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We propose a novel method to calculate the meson mass in the framework of Dyson-Schwinger equation
and Bethe-Salpeter equation (BSE), once their dominant interactions are identified. The method is based on
the perturbation theory of matrix, which is widely used in quantum mechanics. Taking interactions other
than the dominant ones as perturbations, we derive the first order correction of quark propagator.
Implementing the perturbation on BSE, the mass correction at first order is then given. We exemplify this
method with the well-known rainbow-ladder (RL) truncation, and go beyond the RL using a simple model,
i.e., the Munczek-Nemirovsky (MN) model, by studying the pion and ρ mesons mass shift. The results are
all in good agreement with those obtained by fully solving the BSE beyond RL. Our perturbative method
therefore can be used to give a semiquantitative estimate of meson mass correction in cases when the BSEs
are complicated by interactions that go beyond the dominant one.
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I. INTRODUCTION

The bound state problem is important in QCD since all
hadrons are composite particles constituted by elementary
particles as quarks and gluons. The mass spectrum of the
hadrons encode information of their substructure. Many
approaches have been developed to study the hadron
spectrum, such as the constituent quark model [1–6],
Nambu-Jona-Lasinio (NJL) model [7,8], functional
renormalization group [9,10], lattice QCD [11–16] and
Bethe-Salpeter equation (BSE) [17–25]. Among them, the
BSE coupled with Dyson-Schwinger equation (DSE)
provides an efficient tool. The BSE-DSE approach starts
with the quark and gluon degrees of freedom, and preserves
the symmetries of QCD, such as the Uð1Þ gauge symmetry
andUAð1Þ chiral symmetry [26]. In practice, this is realized
by implementing truncations (on vertices and interaction
kernels) that respect the vector Ward-Takahashi identity
(WTI) and axial-vector WTI [27,28]. During the last two
decades, the rainbow-ladder (RL) truncation achieved great
success in describing JP ¼ 0−; 1− ground state mesons

[23,28–31] and 1
2
þ; 3

2
þ ground state baryons [32,33], which

are regarded as orbital angular momentum L ¼ 0 dominant
states. However, in the study of radially excited pseudo-
scalar and vector mesons, the RL truncation generally
underestimates their masses, implying the necessity of
going beyond RL truncation [34].
It is a subtle work to construct dressed quark-gluon

vertex and quark-anti-quark interaction kernel beyond RL
truncation. There are mainly two approaches. One is to use
explicit diagrammatic representation to the DSE of the
dressed quark-gluon vertex [17,21,35–41]. In Ref. [35], the
first model study of meson BSEs beyond RL truncation is
given by considering subleading Abelian correction for
quark-gluon vertex and quark-antiquark kernel, followed
by a number of further studies [17,21,36,42]. The non-
Abelian quark-gluon vertex is discussed in Ref. [37], and
the meson spectrum are calculated [39]. Pion exchange
between quarks was also considered [40,43]. Another
approach to go beyond RL truncation is to construct the
tensor structures of the dressed quark-gluon vertex and
thereafter to build the quark-antiquark interaction kernel
under the constrain of axial-vector WTI [44–48].
In this paper, we propose a new method to estimate the

meson mass correction, once the dominant interaction is
identified. This includes the case of RL truncation, given
the success of RL truncation in describing the properties of
ground state hadrons, e.g., the masses and the decay
constants of pion and ρ mesons [20,23,49]. Our starting
point is to treat the interaction terms beyond the dominant
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term as perturbations, i.e., their contribution to the DSE
and BSE are small as compared to the dominant term. As
compared to fully solving the DSE-BSE, our method
requires much less computational effort. Furthermore, as
we will show below, it serves as a general method which
can be conveniently applied to any interaction kernel.
This paper is organized as follows. In Sec. II, we give a

brief introduction to DSE-BSE approach. In Sec. III, we
introduce our new perturbative method. The formula of
quark propagator and the meson mass correction at the first
order is derived in detail. In Sec. IV, we employ a simple
model, the Munczek-Nemirovsky (MN) model, and revisit
the pion and ρmeson study with our new method. In Sec. V,
we summarize this work.

