
 

Chiral crossover transition from the Dyson-Schwinger equations in a sphere
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Within the framework of Dyson-Schwinger equations of QCD, we study the effect of finite volume on
the chiral phase transition in a sphere with the MIT boundary condition. We find that the chiral quark
condensate hψ̄ψi and pseudotransition temperature Tpc of the crossover decreases as the volume decreases,
until there is no chiral crossover transition at last. We find that the system for R ¼ ∞ fm is
indistinguishable from R ¼ 10 fm and there is a significant decrease in Tpc with R as R < 4 fm. When
R < 1.5 fm, there is no chiral transition in the system.
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I. INTRODUCTION

The quantum chromodynamics (QCD) as a underlying
theory describing strong interactions exhibits two fascinat-
ing aspects: confinement and dynamical chiral symmetry
breaking (DCSB). As the temperature increases, the
strongly interacting matter will undergo a phase transition
from hadronic matter to quark-gluon plasma (QGP) with
deconfinement and chiral restoration. QCD phase transi-
tions are experimental and theoretical frontiers, which have
been studied in relativistic heavy-ion collisions (HICs) at
CERN (France/Switzerland), BNL (USA), and GSI
(Germany) [1,2]. However, most of the theoretical calcu-
lations are based on the thermodynamic limit (namely, the
volume of the system V → ∞). It is worth bearing in mind
that the QGP system produced in HICs always has a finite
volume, depending on the collision nuclei, the center of
mass energy, and the centrality. According to the UrQMD
transport approach [3], the volume of Au-Au and Pb-Pb
collisions before freeze-out is about 50–250 fm3 [4]. It is
believed that the radii of possible quark gluon plasma are
estimated to be 2–10 fm. Therefore, there is a problem we
need to consider: does the size and shape of QGP system
produced in HICs affect the phase transition?
There has been a lot of theoretical studies for the effect of

finite volume on QGP phase transition, within the Nambu-
Jona-Lasinio (NJL) model [5–7], Polyakov-Nambu-Jona-
Lasinio model [8–10], quark-meson model [11–13], and

Dyson-Schwinger equations (DSEs) [14–19]. In most
existing theoretical studies, for the sake of convenience,
the systems are usually treated as a cube, and antiperiodic
boundary condition (APBC) is used. However, when the
volume of the fireball produced in collision is small
enough, not only its size but also its shape have a non-
negligible effect on the QCD phase transition. In order to
simulate more realistic condition such as the fireball
expected to arise in HICs, the authors of Ref. [20] consider
a sphere with the MIT boundary condition under the
framework of NJL model for the first time. However, it
should be pointed out that the NJL model is a non-
renormalizable theory, in which the confinement property
is not preserved. Meanwhile, the gauge sector of QCD, i.e.,
the gluon degrees of freedom, is lost. This led us to consider
a more realistic approach to study QGP phase transitions in
a sphere with the MIT boundary condition.
In this work, we employ the framework of Dyson-

Schwinger equations to deal with the finite size effects
in a sphere. DSEs has been widely used in studying
strongly interacting phenomena in vacuum and in heat
bath [21–32]. It is capable of simultaneously implementing
color confinement and expressing DCSB [30,33–38].
Recently, as mentioned before, it is used to study the
effects of finite volume on QGP crossover transition.
However, those studies were all for cubic systems, i.e.,
APBC. In this work, we study finite size effects with MIT
boundary condition for the first time.
This paper is organized as follows: In Sec. II, we

introduce the DSEs at finite temperature within the MIT
boundary condition. In Sec. III, chiral quark sation and
chiral susceptibility of a spherical system at different radii
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are defined and calculated. On this basis, the influence of
system volume and shape on chiral crossover transition
temperature is discussed, and the results are compared with
those obtained by traditional APBC based on cubic
systems. In Sec. IV, we present a brief summary.

