2Þ−ϵ
Xn
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

�
k2

m2

�
j−l J1;1þj−lð1Þ

ð2 − ϵÞl
I1;1þl−jð1Þ

þ
X2n
j¼0

ð−1Þj
Xj

l¼0

j!
l!ðj − lÞ! ðk

2Þj−l
Z
p

ð2p · kÞl
ðp2Þjþ2

Z
q

1

ðq2 þm2Þðqþ pÞ2
				
ðk2Þn

þOððk2Þnþ1Þ: ðC25Þ

We notice that the inner integral is a function of p2. We can then use (C12) to obtain

U00m0ðk2Þ ¼ ðk2m2Þ−ϵ
Xn
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

�
k2

m2

�
j−l J1;1þj−lð1Þ

ð2 − ϵÞl
I1;1þl−jð1Þ

þ
X2n
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Z
p

1

ðp2Þjþ2−l

Z
q

1

ðq2 þm2Þðqþ pÞ2
				
ðk2Þn

þOððk2Þnþ1Þ: ðC26Þ

The double integral is nothing but I1;1;jþ2−lðm2Þ ¼ ðm2Þd−4−jþlJ1;1þϵþj−lð1ÞB1;jþ2−lð1Þ. It follows that

U00m0ðk2Þ ¼ ðk2m2Þ−ϵ
Xn
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

�
k2

m2

�
j−l J1;1þj−lð1Þ

ð2 − ϵÞl
B1;1þl−jð1Þ

þ ðm4Þ−ϵ
X2n
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

�
k2

m2

�
j−l J1;1þϵþj−lð1Þ

ð2 − ϵÞl
B1;jþ2−lð1Þ

				
ðk2Þn

þOððk2Þnþ1Þ: ðC27Þ
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3. Small k2 expansion of U0mm0ðk2Þ
We next consider the integral

U0mm0ðk2Þ≡
Z
p

1

p2

1

ðpþ kÞ2 þm2

Z
q

1

q2
1

ðqþ pÞ2 þm2
: ðC28Þ

We write

1

ðpþ kÞ2 þm2
¼ 1

p2 þm2 þ 2ðp · kÞ þ k2
¼

X∞
j¼0

ð−1Þj ð2ðp · kÞ þ k2Þj
ðp2 þm2Þjþ1

ðC29Þ

and arrive at

U0mm0ðk2Þ ¼
X∞
j¼0

ð−1Þj
Z
p

1

p2

ð2ðp · kÞ þ k2Þj
ðp2 þm2Þjþ1

Z
q

1

q2
1

ðqþ pÞ2 þm2

¼
X∞
j¼0

ð−1Þj
Xj

l¼0

j!
l!ðj − lÞ! ðk

2Þj−l
Z
p

1

p2

ð2p · kÞl
ðp2 þm2Þjþ1

Z
q

1

q2
1

ðqþ pÞ2 þm2
: ðC30Þ

With the help of (C12), this becomes

U0mm0ðk2Þ ¼
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Z
p

ðp2Þl
p2ðp2 þm2Þjþ1

Z
q

1

q2
1

ðqþ pÞ2 þm2

¼
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Xl
h¼0

ð−1Þl−hðm2Þl−h
h!ðl − hÞ!

Z
p

1

p2ðp2 þm2Þj−hþ1

Z
q

1

q2
1

ðqþ pÞ2 þm2
: ðC31Þ

We then use

1

p2ðp2 þm2Þj−hþ1
¼ 1

m2p2ðp2 þm2Þj−h −
1

m2ðp2 þm2Þj−hþ1

¼ 1

m4p2ðp2 þm2Þj−h−1 −
1

m4ðp2 þm2Þj−h −
1

m2ðp2 þm2Þj−hþ1

¼ 1

ðm2Þj−hþ1p2
−
Xj−h
i¼0

1

ðm2Þiþ1ðp2 þm2Þj−hþ1−i ; ðC32Þ

which leads to

U0mm0ðk2Þ ¼
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Xl
h¼0

ð−1Þl−hðm2Þl−j−1
h!ðl − hÞ! I1;1;1ðm2Þ

−
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Xl
h¼0

ð−1Þl−hðm2Þl−h
h!ðl − hÞ!