II. DYSON-SCHWINGER EQUATION AND BETHE-
SALPETER EQUATION

The elementary degrees of freedom in QCD are quarks
and gluons. The quark DSE describes the equation of
motion of the quark propagator, revealing how quark
propagator is determined by its interaction with gluons.
For a given flavor of quark, the quark DSE is

S−1ðpÞ ¼ Z2ðiγ · pþ ZmmÞ þ ΣðpÞ; ð1Þ

ΣðpÞ ¼ Z1

Z
q
g2DμνðkÞγμ

λa

2
SðqÞΓa

νðp; qÞ; ð2Þ

where SðpÞ is the dressed quark propagator. The
R
q is the

abbreviation of
R d4q

ð2πÞ4. Here the m is the current quark

mass, and ΣðpÞ is the quark self-energy. DμνðkÞ is the
dressed gluon propagator with k ¼ p − q, λa; ða ¼ 1…8Þ
are Gell-Mann matrices, and Γa

νðp; qÞ is the dressed quark-
gluon vertex. The Z1, Z2, and Zm are the renormalization
constants of the quark-gluon vertex, quark wave function,
and quark mass respectively. The dressed gluon propagator
and the dressed quark-gluon vertex satisfy their own DSEs,
which are related to higher-point Green functions.
Therefore the quark DSE is not closed. In practical study,
truncations and ansatz for effective interaction must be
employed so that the quark DSE gets closed and solvable.
The dressed quark propagator has the general structure

SðpÞ ¼ −iγ · pσVðp2Þ þ σSðp2Þ; ð3Þ

and the structure of the inverse of the dressed quark
propagator is

S−1ðpÞ ¼ iγ · pAðp2Þ þ Bðp2Þ: ð4Þ

The scalar functions are related by

σVðp2Þ ¼ Aðp2Þ
p2A2ðp2Þ þ B2ðp2Þ ; ð5Þ

σSðp2Þ ¼ Bðp2Þ
p2A2ðp2Þ þ B2ðp2Þ : ð6Þ

On the other hand, the quark-antiquark two-body bound
state is governed by the Bethe-Salpeter equation,

ΓMðp; PÞ ¼
Z
q
Kðp; q; PÞχMðq; PÞ; ð7Þ

χMðq; PÞ ¼ SðqþÞΓMðq; PÞSðq−Þ; ð8Þ

where ΓMðp; PÞ is the Bethe-Salpeter amplitude (BSA) of
meson. The χM is the meson wave function, q� ¼ q� η�P
with ηþ þ η− ¼ 1, and Kðp; q; PÞ is the interaction kernel.
The general structure of Bethe-Salpeter amplitude for

different JP meson is different. Take pseudoscalar meson as
an example, i.e., JP ¼ 0−, the most general amplitude reads

Γ0−ðp;PÞ ¼
X4
i¼1

Ti
0−ðp; PÞFi

0−ðp2; p · PÞ; ð9Þ

with

Ti
0−ðp; PÞ ¼ fγ5; γ5γ · P; γ5γ · p; γ5½γ · p; γ · P�g; ð10Þ

and Fi
0−ðp2; p · PÞ are scalar functions. Inserting the

general BSA into the BSE, which is a homogeneous
equation. The determination of meson mass can further
be transformed into an eigenvalue problem, e.g.,