II. DYSONSCHWINGER EQUATIONS
IN A FINITE VOLUME

The formulation of DSEs at nonzero temperature is
described in Refs. [21,36]. The T ≠ 0 dressed-quark
propagator is obtained from the following gap equation:

Sðω̃n; p⃗Þ−1
¼ Z2ðiγ⃗ · p⃗þ iγ4ω̃n þ ZmmÞ

þ Z1T
X

l

Z
d3p
ð2πÞ3 g

2DμνðkΩÞ
λa
2
γμSðω̃l; q⃗Þ

λa
2
γν;

ð1Þ

where ω̃n ¼ ð2nþ 1ÞπT are the fermionic Matsubara
frequencies;m is the current-quark mass andm ¼ 0 defines
the chiral limit. Z1;2;m are the vertex, quark field, and mass
renormalization constants, respectively. As we employ an
ultraviolet-finite model, renormalization is unnecessary,
i.e., Z1;2;m ¼ 1. DμνðkΩÞ is the dressed-gluon propagator
which has the form

g2DμνðkΩÞ ¼ PT
μνðkΩÞDðk2ΩÞ þ PL

μνðkΩÞDðk2Ω þm2
gÞ; ð2Þ

where kΩ ¼ ðω̃n − ω̃l; p⃗ − q⃗Þ, andmg ¼ ð16=5Þπ2T2 is the
gluon Debye mass. Since the temperature breaks the
Lorentz symmetry, the tensor structure of gluon has both
transverse and longitudinal parts, where PT;L

μν are transverse
and longitudinal projection operators, respectively,

PT
μνðkΩÞ ≔

�
0; μ and=or ν ¼ 4

δij −
kikj
k2 ; μ; ν ¼ i; j ¼ 1; 2; 3

; ð3Þ

PL
μνðkΩÞ þ PT

μνðkΩk
Þ ¼ δμν −

kμkν
k2

: ð4Þ

The choice of interaction kernel is not unique. In this work,
we use a simplified form of Maris-Tandy model [32],

Dðk2ΩÞ ¼ D0

4π2

ω6
k2Ωe

−k2Ω=ω
2

: ð5Þ

The parameters D0 and ω are not independent: a change in
D0 can be compensated by an alteration of ω [38]. In this
paper, we choose a typical value ω ¼ 0.5 GeVwithD0ω ¼
ð0.8 GeVÞ3 [32].
The gap equation’s solution can be generally ex-

pressed as

Sðω̃n; p⃗Þ−1 ¼ iγ⃗ · p⃗Aðp⃗2; ω̃2
nÞ þ Bðp⃗2; ω̃2

nÞ
þ iγ4ω̃nCðp⃗2; ω̃2

nÞ þ γ⃗ · p⃗γ4ω̃nDðp⃗2; ω̃2
nÞ;
ð6Þ

with the four scalar dressing functions A, B, C, D. The
dressing function D, however, is power law suppressed in
the UV [21] and does not contribute in all cases inves-
tigated here.
The mass function of quarks can be defined as [39,40]

Mðω̃2
n; p⃗2Þ ¼ Bðω̃2

n; p⃗Þ
Cðω̃2

n; p⃗Þ
ð7Þ

and the Euclidean constituent mass ME ≔ fp2jp2 > 0;
p2 ¼ Mðω̃2

0; p⃗
2Þg, which provides a realistic estimate of

the quarks active quasiparticle mass [41].
For finite size system, Eq. (1) should be modified. Three

momenta will be discretized by the boundary condition

Z
d3p⃗
ð2πÞ3 →

1

V

X

pk

: ð8Þ

The allowed values of momentum modes depend on the
selection of boundary conditions. For APBC, we have

p⃗k ¼
X

ki¼�1;�3;…

kiπ
L

êi; ð9Þ

with L is the size of cubic box. Another boundary condition
is multiple reflection expansion (MRE), which introduces
an IR cutoff in the momentum space and modifies the
density of states [19].
However, APBC works on a cubic box and MRE

becomes invalid for very small volume. In this work, we
use MIT boundary condition. Under spherical MIT boun-
dary condition, the allowed momentum values are given by
the following eigen equations:

jlκðpRÞ ¼ −sgnðκÞ p
EþM

jl̄κðpRÞ; ð10Þ

where

lκ ¼
�−κ − 1 for κ < 0

κ for κ > 0

l̄κ ¼
�−κ for κ < 0

κ − 1 for κ > 0
;

κ ¼ �1;�2;… and jlðxÞ is the lth ordered spherical Bessel
function. R is the radius of sphere, p is the allowed
momentum value. In the MIT bag model, the quark inside
the bag has current-quark mass, and the equation of motion
is the free Dirac equation with the MIT boundary condition.
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So the mass which appears in the eigen equation is the
current-quark mass. In Ref. [20], the NJL model is con-
strained inside a sphere by the MIT boundary condition.
Then one takes the homogeneous mean field approxima-
tion, and the NJL model becomes a quasiparticle model
with the current-quark mass becoming constituent quark
mass. The equation of motion in this case is still the free
Dirac equation. Eventually, the mass appearing in the eigen
equation is the constituent mass in Ref. [20]. However, in
the DSEs, the dressed-quark mass function is dependent on
the ωn and p⃗ and there is no constant constituent mass as in
NJL model. So, we choose a mass similar to the constituent
mass in NJL model within the DSEs framework, i.e., the
Euclidean constituent massME whose magnitude is typical
of that employed in constituent-quark models [41–44],
where E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

E þ p⃗2
p

is the quasiparticle energy. Our
treatment therefore serves as an approximation at this stage.