Xj−h
i¼0

Ij−hþ1−i;1;1ðm2; m2Þ
ðm2Þiþ1

; ðC33Þ

that is,
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U0mm0ðk2Þ ¼ ðm2Þ−2ϵ
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
ðj − 2lÞ!

�
k2

m2

�
j−lXl

h¼0

ð−1Þl−h
h!ðl − hÞ!

J1;2−d=2ð1ÞB1;1ð1Þ
ð2 − ϵÞl

− ðm2Þ−2ϵ
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
ðj − 2lÞ!

�
k2

m2

�
j−l Xl

h¼0

ð−1Þl−h
h!ðl − hÞ!

Xj−h
i¼0

Ij−hþ1−i;1;1ð1; 1Þ
ð2 − ϵÞl

: ðC34Þ

The first line contributes only for l ¼ 0 and we end up with

U0mm0ðk2Þ ¼ ðm2Þ−2ϵ
X∞
j¼0

ð−1Þj
�
k2

m2

�
j J1;2−d=2ð1ÞB1;1ð1Þ

ð2 − ϵÞl

− ðm2Þ−2ϵ
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
ðj − 2lÞ!

�
k2

m2

�
j−l Xl

h¼0

ð−1Þl−h
h!ðl − hÞ!

Xj−h
i¼0

Ij−hþ1−i;1;1ð1; 1Þ
ð2 − ϵÞl

: ðC35Þ

4. Small k2 expansion of Sm00ðk2Þ
We have

Sm00ðk2Þ ¼
Z
p

1

p2 þm2

Z
q

1

q2ðqþ pþ kÞ2 ðC36Þ

and thus

Sm00ðk2Þ
I1;1ð1Þ

¼
Z
p

ðpþ kÞ−ϵ
p2 þm2

: ðC37Þ

If we leave the momentum k in the massless propagator, we have to pay attention to the infrared divergences, but we can use
the previous considerations. We start by writing

Sm00ðk2Þ
I1;1ð1Þ

¼ 1

m2

�Xn
j¼0

ð−1Þj ðk
2Þ2þj−2ϵ

ðm2Þj Bϵ;−jð1Þ −
ð−1Þn
ðm2Þn

Z
p
ððpþ kÞ2Þ−ϵ ðp

2Þnþ1

p2 þm2

�

¼ 1

m2

�Xn
j¼0

ð−1Þj ðk
2Þ2þj−2ϵ

ðm2Þj Bϵ;−jð1ÞþOððk2Þnþ3Þ

−
ð−1Þn
ðm2Þn

X2nþ4

j¼0

Γð1 − ϵÞ
Γðjþ 1ÞΓð1 − j − ϵÞ

Z
p
ð2ðp · kÞ þ k2Þj ðp

2Þ1þn−j−ϵ

p2 þm2

				
ðk2Þnþ2

�

¼ 1

m2

�Xn
j¼0

ð−1Þj ðk
2Þ2þj−2ϵ

ðm2Þj Bϵ;−jð1ÞþOððk2Þnþ3Þ

−
ð−1Þn
ðm2Þn

X2nþ4

j¼0

Γð1 − ϵÞ
Γð1 − j − ϵÞ

X½j=2�
l¼0

1

l!ðj − 2lÞ!
ðk2Þj−l
ðd=2Þl

Z
p

ðp2Þ1þn−jþl−ϵ

p2 þm2

				
ðk2Þnþ2

�
; ðC38Þ

where we have used once again Eq. (C12). Then
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Sm00ðk2Þ
I1;1ð1Þ

¼ 1

m2

�Xn
j¼0

ð−1Þj ðk
2Þ2þj−2ϵ

ðm2Þj Bϵ;−jð1Þ þOððk2Þnþ3Þ

− ð−1Þnðm2Þ2−2ϵ
X2nþ4

j¼0

Γð1 − ϵÞ
Γð1 − j − ϵÞ

X½j=2�
l¼0

1

l!ðj − 2lÞ!
�
k2

m2

�
j−l J1;−1−nþj−lþϵð1Þ

ðd=2Þl

				
ðk2Þnþ2

�

¼ ðk2Þ1−2ϵ
Xn
j¼0

ð−1Þj
�
k2

m2

�
jþ1

Bϵ;−jð1Þ þOððk2Þnþ3Þ

− ð−1Þnðm2Þ1−2ϵ
X2nþ4

j¼0

Γð1 − ϵÞ
Γð1 − j − ϵÞ

X½j=2�
l¼0

1

l!ðj − 2lÞ!
�
k2

m2

�
j−l J1;ϵ−1−nþj−lð1Þ

ð2 − ϵÞl

				
ðk2Þnþ2

: ðC39Þ

In fact Bϵ;−i ¼ 0; see Eq. (B2). This is in line with the fact that we expect a regular expansion in k2 in the case of S1ðk2Þ. Then