λðP2ÞΓMðp; PÞ ¼
Z
q
Kðp; q; PÞχMðq; PÞ: ð11Þ

The calculated meson mass is located at mM with
λð−m2

MÞ ¼ 1.
The BSE contains on one hand the dressed quark

propagator, which is the solution to quark DSE Eq. (1),
and on the other hand the kernel should be constructed
together with the dressed quark-gluon vertex, i.e., they are
constrained by vector and axial-vector WTIs,

iPμΓ
γ
μðk; PÞ ¼ S−1ðkþÞ − S−1ðk−Þ; ð12Þ

PμΓ5μðk; PÞ þ 2imΓ5ðk; PÞ ¼ S−1ðkþÞiγ5 − iγ5S−1ðk−Þ:
ð13Þ

Here Γγ
μðk; PÞ is the photon-quark vertex. The vector WTI

guarantees the gauge symmetry Uð1Þ, and the axial-vector
WTI guarantees the chiral symmetry of the QCD.
Combined with the inhomogeneous BSEs of the vector
and axial-vector vertex and the quark gap equation, one can
relate the kernel to the dressed quark-gluon vertex as [50]
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Z
q
Kαα0;β0β½Sðq−Þ − SðqþÞ�α0β0

¼
Z
q
Dμνðk − qÞγμ½SðqþÞΓνðqþ; kþÞ

− Sðq−ÞΓνðq−; k−Þ�; ð14Þ
Z
q
Kαα0;β0β½SðqþÞγ5 þ γ5Sðq−Þ�α0β0

¼
Z
q
Dμνðk − qÞγμ½SðqþÞΓνðqþ; kþÞγ5

− γ5Sðq−ÞΓνðq−; k−Þ�: ð15Þ

The above equations must be satisfied in constructing the
kernel for a specified dressed quark-gluon vertex and
vice versa.

III. GO BEYOND THE DOMINANT INTERACTION
PERTURBATIVELY IN DSE AND BSE

Without loss of generality, one can write the dressed
quark-gluon vertex and quark-anti-quark interaction
kernel as

g2DμνðkÞΓνðp; qÞ ¼ Gðk2ÞDfree
μν ðkÞðΓ0

ν þ ϵΓI
νðp; qÞÞ; ð16Þ

and

Kαα0;β0βðp; q; PÞ ¼ GðkÞDfree
μν ðkÞðK0μν

αα0;β0β þ ϵKIμν
αα0;β0βÞ;

ð17Þ

where Dfree
μν ðkÞ ¼ δμν − ð1 − ξÞ kμkνk2 is the free gluon propa-

gator. The ξ is the gauge parameter and we use Landau
gauge ξ ¼ 0 in this work. GðkÞ is the effective interaction in
both Eqs. (16) and (17), which absorbs the coupling g2, the
dressing function of gluon propagator and some momen-
tum dependence of the dressed quark-gluon vertex. We then
assume the Γ0

νðp; qÞ and K0μν
αα0;β0β are the dominant part of

quark-gluon vertex and the quark-antiquark kernel, the
ΓI
νðp; qÞ and KIμν

αα0;β0β can be regarded as perturbation,
denoted by the small expansion parameter ϵ.

A. Quark DSE

Denoting S0ðpÞ as the solution to quark DSE within
dominant truncation, the quark propagator with the full
quark-gluon vertex SðpÞ can be written as

SðpÞ ¼ S0ðpÞ þ ϵS1ðpÞ þOðϵ2Þ; ð18Þ

or equivalently,

S−1ðpÞ ¼ S−10 ðpÞ þ ϵS−11 ðpÞ þOðϵ2Þ: ð19Þ

The scalar functions take the expansion analogously

σVðp2Þ ¼ σV0ðp2Þ þ ϵσV1ðp2Þ þOðϵ2Þ; ð20Þ

σSðp2Þ ¼ σS0ðp2Þ þ ϵσS1ðp2Þ þOðϵ2Þ; ð21Þ

Aðp2Þ ¼ A0ðp2Þ þ ϵA1ðp2Þ þOðϵ2Þ; ð22Þ

Bðp2Þ ¼ B0ðp2Þ þ ϵB1ðp2Þ þOðϵ2Þ: ð23Þ

Based on their relations, i.e., Eqs. (5) and (6), one obtains

σV1ðp2Þ ¼ B2
0A1 − 2A0B0B1 − p2A2

0A1

ðp2A2
0 þ B2

0Þ2
; ð24Þ

σS1ðp2Þ ¼ p2A2
0B1 − 2p2A0B0A1 − B2

0B1

ðp2A2
0 þ B2

0Þ2
: ð25Þ

Analogously, the quark DSE can also be expanded in ϵ,
which reads at the first order,