III. FINITE VOLUME EFFECTS ON THE
CHIRAL PHASE TRANSITION

Solving the DSEs at finite temperature and finite size, we
obtain the numerical results of fully dressed-quark propa-
gator. We then study the chiral phase transition temperature
Tc. The corresponding order parameter is the chiral
condensate. In the chiral limit, we have [14]

−hψ̄ψi0 ¼ 4NcT
X∞

n¼−∞
trD

Z
d3p
ð2πÞ3 Sðp⃗; ω̃nÞ: ð11Þ

When m ≠ 0, Eq. (11) diverges, we do not have a well-
defined chiral condensate. Hence, we employ the renor-
malized chiral condensate defined as [23,45]

−hψ̄ψi ¼ 4NcT
X∞

n¼−∞
trD

Z
d3p
ð2πÞ3 ½Sðp⃗; ω̃nÞ − S0ðp⃗; ω̃nÞ�:

ð12Þ

For finite size system, it becomes

−hψ̄ψiV ¼ 4Nc
T
V

X

k;n

trD½Sðp⃗k;ωnÞ − S0ðp⃗k;ωnÞ�; ð13Þ

with S0ðp⃗; ω̃nÞ being free quark propagator and Sðp⃗k;ωnÞ
being the fully dressed-quark propagator. However, it
should be noted that this renormalization prescription only
works for simple interaction models without logarithmic
running at large momenta [such as Eq. (5)]. More elaborate
versions of the model and renormalization scheme have
been developed [46–53].
A direct computation of finite volume DSEs, i.e.,

Eqs. (1) and (8), is quite difficult. The reason is obvious:
in general, for the simplified Maris-Tandy model, the
ultraviolet cutoff of the three momentum integral is

Oð10Þ GeV and the summation of Matsubara frequency
should be consistent with it. As the volume increases and
the temperature decreases, the number of allowed values of
three momentum andMatsubara frequency is so large that it
is difficult to calculate numerically. Some people approxi-
mate the momentum modes summation using an integral
with an infrared cutoff [8,15]. However, this approximation
is known to get worse as the system size decreases. In this
work, we adopt a more elegant approximation, i.e., we
rewrite Eq. (8) as

Z
d3p⃗
ð2πÞ3 →

1

V

X

jpkj<λ
þ
Z

jpkj>λ

d3p⃗
ð2πÞ3 : ð14Þ

As the high momentum modes are generally denser than
low momentum modes, we therefore approximate the
summation by an integral for high momentum modes.
Here λ is an adjustable parameter, depending on volume
and temperature. We can keep increasing it until the
numerical result is stable.
For the summation of Matsubara frequency, symmetry of

quark propagator can help us reduce the computation effort,

F ðω̃n; p⃗k;TÞ ¼ F �ðω̃−n; p⃗k;TÞ; ð15Þ

with F ¼ A, B or C. At low temperature, the number of
Matsubara frequency is of ∼Oð102Þ. For this reason, the
numerical calculation is very difficult within DSEs frame-
work when T < 0.1 GeV. However, when n is large
enough, F is very smooth, so in the iteration we can
reduce computing complexity by interpolation. The tech-
nique goes as follows: we take all the low Matsubara
frequencies and keep only a few high frequencies by means
of a mapping

n0 ¼ Int½nγ · aþ n · ð1 − aÞ�; ð16Þ

where n ¼ 1; 2; 3;…N; a ¼ −N0þN
−N0þðN0Þγ and NðN0Þ is the

number of elements in array nðn0Þ. By controlling the scaling
factor γ, we canmap the evenly distributed array n to an array
n0 that gets sparse as n0 enlarges. We then solve the scalar
functionsF at frequencies n0, while at the rest frequencies,F
are obtained by the cubic spline interpolation.
When the chiral condensate is obtained, we can further

study the chiral susceptibility [54–57]

