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We construct QCD sum rules for nonperturbative studies without assuming the quark-hadron duality for
the spectral density at low energy on the hadron side. Instead, both resonance and continuum contributions
to the spectral density are solved with the operator-product-expansion input on the quark side by treating
sum rules as an inverse problem. This new formalism does not involve the continuum threshold, does not
require the Borel transformation and stability analysis, and can be extended to extract properties of excited
states. Taking the two-current correlator as an example, we demonstrate that the series of ρ resonances can
emerge in our formalism, and the decay constants fρð770Þðfρð1450Þ; fρð1700Þ; fρð1900ÞÞ ≈ 0.22 (0.19, 0.14,
0.14) GeV for the massesmρð770Þðmρð1450Þ; mρð1700Þ; mρð1900ÞÞ ≈ 0.78 (1.46, 1.70, 1.90) GeVare determined.
We also show that the decay width Γρð770Þ ≈ 0.17 GeV can be obtained by substituting a Breit-Wigner
parametrization for the ρð770Þ pole on the hadron side. It is observed that quark condensates of dimension-
six on the quark side are crucial for establishing those ρ resonances. Handling the conventional sum rules
with the duality assumption as an inverse problem, we find that the multiple pole sum rules widely adopted
in the literature do not describe the ρ excitations reasonably. The precision of our theoretical outcomes can
be improved systematically by including higher-order and higher-power corrections on the quark side.
Broad applications of this formalism to abundant low energy QCD observables are expected.

DOI: 10.1103/PhysRevD.102.114014

I. INTRODUCTION

QCD sum rules have become one of the major non-
perturbative approaches to low energy hadronic processes,
since they were proposed decades ago [1]. This approach
relies heavily on the assumption of the quark-hadron
duality for the spectral density on the hadron side in a
low energy region, whose theoretical uncertainty is difficult
to control and quantify. The Borel transformation is applied
to suppress model dependent continuum contributions on
the hadron side and higher power corrections on the quark
side. Nevertheless, the typical scale of a Borel mass may
not be large enough for justifying the desired suppression.
The choice of the continuum threshold is a bit arbitrary,
though the stability criterion, i.e., the existence of the
so-called “sum rule window” under the variation of the
continuum threshold and Borel mass, has been imposed.
However, the above prescriptions are quite discretionary
[2], such that a strong dependence on the continuum
threshold and Borel mass is not avoidable. Besides, one
usually invokes the vacuum saturation hypothesis (factori-
zation) to replace higher dimension condensates with

products of lower dimension ones on the quark side, which
also causes uncertainty. Therefore, there has been concern
on the rigorousness and predictive power of QCD sum
rules [3,4].
In this paper, we will handle QCD sum rules in a

different way, attempting to resolve the aforementioned
difficulty to some extent. The spectral density on the
hadron side of a sum rule, including both resonance and
continuum contributions, is regarded as an unknown.
The operator product expansion (OPE) on the quark side
is calculated in the standard way. A sum rule is then treated
as an inverse problem, in which the unknown (source
distribution) is solved from the OPE input (potential
observed outside the distribution). This formalism does
not involve the continuum threshold because the continuum
can be a smooth distribution not related to the perturbative
spectral density. It does not require a Borel transformation
to suppress the continuum contribution, which will be
solved from the inverse problem. The suppression on the
higher power corrections can be achieved by considering
the input in the deep euclidean region. Once the unknown
spectral density is solved directly, the stability criterion for
a conventional sum rule is not necessary. Certainly, the
Borel transformation can be applied to our formalism, but it
will be verified that results from the versions with and
without this transformation are similar.
It has been known that an inverse problem is ill-posed

and allows for the existence of multiple solutions. We will
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show that the existence of multiple solutions grants the
extension of our formalism to studies of excited states,
which impose a challenge to conventional sum rules.
Taking the two-current correlator as an example, we
demonstrate how to obtain the masses and decay constants
of the ρ resonances. We first fix the correction to the
vacuum saturation hypothesis for higher dimension con-
densates on the quark side from the input of the ground
state ρð770Þ mass and determine the ρð770Þ meson decay
constant by solving the sum rule as an inverse problem.
The lower state observables are then adopted as inputs
to extract properties of higher states one by one. A series
of (radial) excitations can be probed systematically
following the above strategy. The masses mρð770Þðmρð1450Þ;
mρð1700Þ; mρð1900ÞÞ ≈ 0.78 (1.46, 1.70, 1.90) GeV and the
decay constants fρð770Þðfρð1450Þ; fρð1700Þ; fρð1900ÞÞ ≈ 0.22
(0.19, 0.14, 0.14) GeV are extracted. Besides, the decay
width Γρð770Þ ≈ 0.17 GeV is also derived by substituting a
Breit-Wigner parametrization for the ρð770Þ pole on the
hadron side. To understand how the nonperturbative con-
densates influence the appearance of the ρ resonance, we
examine the impacts from power corrections of various
dimensions. It is found that the quark condensate of
dimension-six plays a crucial role for establishing the
ρð770Þ state.
Properties of excited states have been investigated in

conventional QCD sum rules by employing the double pole
plus continuum model for a spectral density [5–10]. The
second pole for the excited state was put in by hand, and
ad hoc prescriptions for choosing an appropriate continuum
threshold have to be postulated [11], such as the lower
bound of the continuum threshold being set to the excited
state mass plus 100 MeV. Treating the above conventional
sum rules as an inverse problem, we explicitly show that
there are no signs for excited ρ resonances, once the quark-
hadron duality is assumed. This investigation casts doubt
on the multiple pole QCD sum rules, which have been
widely adopted in the literature. Our formalism is close to
the Bayesian approach to QCD sum rules [4], in which the
specific form of the spectral density was not assumed but
derived using the maximum entropy method. Though it is
possible to explore the existence of excited states by
applying this method to sum rules, at least its application
to the nucleon mass spectrum has not been successful [12].
We suspect that the failure is attributed to the ill-posed
essence of an inverse problem, which makes difficult
searching for correct excitations from many allowed
solutions without any specific parametrization for the
spectral density. Hence, our work provides a justified
and practical approach to studies of excited states based
on QCD sum rules.
The rest of the paper is organized as follows. In Sec. II,

we construct our formalism starting from the dispersion
relation for a two-current correlator. The distinction from
conventional QCD sum rules, namely, no assumption of the

quark-hadron duality, is highlighted. We elaborate the
extractions of the masses and decay constants of the series
of ρ resonances by solving the sum rules as an inverse
problem in Sec. III, starting with the ρð770Þ meson mass,
which is used to fix the factorization violation parameter
associated with the dimension-six condensate. We end the
search for the ρ excitations at ρð2000Þ in our formalism, for
which theoretical and experimental studies are still rare.
The conventional multiple pole sum rules with the duality
assumption are also solved in a similar way to confirm our
concern about their applications to excited states.
Section IV contains the conclusion and outlooks.