Sm00ðk2Þ
I1;1ð1Þ

¼ ð−1Þnþ1ðm2Þ1−2ϵ
X2nþ4

j¼0

Γð1 − ϵÞ
Γð1 − j − ϵÞ

X½j=2�
l¼0

1

l!ðj − 2lÞ!
�
k2

m2

�
j−l J1;ϵ−1−nþj−lð1Þ

ð2 − ϵÞl

				
ðk2Þnþ2

þOððk2Þnþ3Þ: ðC40Þ

We can now use the formula J1;βð1Þ ¼ −J1;β−1ð1Þ (see above) to arrive at

Sm00ðk2Þ
I1;1ð1Þ

¼ ðm2Þ1−2ϵ
X2nþ4

j¼0

Γð1 − ϵÞ
Γð1 − j − ϵÞ

X½j=2�
l¼0

1

l!ðj − 2lÞ!
�
k2

m2

�
j−l J1;ϵþj−lð1Þ

ð2 − ϵÞl

				
ðk2Þnþ2

þOððk2Þnþ3Þ; ðC41Þ

which is nothing but the order ðk2Þnþ2 of

Sm00ðk2Þ
I1;1ð1Þ

¼ ðm2Þ1−2ϵ
X∞
j¼0

Γð1 − ϵÞ
Γð1 − j − ϵÞ

X½j=2�
l¼0

1

l!ðj − 2lÞ!
�
k2

m2

�
j−l J1;ϵþj−lð1Þ

ð2 − ϵÞl
: ðC42Þ

5. Small k2 expansion of Smm0ðk2Þ
We have

Smm0ðk2Þ ¼
Z
p

1

p2

1

ðqþ pÞ2 þm2

Z
q

1

ðqþ kÞ2 þm2
: ðC43Þ

Using (C29) with p → q, we arrive at

Smm0ðk2Þ ¼
X∞
j¼0

ð−1Þj
Z
p

Z
q

1

p2

1

ðqþ pÞ2 þm2

ð2ðq · kÞ þ k2Þj
ðq2 þm2Þjþ1

¼
X∞
j¼0

ð−1Þj
Xj

l¼0

j!
l!ðj − lÞ! ðk

2Þj−l
Z
q

ð2q · kÞl
ðq2 þm2Þjþ1

Z
p

1

p2

1

ðqþ pÞ2 þm2

¼
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Z
q

ðq2Þl
ðq2 þm2Þjþ1

Z
p

1

p2

1

ðqþ pÞ2 þm2

¼
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Xl
h¼0

ð−1Þl−hðm2Þl−h
h!ðl − hÞ!

Z
q

1

ðq2 þm2Þjþ1−h

Z
p

1

p2

1

ðqþ pÞ2 þm2

¼ ðm2Þ1−2ϵ
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
ðj − 2lÞ!

�
k2

m2

�
j−l Xl

h¼0

ð−1Þl−h
h!ðl − hÞ!

Ijþ1−h;1;1ð1; 1Þ
ð2 − ϵÞl

: ðC44Þ
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We could have proceeded similarly in the case of Sm00ðk2Þ with the difference that in the step

Sm00ðk2Þ ¼
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Z
q

ðq2Þl
ðq2 þm2Þjþ1

Z
p

1

p2

1

ðqþ pÞ2 ðC45Þ

we recognize immediately

Sm00ðk2Þ
I1;1ð1Þ

¼
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Z
q

ðq2Þ−ϵþl

ðq2 þm2Þjþ1

¼ ðm2Þ1−2ϵ
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

�
k2

m2

�
j−l Jjþ1;ϵ−lð1Þ

ð2 − ϵÞl
: ðC46Þ

Owing to

Jjþa;bð1Þ
Ja;jþbð1Þ

¼ Γðd=2 − bÞ
Γðd=2 − j − bÞ

ΓðaÞ
Γðjþ aÞ ; ðC47Þ

we have

Jjþ1;ϵ−lð1Þ
J1;jþϵ−lð1Þ

¼ Γð2 − 2ϵþ lÞ
Γð2 − 2ϵþ l − jÞ

1

j!
; ðC48Þ

and thus

Sm00ðk2Þ
I1;1ð1Þ

¼
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

j!
l!ðj − 2lÞ!