χmV ðTÞ ¼ −
∂
∂m hψ̄ψiV: ð17Þ

In the chiral limit, chiral symmetry is restored via a second-
order transition at Tc in which chiral susceptibility
diverges. At nonzero current mass, the chiral symmetry
restoration transition is replaced by a crossover. The
pseudocritical temperature Tpc is obtained as the maxima
of the chiral susceptibility with respect to temperature.
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In this work, we choose the current-quark mass
m ¼ 4.8 MeV, which is obtained by fitting the pion mass
(mπ ¼ 0.135 GeV) with the Bethe-Salpeter equation.
Accordingly, we can obtain the pion decay constant
(fπ ¼ 0.095 GeV) close to the experimental value based
on the D0ω that we chose in Eq. (5). When the volume of
the system is infinite, we have Tpc ¼ 137 MeV, close to
the recent lattice QCD simulation value Tpc ¼ 156.5�
1.5 MeV [58]. The numerical results show that Tpc

gradually decreases and the curve of chiral susceptibility
χmV ðTÞ becomes flat while the system size dwindling
(see Fig. 1).
When the volume is small enough, the influence of the

shape of the system on Tc cannot be ignored. Our earlier
study shows that in a cubic box, when L is greater than 3 fm
(V ∼ 27 fm3), the size of the system can be regarded as
infinite [15–17,20]. As Fischer and co-workers pointed out
in Ref. [14], at zero temperature, the finite size will have
large effects when cubic side length goes below L ¼
1.8 fm and chiral symmetry will get restored at small
volumes with antiperiodic boundary condition. However,
this work shows that, in contrast to a cubic system with
APBC, the QGP phase transition in a spherical system
using MIT condition is more sensitive to volume change

(see Fig. 2). When the radius is less than 10 fm
(V ∼ 4000 fm3), the finite volume effect of the system
emerges. The size change of the system starts to have a
significant effect on Tpc when the radius is decreased to
4 fm (V ∼ 270 fm3). We argue that there is no chiral
crossover transition in the system when the radius is less
than 1.5 fm (V ∼ 14 fm3). In other words, it is meaningless
to discuss the chiral crossover transition in a very small
space size. Consider that DCSB can only occur in infinitely
large systems in principle, chiral symmetry has restorated
when the size is small enough.
We note that similar results were found in Ref. [20].

Therein the NJL model study with MIT boundary condition
shows that a system whose radius is above 14 fm can be
regarded as an infinitely large system, while in a cubic the
marginal size is L ¼ 3 fm. Hence, our results are closer to
Ref. [20] than to DSEs with APBC [15–17]. This indicates
that the boundary condition potentially plays an important
role when we want to simulate the realistic fireball
produced in HICs.

IV. SUMMARY AND PERSPECTIVE

Based on the DSEs formalism, we consider the influence
of the finite volume on the chiral transition of QCD at finite
temperature in a cubic and in a spherical. For the cubic
volume, we use the widely adopted antiperiodic boundary
condition and for the spherical volume we choose MIT
boundary condition which had been used in NJL model
[20]. While a cubic system within APBC could be regarded
as an infinite system if the volume was greater than 27 fm3

(L ∼ 3 fm), this calculation shows that the finite volume
effects do not vanish until the sphere radius gets larger than
10 fm. Since the QGP system generated by the collision is
closer to a sphere, we believe that the MIT boundary
condition is closer to the real physics than the antiperiodic
boundary condition. Our calculation further suggests that
when the volume of the fireball produced in collision is

FIG. 1. Upper panel: chiral condensate at different volumes.
Lower panel: chiral susceptibility at different volumes. For a
spherical system, when R > 10 fm, the size of the system can be
regarded as infinite. The volume change of the system starts to
have a significant effect when the R < 4 fm and there is no phase
transition in the system when R < 1.5 fm.

FIG. 2. This figure shows the effect of the system shape on the
Tpc. For a spherical system, the chiral crossover transition is more
sensitive to the size of the system.
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less than 270 fm3 (R ∼ 4 fm), the volume effect becomes
significant. And for R < 1.5 fm, the chiral symmetry of
system has restorated. This result also verifies Weinbergs
view: symmetry breaking can only occur in systems with a
certain large size [59]. The study of QGP chiral transition is
under way at the Relativistic Heavy Ion Collider and is
planned at several future facilities; we expect that our results
will be useful for recent and future experiments [60–64].
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