II. FORMALISM

The series of ρ resonances is one of the first objects
analyzed in QCD sum rules, through which we formulate
our approach and demonstrate its application. We first
briefly recollect the idea of conventional QCD sum rules,
starting with the two-point correlator,

Πμνðq2Þ ¼ i
Z

d4xeiq·xh0jT½JμðxÞJνð0Þ�j0i

¼ ðqμqν − gμνq2ÞΠðq2Þ; ð1Þ

for the current Jμ ¼ ðūγμu − d̄γμdÞ=
ffiffiffi
2

p
. The vacuum

polarization function Πðq2Þ obeys the identity,

Πðq2Þ ¼ 1

2πi

I
ds

ΠðsÞ
s − q2

; ð2Þ

where the contour, depicted in Fig. 1, consists of two pieces
of horizontal lines above and below the positive horizontal
axis, i.e., the branch cut, and a circle of large radius R. For s
far away from physical poles, the perturbative evaluation of
ΠðsÞ is reliable, so the right-hand side of Eq. (2) can be
written as

FIG. 1. Contour on the complex s plane.
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1

2πi

I
ds

ΠðsÞ
s − q2

¼ 1

π

Z
Λ

si

ds
ImΠðsÞ
s − q2

þ 1

π

Z
R

Λ
ds

ImΠpertðsÞ
s − q2

þ 1

2πi

Z
C
ds

ΠpertðsÞ
s − q2

; ð3Þ

where si in the first integral denotes the threshold for the
nonvanishing spectral density ImΠðsÞ, the numerator in the
second integrand has been replaced by the perturbative
spectral density ImΠpertðsÞ for a sufficiently large separa-
tion scale Λ, and C in the third integral represents the large
circle of radius R. The spectral density ImΠðsÞ in the first
integrand, involving nonperturbative dynamics from the
low s region will be determined later. The perturbative
function ΠpertðsÞ in the third integral receives only the
perturbative QCD contribution.
For q2 in the deep Euclidean region, the OPE of Πðq2Þ is

reliable, and we have Πpertðq2Þ [1] for the left-hand side of
Eq. (2),

Πpertðq2Þ ¼ 1

2πi

I
ds

ΠpertðsÞ
s − q2

þ 1

12π

hαsG2i
ðq2Þ2 þ 2

hmqq̄qi
ðq2Þ2

þ 224π

81

καshq̄qi2
ðq2Þ3 ; ð4Þ

up to the dimension-six condensate, i.e., up to the power
correction of 1=ðq2Þ3. In the above expression, hG2i is the
gluon condensate, mq is a quark mass, and the parameter
κ ¼ 2–4 [13–15] is introduced to quantify the violation in
the factorization of the four-quark condensate hðq̄qÞ2i into
the product of hq̄qi. The first term on the right-hand side,
collecting higher order corrections, has been expressed as
the integral of the perturbative function ΠpertðsÞ along the
contour in Fig. 1.
The equality of Eq. (3) on the hadron side and Eq. (4) on

the quark side leads to

1

π

Z
Λ

si

ds
ImΠðsÞ
s − q2

¼ 1

π

Z
Λ

si

ds
ImΠpertðsÞ
s − q2

þ 1

12π

hαsG2i
ðq2Þ2

þ 2
hmqq̄qi
ðq2Þ2 þ 224π

81

καshq̄qi2
ðq2Þ3 ; ð5Þ

where the contributions of the perturbative functionΠpertðsÞ
in the regions away from physical poles have canceled from
both sides, and only the perturbative spectral density,

ImΠpertðq2Þ ¼ 1

4π

�
1þ αs

π

�
≡ aπ; ð6Þ

along the branch cut remains. Equation (5) is a result of the
dispersion relation for the function Πðq2Þ.
The next step is to parametrize the nonperturbative

spectral density ImΠðsÞ on the left-hand side of Eq. (5).

The translational invariance and the integration over the
coordinate x in Eq. (1) gives

2ImΠμνðq2Þ ¼
X
n

h0jJμjnihnjJνj0idΦnð2πÞ4δðq − pnÞ;

ð7Þ

for q2 > 0, in which dΦn and pn represent the phase space
and the momentum of the intermediate state jni, respec-
tively. The ground state for jni is a neutral vector of the
mass mV and the polarization vector ϵ, which defines the
decay constant fV via the matrix element,

h0jJμjVλi ¼ fVmVϵ
λ
μ: ð8Þ

The substitution of Eq. (8) into Eq. (7) yields

ImΠðq2Þ ¼ πf2Vδðq2 −m2
VÞ þ πρhðq2Þθðq2 − shÞ; ð9Þ

where the first term is a consequence of the narrow width
approximation, and the second term describes the contri-
bution from higher excitations with sh being their thresh-
old. It has been assumed that the widths of excited states
become broader, so their contributions can be parametrized
as a continuous spectral density function ρhðq2Þ.
The key of QCD sum rules is the quark-hadron duality,

which assumes that the spectral density ρhðsÞ is related to
the perturbative density ImΠpertðsÞ as s is higher than some
scale s0 > sh by

ρhðsÞ ¼ 1

π
ImΠpertðsÞθðs − s0Þ; ð10Þ

referred to the local duality, or by

Z
Λ

sh

ds
ρhðsÞ
s − q2

¼ 1

π

Z
Λ

s0

ds
ImΠpertðsÞ
s − q2

; ð11Þ

referred to the global duality. The threshold s0 is around
1 GeV2, so the duality can hardly hold at such a low scale
[16,17]. Obviously, the quark-hadron duality is a major
source of theoretical uncertainty, which is not easy to
control.
The Borel transformation,

B̂M ≡ lim
Q2 ;n→∞
Q2=n¼M2 ;

1

ðn − 1Þ! ðQ
2Þn

�
−

d
dQ2

�
n
; ð12Þ

with Q2 ≡ −q2, is then employed to suppress the con-
tinuum contribution on the hadron side, which has been
related to the perturbative spectral density via the duality
assumption, and to improve the OPE on the quark side.
Inserting Eqs. (9) and (10) [or (11)] into Eq. (5), we
derive the conventional sum rule under the Borel trans-
formation [1],
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f2Ve
−m2

V=M
2 ¼ 1

π

Z
s0

si

dsImΠpertðsÞe−s=M2 þ 1

12π

hαsG2i
M2

þ 2
hmqq̄qi
M2

−
112π

81

καshq̄qi2
M4

: ð13Þ

It is seen that the suppression on the higher power
corrections with the typical M ∼Oð1Þ GeV and by the
additional factors 1=ðk − 1Þ! for the 1=ðq2Þk term, k ≤ 3, is
not effective actually. The prescription for a sum rule
calculation is to tune the threshold s0 in the above formula,
such that the value of fV is stable against the variation of
the Borel mass M in a maximal window of M. This
prescription introduces theoretical uncertainly, especially
when the sum rule window does not exist [2].
An alternative interpretation for the equality of the

hadron and quark sides in Eq. (5) is that there exist multiple
solutions to Eq. (2): the right-hand side of Eq. (3), which
contains the nonperturbative spectral density ImΠðsÞ in the
first term, can be regarded as a nonperturbative solution to
Eq. (2), while the right-hand side of Eq. (4) can be regarded
as a perturbative solution. Motivated by the above view-
point, we propose to handle QCD sum rules as an inverse
problem, for which multiple solutions exist naturally. First,
the spectral density is written as the superposition of the
pole and continuum contributions,