ðk2Þj−l
ðd=2Þl

Z
q

ðq2Þ−ϵþl

ðq2 þm2Þjþ1

¼ ðm2Þ1−2ϵ
X∞
j¼0

ð−1Þj
X½j=2�
l¼0

1

l!ðj − 2lÞ!
Γð2 − 2ϵþ lÞ

Γð2 − 2ϵþ l − jÞ
�
k2

m2

�
j−l J1;jþϵ−lð1Þ

ð2 − ϵÞl
: ðC49Þ

This looks like (C42) but not exactly so. However, we have
checked with Mathematica that the two formulas coincide
for various values of n.

APPENDIX D: LOW-MASS EXPANSION

We here discuss why a naïve Taylor expansion in powers
of the mass does not lead to the correct low-mass expansion
of the mass integrals and why, despite this issue, such naïve
Taylor expansions can be used for low-mass expansion of
certain quantities. Let us start with the following example
of master integral:

Bm0ðp2Þ≡
Z
q

1

q2 þm2

1

ðqþ pÞ2 : ðD1Þ

Its naïve Taylor expansion in powers of the mass
leads to

Bm0ðp2Þ→
Z
q

1

q2
1

ðqþpÞ2−m2

Z
q

1

q4
1

ðqþpÞ2

þO
�
m4

p4

�
: ðD2Þ

This expansion is clearly suspicious because, even though
the last integral is well defined in dimensional regulariza-
tion, it introduces an extra pole in 1=ϵ (corresponding
to an infrared divergence), the one present in Bm0ðp2Þ
being already accounted for by the first integral in (D2).23

This is clearly a misuse of (dimensionally regularized) IR-
divergent integrals, similar to the one we discussed around
Eq. (C5).
In order to obtain better control on the low-m expansion,

we proceed as follows. We first write

23We are of course assuming here that the ϵ and low-m
expansions commute. We will check below that this assumption
is correct, at least for the example considered here.
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1

ðqþ pÞ2 ¼
1

p2
þ
�

1

ðqþ pÞ2 −
1

p2

�
; ðD3Þ

which leads to

Bm0ðp2Þ ¼ 1

p2

Z
q

1

q2 þm2

þ
Z
q

1

q2 þm2

�
1

ðqþ pÞ2 −
1

p2

�
: ðD4Þ

The first term will be left as it is because it is proportional to
ðm2Þd=2−1 ¼ ðm2Þ1−ϵ and, therefore, does not admit any
Taylor expansion. In the second term, and contrary to what
happened above, the naïve Taylor expansion can be pushed
up to orderm2 without generating infrared divergences. We
find

Bm0ðp2Þ ¼ 1

p2

Z
q

1

q2 þm2

þ
Z
q

1

q2

�
1

ðqþ pÞ2 −
1

p2

�

−m2

Z
q

1

q4

�
1

ðqþ pÞ2 −
1

p2

�

þO
�
m4

p4

�
: ðD5Þ

After canceling some dimensional regularization zeros, this
is rewritten

Bm0ðp2Þ¼
Z
q

1

q2
1

ðqþpÞ2−m2

Z
q

1

q4
1

ðqþpÞ2

þ 1

p2

Z
q

1

q2þm2
þO

�
m4

p4

�
; ðD6Þ

which differs from (D2) by the presence of the last term. We
mention that the integral we dubbed problematic in (D2) is
also present here.However, its pole in 1=ϵ is exactly canceled
by the one in the last integral, in such away that the only pole
in 1=ϵ comes from the first integral, as it should be.
Another way to check that (D6) is the correct low-mass

expansion of Bm0ðp2Þ is to obtain this expansion by an
alternative method. As already mentioned in the main text,
from dimensional analysis [see Eq. (42)], it is clear that the
low-mass expansion can be obtained from the UV expan-
sion by exploiting the Weinberg theorem. The latter
classifies the various contributions that make the large
momentum asymptotic expansion according to the possible
ways the large momentum p can flow inside the diagram.
For any such contribution, it is possible to expand in
powers of any scale (momentum or mass, except p of
course) that appears in a propagator whose total momentum
is large. For the present example, these contributions are