S−10 ðpÞ þ ϵS−11 ðpÞ ¼ iZ2γ · pþ Z4mþ Σ0ðpÞ þ ϵΣ1ðpÞ;
ð26Þ

the Σ0ðpÞ is the quark self-energy Eq. (2) in dominant
truncation, and Σ1ðpÞ is

Σ1ðpÞ ¼
Z
q
Gðk2ÞDfree

μν ðkÞγμðS0ðqÞΓ1
νðp; qÞ þ S1ðqÞγνÞ:

ð27Þ
The renormalization constants Z2, Z4 are

Z2 ¼ Z20 þ ϵZ21 þOðϵ2Þ; ð28Þ

Z4 ¼ Z40 þ ϵZ41 þOðϵ2Þ; ð29Þ

with

Z21 ¼ −
1

3p2

Z
q
Gðk2ÞDfree

μν ðkÞTr½pγμS0ðqÞΓI
νðp; qÞ

þ pγμS1ðqÞΓ0
νðp; qÞ�jp2¼μ2 : ð30Þ

Z41 ¼ −
1

3m

Z
q
Gðk2ÞDfree

μν ðkÞTr½γμS0ðqÞΓI
νðp; qÞ

þ γμS1ðqÞΓ0
νðp; qÞ�jp2¼μ2 : ð31Þ

As the first order expansion in ϵ, one has,

S−11 ðpÞ ¼ iZ21γ · pþ Z41mþ Σ1ðpÞ: ð32Þ

The above equation can be converted into coupled equa-
tions of A1ðp2Þ and B1ðp2Þ, a unique solution can be found
because of its linearity.
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B. The meson BSE

We now turn to the BSE, Eq. (11). The BS amplitude
ΓMðp;PÞ and the eigenvalue λðP2Þ of Eq. (11) depend on
the small parameter ϵ, so they be expanded in the same way
as the quark propagator,

ΓMðp;PÞ ¼ ΓM0ðp;PÞ þ ϵΓM1ðp; PÞ þOðϵ2Þ; ð33Þ

λðP2Þ ¼ λ0ðP2Þ þ ϵλ1ðP2Þ þOðϵ2Þ: ð34Þ

Here the ΓM0ðp;PÞ and λ0ðP2Þ are the results within the
dominant truncation. Inserting Eqs. (18), (33), and (34) into
Eq. (11), one obtains

ðλ0 þ ϵλ1ÞðΓM0 þ ϵΓM1Þ

¼
Z
q
ðK0 þ ϵKIÞðSþ0 þ ϵSþ1 ÞðΓM0 þ ϵΓM1ÞðS−0 þ ϵS−1 Þ;

ð35Þ
where S�0;1 ¼ S0;1ðq� P=2Þ.
With the help of the zeroth order of BSE, the first ordered

BSE reads

λ0ΓM1 −
Z
q
K0S

þ
0 ΓM1S−0

¼
Z
q
ðKISþ0 ΓM0S−0 þ K0S

þ
1 ΓM0S−0 þ K0S

þ
0 ΓM0S−1 Þ

− λ1ΓM0: ð36Þ
Multiply S−0 Γ̄M0S

þ
0 on the left and take trace for both sides

of Eq. (36), the left-hand side vanishes with the help of
conjugated BSE. The first order perturbation of eigenvalue is