ImΠðq2Þ ¼ πf2Vδðq2 −m2
VÞ þ πρhðq2Þ; ð14Þ

where the threshold sh in Eq. (9), introduced in conven-
tional sum rules to characterize the continuum region, does
not appear. As mentioned before, excited states tend to have
broader widths, and the transition from the resonance to
continuum region should be smooth. Hence, the second
term in Eq. (14) behaves more like a ramp function [18] in
general, taking a value as q2 > si, instead of like a step
function. The unknown function πρhðq2Þ can be approxi-
mated by the perturbative spectral density ImΠpertðq2Þ
reliably as q2 is great than some large separation scale
Λ as shown in Eq. (3). Strictly speaking, this approximation
is also based on the local quark-hadron duality, but it is not
the concerned duality assumption in conventional QCD
sum rules around the threshold s0 ≈ 1 GeV2, and the
duality violation above the large Λ is expected to be minor.
Inserting Eq. (14) into the left-hand side of Eq. (5), we

write

f2V
m2

V − q2
þ
Z

Λ

0

ds
ρhðsÞ
s − q2

¼ ωðq2Þ;

ωðq2Þ ¼ a ln
q2 − Λ
q2

þ 1

12π

hαsG2i
ðq2Þ2 þ 2

hmqq̄qi
ðq2Þ2

þ 224π

81

καshq̄qi2
ðq2Þ3 ; ð15Þ

in which the threshold si ¼ 4m2
π with the pion mass mπ has

been set to zero, and the OPE input ωðq2Þ, equal to the
right-hand side of Eq. (5), is calculable as a standard
OPE. The sum rule is then turned into an inverse problem,
where the unknowns mV , fV and ρhðsÞ are solved with the
OPE input ωðq2Þ. The suppression on the uncertain
continuum contribution, which will be solved directly, is
not necessary. The suppression on the higher power
corrections can be easily achieved by considering the input
ωðq2Þ at large jq2j. Applying the Borel transformation to
Eq. (15), we get

f2V
M2

e−m
2
V=M

2 þ 1

M2

Z
Λ

0

dsρhðsÞe−s=M2 ¼ ω̂ðM2Þ;

ω̂ðM2Þ≡ B̂Mωðq2Þ ¼ að1 − e−Λ=M
2Þ

þ 1

12π

hαsG2i
ðM2Þ2 þ 2

hmqq̄qi
ðM2Þ2 −

112π

81

καshq̄qi2
ðM2Þ3 : ð16Þ

As demonstrated in the next section, both versions,
Eqs. (15) and (16), give similar solutions to the unknowns.
Therefore, we postulate that the Borel transformation is not
crucial for the present formalism.
Note that an inverse problem is usually ill-posed, and the

ordinary discretization method to solve a Fredholm integral
equation does not work. The best fit method proposed in
[19] may be the most transparent way to reveal the
existence of multiple solutions in this case. To facilitate
the numerical analysis, we expand the spectral density
function ρhðyÞ≡ ρhðs ¼ yΛÞ in Eq. (15) in a series of
Legendre polynomials,

ρhðyÞ ¼ b0P0ð2y − 1Þ þ b1P1ð2y − 1Þ þ b2P2ð2y − 1Þ
þ b3P3ð2y − 1Þ þ � � � ; ð17Þ

with

P0ðyÞ ¼ 1; P1ðyÞ ¼ y; P2ðyÞ ¼
1

2
ð3y2 − 1Þ;

P3ðyÞ ¼
1

2
ð5y3 − 3yÞ: ð18Þ

Other bases of orthogonal functions, such as the trigono-
metric functions, can serve the purpose equally well. The
boundary conditions ρhð0Þ ¼ 0 and ρhð1Þ ¼ a (equal to the
perturbative density at s ¼ Λ) impose the constraints,

b2 ¼
a
2
− b0; b3 ¼

a
2
− b1: ð19Þ

It will be verified that the expansion up to P3ðyÞ, with the
converging coefficients bi, is sufficient. We will solve
Eq. (15) by tuning Λ, mV , fV , b0, and b1 to minimize the
difference between its two sides.
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III. APPLICATIONS

In this section, we extract the observables associated
with the series of ρ resonances from our formalism. It is
notoriously difficult to solve a Fredholm integral equation
like Eq. (15). We have found that the best fit method may be
the most transparent way to probe multiple solutions of a
Fredholm equation, which has been applied to the explan-
ation of the D meson mixing parameters [19] and the
determination of the hadronic vacuum polarization con-
tribution to the muon anomalous magnetic moment [20].
The following OPE parameters [21,22] and the strong
coupling evaluated at the scale of 1 GeV are adopted,

ΛQCD ¼ 0.353 GeV; hmqq̄qi ¼ 0.007× ð−0.246Þ3 GeV4;

hαsGGi ¼ 0.07 GeV4;

αshq̄qi2 ¼ 1.49× 10−4 GeV6; αs ¼ 0.5: ð20Þ

We consider the input ωðq2Þ from an appropriate range of
q2 in the Euclidean region, in which 20 points q2i are
selected, and then search for the set of parameters Λ, mV ,
fV , b0, and b1 that minimizes the residual sum of square
(RSS),

X20
i¼1

���� f2V
m2

V − q2i
þ
Z

Λ

0

ds
ρhðsÞ
s − q2i

− ωðq2i Þ
����
2

: ð21Þ

Such a set of parameters approximates a solution of the
Fredholm equation (15). A similar RSS can be defined for
the sum rule in Eq. (16) under the Borel transformation, for
which the input ω̂ðM2Þ is selected from an appropriate
range ofM2 > 0. We have tested the number of input points
from 20 to 500 and confirmed that solutions do not alter.

A. Ground state

The scanning over all the free parameters reveals the
minima of the RSS defined in Eq. (21). We present
the distributions of the RSS minima on the Λ −mV planes
in Fig. 2 and on the Λ − fV planes in Fig. 3, where
each array contains three columns of plots for κ ¼ 2, 3, and
4, and three rows for the OPE inputs from the ranges
ð−100 GeV2;−1 GeV2Þ in q2, ð−100 GeV2;−10 GeV2Þ
in q2, and ð1 GeV2; 100 GeV2Þ in M2. The reason
why the input point is extended to q2 ¼ −100 GeV2

(M2¼100GeV2) is that we intend to find a solution to
Eq. (15) [Eq. (16)] in a large range of q2 (M2). Nontrivial
landscapes of the RSS minima are observed, which imply
the resonance masses mV and the decay constants fV
preferred by the sum rule in Eqs. (15) or (16). A point on a
curve of deep color, having RSS about 10−14 (10−18)
relative to 10−8 (10−10) from outside the curve in the first
and third (second) rows, represents an approximate solution
to the sum rules. A solution in the segment of the curve with
deeper color is closer to the exact solution, and the finite

length of this segment hints the existence of multiple
solutions. A value of Λ labels the scale, below which
the nonperturbative continuum contribution starts to devi-
ate from the OPE input, so its variation affects the solutions
of mV and fV . This explains the dependence of the
preferred mV and fV on Λ, described by the minimum
distributions.
It is expected that the power corrections would be