Bm0ðp2Þ →
�Z

q

1

q2 þm2

1

ðqþ pÞ2
�
m

þ
Z
q

1

q2 þm2

�
1

ðqþ pÞ2
�
q

þ
Z
q

1

q2

�
1

ðqþ pÞ2 þm2

�
q;m

; ðD7Þ

where ½� � ��μ;ν;… means that one should expand in powers of
the scales μ; ν;…. It is easily checked that expanding each
term in Eq. (D7) accordingly leads indeed to the expansion
(D6) and not to (D2).
Yet another way to confirm (D6) is to compare its ϵ

expansion with the low-mass expansion of the analytic
result for the ϵ expansion of Bm0ðp2Þ:

Bm0ðp2Þ ¼ 1

ϵ
þ 2þ ln

μ̄2

m2

−
�
1þm2

p2

�
ln

�
1þ p2

m2

�
: ðD8Þ

We find again that (D6) is the correct starting point
whereas (D2) misses one contribution, illustrating that
the Taylor expansion does not lead to the correct low-mass
expansion.
To conclude this section, let us now show that, despite

the previous warnings concerning the validity of the Taylor
expansion of the master integrals, it can be put to good use
in some instances. Consider the following integral:

Imðp2Þ≡
Z
q

1

q2 þm2

3q2 þ 2ðp · qÞ
ðqþ pÞ2ð2qþ pÞ2 : ðD9Þ

Because of the presence of enough powers of q in the
numerator, it can be Taylor expanded up to order m2 and
one finds

Imðp2Þ ¼
Z
q

1

q2
3q2 þ 2ðp · qÞ

ðqþ pÞ2ð2qþ pÞ2

−m2

Z
q

1

q4
3q2 þ 2ðp · qÞ

ðqþ pÞ2ð2qþ pÞ2

þO
�
m4

p4

�
: ðD10Þ

Next, we notice that it can be decomposed in terms of
master integrals as

Imðp2Þ ¼
Z
q

1

q2 þm2

1

ðqþ pÞ2

−
Z
q

1

q2 þm2

1

ð2qþ pÞ2 : ðD11Þ
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As we have seen above, for each of these master integrals,
the Taylor expansion cannot be pushed to order m2.
It is easily checked, however, that this wrong Taylor
expansions lead to the correct expansion (D10). The reason

is that the same contribution is missed for both integrals,
namely ð1=p2Þ R ddq=ð2πÞd1=ðq2 þm2Þ, which cancels in
the difference (D11). In general, we could imagine the
following rule: suppose that a quantity Qm is regular in the
limit m → 0, together with its first n derivatives
∂kQm=∂ðm2Þk, and suppose that Qm is split into many

pieces Qm ¼ P
i Q

i
m, with the QðiÞ

m (which are basically
master integrals times some prefactors) not as regular as
Qm. Then the mass expansion of Qm to order n is nothing
but its Taylor expansion to order n, and it can be obtained

by Taylor expanding formally the QðiÞ
m to the same order,

even though for the latter this does not correspond to their
mass expansion. We believe that this is the reason why we

FIG. 9. Two-loop diagrams corresponding to ghost self-energy
corrections inserted in one-loop diagrams.

FIG. 10. Two-loop diagrams corresponding to gluon self-
energy corrections inserted in one-loop diagrams.

FIG. 11. Two-loop diagrams corresponding to ghost-gluon
vertex corrections inserted in one-loop diagrams.
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could obtain the correct limit limm→0vm2ðk2Þ while using
naïve Taylor expansions.

APPENDIX E: TWO-LOOP DIAGRAMS

We classified two-loop diagrams in three categories:
(i) those corresponding to self-energy corrections in
one-loop diagrams, (ii) those corresponding to vertex
corrections in one-loop diagrams, and (iii) the rest.
Diagrams in category (iii) were already depicted in
Figs. 2 and 3. Here, we list the diagrams in the other two
categories.
Two-loop diagrams corresponding to ghost and gluon

self-energy insertions in one-loop diagrams are shown in
Figs. 9 and 10, respectively, whereas two-loop diagrams
corresponding to ghost-gluon and three-gluon vertex cor-
rections inserted in one-loop diagrams appear in Figs. 11
and 12, respectively.
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