λ1 ¼
1

N 0

Tr

�Z
l
S−0 Γ̄M0S

þ
0

Z
q
ðKISþ0 ΓM0S−0

þ K0S
þ
1 ΓM0S−0 þ K0S

þ
0 ΓM0S−1 Þ

�
: ð37Þ

N 0 ¼ Tr
Z
l
S−0 Γ̄M0S

þ
0 ΓM0: ð38Þ

All these elements are known from zeroth quark DSE,
meson BSE and the first order quark DSE. One can search
the meson massmM so that λðP2 ¼ −m2

MÞ ¼ λ0 þ ϵλ1 ¼ 1.
However, a critical remedy of Eq. (37) is needed, if we

consider the case of the pion. As we know, the pion is the
Goldstone boson of chiral symmetry. It is massless in
the exact chiral limit m ¼ 0. But the expansion Eqs. (33)
and (34) cannot automatically preserve this property.
Additional constraints should be taken into consideration.
In the chiral limit, the eigenvalue of pion BSE satisfies the
same expansion as Eq. (34), and λπCLðP2 ¼ 0Þ ¼
λπCL0 ðP2 ¼ 0Þ ¼ 1 because of the dominant truncation

and full interaction both preserve chiral symmetry, the
superscript “CL” refers to “chiral limit.” Hence

0 ¼
X∞
i¼1

ϵiλπCLi ðP2 ¼ 0Þ: ð39Þ

Subtracting Eq. (39) from Eq. (34), the eigenvalue of
meson BSE can be expanded as

λðP2Þ ¼ λ0ðP2Þ þ ϵλR1 ðP2Þ þOðϵ2Þ; ð40Þ

with

λR1 ðP2Þ ¼ λ1ðP2Þ − λπCL1 ð0Þ: ð41Þ

This is our modified (and final) result concerning λ. It is
obvious that the pion is massless at every order of ϵ in the
chiral limit. Both of the λ1ðP2Þ and λπCL1 ð0Þ can be
calculated by Eqs. (37) and (38).

IV. GO BEYOND THE RL TRUNCATION
PERTURBATIVELY IN DSE AND BSE

In this section we exemplify our perturbative approach
with a specific calculation of the pion and ρ meson by
going beyond the RL truncation. We consider the quark-
gluon vertex

Γνðp;qÞ¼γνþ
1

6

Z
l
g2DρσðlÞγρSðp−lÞγνSðq−lÞγσ; ð42Þ

which is also diagrammatic represented as in Fig. 1. The
corresponding quark-antiquark interaction kernel is shown
in Fig. 2.

FIG. 1. The quark gluon-vertex on the next leading order.

K

FIG. 2. The quark-antiquark interaction kernel on the next
leading order.
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Apparently, the first terms on the right-hand side of
Figs. 1 and 2 constitute the RL truncation. It is known that
the RL truncation dominates in the case of pion and ρ, so
we take it as the leading term, with the rest terms as
perturbations.
In this section, we employ the Munczek-Nemirovsky

(MN) model [51] to illustrate how to use the perturbative
method, and analysis the numerical results. The MN model
for the effective interaction is

GðkÞ ¼ Gð2πÞ4δ4ðkÞ; ð43Þ

where G ¼ 0.281 GeV2 in this work, and we use current
quark mass m ¼ 0.012 GeV [35]. It has the dynamical
mass generation effect built in by imposing a strong
interaction strength. In terms of ground π and ρ masses,
the availability of MN model has been tested [35].
However, it is worth to stress that the MN model is a
much simplified model. The delta function implies zero
momentum exchange between quarks, which precludes
explicit gauge sector interactions, such as the three-gluon
vertex effects. In mesons where non-Abelian interactions
are important, finding the appropriate dominant contribu-
tion becomes an important task.
Given Eq. (43), the zeroth ordered quark DSE then reads

S−10 ðpÞ ¼ iγ · pþmþ GγμS0ðpÞγμ; ð44Þ

Note the renormalization constants Z2 ¼ 1 and Zm ¼ 1
because of the effective interaction is strongly suppressed
in the ultraviolet. One can derive the coupled equations for
A0ðp2Þ and B0ðp2Þ as