enhanced with the input range ð−100 GeV2;−1 GeV2Þ
in q2 compared to ð−100 GeV2;−10 GeV2Þ because the
former covers the low Q2 region. The enhancement is
reflected by the sensitivity of the RSS minimum distribu-
tions to the variation of κ in the first row of plots stronger
than in the second row. The dependence of the minimum
distributions on κ is also more obvious in the third row with
the input from low M2. Note that the dimension-six four-
quark condensate correction becomes comparable to the
dimension-four gluon condensate correction, both being of
order of 10−3, at Q2 and M2 as low as Oð1Þ GeV2. The
minimum distributions obtained from Eq. (16) are similar
to those from Eq. (15): the minimum locations on the
planes in the third rows are somewhat between those in the
first and second rows of Figs. 2 and 3. It is understood,
since the coefficient of the dimension-six condensate in
Eq. (16) is half of that in Eq. (15), and this reduction can
be mimicked by selecting the input from a larger Q2

region for Eq. (15). The above similarity supports the
equivalence of Eqs. (15) and (16), and our postulation that
the Borel transformation is not needed, once sum rules are
treated as an inverse problem. We will focus only on
Eq. (15) for numerical analyses from now on. As to the
input range, we pick up the one, where the perturbative
term is relatively more important than the condensate
corrections, and the OPE is sufficiently convergent, namely
ð−100 GeV2;−10 GeV2Þ in q2. It has been checked that
the input range ð−100 GeV2;−5 GeV2Þ in q2 leads to the
minimum distributions on the Λ −mV and Λ − fV
planes almost identical to the middle rows of Figs. 2
and 3, respectively.
It is interesting to see that two branches of minimum

distributions appear on the Λ −mV planes with a gap
between them, and the lower ones, being roughly flat
(independent of Λ), are located around mV ≈ 0.8 GeV,
which is close to the ρð770Þ meson mass mρð770Þ. It has
been claimed, based on a stable analytic extrapolation [23],
that the present perturbative amplitude in the deep
Euclidean region produces a prominent bump structure
in the resonance region. Here, we have explicitly shown
that the ground state ρð770Þ is predicted by our formalism.
The depth of color in the second row of Fig. 2 indicates that
global minima along the lower distributions appear in the
range 2 GeV2 < Λ < 4 GeV2. We point out that the
minimum distribution in the central plot of Fig. 2 is flat,
up to Λ ¼ 6 GeV2, a behavior which can be regarded as
kind of stability. The predicted ρð770Þmeson mass read off
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from the above range is not sensitive to the parameter κ: it
increases by about 10% when κ changes from 3 to 4,
consistent with what was observed in [21]. The upper
minimum distributions in the Λ −mV plots imply that the
single pole parametrization in Eq. (14) allows a larger mV
to be a solution to Eq. (15). Note that Eq. (14) simply
parametrizes the contribution from a resonance and a
continuum, so the resonance does not correspond to the
ρð770Þmeson a priori. It is likely that the contribution from
an excited state and a continuum also obeys the Fredholm
equation and serves as one of the allowed multiple
solutions. Therefore, we conjecture that the upper distri-
butions are associated with excited states, whose signifi-
cance will be explored in the next subsection.
There is only a single RSS minimum distribution on each

Λ − fV plane in Fig. 3. It is possible, if the ground state and
the first excited state had similar decay constants. The plots
in the second row imply a weaker dependence of the
minimum distributions on Λ than in the first and third rows.

These minimum distributions are located around
fV ≈ 0.2 GeV, close to the decay constant of the ρð770Þ
meson. A larger κ value, i.e., a larger four-quark condensate
tends to increase fV . In particular, the second row of
Fig. 3 reveals global minima in the range 2 GeV2 < Λ <
4 GeV2, the same as in the second row of Fig. 2. This
consistency hints that the best solutions to the sum rule in
Eq. (15) can accommodate the physical values of the
ρð770Þ meson mass and decay constant simultaneously.
We first fix the factorization violation parameter κ

associated with the four-quark condensate using the
ρð770Þ meson mass mρð770Þ ≈ 0.78 GeV and adopt this κ
value for further analyses. It is straightforward to find that
the ρð770Þ meson mass can be produced with κ ¼ 3.2, a
value also preferred by [15], along the lower minimum
distribution in a wide range 2 GeV2 < Λ < 6 GeV2 as
shown in Fig. 4(a). Since we have ensured that both the best
fitted mV and fV occur roughly in the same range of Λ, we
determine fV in a less ambiguous way by setting mV to

FIG. 2. Minimum distributions of RSS defined in Eq. (21) on the Λ −mV planes for κ ¼ 2, 3, and 4 with the input ranges
ð−100 GeV2;−1 GeV2Þ in q2, ð−100 GeV2;−10 GeV2Þ in q2, and ð1 GeV2; 100 GeV2Þ in M2.
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FIG. 3. Minimum distributions of RSS defined in Eq. (21) on the Λ − fV planes for κ ¼ 2, 3, and 4 with the input ranges
ð−100 GeV2;−1 GeV2Þ in q2, ð−100 GeV2;−10 GeV2Þ in q2, and ð1 GeV2; 100 GeV2Þ in M2.

(b)(a)

FIG. 4. Minimum distributions of RSS (a) on the Λ −mV plane for κ ¼ 3.2 with the input range ð−100 GeV2;−10 GeV2Þ in q2, and
(b) on the Λ − fV with mV being further set to mρð770Þ ≈ 0.78 GeV.
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mρð770Þ ≈ 0.78 GeV to avoid possible influence from
excited states. The resultant Λ − fV plot from Eq. (15)
with the input range ð−100 GeV2;−10 GeV2Þ in q2 is
displayed in Fig. 4(b). For consistency, we search for the
global minimum in the range 2 GeV2 < Λ < 6 GeV2 and
find that the one located at Λ ¼ 2.8 GeV2 on the L-shape
distribution gives the decay constant fρð770Þ ¼ 0.22 GeV.
The separation scale Λ ¼ 2.8 GeV2 is supposed to be large
enough for justifying the replacement of ImΠðsÞ by
ImΠpertðsÞ in the second term on the right-hand side of
Eq. (3). The above results of mρð770Þ and fρð770Þ agree with
those in [24], from the lattice calculation [25], from the
Bethe-Salpeter equation [26–28], and from the light-front
quark model [29].
To test the sensitivity of our results to the OPE

uncertainties, we vary the perturbative piece and the quark
condensate hq̄qi by �30% separately. It is observed that
our results are less sensitive to the variation of the former.
Since the quark condensate and the gluon condensate
appear at the same power of 1=ðq2Þ2, the 30% variation
can include and mimic that from the gluon condensate. It is
understood that the hq̄qi2 term at the power 1=ðq2Þ3 also
varies accordingly. We find that the ρð770Þ meson mass,
extracted from the single-pole parametrization in Eq. (15),
differs by only about �15%. It implies that our results in
the present setup are stable, as the OPE uncertainties are
taken into account.
We also read off the coefficients in the expansion of the

spectral density function ρhðq2Þ in terms of the Legendre
polynomials, which correspond to the selected global
minimum located at Λ ¼ 2.8 GeV2 in Fig. 4(b),

b0 ¼ 0.0126; b1 ¼ 0.0276;

b2 ¼ 0.0022; b3 ¼ −0.0128: ð22Þ

As two more Legendre polynomials P4 and P5 are included
in the expansion, the global minimum shifts toΛ¼3.1GeV2

with the corresponding decay constant fρð770Þ ¼ 0.23 GeV,
and we have

b0 ¼ 0.0120; b1 ¼ 0.0308; b2 ¼ −0.0040;

b3 ¼ −0.0202; b4 ¼ 0.0068; b5 ¼ 0.0042: ð23Þ

The stability of the coefficients b0;…; b3 and the smallness
ofb4 andb5 verify that the expansionup to the polynomialP3

is enough.
The behavior of the spectral density function ρhðq2Þ in q2

for Eq. (22) is depicted in Fig. 5(a), which differs dramati-
cally from the step function in Eq. (10) based on the local
quark-hadronduality.Note that the slope of the solvedρhðq2Þ
is discontinuous at q2 ¼ Λ ¼ 2.8 GeV2, where it transits to
the perturbative spectra density function becausewe have not
yet imposed the continuity constraint to the slope. The exact
spectral density should approach to the perturbative one at a
sufficiently large Λ, such that a solution becomes less
sensitive to the choice of the separation scaleΛ. This explains
the flatness of the minimum distribution for Λ > 4 GeV2 in
Fig. 4(b). The function ρhðq2Þ is slightly negative at q2,
where the pole is located. This negative contribution is
expected to be compensated by that from the resonance,
when its finite width is taken into account. We mention that
the minimum distribution on the Λ − fV plane in Fig. 4(b)
becomes nearly vertical at Λ ≈ 2.3 GeV2, corresponding to
solutions with large fV . It is easy to find that the correspond-
ing function ρhðq2Þ is significantly negative at the ρð770Þ
pole, so fV must be large to compensate this negative
contribution.
We compare the q2 dependencies of the left-hand side

from the best fit solution and of the right-hand side of
Eq. (15) by showing their difference in Fig. 5(b). For the
purpose of comparison, we display a solution on the mini-
mum distribution located at Λ ¼ 10 GeV2 in Fig. 4(b) with
the corresponding decay constant fV ¼ 0.18 GeV, which
is far away from the global minimum. It is obvious that the

(a) (b)

FIG. 5. (a) Behavior of the spectral density function ρhðq2Þ in q2, and (b) difference between the two sides of Eq. (15) for the best fit
solution in Fig. 4(b), and a solution on the minimum distribution located at Λ ¼ 10 GeV2.
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two sides of Eq. (15) match each other well in the former
case and that the difference between the two sides is about
100 times larger in the latter case.
Next, we investigate how each term in the OPE input

influences the emergence of the ρ resonances in Fig. 2. The
RSS minimum distributions on the Λ −mV plane for the
two cases, with only the perturbative piece and without
the 1=ðq2Þ3 power correction, are presented in Figs. 6(a)
and 6(b), respectively. It is seen that both the minimum
distributions grow with Λ in the former without a stable
region. It implies that the perturbative piece alone does not
induce a bound state. When the 1=ðq2Þ2 terms, i.e., the
gluon and two-quark condensates, are turned on, the lower
minimum distribution in Fig. 6(b) shifts toward the larger Λ
region but still does not exhibit a stable value of mV . The
upper minimum distribution remains as dim as in Fig. 6(a).
When all the terms on the right-hand sides of Eq. (15) are
present, the stable ground state mass appears, and the upper
minimum distribution also gets enhanced as shown in
Fig. 4. The observation is that all the terms in the OPE
work together to generate the ρ resonance, and the four-
quark condensate is more crucial for its emergence.

Below we extract the ρ meson decay width from our
formalism by inserting the πþπ− state and other multi-
hadron states into the correlator in Eq. (1), among which
the matrix element h0jJμjπþπ−i defines the time-like pion
form factor. The ρ resonance contributes to the spectral
density dominantly, which is parametrized as [21,30]

ImΠðq2Þ ¼ 1

24π

m4
V þm2

VΓ2

ðq2 −m2
VÞ2 þm2

VΓ2
þ πρhðq2Þ; ð24Þ

with the width Γ. The first term in the above expression
corresponds to the timelike pion form factor, which
describes the decay of a ρ meson, produced by the current
Jμ, into a pion pair. No three pion states are involved here,
which arise from anω resonance suppressed by the isospin-1
current. The boundary condition ρhðq2 ¼ ΛÞ ¼ a ought
to be modified into ImΠðq2 ¼ ΛÞ ¼ aπ due to the finite
distribution of the form factor in q2. We set mV ¼ mρð770Þ
and analyze the minimum distribution on the Λ − Γ plane,
which is exhibited in Fig. 7. Other parametrizations for the
timelike pion form factor, such as the Breit-Wigner one in
[31], have been tested, and similar minimum distributions
are obtained. It is noticed that the global minimum located
at Λ ¼ 4.3 GeV2 gives Γ ¼ 0.17 GeV, close to the value
in [24]. We mention that it is difficult to reproduce the width
of the ρð770Þ meson with any reasonable precision in the
Bayesian approach [4] because of the insufficient sensitivity
of the detailed ρð770Þ peak form to the OPE input.

B. Excited states

The upper minimum distributions on the Λ −mV planes
in Fig. 2, with a gap above the lower ones, hint strongly the
existence of other resonances, though a single pole para-
metrization for the spectral density was adopted in Eq. (14).
Combining the implication of theΛ − fV plots in Fig. 3, we
speculate that an excited ρ state with the decay constant
around 0.2 GeV can also satisfy the sum rule in Eq. (15).
Compared to the lower minimum distributions, referred to

(a) (b)

FIG. 6. Minimum distributions of RSS on the Λ −mV planes for κ ¼ 3.2 with the input of (a) the perturbative piece only, and
(b) without the 1=ðq2Þ3 power correction from the range ð−100 GeV2;−10 GeV2Þ in q2.

FIG. 7. Minimum distribution of RSS on the Λ − Γ plane for
κ ¼ 3.2 with the input from the range ð−100 GeV2;−10 GeV2Þ
in q2.
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the ground state ρð770Þ, the minimum distributions asso-
ciated with excited states exhibit more significant sensi-
tivity to the variation of the separation scale Λ. This is
understandable because more excited states, which are
denser in the mass spectrum, will be covered as Λ
increases, such that a single pole parametrization becomes
less proper. To study properties of an excited state, we
modify the spectral density in Eq. (14) into

ImΠðq2Þ ¼ πf2ρð770Þδðq2 −m2
ρð770ÞÞ þ πf2Vδðq2 −m2

VÞ
þ πρhðq2Þ; ð25Þ

where the ground state mass and decay constant have been
fixed tomρð770Þ ¼ 0.78 GeV and fρð770Þ ¼ 0.22 GeV deter-
mined in the previous subsection. The first excited state has
been moved out of the continuum and treated as the second
isolated resonance in the above parametrization. Certainly,
the RSS definition in Eq. (21) is also modified accordingly
with two resonance terms being included.
We observe the RSS minimum distribution on the