A0ðp2Þ ¼ 1þ 2G
A0ðp2Þ

p2A2
0ðp2Þ þ B2

0ðp2Þ ; ð45Þ

B0ðp2Þ ¼ mþ 4G
B0ðp2Þ

p2A2
0ðp2Þ þ B2

0ðp2Þ : ð46Þ

They have several unphysical solutions, e.g., the mass
function of some solutions are negative. The physical
solution is displayed as A0, B0 in Fig. 3, for which we
constrain the mass function to be positive definite and
A0ð∞Þ ¼ 1, B0ð∞Þ ¼ m. The B0 function has an evident
rapid enhancement in the infrared region, as well as for the
mass function M0ðp2Þ ¼ B0ðp2Þ=A0ðp2Þ, which is a clear
sign of the dynamical chiral symmetry breaking.
The quark-antiquark interaction kernel is illustrated in

Fig. 2: the first term is the ladder approximation, and
the second line is regarded as the first order in ϵ. The
homogeneous BSE of meson in the ladder approximation
with MN model is

ΓM0ðp; PÞ ¼ −GγμS0ðpþÞΓM0ðp; PÞS0ðp−Þγμ: ð47Þ

The δ function in the effective interaction entails that the
bound state have zero relative momentum, so the BSA is
relative momentum independent.
For numerical convenience, we introduce projector of

Dirac-Lorentz structures, T̄i
JPðPÞ, so that

Tr½T̄i
JPðPÞT

j
JPðPÞ� ¼ δij: ð48Þ

For JP ¼ 0− meson,

T1
0− ¼ iγ5; T2

0− ¼ Pγ5; ð49Þ

T̄1
0− ¼ −i

4
γ5; T̄2

0− ¼ −
1

4P2
Pγ5; ð50Þ

and for JP ¼ 1− meson,

T1μ
1− ¼ γμ −

PPμ

P2
; T2μ

1− ¼ σμνPν: ð51Þ

T̄1μ
1− ¼ 1

12

�
γμ −

PPμ

P2

�
; T̄2μ

1− ¼ 1

12P2
σμνPν: ð52Þ

The general structure of π and ρ meson are

Γπ0ðPÞ ¼
X2
i¼1

Ti
0−F

1
π0ðP2Þ; ð53Þ

for pion, and

Γμ
ρ0ðPÞ ¼

X2
i¼1

Tiμ
1−F

i
ρ0ðP2Þ; ð54Þ

for ρ meson.
Inserting Eq. (53) into Eq. (47), multiply T̄i

0− and take
trace on both sides, one can write the pion BSE as an
eigenvalue equation,

FIG. 3. The scalar functions of quark propagator as function of
p2 in three cases: rainbow truncation A0ðB0Þ, perturbative results
up to the first order, A0 þ A1ðB0 þ B1Þ and nonperturbative
results AðBÞ.
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λ0ðP2Þ
�
F1
π0

F2
π0

�
¼

�
Kπ

011 Kπ
012

Kπ
021 Kπ

022

��
F1
π0

F2
π0

�
; ð55Þ

with

Kπ
011 ¼ Gð4σþS0σ−S0 − P2σþV0σ

−
V0Þ; ð56Þ

Kπ
012 ¼ −2GP2ðσþV0σ−S0 þ σ−V0σ

þ
S0Þ; ð57Þ

Kπ
021 ¼ −GðσþV0σ−S0 þ σ−V0σ

þ
S0Þ; ð58Þ

Kπ
022 ¼ GðP2σþV0σ

−
V0 − 2σþS0σ

−
S0Þ; ð59Þ

where σ�V0;S0 ¼ σV0;S0ðP2=4Þ.
The eigenvalue and eigenvector of Kπ

0 can be calculated
straightforwardly. The eigenvalues of π and ρ BSEs varying
with M ¼