Λ −mV plane with the OPE input range ð−100 GeV2;
−10 GeV2Þ in q2 and κ ¼ 3.2 in Fig. 8(a). Given the double
pole parametrization in Eq. (25), the minimum distribution
indeed becomes less Λ dependent at large Λ, compared to
the upper minimum distribution in Fig. 4(a). In particular,
global minima in the range Λ ≈ 3–5 GeV2 imply the
preferred values of mV close to the ρð1450Þ meson mass
mρð1450Þ ≈ 1.46 GeV. That is, we find the indication for the
existence of the first excited ρ state in our formalism. We
mention that the extraction of higher resonance properties
is more sensitive to the variation of the OPE input,
compared to the extraction of the ground state properties:
the 30% variation of the quark condensate hq̄qi causes
more than 20% difference in the determination of the
ρð1450Þ meson mass. A seeming U-shape minimum
distribution attaches to the tilted one without a gap, a
layout quite different from Fig. 4(a). Note that there may

exist another state ρð1570Þ with a similar mass, which has
been speculated to be due to an Okubo-Zweig-Iizuka-
suppressed decay mode of ρð1700Þ [24]. It is not clear
whether the gapless minimum distributions are related to
these two nearby states ρð1450Þ and ρð1570Þ. A more
precise OPE input may help clarify this issue.
Since extremely low values of RSS have been observed

in Fig. 4 for the one resonance study, the sum rule is quite
stable, and the OPE input could be described well by one
resonance; it is a concern whether we have overfit the OPE
input using the double-pole parametrization in Eq. (25). To
clarify this concern and whether new information on higher
resonances can be extracted, we treat both the masses mV1

and mV2
, and both the decay constants fV1

and fV2
as free

parameters in a double-pole parametrization, and then scan
the mV1

−mV2
plane around Λ ≈ 2 GeV2 with κ ¼ 3.2 to

search for the RSS minimum distribution. It is intriguing to
see in Fig. 9 that the region with mV1

≈mV2
, namely, a

single-state solution is not favored compared to the two-
state solution. With more free parameters, the uncertainty in

(a) (b)

FIG. 8. Minimum distributions of RSS (a) on the Λ −mV plane for the double pole parametrization with κ ¼ 3.2 and the input range
ð−100 GeV2;−10 GeV2Þ in q2, and (b) on the Λ − fV plane with mV being further set to mρð1450Þ ¼ 1.46 GeV.

FIG. 9. RSS minimum distribution on the mV1
−mV2

plane in
the double-pole parametrization aroundΛ ≈ 2 GeV2 with κ ¼ 3.2.
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the fit is larger, as indicated by the wide dark bands, and
the numerical fluctuation is more violent. It is the reason
why we performed the fit and determined the mass one
resonance after another in order to control the precision.
Nevertheless, global minima are still identified in Fig. 9,
which hint at a state with a lower mass of about 0.8 GeV
and another state with a higher mass of about 1.3 GeV.
Therefore, nontrivial new information on higher resonances
can indeed be extracted from the OPE input through the
sum rules.
We then choose mV in Eq. (25) as mρð1450Þ ¼ 1.46 GeV,

namely, fix the considered excited state to be ρð1450Þ and
find the minimum distribution on the Λ − fV plane in
Fig. 8(b). We discard the distribution in the low Λ region,
since the separation scale should be higher than m2

ρð1450Þ in
the search for a physical solution of the double pole
parametrization. The preferred decay constant fρð1450Þ ¼
0.19 GeV is read off from the global minimum located at
Λ ¼ 4.8 GeV2. This value of fρð1450Þ leads to the ratio of
the two τ decay widths,

Γðτ → ρð1450ÞντÞ
Γðτ → ρð770ÞντÞ

¼
ðm2

τ −m2
ρð1450ÞÞf2ρð1450Þ

ðm2
τ −m2

ρð770ÞÞf2ρð770Þ
≈ 0.3; ð26Þ

for the masses mτ ¼ 1.777 GeV, mρð770Þ ¼ 0.775 GeV,
and mρð1450Þ ¼ 1.465 GeV, and the decay constant
fρð770Þ ¼ 0.22 GeV. The above ratio, being larger than
the estimate 0.1 in the extended Nambu-Jona-Lasinio
model [32], can be confronted with future data.
We point out that the continuum contribution to the

spectral density differs from the one described by Eq. (22)
because the first excited state ρð1450Þ has been moved
out of the continuum. The coefficients of the Legendre
polynomials corresponding to the global minimum in
Fig. 8(b) are

b0 ¼ 0.0104; b1 ¼ 0.0248;

b2 ¼ 0.0033; b3 ¼ −0.0101; ð27Þ

so the expansion of the spectral density function up to the
P3 term is still enough. The behavior of the spectral density
function ρhðq2Þ in q2 is displayed in Fig. 5(a), which differs
from the step function in Eq. (10) and from the one
associated with the single pole solution. It is natural that
ρhðq2Þ becomes sizable at higher q2, when more resonances
are moved out of the continuum. Without the duality
assumption on the hadron side, there is more freedom to
adjust the continuum contribution according to considered
resonances.
The strategy to extract the observables associated with

the next excited state is clear now in our formalism. The
study of higher excited states is expected to be more
difficult since they become denser in the mass spectrum.
Motivated by the appearance of the additional U-shape
minimum distribution on the Λ −mV plane in Fig. 10(a),
we repeat the procedure. To examine whether there
exist higher excited states, we further modify the spectral
density into

ImΠðq2Þ ¼ πf2ρð770Þδðq2 −m2
ρð770ÞÞ

þ πf2ρð1450Þδðq2 −m2
ρð1450ÞÞ

þ πf2Vδðq2 −m2
VÞ þ πρhðq2Þ; ð28Þ

where the mass and the decay constant of the ρð1450Þ
meson have been set tomρð1450Þ ¼ 1.46 GeV and fρð1450Þ ¼
0.19 GeV derived above, respectively. The RSS minimum
distribution on the Λ −mV plane with the OPE input range
ð−100 GeV2;−10 GeV2Þ in q2 and κ ¼ 3.2 is presented in
Fig. 10(a). The U-shape minimum distribution appears
again, but with a gap above the slightly tilted one. It is easy
to find the global minima located on the tilted minimum
distribution around Λ ∼ 5 GeV2, which correspond to

(b)(a)

FIG. 10. Minimum distributions of RSS (a) on the Λ −mV plane for the triple pole parametrization with κ ¼ 3.2 and the input range
ð−100 GeV2;−10 GeV2Þ in q2, and (b) on the Λ − fV plane with mV being further set to mρð1700Þ ¼ 1.7 GeV.
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mV ≈ 1.7 GeV, exactly the ρð1700Þ meson mass [24]. That
is, the second excited ρ state also emerges in our formalism.
We then search the minimum distribution on the Λ − fV

plane withmV being set to the value ofmρð1700Þ ¼ 1.7 GeV,
namely, with the considered excited state being fixed
to ρð1700Þ. The minimum distribution, displayed in
Fig. 10(b), also reveals a nontrivial structure. We read
off the decay constant fρð1700Þ ¼ 0.14 GeV from the global
minimum located at Λ ¼ 5.8 GeV2. The associated coef-
ficients in the polynomial expansion are modified into

b0 ¼ 0.0106; b1 ¼ 0.0244;

b2 ¼ 0.0031; b3 ¼ −0.0099; ð29Þ

and the resultant behavior of the spectral density function
ρhðq2Þ is displayed in Fig. 5(a). As expected, the spectral
density function shifts further toward the large q2 region
with one more excited state being moved out of the
continuum.
Motivated by the nontrivial U-shape minimum distribu-

tion in Fig. 10(a), we study next excited state. Adopting the
spectral density,

ImΠðq2Þ ¼ πf2ρδðq2 −m2
ρÞ þ πf2ρð1450Þδðq2 −m2

ρð1450ÞÞ
þ πf2ρð1700Þδðq2 −m2

ρð1700ÞÞ
þ πf2Vδðq2 −m2

VÞ þ πρhðq2Þ; ð30Þ

we analyze the minimum distribution on the Λ −mV plane
shown in Fig. 11(a), where the global minima located in the
range Λ ∼ 6–7 GeV2 give mV ∼ 1.9 GeV. It is exactly the
ρð1900Þ meson mass [24], implying that the third excited ρ
state still emerges in our formalism. We then search the
minimum distribution on the Λ − fV plane with mV being
set to mρð1900Þ ¼ 1.9 GeV, namely, with the considered
excited state being fixed to ρð1900Þ. The global minimum
in Fig. 11(b) located at Λ ¼ 7.1 GeV2 gives the decay

constant fρð1900Þ ¼ 0.14 GeV, which marks a prediction of
our formalism that has not yet been attempted before. The
corresponding coefficients in the polynomial expansion are

b0 ¼ 0.0118; b1 ¼ 0.0242;

b2 ¼ 0.0028; b3 ¼ −0.0095; ð31Þ
and the resultant behavior of the spectral density function
ρhðq2Þ is exhibited in Fig. 5(a).
Onemaywonder whether even higher excited ρ states can

be probed in our formalism because some nontrivial
U-shape minimum distribution still shows up in Fig. 11(a),
with a small gap above the lower minimum distribution.
Above ρð1900Þ, there are ρð2150Þ, which is a well-
established state, and ρð2000Þ, which is poorly established
and needs confirmation [24]. We extend the parametrization
in Eq. (30) to include one more unknown pole, with
the other poles being fixed in the previous analysis. The
scanning on the Λ −mV plane reveals the minimum dis-
tribution in Fig. 12. An obvious global minimum is located
atΛ ≈ 7 GeV2with the correspondingmassmV ∼ 2.0 GeV,
which supports the existence of the ρð2000Þ state. Though

(b)(a)

FIG. 11. Minimum distributions of RSS (a) on the Λ −mV plane for the quadruple pole parametrization with κ ¼ 3.2 and the input
range ð−100 GeV2;−10 GeV2Þ in q2, and (b) on the Λ − fV plane with mV being further set to mρð1900Þ ¼ 1.9 GeV.

FIG. 12. Minimum distributions of RSS on the Λ −mV plane
for the quintuple pole parametrization with κ ¼ 3.2 and the input
range ð−100 GeV2;−10 GeV2Þ in q2.
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there is a vague U-shape minimum distribution above the
tilted one, we will not proceed further the test application,
and end the search of the excited ρ states here.
Our results for the decay constants of the ρð1450Þ and

ρð1700Þ excitations are comparable to those derived in the
literature, such as the sum rule analysis with nonlocal
consensate corrections [5,10], the multiple pole QCD
sum rules [11,33], the light cone quark model [34], the
lattice QCD [35], and the rainbow-ladder truncation method
[36]. The theoretical and experimental studies on the
ρð1900Þ and higher states are still rare. Our formalism
can be applied to the extraction of decay widths for excited
ρ states in principle, which, however, demands more effort.
Simply adding one more timelike pion form factor asso-
ciated with ρð1450Þ to the ρð770Þ contribution, we observe
no minimum distribution on the Λ − Γ plane. This is not a
surprise, since the πþπ− production in eþe− annihilation is
basically saturated by the ρð770Þ intermediate resonance,
and ρð1450Þ contributes little. At last, we make a remark on
the maximum entropymethod for sum rules. It is unlikely to
reveal all the bound states simultaneously, especially when
the mass spectrum becomes dense and multiple solutions
exist for such an inverse problem. It may be possible to
explore excited states using this method, if one follows our
strategy: find the best fit solutions for excited states one by
one. We will validate this conjecture in a future publication.

C. Sum rules with duality assumption

As an alternative viewpoint, the duality assumption in
Eq. (10) can be regarded as an oversimplified parametriza-
tion with a single parameter s0 for the spectral density in
conventional sum rules. This simple parametrization with a
step function satisfies the boundary conditions automati-
cally: it vanishes at s ¼ 0, and the duality assumption
guarantees the continuity condition at s ¼ s0. Compared to
our polynomial expansion, we have two free parameters, b0
and b1. In this sense, our parametrization may be simple too
but still more general than the duality assumption. We will

elaborate that one may not be able to explore properties
of excited states reliably under the duality assumption. For
the convenience of discussion, we present the version of
Eq. (13) before the Borel transformation,

f2V
m2

V − q2
¼ 1

π

Z
s0

0

ds
ImΠpertðsÞ
s − q2

þ 1

12π

hαsG2i
ðq2Þ2

þ 2
hmqq̄qi
ðq2Þ2 þ 224π

81

καshq̄qi2
ðq2Þ3 ; ð32Þ

where the lower bound si in the integral on the right-hand
side has been approximated by zero. The conventional sum
rules in Eqs. (13) and (32) can also be handled as an inverse
problem with the three unknowns mV , fV , and s0. This
handling is basically the same as the best fit performed
in [21], and more sophisticated than in [8,9], where the
unknowns were solved by requiring the same asymptotic
behavior for both sides of the sum rules, namely, by
equating the coefficients of different powers in 1=q2 on
both sides. We focus only on Eq. (32) and take the OPE
from the range ð−100 GeV2;−10 GeV2Þ in q2 as the input.
It has been verified that results derived from the sum rule
under the Borel transformation in Eq. (13) are the same.
The minimum distributions on the s0 −mV and s0 − fV

planes for κ ¼ 3 are presented in Figs. 13(a) and 13(b),
respectively. The minimum distributions for κ ¼ 2 and 4
are similar. It is found that there is only one minimum
distribution on the s0 −mV , which increases monotonically
with the threshold s0, like the lower minimum distribution
in Fig. 6(a) attributed only to the perturbative piece of
the OPE. Note that Fig. 4(a) contains two minimum
distributions, where the lower one, corresponding to
mV ≈ 0.78 GeV, is stable with respect to the variation of
Λ, and the upper one appears with a mass gap. The range
of the threshold s0 is supposed to be between m2

ρð770Þ ≈
0.6 GeV2 and m2

ρð1450Þ ≈ 2.2 GeV2, within which neither a

global minimum nor a plateau exists around the ρð770Þ
meson mass. Certainly, one can choose an appropriate

(b)(a)

FIG. 13. Minimum distributions of RSS for the conventional sum rules under the duality assumption (a) on the s0 −mV plane and
(b) on the s0 − fV plane with κ ¼ 3 and the input range ð−100 GeV2;−10 GeV2Þ in q2.
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s0 value, say, s0 ≈ 1.3 GeV2 to get mV ¼ 0.78 GeV.
Then with this s0, one can read off fV ¼ 0.2 GeV from
Fig. 13(b). In this sense, the conventional sum rules are less
predictive but still useful for estimating the decay constant
of the ground state, if its mass is fixed.
To check whether the conventional sum rule can probe

the ρð1450Þ state, we apply the same strategy, solving the
spectral density with a double pole parametrization, in which
the ground state parameters are fixed tomρð770Þ ¼ 0.78 GeV
and fρð770Þ ¼ 0.2 GeV read off above. Again, the s0 −mV

plane contains only one minimum distribution of RSS as
shown in Fig. 14(a). In this case, a reasonable value of s0 is
supposed to be a bit higher than m2