ffiffiffiffiffiffiffiffiffi
−P2

p
are displayed as λπ0 and λρ0 in Fig. 4. We

obtain Mπ0 ¼ 0.140 GeV and Mρ0 ¼ 0.767 GeV.
Using the solutions of leading order, we calculate the

first order of quark propagator S1 with Eq. (32), and display
the numerical results in Fig. 3. We can see from Fig. 3 that
the first order correction for quark propagator is small as
compared to A0 and B0. We remind this justifies our
assumption on the beyond RL truncation term as a
perturbation. To check our calculation further, we also
calculated the full result, which is denoted by unlabeled A
and B functions. These full results are obtained by aligning
the DS Eq. (1) and BS Eq. (7) with full vertex Eq. (42) and
kernel K displayed in Fig. 2. This is usually computational
expensive but much simplified with MN model. From
Fig. 3, we see our perturbative technique gives results close
to the full results, i.e., A0 þ A1 ≈ A and B0 þ B1 ≈ B.
We further calculate the first order correction of eigen-

value for both π and ρmesons using Eq. (37), which consist
of two terms. Given the S0, S1, and ΓM0 we have, the
calculation is straightforward. In Fig. 4, we display

eigenvalues for three cases, i.e., the RL results
λM0; ðM ¼ π; ρÞ, the perturbative results up to the first
order λM0 þ λRM1, and the full results λM. Again, the λM is
obtained by fully solving the DSE and BSE with the full
interaction. In the Fig. 4(a), we can see that the pion obtains
a positive mass correction, the perturbative result is highly
quantitatively coincidence with the full result. The results
of the ρ meson can be seen in Fig. 4(b). The first order
correction is positive, which agrees with the full result
semiquantitatively. To conclude, we find that our pertur-
bative method gives a semiqualitatively consistent correc-
tion for the meson mass beyond RL truncation. It is
convenient to use. For interaction kernels that are
too complicated to compute, this may provide a first
possible estimate over the mass shift beyond dominant
truncation.

V. SUMMARY

We propose a novel method to calculate the mass
correction beyond dominant truncation in the framework
of meson Bethe-Salpeter equation together with quark
Dyson-Schwinger equation. Based on the zeroth approxi-
mation, all the elements, such as dressed quark propagator,
dressed quark-gluon vertex, meson BSA and quark-
antiquark interaction kernel, are expanded up to the first
order of ϵ. Thereafter, the equation of the first order
perturbative quark propagator is derived, a unique solution
can be found due to its linearity. According to the
perturbative theory of matrix, the first order correction
of the eigenvalue of the BSE is derived. For the special case
of pion, we rearrange the expansion of the λðϵÞ so that the
pion is massless at every order in the chiral limit, respecting
the pion’s Goldstone boson nature.
Employing Munczek-Nemirovsky model, we calculate

the dressed propagator, π and ρ meson mass beyond RL
truncation with our method. Our perturbatively obtained
results are all in semiquantitative agreement with the full
solutions. Our method can therefore be used to give a quick
estimate of meson mass beyond RL truncation. Meanwhile,
it is a general method, which potentially allows the analysis
of meson BSE with complicated interaction kernels if the
dominant part are specified. We remind that although the
RL truncation is dominant in ground state pseudoscalar and
vector mesons, even the ground state baryon, in other cases
it is not and the RL is not representative of QCD-like
truncations. In that case treating the rival interaction terms
perturbatively would allow a qualitative and preliminary
estimate of the mass shift.
Finally, our method can be generalized to the baryon

study, since the three-body bound state equation, i.e., the
Faddeev equation, can also be converted into an eigenvalue
problem of matrix. We note that beyond-RL truncation
studies on baryon within a genuine three-body approach
has been pioneered by Refs. [52–54].

FIG. 4. The eigenvalues in three cases: λπ0;ρ0 is the zeroth order
case, λπ0;ρ0 þ λRπ1;ρ1 is the correction up to the first order case, and
λπ;ρ is the nonperturbative results beyond RL truncation.
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