ρð1450Þ ≈ 2.1 GeV2 and a

bit lower than m2
ρð1700Þ ≈ 2.9 GeV2, as the finite widths of

these excited states are taken into accounted. No global
minimum, i.e., no reliable solution for a resonance, exists
within this range, and results of mV are always below
the physical one mρð1450Þ ≈ 1.46 GeV. The minimum at the
lower bound of s0 is deeper, but one has to push s0 to the
extreme s0 ¼ 2.9 GeV2 in order to barely reach mV ¼
1.46 GeV. The corresponding decay constant fV ¼
0.21 GeV, being larger than fρð770Þ ¼ 0.2 GeV of the
ground state, is unlikely [11]. This is not a surprise because
s0 ¼ 2.9 GeV2 is not a reasonable choice. If one insists on
continuing to probe the next excited ρ state, the triple pole
parametrization can be adopted, with the parameters of the
second pole being further fixed tomρð1450Þ ¼ 1.46 GeV and
fρð1450Þ ¼ 0.21 GeV.The resultantminimumdistribution on
the s0 −mV plane is exhibited in Fig. 14(b). It is seen that
there is no global minimum, and all values of mV in the
designated range of s0 > ðmρð1700Þ þ 0.1Þ2 ≈ 3.2 GeV2 [11]
with the finite width of ρð1700Þ being considered, are all
greater than 1.7 GeV. Namely, no reliable and sensible
solution is identified for the ρð1700Þ state.
The above investigation reveals clearly the limitation of

conventional sum rules based on the duality assumption.

Though nontrivial minimum distributions of RSS still appear
on the s0 −mV plane, which are allowed by an ill-posed
inverse problem, the duality assumption imposes too strong
of a restriction on the shape of the continuum. It has to be a
step function with the height being equal to that of the per-
turbative spectral density, and the threshold s0 exists in a
narrow interval. It means that the continuum has been
roughly fixed, especially as excited states are probed, which
are denser in the mass spectrum. Under this stringent res-
triction, solutions for resonances may not exist due to the
absence of global minima and can hardly be correct, even as
s0 is stretched unreasonably. In summary, conventional sum
rules may work for ground state studies, in which the interval
of s0, namely, the flexibility of varying the continuum is
bigger but should become unreliable for excited states.

IV. CONCLUSION

In this paper, we have improved QCD sum rules for
nonperturbative studies without assuming the quark-hadron
duality on the hadron side. The spectral density at low
energy, including both resonance and continuum contribu-
tions, is solved with the OPE input on the quark side by
treating sum rules as an inverse problem. We have
elaborated the postulation that the Borel transformation
is not crucial for this new formalism because the continuum
contribution needs not to be suppressed but is solved via
the inverse problem, and the convergence of the OPE is
achieved by adopting the input in the deep Euclidean
region. Once the unknown spectral density is solved
directly, the stability criterion for conventional sum rules
is not necessary either. The implementation of the above
formalism has been demonstrated by identifying the series
of ρ states and by determining their corresponding decay
constants from the two-current correlator. The strategy is to
include resonances one by one into the spectral density with
different associated continuum contributions, and to repeat
solving the sum rules by minimizing the difference between

(a) (b)

FIG. 14. Minimum distributions of RSS on the s0 −mV plane for the conventional sum rules under the duality assumption (a) for the
double pole parametrization, where the first pole is fixed to be ρð770Þ, and (b) for the triple pole parametrization, where the second pole
is further fixed to be ρð1450Þ with κ ¼ 3 and the input range ð−100 GeV2;−10 GeV2Þ in q2.
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the hadron and quark sides. One should make sure in the
above procedure that the scale Λ, separating the perturba-
tive and nonperturbative regimes, should be above the
highest resonance parametrized into the unknown spectra
density for consistency. In this way, we have predicted
the decay constants fρð770Þðfρð1450Þ; fρð1700Þ; fρð1900ÞÞ≈ 0.22
(0.19, 0.14, 0.14) GeV for the masses mρð770Þðmρð1450Þ;
mρð1700Þ; mρð1900ÞÞ ≈ 0.78 (1.46, 1.7, 1.9) GeV of the ρ
resonances. The decay width Γρð770Þ ≈ 0.17 GeV of the
ρð770Þ meson has been also obtained. We mentioned that
the existence of the ρð1570Þ state could not be excluded,
which has been speculated to be due to an Okubo-Zweig-
Iizuka-suppressed decay mode of ρð1700Þ, and that the
existence of the ρð2000Þ state is supported.
The major sources of theoretical uncertainties arise from

the OPE for the OPE inputs, which is truncated at finite
orders in αs and at finite powers of 1=q2. We have observed
that the variation of the factorization violation parameter κ
from 3 to 4 causes about 10% variation to the results
presented in this work. More precise inputs, such as reliable
κ values and condensates, help determine nonperturbative
observables. Here, we have fixed κ to be 3.2 to produce the
ρð770Þ meson mass. The dimension-eight condensates are
still quite uncertain [16,37–39] and deserve more inves-
tigation. Second, the expansion of the spectral density
function ρh in a series of Legendre polynomials is truncated
at the fourth term. Though the convergence of this
expansion has been scrutinized, the precision of our
predictions can be improved by including higher order
polynomials. When this is done, the continuity of the slope
of the spectral density function at the separation scale can
also be imposed, and its impact is worth investigation. It is
claimed that both the above sources of theoretical uncer-
tainties can be reduced straightforwardly and systemati-
cally. One may still question whether the separation scales

Λ about few GeV2 in our study are large enough for
justifying the replacement of the continuum contribution
ImΠðsÞ by the perturbative one ImΠpertðsÞ, which is also
based on the quark-hadron duality. Certainly, it is not the
concerned duality assumption in conventional QCD sum
rules around the threshold s0 ≈ 1 GeV2, and the duality
violation above Λ≈ few GeV2 is expected to be minor.
This new formalism is more predictive with less ambi-

guity and more control of theoretical uncertainty, compared
to conventional sum rules because the unknown observ-
ables were extracted from the best fit of the two sides of a
sum rule. In particular, it can be extended to analyses of
excited states, which are difficult to achieve in conventional
sum rules. We have observed that the condensate correc-
tions up to dimension-six seem to be sufficient for gen-
erating most known ρ resonances. Since whether a bound
state exists can be explored in our formalism, it would be of
interest to apply it to the various exotic channels, such as
those containing more than three quarks. It is worthwhile to
generalize it to pursue nonperturbative properties of vector
mesons in nuclear medium [40,41] at finite density or
temperature to directly observe the change in the spectral
density function in hot or dense environments. Our for-
malism cannot only be applied to low energy light flavor
processes but also to heavy flavor physics [42–46]. It is also
possible to extend it to studies of nonlocal condensate
effects on excited states [5,10] and on other more compli-
cated QCD processes [47–51]. There is no doubt that there
are broad applications of our nonperturbative formalism.
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